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Abstract.

In this study, we aim to assess the skill of a stochastic weather generator (SWG) to forecast precipitation in several cities

of Western Europe. The SWG is based on random sampling of analogs of the geopotential height at 500 hPa. The SWG is

evaluated for two reanalyses (NCEP and ERA5). We simulate 100-member ensemble forecasts on a daily time increment. We

evaluate the performance of SWG with forecast skill scores and we compare it to ECMWF forecasts. Results show significant5

positive skill score (continuous rank probability skill score and correlation) for lead times of 5 and 10 days for different areas

in Europe.

We found
:::
find

:
that the low predictability of our model is related to specific weather regimes, depending on the European re-

gion. Comparing SWG forecasts to ECMWF forecasts, we found
:::
find

:
that the SWG shows a good performance for 5 days. This

performance varies from one region to another. This paper is a proof of concept for a stochastic regional ensemble precipitation10

forecast. Its parameters (e.g. region for analogs) must be tuned for each region in order to optimize its performance.

Copyright statement. TEXT

1 Introduction

Ensemble weather forecasts were designed to overcome the issues of meteorological chaos, from which small uncertainties in

initial conditions can lead to a wide range of possible trajectories (Sivillo et al., 1997; Palmer, 2000). Hence, from a sufficiently15

large ensemble of initial conditions, it is in principle possible to sample the probability distribution of future states of the system.

Forecasts issued by meteorological centers are obtained by computing several simulations with perturbed initial conditions,

in order to sample uncertainties. Those experiments are rather costly in terms of computing resources and are generally limited

to a few tens of members (Hersbach et al., 2020; Toth and Kalnay, 1997), which can hinder a proper estimate of probability

distributions of trajectories. Moreover, obtaining information at local spatial scales can be difficult because the horizontal20

resolution of the atmospheric models is around 18 km, e.g. for the European Centre for Medium-Range Weather Forecasts

(ECMWF) ensemble forecast system.
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From a mathematical point of view, computing the probability distribution of the trajectories of a (deterministic) system

makes the underlying assumption that the system behaves like a stochastic process, for which statistical properties are defined

naturally (Ruelle, 1979; Eckmann and Ruelle, 1985). This has justified the development of stochastic weather generators25

(SWG), which are stochastic processes that emulate the behavior of key climate variables (Ailliot et al., 2015). The advantages

of stochastic models are a relative simplicity of implementation and a low computing cost. The challenge of their development

is to verify that the behavior of the simulations are realistic, according to well-defined criteria (van den Dool, 2007; Jolliffe and

Stephenson, 2011).

The first stochastic weather generators were devised to simulate rainfall occurrence by Gabriel and Neumann (1962) and30

to simulate rainfall amounts by Todorovic and Woolhiser (1975). SWGs were developed and used to estimate the proba-

bility distributions of climate variables such as temperature, solar radiation, and precipitation through extensive simulations

(Richardson, 1981).

Stochastic weather generators can be useful complements to atmospheric circulation models, in order to simulate large

ensembles of local variables, as they can be calibrated for small spatial scales comparing to numerical models (Ailliot et al.,35

2015). This explains their wide applications in impact studies.

A successful simulation with SWG relies on the choice of inputs. One of them consists on
::
in the use of the atmospheric circu-

lation as a predictor for other local variables. The (loose) rationale for this choice is that the circulation is modeled by prognostic

equations (Peixoto and Oort, 1992), that drive the other physical variables. Therefore the primitive equations of the atmosphere

(Peixoto and Oort, 1992, Chap. 3) suggest that reproducing temporal variability on daily time scales requires considering cir-40

culation variables. The influence of large-scale circulation on local climate variables has been proven in previous studies such

as the influence of atmospheric circulation on eastern Mediterranean Basin
::::::::::::
Mediterranean

:::::
Basin

:::::::::::::::::::::::
(Mastrantonas et al., 2021)

and Greece precipitation (Xoplaki et al., 2000; Türkes et al., 2002). Similar influences have been found on precipitation and

temperature over the North Atlantic region (Jézéquel et al., 2018b).

