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Abstract.

In this study, we aim to assess the skill of a stochastic weather generator (SWG) to forecast precipitation in several cities

of Western Europe. The SWG is based on random sampling of analogs of the geopotential height at 500 hPa. The SWG is

evaluated for two reanalyses (NCEP and ERA5). We simulate 100-member ensemble forecasts on a daily time increment. We

evaluate the performance of SWG with forecast skill scores and we compare it to ECMWF forecasts. Results show significant5

positive skill score (continuous rank probability skill score and correlation) for lead times of 5 and 10 days for different areas

in Europe.

We find that the low predictability of our model is related to specific weather regimes, depending on the European region.

Comparing SWG forecasts to ECMWF forecasts, we find that the SWG shows a good performance for 5 days. This performance

varies from one region to another. This paper is a proof of concept for a stochastic regional ensemble precipitation forecast. Its10

parameters (e.g. region for analogs) must be tuned for each region in order to optimize its performance.

1 Introduction

Ensemble weather forecasts were designed to overcome the issues of meteorological chaos, from which small uncertainties in

initial conditions can lead to a wide range of possible trajectories (Sivillo et al., 1997; Palmer, 2000). Hence, from a sufficiently

large ensemble of initial conditions, it is in principle possible to sample the probability distribution of future states of the system.15

Forecasts issued by meteorological centers are obtained by computing several simulations with perturbed initial conditions,

in order to sample uncertainties. Those experiments are rather costly in terms of computing resources and are generally limited

to a few tens of members (Hersbach et al., 2020; Toth and Kalnay, 1997), which can hinder a proper estimate of probability

distributions of trajectories. Moreover, obtaining information at local spatial scales can be difficult because the horizontal

resolution of the atmospheric models is around 18 km, e.g. for the European Centre for Medium-Range Weather Forecasts20

(ECMWF) ensemble forecast system.

From a mathematical point of view, computing the probability distribution of the trajectories of a (deterministic) system

makes the underlying assumption that the system behaves like a stochastic process, for which statistical properties are defined

naturally (Ruelle, 1979; Eckmann and Ruelle, 1985). This has justified the development of stochastic weather generators
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(SWG), which are stochastic processes that emulate the behavior of key climate variables (Ailliot et al., 2015). The advantages25

of stochastic models are a relative simplicity of implementation and a low computing cost. The challenge of their development

is to verify that the behavior of the simulations are realistic, according to well-defined criteria (van den Dool, 2007; Jolliffe and

Stephenson, 2011).

The first stochastic weather generators were devised to simulate rainfall occurrence by Gabriel and Neumann (1962) and

to simulate rainfall amounts by Todorovic and Woolhiser (1975). SWGs were developed and used to estimate the proba-30

bility distributions of climate variables such as temperature, solar radiation, and precipitation through extensive simulations

(Richardson, 1981).

Stochastic weather generators can be useful complements to atmospheric circulation models, in order to simulate large

ensembles of local variables, as they can be calibrated for small spatial scales comparing to numerical models (Ailliot et al.,

2015). This explains their wide applications in impact studies.35

A successful simulation with SWG relies on the choice of inputs. One of them consists in the use of the atmospheric circula-

tion as a predictor for other local variables. The (loose) rationale for this choice is that the circulation is modeled by prognostic

equations (Peixoto and Oort, 1992), that drive the other physical variables. Therefore the primitive equations of the atmosphere

(Peixoto and Oort, 1992, Chap. 3) suggest that reproducing temporal variability on daily time scales requires considering circu-

lation variables. The influence of large-scale circulation on local climate variables has been proven in previous studies such as40

the influence of atmospheric circulation on Mediterranean Basin (Mastrantonas et al., 2021) and Greece precipitation (Xoplaki

et al., 2000; Türkes et al., 2002). Similar influences have been found on precipitation and temperature over the North Atlantic

region (Jézéquel et al., 2018b).

Analogs of circulation were initially designed to provide "model-free" forecasts, by assuming that similar situations in atmo-

spheric circulation may lead to similar local weather conditions (Lorenz, 1969). The potential to simulate large ensembles of45

forecasts temperature with circulation analogs was explored by Yiou and Déandréis (2019), by considering random resamplings

of K best analogs (rather than only considering the best analog). This has lead to the development of a SWG in "predictive"

mode, which uses updates of reanalysis datasets (Kistler et al., 2001) as input.

Alternative systems of analogs to forecast precipitation have been proposed by Atencia and Zawadzki (2014). Those systems

are based on analogs of precipitation itself. Such systems are very efficient for nowcasting, i.e. forecasting precipitation within50

the next few hours. Considering the atmospheric circulation analogs allows to focus on longer time scales.