Analogs of circulation were initially designed to provide "model-free" forecasts, by assuming that similar situations in at-45

mospheric circulation may lead to similar local weather conditions (Lorenz, 1969). The potential to simulate large ensembles

of forecasts temperature with circulation analogs was explored by Yiou and Déandréis (2019), by considering random resam-

plings of K best analogs (rather than only considering the best analogue). This has lead to the development of a SWG in

"predictive" mode, which uses updates of reanalysis datasets (Kistler et al., 2001) as input.

Alternative systems of analogs to forecast precipitation have been proposed by ?
::::::::::::::::::::::::
Atencia and Zawadzki (2014). Those sys-50

tems are based on analogs of precipitation itself. Such systems are very efficient for nowcasting, i.e. forecasting precipitation

within the next few hours. Considering the atmospheric circulation analogs allows to focus on longer time scales.

Yiou and Déandréis (2019) evaluated ensemble forecasts of the analog SWG
::
for

::::::::::
temperature

::::
and

:::
the

:::::
NAO

:::::
index

:
with

classical probability scores against climatology and persistence. Reasonable scores were obtained up to 20 days. Through this

study, we aim to assess the skill of this SWG to forecast precipitation in different areas of Europe and for different lead times.55

The previous study on this forecast tool was a proof of concept for temperature. In this study we will adapt the parameters of
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the analog SWG to optimize the simulation of European precipitations. We then analyse the performance of this SWG for lead

times of 5 to 20 days, with the forecast skill scores used by Yiou and Déandréis (2019).

We will evaluate the seasonal dependence of the forecast skills of precipitation and the conditional dependence to weather

regimes. Finally, comparisons with medium range precipitation forecasts from the ECMWF will be performed.60

The paper is divided as follows: Section 2 is dedicated to describe the data used for the experiments. Section 3 explains the

methodology (analogs and stochastic weather generator) and experimental set up. Section 4 details results of simulations and

the evaluation of the ensemble forecast. Section 5 contains the main conclusions of the analyses.

2 Data

Daily precipitation data was
::::
were

:
obtained from the European Climate Assessment and Data (ECAD) project (Klein-Tank et65

al., 2002)
::::::::::::::::::::
(Klein Tank et al., 2002) for four locations in western Europe (Berlin, Madrid, Orly, Toulouse), which are subject to

various
:::::::::
contrasted meteorological influences (Figure 1). The datawere

::::::
ECAD

:::::::
provides

::::::
station

::::
data,

::::
that

::
are

:
available at a daily

time step from 1948 to 2019. The choice of those stations was based on the availability of large and common period of observa-

tions with a low rate of missing data (less than 10%).
:::
For

:::::::::
verification

::::::
issues,

:::
we

::::
used

::::
also

:::
the

:::::
E-Obs

::::
data

::::::::::::::::::
(Haylock et al., 2008)

:
,
:::::
which

:::
are

:
a
:::::
daily

:::::::
gridded

::::
data

:::::::
available

:::::
from

::::
1979

::
to
:::::::
present

::::
with

:
a
:::::::::
horizontal

:::::::::
resolution

::
of

:::::
0.25°

::
×

:::::
0.25°.

::::::
E-Obs

::::
data

:::
are70

:::::
spatial

::::::::::::
interpolations

::
of

::::::
ECAD

::::
data.

:

We recovered the geopotential height at 500 hPa (Z500) and sea level pressure (SLP) fields from the reanalysis of the

National Centers for Environmental Prediction (NCEP: Kistler et al. (2001)) with a spatial resolution of 2.5° × 2.5° from 1

January 1948 to 31 December 2019.

We also used the atmospheric reanalysis (version 5) of the European Centre for Medium-Range Weather Forecasts (ECMWF)75

(ERA5; Hersbach et al. (2020)). ERA5 data are available from 1979
::::
1950

:
to present with a horizontal resolution of 0.25° ×

0.25°. There are fundamental differences between the two reanalyses, in the atmospheric models, assimilated data, and assim-

ilation schemes.