Yiou and Déandréis (2019) evaluated ensemble forecasts of the analog SWG for temperature and the NAO index with

classical probability scores against climatology and persistence. Reasonable scores were obtained up to 20 days. Through this

study, we aim to assess the skill of this SWG to forecast precipitation in different areas of Europe and for different lead times.

The previous study on this forecast tool was a proof of concept for temperature. In this study we will adapt the parameters of55

the analog SWG to optimize the simulation of European precipitations. We then analyse the performance of this SWG for lead

times of 5 to 20 days, with the forecast skill scores used by Yiou and Déandréis (2019).

We will evaluate the seasonal dependence of the forecast skills of precipitation and the conditional dependence to weather

regimes. Finally, comparisons with medium range precipitation forecasts from the ECMWF will be performed.
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The paper is divided as follows: Section 2 is dedicated to describe the data used for the experiments. Section 3 explains the60

methodology (analogs and stochastic weather generator) and experimental set up. Section 4 details results of simulations and

the evaluation of the ensemble forecast. Section 5 contains the main conclusions of the analyses.

2 Data

Daily precipitation data were obtained from the European Climate Assessment and Data (ECAD) project (Klein Tank et al.,

2002) for four locations in western Europe (Berlin, Madrid, Orly, Toulouse), which are subject to contrasted meteorological65

influences (Figure 1). ECAD provides station data, that are available at a daily time step from 1948 to 2019. The choice of

those stations was based on the availability of large and common period of observations with a low rate of missing data (less

than 10%). For verification issues, we used also the E-Obs data (Haylock et al., 2008), which are a daily gridded data available

from 1979 to present with a horizontal resolution of 0.25° × 0.25°. E-Obs data are spatial interpolations of ECAD data.

We recovered the geopotential height at 500 hPa (Z500) and sea level pressure (SLP) fields from the reanalysis of the70

National Centers for Environmental Prediction (NCEP: Kistler et al. (2001)) with a spatial resolution of 2.5° × 2.5° from 1

January 1948 to 31 December 2019.

We also used the atmospheric reanalysis (version 5) of the European Centre for Medium-Range Weather Forecasts (ECMWF)

(ERA5; Hersbach et al. (2020)). ERA5 data are available from 1950 to present with a horizontal resolution of 0.25° × 0.25°.

There are fundamental differences between the two reanalyses, in the atmospheric models, assimilated data, and assimilation75

schemes.

We considered the daily averages of Z500 from NCEP and ERA5, over the region covering 30°W – 20°E and 40°– 60°N to

compute circulation analogs. Daily averages of SLP were used over the region covering 80°W – 20°E and 30° – 70°N to define

weather regimes.

In order to assess the predictive skill of our precipitation forecast model, a comparison with another forecast was made.80

There are many available datasets that can be used for deriving this information. We considered the ECMWF ensemble forecast

dataset system 5 (Vitart et al., 2017). It is a daily gridded dataset interpolated over Europe to provide information covering the

all the domain. Data are available through the Copernicus Climate Data Store including forecasts created in real-time (since

2017) and hindcast forecasts from 1993 to 2019 (Vitart et al., 2017). The data are provided at an hourly time step with a

horizontal resolution of 0.25° × 0.25°. We considered the grid points that include Berlin, Orly, Toulouse and Madrid, which85

were identified in the ECAD database.

3 Methodology

3.1 Analogs

The first step is to build a database of analogs of the atmospheric circulation. We outline the procedure of Yiou and Déandréis

(2019), summarized in Figure 1a. For a given day t, we determine the similarity of Z500 for all days t′ that are within 3090
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calendar days of t but in a different year from t. The similarity is quantified by a Euclidean distance (or root mean square)

between the daily Z500 maps. Other types of distances are possible (Blanchet et al., 2018), but the expected impact on the

results is often marginal (Toth, 1991). We believe that the simplicity of the a Euclidean distance makes it more robust to

changes in horizontal resolution (e.g. from NCEP to ERA5), compared to more sophisticated distances that include local

spatial gradients, which would require adjustments and additional tuning. This choice can be left open for future fine tuning,95

depending on the region.

For each day t, we consider the K = 20 best analogs, i.e. for which the distances are the smallest. The choice of K = 20

analogs was based on numerical experiments: we considered 20 analogs to ensure that we have enough analog dates for the

simulations, and it appears that the Euclidean distance of analogs grows rather slowly after K = 20. Our choice was also

comforted by a theoretical study by (Platzer et al., 2021) who showed that, for complex systems, the use of a large number100

of analogs (K > 30 analogs) does not change much the prediction properties with analogs. We compute the spatial rank

correlation between the Z500 best analogs and the Z500 at time t for a posteriori verification purposes.

As a refinement over the study of Yiou and Déandréis (2019), a time embedding of 4 days was used for the search of analogs

dates. This means that the field X(t) for which we compute analogs is X(t) = (Z500(t),Z500(t+ 1), . . . ,Z500(t+ 3)). This

ensures that temporal derivatives of the atmospheric field are preserved (Yiou et al., 2013). Hence the distance that is optimized105

to find analogs of the Z500(x,t) field is:

D(t, t′) =

∑
x

(
3∑

i=0

|Z500(x,t+ i)−Z500(x,t′+ i)|

)2
 1

2

, (1)

where x is a spatial index.

We consider different geographic domains as showed in Figure 1 for the computation of analogs and weather regimes. The

computation of circulation analogs was performed with the "blackswan" Web Processing Service (WPS, Hempelmann et al.110

(2018)). The "blackswan" WPS is an online tool that helps computing circulation analogs on various datasets (reanalyses,

climate model simulations) with a user friendly interface.

3.2 Configuration of stochastic weather generator

We use a stochastic weather generator (SWG) based on a random sampling of the circulation analogs. The operation of the

SWG and its design are detailed by Yiou and Déandréis (2019). The aim is to generate random trajectories from the previously115

computed analogs. Therefore, to generate a trajectory, we proceed as follows. For a given day t0 in year y0, we generate a

set of N = 100 simulations until a time t0 +T , with a lead time T ∈ {5,10,20} days. We start at day t0 and randomly select

an analog (out of K = 20) of day t0 + 1. The random selection of analogs of day t0 + 1 is performed with weights that are

proportional to the calendar difference between t0 and analog dates, to ensure that time goes forward. We also exclude analog

dates with years that are equal to y0. This rule is important for the next iterations. We then replace t0 by the selected analog of120

t0 +1 and repeat the operation T times. Excluding analog selection in year y0 ensures that we do not use information from the

T days that follow t0. Hence we obtain a hindcast trajectory between t0 and t0 +T .
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Figure 1. Parameters of the analog computation. (a) For each day t in year y, we chose an analog day t′ with a similar sequence of 4

consecutive day Z500 patterns. t′ is selected within 30 calendar days of t, and in a year y′ 6= y. (b) Domains of computation of analogs, we

computed analogs over different domains, each one includes a part of the Atlantic and focus in a part of Western Europe, in order to test the

sensitivity of our model to different geographic areas, the optimising area was [30°W-20°E; 40°-60°N], indicated by the red rectangle.
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This operation of trajectory simulation from t0 to t0+T is repeated N = 100 times. The daily precipitation of each trajectory

is time-averaged between t0 and t0 +T . Hence, we obtain an ensemble of N = 100 forecasts of the average precipitation for

day t0 and lead time T .125

Then t0 is shifted by ∆t≥ 1 days, and the ensemble simulation procedure is repeated. This provides a set of ensemble

forecasts with analogs.

We made a hindcast exercise where the forecasts of precipitations based on atmospheric circulation (Z500) are started every

∆t≈ T/2 day between January 1, 1948 and December 31, 2019. This yields a stochastic ensemble hindcast of precipitation and

atmospheric circulation (Z500). In this paper, we therefore analyze the properties of an ensemble forecast of mean precipitation130

between t0 and t0 +T . To evaluate our forecasts, the predictions made with the SWG are compared to the persistence and

climatological forecasts. The persistence forecast consists of using the average value between t0−T and t0 for a given year. The

climatological forecast takes the climatological mean between t0 and t0 +T . The two "reference" forecasts are randomized by

adding a small Gaussian noise, whose standard deviation is estimated by bootstrapping over T long intervals. We thus generate

sets of persistence forecasts and climatological forecasts that are consistent with the observations (Yiou and Déandréis, 2019) .135

The simulations of this stochastic model will be called "SGW forecasts", as opposed to ECMWF forecasts.

3.3 Forecast Verification

Forecast verification is the process of determining the statistical quality of forecasts. A wide variety of ensemble forecast verifi-

cation procedures exists. They involve measures of the relationship between a set of forecasts and corresponding observations.

To assess the quality of precipitation forecasts, we compute indicators such as the Correlation and Continuous Rank Probability140

Skill Score (CRPSS) for each lead time T , for different seasons and months.

The temporal rank correlation is calculated between the precipitation observations and the median of 100 simulations. This

simple diagnostic is often used to assess forecast skills of indices (Scaife et al., 2014).

The continuous ranked probability score (CRPS) represents the most used score for probability forecast verifications (Ferro,

2007). It is sensitive to the distance between forecast and observation probability distributions.145

If the ensemble forecast yields a probability distribution P (x), the CRPS measures how is the probability distribution of x

(Hersbach, 2000).