Most of the computations were performed with the NCEP reanalysis because it covers a longer period. The ERA5 data were

used for verification purposes. The higher spatial resolution of ERA5 has little impact on the results since the Z500 fields yield80

a smooth spatial variability.

We considered the daily averages of Z500 from NCEP and ERA5, over the region covering 30°W – 20°E and 40°– 60°N to

compute circulation analogs. Daily averages of SLP were used over the region covering 80°W – 20°E and 30° – 70°N to define

weather regimes.

In order to assess the predictive skill of our precipitation forecast model, a comparison with another forecast was made.85

There are many available datasets that can be used for deriving this information. We considered the ECMWF ensemble forecast

dataset system 5 (Hersbach et al. , 2019).
:::::::::::::::
(Vitart et al., 2017).

:
It is a daily gridded dataset interpolated over Europe to provide

information covering the all the domain. Data are available through the Copernicus Climate Data Store including forecasts

created in real-time (since 2017) and hindcast forecasts from 1993 to 2019 (Hersbach et al. , 2019).
::::::::::::::::
(Vitart et al., 2017).

:
The
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data are provided at an hourly time step with a horizontal resolution of 0.25° × 0.25°. We considered the grid points that90

include Berlin, Orly, Toulouse and Madrid, which were identified in the ECAD database.

3 Methodology

3.1 Analogs

The first step is to build a database of analogs of the atmospheric circulation. We outline the procedure of Yiou and Déandréis

(2019), summarized in Figure 1a. For a given day t, we determine the similarity of Z500 for all days t′ that are in a year different95

from t, but within 30 calendar days of t . This
::
but

::
in

:
a
::::::::
different

::::
year

::::
from

::
t.

:::
The

:
similarity is quantified by a Euclidean distance

(or root mean square) between the daily Z500 maps. Other types of distances are possible (Blanchet et al., 2018), but the

expected impact on the results is often marginal (Toth, 1991). We believe that the simplicity of the a Euclidean distance makes

it more robust to changes in horizontal resolution (
:::
e.g.

:
from NCEP to ERA5), compared to more sophisticated distances that

include local spatial gradients, which would require adjustments and additional tuning. This choice can be left open for future100

fine tuning, depending on the region.

For each day t,
:::
we

:::::::
consider the K = 20 best analogsare ,

:::
i.e.

:::
for

:::::
which

:::
the

::::::::
distances

:::
are

:::
the

::::::::
smallest.

:::
The

::::::
choice

::
of

:::::::
K = 20

::::::::
analogues

::::
was

:::::
based

:::
on

:::::::::
numerical

:::::::::::
experiments:

:::
we

:::::::::
considered

:::
20

:::::::::
analogues

::
to

::::::
ensure

::::
that

:::
we

::::
have

:::::::
enough

::::::
analog

:::::
dates

::
for

:
the days t′ for which the distance is the smallest

::::::::::
simulations,

:::
and

::
it
:::::::
appears

::::
that

:::
the

::::::::
Euclidean

:::::::
distance

:::
of

::::::
analogs

::::::
grows

:::::
rather

:::::
slowly

:::::
after

::::::
K = 20.

:::
Our

::::::
choice

::::
was

:::
also

:::::::::
comforted

::
by

::
a

:::::::::
theoretical

::::
study

:::
by

:::::::::::::::::
(Platzer et al., 2021)

:::
who

:::::::
showed

::::
that,

:::
for105

:::::::
complex

:::::::
systems,

:::
the

:::
use

::
of
::

a
::::
large

:::::::
number

::
of

:::::::::
analogues

:::::::
(K > 30

:::::::::
analogues)

::::
does

::::
not

::::::
change

:::::
much

:::
the

::::::::
prediction

:::::::::
properties

::::
with

:::::::
analogs. We compute the spatial rank correlation between the Z500 best analogs and the Z500 at time t for a posteriori

verification purposes.