The CRPS is computed as:

CRPS(P,xa) =

+∞∫
−∞

(Pt(x)−Pa,t(x))2dx, (2)

where Pa represents the Heaviside function of the occurrence of x. The decomposition and properties of the CRPS have150

been investigated by (Ferro, 2007; Hersbach, 2000; Zamo and Naveau, 2018). A perfect forecast would have a CRPS equal to

0, but the CRPS value obviously depends on the units of the variable to forecast. It is hence difficult to compare CRPS values
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for temperature and precipitation, within the same ensemble forecast. This issue is also acute for non Gaussian variables with

heavy tails (Zamo and Naveau, 2018), so that the interpretation of a given CRPS value might not always be informative.

One way of circumventing this difficulty is to compare CRPS values to reference forecasts, such as persistence or climatol-155

ogy. The continuous rank probability skill score (CRPSS) is a normalization of Eq. (2) with respect to such a reference.

The CRPSS is hence computed by:

CRPSS = 1− CRPS

CRPSref

(3)

where the CRPSref is the CRPS of reference forecast (climatology or persistence). The CRPSS is interpreted as a percent-

age of improvement over a reference forecast.160

The values of the CRPSS varies between −∞ and 1. The forecast is considered to be an improvement over the reference

when the CRPSS value is close to 1 (i.e. when the CRPS is 0). Values of CRPSS equal to 0 indicates no improvement over the

reference. Values inferior to 0 mean that the forecast is worse than the reference.

We use the CRPSS values to determine the maximum lead time T for which the SWG forecast is better than references.

Then the SWG assessments will use the CRPS and directly compare the probability distributions of precipitation ensemble165

forecasts.

3.4 Dependence of forecast on weather regimes

We investigate the role of North Atlantic weather patterns on the forecast quality by attributing CRPS values of the SWG

precipitation simulations to weather regimes. Weather regimes are defined as large-scale quasi stationary atmospheric states.

They are characterised by their recurrence, persistence and stationarity (Michelangeli et al., 1995). They help describing the170

features of the atmospheric circulation. Surface variables like temperature and precipitation are largely correlated with weather

regimes (van der Wiel et al., 2019) .

The North Atlantic weather regimes were computed with the procedure of (Yiou et al., 2008), with the NCEP reanalysis. The

first 10 principal components of SLP (large region in Figure 1b) are classified with a k-means algorithm onto four classes, over

a reference period between 1970 and 2010. The procedure is repeated 100 times with random k-means initialization. Then we175

classify the resulting 100× 4 k-means weather regimes, in order to determine the most probable classification. This heuristic

procedure increases the robustness of the obtained weather regimes. Figure 2 shows four weather regimes for each season

(winter and summer) that are coherent with the literature (Cassou et al., 2011; Ghil et al., 2008; Kimoto, 2001; Michelangeli

et al., 1995)

The winter weather regimes are the Scandinavian blocking (BLO), Atlantic ridge (AR), negative phase of the North Atlantic180

oscillation (NAO-) and Zonal flow (ZO). The summer weather regimes are the negative phase of the NAO (NAO-), Atlantic

ridge (AR), Scandinavian blocking (BLO) and Atlantic low (AL). The regimes are not the same in both seasons, due to the

seasonality of the large scale atmospheric circulation.

For each day (in winter and summer) between 1948 and 2019, we classify the SLP by minimizing the root mean square to

four reference (1970–2010) weather regimes.185
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Figure 2. Weather regimes over Europe from SLP fields: North Atlantic oscillation (NAO-),the Atlantic ridge (AR), the Scandinavian

blocking (BLO), and Atlantic zonal (NAO+). The figure summarises the different states of the atmosphere during summer (a to d) and winter

(e to h). It indicates the low and the high pressure over Europe and the direction of flow from the west (Atlantic) to the east. The isolines

show seasonal anomalies with respect to a June-July-August and December-January-February means, in hPa with 2 hPa increments.

For each day t (within a given season), we consider the analogs dates of all N = 100 simulations between t and t+T and

the corresponding classification into weather regimes. Then we determine the most frequent weather regime of the N member

ensemble forecast between t and t+T . We hence obtain times series on the most likely weather pattern that dominates in the

ensemble forecast between t and t+T .

We evaluate the influence of the dominating weather regimes on the SWG forecast quality by plotting the probability dis-190

tribution of CRPS values conditional to each weather regime. This is done separately for "good" forecasts (low CRPS values)

and "poor" forecasts (high CRPS values).

We identify two classes of predictability from CRPS values:

– Low predictability is related to high values of CRPS that exceed the 75th quantile,

– High predictability is linked to low values of CRPS, below the 25th quantile.195

Then we associate the dominating weather regimes computed above with classes of high or low predictability. This procedure

helps identifying atmospheric patterns that could lead to low or high predictability with the SWG model.
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4 Results

4.1 Parameter optimization

To obtain optimal forecasts some parameters have been adjusted. The first parameter is the geographical area. We computed200

sample trajectories of the SWG for the four domains outlined in Figure 1b. We used different domains in order to find an

optimal region which allows verifying the relationship between precipitation and Z500. Each domain includes a part of the

Atlantic and a part of western Europe. The widest domain of the coordinates 80°W – 20°E and 30°– 70°N did not give good

results for precipitation forecasting for the four studied areas in western Europe, while the other two smaller domains (in blue)

gave good forecasts for specific locations. However, in order to make a forecast for the whole of Europe, we found that the205

domain for Z500 analogs that optimizes precipitation correlations is 30°W – 20°E and 40° – 60°N. Therefore we kept this

domain for the subsequent analyses. We determined that the SWG simulations showed better skills for the geographic domain

outlined in red in Figure 1b) as it allows to make forecasts for all the studied areas and we find that the skill scores over this

geographic domain remained the highest ones as represented in the following Table 1.

Table 1. Correlation between observations and the median of 100 simulations for the winter (DJF) for the different studied domains repre-

sented in Figure 1b, with the coordinates 80°W – 20°E ; 30° – 70°N for the largest one (blue) and 30°W – 20°E ; 40° – 60°N for the red

rectangle for a lead time of 5 days.

Location
The domain 80°W – 20°E ; 30° – 70°N The domain 30°W – 20°E ; 40° – 60°N

Correlation 95% confidence interval Correlation 95% confidence interval

Berlin 0.32 0.30 – 0. 35 0.50 0.48 – 0.56

Madrid 0.35 0.33 – 0. 39 0.53 0.51 – 0.55

Orly 0.39 0.37 – 0. 41 0.58 0.56 – 0.59

Toulouse 0.34 0.31 – 0.36 0.40 0.39 – 0.44

For comparison purposes, SWG simulations are obtained using analogs computed from reanalyses on the NCEP and ERA5210

reanalyses. By comparing their skill scores, we found that CRPSS and correlation between observations and simulations are

positive in both cases, and showing positive improvement comparing to persistence and climatology forecasts. The CRPSS and

correlation for simulations with analogs of NCEP are almost identical to those with ERA5, as showed in Table 2. Therefore, we

focus on SWG simulations with analogs from the NCEP reanalysis in the sequel as both NCEP and ERA5 (1950 to 2019) have

the same skill as shown in Table 2, and NCEP is easier to handle, as its horizontal resolution is much lower. The computations215

were made using observations of precipitation from the ECAD and E-Obs. We found the same results because the ECAD and

E-Obs are highly correlated (by construction of E-Obs).

We quantify the dependence of the forecast on the time embedding for the analogs by calculating the analogs based on

different embedding going from 1 to 4 days. We find that an embedding of 4 days helped to better catch the persistence and

improve the skill scores for the forecast compared to 1 day, as shown in Table 3. Therefore we kept the forecast based on a 4-day220
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Table 2. Comparison between the values of the CRPSS of SWG computed using different reanalysis dataset (NCEP, ERA5 (1979 to 2019)

and ERA5 extended (1950 to 2019)) for a lead time of T = 5 days for winter (DJF)

Location CRPSS DJF ERA5 CRPSS DJF ERA5 extended CRPSS DJF (NCEP) CRPSS JJA (NCEP)

Berlin 0.47 0.50 0.50 0.21

Madrid 0.50 0.55 0.57 0.25

Orly 0.51 0.53 0.53 0.23

Toulouse 0.39 0.41 0.41 0.24

embedding. This choice was based on the numerical experiments we made for the studied locations. This is also supported by

Yiou et al. (2013) where the analog computation with delays was argued to improve the temporal smoothness of simulations.

With such an embedding, forecasts for lead times of T = 5 days yield at least two time increments.

Table 3. Correlation between observations and the median of 100 simulations for the winter (DJF) based on analogs computed with an

embedding of 1 and 4 days for the geographic domain with the coordinates 30°W – 20°E ; 40° – 60°N for a lead time of 5 days.