As a refinement over the study of Yiou and Déandréis (2019), a time embedding of 4 days was used for the search of analogs

dates. This means that the field X(t) for which we compute analogs is X(t) = (Z500(t),Z500(t+ 1), . . . ,Z500(t+ 3)). This110

ensures that temporal derivatives of the atmospheric field are preserved (Yiou et al., 2013). Hence the distance that is optimized

to find analogs of the Z500(x,t) field is:

D(t, t′) =

∑
x

(
3∑

i=0

|Z500(x,t+ i)−Z500(x,t′+ i)|

)2
 1

2

, (1)

where x is a spatial index.

We consider different geographic domains as showed in Figure 1 for the computation of analogs and weather regimes. The115

computation of circulation analogs was performed with the "blackswan" Web Processing Service (WPS, Hempelmann et al.

(2018)). The "blackswan" WPS is an online tool that helps computing circulation analogs on various datasets (reanalyses,

climate model simulations) with a user friendly interface.

3.2 Configuration of stochastic weather generator
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30 days
time

year y’

t

with y ≠ y’

t + 3

a)

30 60 90 120

30 60 90 120

year y

time

t ‘+ 3t’

Berlin

Orly

Toulouse

Madrid

Figure 1.
::::::::
Parameters

::
of
:::

the
:::::
analog

::::::::::
computation.

:
(a) For each day t at

::
in year k

:
y, we chose an analog day t′ of

::::
with a similar atmospheric

circulation condition at year k’ selected among database
::::::
sequence

:
of n years; the variation of Z500 at 4 days after

::::::::
consecutive

:::
day

:::::
Z500

::::::
patterns.

:
t′ are considered; t′ is selected within 30 calendar days of t′

:
t,
:::
and

::
in
::

a
:::
year

::::::
y′ 6= y. (b) Domains of computation of analogs, we

computed analogs over different domains, each one includes a part of the Atlantic and focus in a part of Western Europe, in order to test the

sensitivity of our model to different geographic areas, the optimising area was [30°W-20°E; 40°-60°N], indicated by the red rectangle.
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As detailed by Yiou and Déandréis (2019), the
::
We

:::
use

::
a
:
stochastic weather generator (SWG) we use is based on a random120

reshuffling of
:::::::
sampling

::
of

:::
the

:
circulation analogs.

:::
The

::::::::
operation

::
of

::
the

:::::
SWG

::::
and

::
its

:::::
design

:::
are

:::::::
detailed

::
by

::::::::::::::::::::::
Yiou and Déandréis (2019)

:
.
:::
The

::::
aim

::
is

::
to

::::::::
generate

::::::
random

::::::::::
trajectories

:::::
from

:::
the

:::::::::
previously

::::::::
computed

::::::::
analogs.

:::::::::
Therefore,

::
to

:::::::
generate

::
a
:::::::::
trajectory,

:::
we

::::::
proceed

::
as
:::::::
follows.

:
For a given day t0 , we perform an ensemble of

::
in

::::
year

:::
y0,

:::
we

:::::::
generate

:
a
:::
set

::
of

::::::::
N = 100 simulations until

a lead time t0 +T , with
:
a

:::
lead

:::::
time T ∈ {5,10,20} days. In order to go from t ∈ [t0, t0 +T ] to t+ 1, we sample one

:::
We

::::
start

:
at
::::

day
::
t0::::

and
::::::::
randomly

:::::
select

:::
an analog (out of K = 20) at day t,with a probability that is proportional to / depends on the125

correlation between
:::::::
K = 20)

:::
of

:::
day

::::::
t0 + 1.