Location
Analogs with 1 day time embedding Analogs with 4-day time embedding

Correlation 95% confidence interval Correlation 95% confidence interval

Berlin 0.39 0.37 – 0. 43 0.50 0.48 – 0.56

Madrid 0.40 0.38 – 0. 42 0.53 0.51 – 0.55

Orly 0.42 0.39 – 0. 45 0.58 0.56 – 0.59

Toulouse 0.35 0.34 – 0.37 0.40 0.39 – 0.44

4.2 Sample forecast

As an example, we illustrate the behavior of the trajectories in Orly for the summer and winter of 2002. Figure 3 shows225

the observed and simulated values of precipitation for lead times of 5 and 10 days for summer (June–July–August: JJA) and

winter (December–January–February: DJF), for Orly precipitation data. We observe significantly positive correlations between

observed values and the median of the forecasts, for the four data sets as represented in Table 4 . The correlation is generally

smaller in the summer than in the winter. The correlation skill is low for some extremes values of precipitation. For a lead time

of 10 days, SWG simulation still show capacity to predict precipitation especially for winter with a correlation equal to 0.23230

(Orly), 0.30 (Berlin), 0.43 (Madrid), 0.31 (Toulouse).

We observe that the 5th and 95th quantiles of simulations include the different values of observations. This heuristically

confirms the good skill of SWG to forecast precipitation from Z500 for several seasons (winter and summer) in several locations

for T = 5 and T = 10 day lead times.

The difference of the forecast correlation skills between the four studied locations may be related to the variation of the local235

climate from one region to an other. The studied areas are in different climate types according to Köppen-Geiger’s climate
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Table 4. Correlation between observations and the median of 100 simulations for both seasons winter (DJF) and summer (JJA) for a lead

time of 5 days

Location Correlation DJF 95% confidence interval Correlation JJA 95% confidence interval

Berlin 0.50 0.48 – 0.56 0.22 0.21 - 0.23

Madrid 0.53 0.51 – 0.55 - 0.59 0.29 0.27 - 0.30

Orly 0.58 0.56 – 0.59 0.23 0.20 - 0.24

Toulouse 0.40 0.39 – 0.44 0.18 0.15 - 0.19

classification map (Peel et al., 2007). From the south western side of Europe, Madrid is in the arid zone (Peel et al., 2007),

which indicates that convective rains are less significant, so that the origin of precipitation might be the result of humidity

coming from the Atlantic. Conversely, Berlin is located in a cold zone characterised by warm summer and the absence of a dry

season (Peel et al., 2007), so that the precipitation could be the result of both convective rains and Atlantic humidity.240

In this paper, we decided (for simplicity) to use the same analogs to forecast precipitation for those four stations. A refinement

of the analog regions would be necessary when focusing on Madrid vs. Berlin.

4.3 Forecast probability skill

The skill scores CRPSS and correlation are computed for the four studied stations Orly Berlin, Madrid and Toulouse, as showed

in illustrations represented in (Figure 4) and for lead times from 5 to 20 days. We represent skill scores for January and July in245

order to evaluate the skill of the SWG to predict precipitation in both seasons (winter and summer).

The CRPSS for persistence and climatology references show positive values for lead times of up to 20 days (Figure 4). The

values of CRPSS with persistence reference (represented by squares) decrease with lead times, showing high values over 5

days. The CRPSS for climatology (triangles) show lower values, although positive. The correlation skill is positive for both

seasons but higher in winter (January) than in summer (July). For a lead time of 5 days, the correlation is equal to 0.59 for250

Madrid, 0.50 for Berlin and to 0.40 for Toulouse. For a lead time of 10 days, it is equal to 0.42 for Madrid, 0.30 for Berlin and

to 0.41 for Toulouse.

The SWG was tested in previous work Yiou and Déandréis (2019) to forecast North Atlantic oscillation (NAO) and tem-

perature in western Europe. Comparing the performance of the SWG to forecast those different meteorologic variables, we

notice that the model shows good performance to forecast the temperature and NAO in the winter, also the best performance255

of the model is at a lead time of 5 days. We find that the skill scores (CRPSS and correlation) decrease with lead of times. The

forecast skill of the SWG shows variability from one location to another. However, the model was able to forecast temperature

until 40 days in Berlin, Orly and Toulouse with positive skill scores.

From a visual inspection of the CRPSS and correlations, we chose to focus on lead times of T = 5 days, for which the

correlation exceeds 0.5 in the winter. It is rather low in the summer, due to convective events leading to a high precipitation260
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Figure 3. Time series of analog ensemble forecasts for 2002, for lead times of 5 days (top) and 10 days (bottom) for summer (June to

August) a) and c) and winter (December to February) b) and d) for Orly. The median of 100 simulations is represented by red line. Black

line represent observations values. Gray lines represent the 5th and 95th quantiles. Blue lines represent persistence forecasts and green lines

represent the climatology forecasts. The y-axis represent the average of precipitation over T = 5,10

variability (from no rain to very high values). Correlation scores become barely significant for lead times of 20 days, so that,

like temperature, the SWG should not be used beyond that horizon.

4.4 Relation between weather regimes and CRPS

In this subsection, we investigate the role of North Atlantic weather patterns on the CRPS of the SWG precipitation simulations.

We start by comparing the frequencies of the weather regimes from the observations and the most frequent weather regime265

found in SWG simulations for a given lead time T = 5 days. We find that the percentages are very similar (Figure 5). This

means that the weather regimes of the simulated trajectories do not yield major biases for the summer or winter seasons.
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Figure 4. Skill scores for the precipitation of Orly, Madrid, Berlin and Toulouse for lead times of 5, 10, 20 days for January (blue) and

July (red) for analogs computed from reanalyses of (a) NCEP and (b) ERA5. Squares indicate CRPSS where the Persistence is the baseline,

triangles indicates CRPSS where the climatology is the reference, and box-plots indicates the probability distribution of correlation between

observation and the median of 100 simulations for all days.

Then we look at the relation between weather regime and the CRPS, by using the most frequent weather regime and the two

classes of quantiles of the CRPS that related to good quality of forecast (attributed to low values of CRPS ≤ q25) and poor

quality of forecast (attributed to high values of CRPS ≥ q75). This relation is represented in Figure 6 for Orly and for the rest270

of the studied stations in Figure A1. We find a small, albeit significant, influence of specific weather regimes on the CRPS

distribution for summer.
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Figure 5. Percentage of each weather regime for observations dates (Obs) and the most frequent weather regime from SWG simulations

between t0 and t0+T = 5 days (Analog) over the period from 1948 to 2019 for summer (JJA) and winter (DJF). The percentage of weather

regime are the same in Obs and Analog.

The weather regime signal for "good" forecasts depends on the season and the considered station. When the forecast has

a low CRPS value (for Orly), we find that the Scandinavian Blocking regime slightly dominates (green bar in Figure 6a, b).

This is also the case for Berlin (in winter) and Toulouse Figure A1 (b, j). The low CRPS values in Madrid are obtained for the275

Atlantic Ridge regime Figure A1 f.

The weather regime signal for "poor" forecasts also yields a dependence on the season and station. Higher CRPS values

are obtained with the Atlantic Ridge regime in the summer for Orly (red line in Figure 6 c) and Berlin in winter and summer.

The Atlantic ridge regime favors high CRPS values (i.e. poor forecasts) for Madrid in winter Figure A1 h. The Atlantic ridge

regime favors high CRPS values for Toulouse in summer. The different impacts of the weather regimes on the studied areas280

is related to the position of the high and low pressure regions of each weather regime and their position regarding the studied

areas.

This relation between predictability (or the CRPS distribution) and weather regimes, albeit weak, is consistent with previous

work (Faranda et al., 2017). Similar relation were found between weather regimes over Europe and the Temperature in a recent
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study by (Ardilouze et al., 2021) . We find that the sensitivity of the forecast to weather regime is larger for low values of CRPS285

and in the winter. The sensitivity of forecast skill to weather regimes is rather small on average, even for low lead times.
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Figure 6. Relation between CRPS and weather regimes for Orly, for SWG forecasts with lead time T = 5 days. Upper panels (a and b):

CRPS value distribution conditioned on four weather regimes, when CRPS is lower than q25. lower panels (c and d): CRPS is higher than

q75. The boxplots indicate the median (q50) of the distribution (thick bar). 25th (q25) and 75th (q75) quartiles (lower and upper segments).

The upper whisker is: min 1.5(q75− q50)+ q50,max(CRPS)} .

4.5 Comparison with ECMWF forecast

We first compared the CRPSS of SWG forecasts for winter and summer with the CRPSS of ECMWF forecasts.

The CRPSS of ECMWF forecast is computed for different lead times going from 1 day to 10 day for the precipitation. It

uses the climatology as a reference (Haiden et al., 2018). The values of CRPSS for Europe for 2020 decrease with lead times.290

They are about 0.16 in the summer (JJA) and 0.25 in the winter (DJF) for a lead time of T = 5 days. The values of CRPSS for

ECMWF for both seasons are computed over whole Europe (Haiden et al., 2018).