:::
The

:::::::
random

::::::::
selection

::
of

:::::::
analogs

::
of

:::
day

::::::
t0 + 1

:
is
:::::::::

performed
::::
with

:::::::
weights

::::
that

:::
are

::::::::::
proportional

::
to the Z500 fields at time t and at the analog date t’. Then we exclude samples that are in [t0, t0 +T ], so that this

procedure reflects a hindcast forecast from
::::::
calendar

:::::::::
difference

:::::::
between

::
t0::::

and
::::::
analog

:::::
dates,

::
to

::::::
ensure

:::
that

::::
time

::::
goes

::::::::
forward.

:::
We

:::
also

:::::::
exclude

::::::
analog

:::::
dates

::::
with

::::
years

::::
that

:::
are

:::::
equal

::
to

:::
y0.

::::
This

::::
rule

::
is

::::::::
important

:::
for

:::
the

::::
next

::::::::
iterations.

:::
We

::::
then

:::::::
replace t0

::
by

:::
the

:::::::
selected

::::::
analog

::
of

:::::
t0 + 1

:::
and

::::::
repeat

:::
the

::::::::
operation

::
T

:::::
times.

:::::::::
Excluding

::::::
analog

:::::::
selection

::
in

::::
year

::
y0:::::::

ensures
:::
that

:::
we

:::
do

:::
not130

:::
use

::::::::::
information

::::
from

:::
the

::
T

::::
days

::::
that

:::::
follow

:::
t0.

:::::
Hence

:::
we

::::::
obtain

:
a
:::::::
hindcast

:::::::::
trajectory

:::::::
between

::
t0 :::

and
::::::
t0 +T .

This procedure is iterated from t = t0 to t = t0 +T , to generate one trajectory. It is then
:::::::
operation

::
of
:::::::::

trajectory
:::::::::
simulation

::::
from

::
t0::

to
::::::
t0 +T

::
is

:
repeated N = 100 timesto generate an ensemble of daily trajectories starting at t0. Each daily trajectory

is time averaged .
::::
The

:::::
daily

::::::::::
precipitation

:::
of

::::
each

::::::::
trajectory

::
is

::::::::::::
time-averaged

:
between t0 and t0 +T . In this paper, we hence

analyse the properties of an ensemble forecast of the mean precipitation between
::::::
t0 +T .

::::::
Hence,

:::
we

::::::
obtain

::
an

::::::::
ensemble

:::
of135

:::::::
N = 100

::::::::
forecasts

::
of

:::
the

:::::::
average

::::::::::
precipitation

:::
for

:::
day

:
t0 and t0 +T

:::
lead

::::
time

::
T .

Then t0 is varied from Jan. 1st
::::::
shifted

::
by

::::::
∆t≥ 1

:::::
days,

::::
and

:::
the

::::::::
ensemble

:::::::::
simulation

::::::::
procedure

::
is

::::::::
repeated.

::::
This

:::::::
provides

::
a

::
set

::
of

::::::::
ensemble

::::::::
forecasts

::::
with

:::::::
analogs.

:

:::
We

::::
made

::
a
:::::::
hindcast

:::::::
exercise

:::::
where

:::
the

::::::::
forecasts

::
of

:::::::::::
precipitations

:::::
based

:::
on

::::::::::
atmospheric

:::::::::
circulation

::::::
(Z500)

:::
are

::::::
started

:::::
every

::::
∆t≈

::::
T/2

::::
day

:::::::
between

::::::
January

::
1,
:
1948 to Dec. 31st 2019, with increments of≈ T/2 . This produces

:::
and

:::::::::
December

:::
31,

:::::
2019.140

::::
This

:::::
yields

:
a stochastic ensemble hindcast forecast of precipitation and atmospheric circulation (Z500). We will focus on

::
In

:::
this

:::::
paper,

:::
we

::::::::
therefore

::::::
analyze

:
the properties of the properties of precipitation forecast.

For each day
:
an

::::::::
ensemble

:::::::
forecast

::
of

:::::
mean

:::::::::::
precipitation

:::::::
between t0 , we also compute

:::
and

::::::
t0 +T .