The CRPSS of SWG for a lead time of T = 5 days showed in Table 2, and this suggests that the predictive skill of SWG is

qualitatively promising for short lead times, compared with ECMWF forecasts.
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A quantitative comparison was made by comparing the empirical cumulative distribution function (ECDF; (Hersbach, 2000))295

of the CRPS of ECMWF and SWG forecasts for 5 days (Figure 7). We found that the values of CRPS of ECMWF forecast and

SWG forecast are 80%, 39% 50% and 40 % equal or near to zero for respectively Orly, Berlin, Madrid and Toulouse, which

indicates the small variations of the CRPS.
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Figure 7. Empirical cumulative distribution function of the CRPS of ECMWF and SWG forecasts for 5 days for Orly (a), Berlin (b), Madrid

(c) and Toulouse (d)

We used the Kolmogorov-Smirnov test (von Storch and Zwiers, 2001, Chap.1) to compare the probability distributions of

the CRPS of SWG and ECMWF forecasts. The null hypothesis was that the the two series of CRPS have the same distribution.300

This KS test allowed to reject this null hypothesis with p-values = 2.2 ·10−16. We conclude that the two series do not have the

same distribution. A similar result was found by Ardilouze et al. (2021), where they compared the efficiency between ECMWF

and CNRM forecasts. We also found that the maximum distance between both ECDFs is≈ 0.2 (i.e.≈ 20% of the whole range).

One notable difference between SWG and ECMWF forecasts is that although the proportion of CRPS values close to zero is

higher in ECMWF, the CRPS for the worse forecasts are much higher than those of SWG.305
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Finally, we computed the CRPSS for ECMWF forecasts taking as a reference the CRPS of SWG (Figure 8). We hence

compute the CRPSS of ECMWF forecast by normalizing the CRPS by the CRPS of SWG forecast in Eq. 3.
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Figure 8. CRPSS of ECMWF forecasts using as a reference the CRPS of SWG, for lead times T = 5,10 and 20 days. It shows that for 5

days the SWG has a positive improvement comparing to the ECMWF forecast as the CRPSS are less then zero.

This evaluates the added value of the deterministic ECMWF forecast over the SWG forecast. We find that the ECMWF

forecast has no improvement over the SWG forecast for a lead time of 5 days for the different studied areas because the CRPSS

value are negative. For a lead time of T = 20 days, the improvement of ECMWF forecast over the SWG is also negligible.310

There is a major improvement for a lead time of T = 10 days for Orly and Toulouse. This confirm the relatively good skill of

the SWG to forecast precipitation, compared to ECMWF.

5 Conclusions

In this work, we showed the performance of a stochastic weather generator (SWG) to simulate precipitation over different

locations in western Europe and for various times scales from 5 to 20 days. The input of our model was analogs of geopotential315

heights at 500 hPa (Z500). The choice of such input was made in order to evaluate the impact of large scale circulation on local

weather variables. SWG showed a good skill to predict precipitation for a lead time of 5 and 10 days from analogues of Z500.

This study complements the work of Yiou and Déandréis (2019), for precipitation. We explored the sensitivity of the SWG

model on analogs computed from different geographical areas and from different reanalyses (ERA5 and NCEP). We found

that the NCEP and ERA5 extended reanalyses provide better performances for simulations than ERA5 (1979–2019), due to320

its longer length (≈ 70 years in NCEP vs. ≈ 40 years in ERA5). Therefore the length of the analog database does make a

difference, as already suggested by Jézéquel et al. (2018a).
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We evaluated the relation between the quality of the forecast and weather regimes over Europe, we found that low and high

predictability was related to specific weather regimes, this dependence is more significant in winter than in summer, especially

for the good predictability, it is found to be mainly related to Blocking.325

A comparison with the ECMWF forecast system over Western Europe confirmed the good performance of the SWG quantita-

tively and qualitatively, for lead times T ≤ 10 days. Of course, the SWG model cannot replace a numerical weather prediction,

as the SWG parameters (e.g. region of analogs) need to be tuned to local variables, and rely on the existence of a fairly large

database to compute analogs. Here we used the same domain of circulation analogs for stations from Madrid to Berlin. Obvi-

ously, this region should be optimized for each individual station. Therefore, the main utility of the SWG forecast system is to330

make local ensemble simulations, where its performances can challenge a numerical weather prediction, if the parameters are

well tuned.

This paper hence confirms the proof of concept to generate ensembles of (local) precipitation forecasts from analogs of

circulation. Its performance relies on the relation between precipitation and the synoptic atmospheric circulation, which is

verified for western Europe. Transposing this SWG to other regions of the globe requires observations covering several decades.335

Numerical weather models obviously do not yield this constraint.
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Appendix A: CRPS and weather regimes

To avoid a tedious redundancy we deferred the figures of evaluation of the forecast quality by weather regimes to this appendix

section.345
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Figure A1. Relation between CRPS and weather regimes for Berlin (a–d)), Madrid (e–h) and Toulouse (i–l), for SWG forecasts with lead

time T = 5 days. The panels (a, b, e, f, i and j) correspond to CRPS value distribution conditioned on four weather regimes, when CRPS is

lower than q25. The panels (c, d , g, h, k and l) correspond to higher CRPS value CRPS ≥ q75. The boxplots indicate the median (q50) of

the distribution (thick bar).
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