:::
To

:::::::
evaluate

:::
our

::::::::
forecasts,

::
the

::::::::::
predictions

:::::
made

::::
with

:::
the

:::::
SWG

:::
are

:::::::::
compared

::
to

:::
the

:
persistence and climatological forecastsfor the average between t0

and t0 +T . The persistence forecast consists in
::
of

:
using the average value between t0−T and t0 ::

for
::

a
:::::
given

::::
year. The145

climatological forecast take the climatological average
::::
takes

:::
the

::::::::::::
climatological

:::::
mean

:
between t0 and t0 +T . Both

:::
The

::::
two

"control
::::::::
reference" forecasts are randomized by adding a small Gaussian noise, whose standard deviation is estimated by

bootstrap
:::::::::::
bootstrapping over T long intervals. Hence we generate ensembles of persistence

:::
We

::::
thus

:::::::
generate

:::
sets

::
of

::::::::::
persistence

:::::::
forecasts

:
and climatological forecasts that are consistent with

::
the observations (Yiou and Déandréis, 2019) .

3.3 Domains of computation of analogs150

We computed sample trajectories of the SWG for the four domains outlined in Figure 1b. We used different domains in order

to find an optimal region which allows verifying the relationship between precipitation and Z500. Each domain includes a part

of the Atlantic and a part of western Europe. The widest domain of the coordinates 80°W – 20°E and 30°– 70°N did not give
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good results for precipitation forecasting for the four studied areas in western Europe, while the other two smaller domains (in

blue) gave good forecasts for specific locations. However, in order to make a forecast for the whole of Europe, we found that155

the domain for Z500 analogs that optimizes precipitation correlations is 30°W – 20°E and 40° – 60°N. We, therefore, kept this

domain for the subsequent analyses.

To sum up, the protocol is as follows:

– Analogs computed from Z500 over region 30°W – 20°E; 40° – 60°N (red rectangle in Figure 1) from 1948 to 2019.

– 100 trajectories generated from random analogs of Z500 and averaged for a lead times of T = {5,10,20} days are used160

to simulate precipitation. The simulation of the precipitation was done from 1948 to 2019.

– comparisons with reference forecasts ("persistence" and "climatology").

The simulations of this stochastic model will be called "SGW forecasts", as opposed to ECMWF forecasts.

3.3 Forecast Verification

Forecast verification is the process of determining the statistical quality of forecasts. A wide variety of ensemble forecast verifi-165

cation procedures exists. They involve measures of the relationship between a set of forecasts and corresponding observations.

To assess the quality of precipitation forecasts, we compute indicators such as the Correlation and Continuous Rank Probability

Skill Score (CRPSS) for each lead time T , for different seasons and months.

The temporal rank correlation is calculated between the precipitation observations and the median of 100 simulations. This

simple diagnostic is often used to assess forecast skills of indices (Scaife et al., 2014).170

The continuous ranked probability score (CRPS) represents the most used score for probability forecast verifications Ferro (2007)

:::::::::::
(Ferro, 2007). It is sensitive to the distance between forecast and observation probability distributions.

If the ensemble forecast yields a probability distribution P (x), the CRPS measures how the observations the probability

distribution of x (Hersbach, 2000).

The CRPS is computed as:175

CRPS(P,xa) =

+∞∫
−∞

(P t(x)−P aa,t
::

(x))2dx, (2)

where Pa represents the Heaviside function of the occurrence of x. The decomposition and properties of the CRPS have

been investigated by (Ferro, 2007; Hersbach, 2000; Zamo and Naveau, 2018). A perfect forecast would have a CRPS equal to

0, but the CRPS value obviously depends on the units of the variable to forecast. It is hence difficult to compare CRPS values

for temperature and precipitation, within the same ensemble forecast. This issue is also acute for non Gaussian variables with180

heavy tails (Zamo and Naveau, 2018), so that the interpretation of a given CRPS value might not always be informative.

One way of circumventing this difficulty is to compare CRPS values to reference forecasts, such as persistence or seasonality
::::::::::
climatology.

The continuous rank probability skill score (CRPSS) is a normalization of Eq. (2) with respect to such a reference.
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The CRPSS is hence computed by:

CRPSS = 1− CRPS

CRPSref

CRPS

CRPSref
::::::::

(3)185

where the CRPSref is the CRPS of reference forecast (climatology or persistence). The CRPSS is interpreted as a percent-

age of improvement over a reference forecast.

The values of the CRPSS varies between −∞ and 1. The forecast is considered to be an improvement over the reference

when the CRPSS value is close to 1 (i.e. when the CRPS is 0). Values of CRPSS equal to 0 indicates no improvement over the

reference. Values inferior to 0 mean that the forecast is worse than the reference.190

We use the CRPSS values to determine the maximum lead time T for which the SWG forecast is better than references.

Then the SWG assessments will use the CRPS and directly compare the probability distributions of precipitation ensemble

forecasts.

3.4
::::::::::

Dependence
::
of

:::::::
forecast

:::
on

:::::::
weather

:::::::
regimes

:::
We

:::::::::
investigate

:::
the

::::
role

::
of

::::::
North

:::::::
Atlantic

:::::::
weather

:::::::
patterns

:::
on

:::
the

:::::::
forecast

::::::
quality

:::
by

:::::::::
attributing

:::::
CRPS

::::::
values

::
of

::::
the

:::::
SWG195

::::::::::
precipitation

::::::::::
simulations

::
to

:::::::
weather

:::::::
regimes.

::::::::
Weather

:::::::
regimes

:::
are

::::::
defined

::
as

::::::::::
large-scale

::::
quasi

:::::::::
stationary

::::::::::
atmospheric

::::::
states.

::::
They

:::
are

:::::::::::
characterised

:::
by

::::
their

::::::::::
recurrence,

:::::::::
persistence

::::
and

:::::::::
stationarity

::::::::::::::::::::::
(Michelangeli et al., 1995)

:
.
:::::
They

::::
help

:::::::::
describing

:::
the

::::::
features

::
of

:::
the

:::::::::::
atmospheric

:::::::::
circulation.

:::::::
Surface

:::::::
variables

::::
like

::::::::::
temperature

:::
and

:::::::::::
precipitation

:::
are

:::::
largely

:::::::::
correlated

::::
with

:::::::
weather

::::::
regimes

::::::::::::::::::::::
(van der Wiel et al., 2019)

:
.

:::
The

:::::
North

:::::::
Atlantic

:::::::
weather

:::::::
regimes

::::
were

::::::::
computed

::::
with

:::
the

::::::::
procedure

::
of

:::::::::::::::
(Yiou et al., 2008)

:
,
::::
with

:::
the

:::::
NCEP

:::::::::
reanalysis.

::::
The200

:::
first

:::
10

:::::::
principal

::::::::::
components

::
of

::::
SLP

:::::
(large

::::::
region

::
in

::::::
Figure

:::
1b)

:::
are

::::::::
classified

::::
with

:
a
:::::::
k-means

::::::::
algorithm

::::
onto

::::
four

:::::::
classes,

::::
over

:
a
::::::::
reference

:::::
period

::::::::
between

::::
1970

::::
and

:::::
2010.

:::
The

:::::::::
procedure

::
is

:::::::
repeated

:::
100

:::::
times

::::
with

:::::::
random

:::::::
k-means

:::::::::::
initialization.

:::::
Then

:::
we

::::::
classify

:::
the

::::::::
resulting

::::::
100× 4

::::::::
k-means

:::::::
weather

:::::::
regimes,

::
in

:::::
order

::
to

:::::::::
determine

:::
the

::::
most

::::::::
probable

:::::::::::
classification.

::::
This

::::::::
heuristic

::::::::
procedure

::::::::
increases

:::
the

:::::::::
robustness

:::
of

:::
the

:::::::
obtained

:::::::
weather

::::::::
regimes.

::::::
Figure

::
5

:::::
shows

::::
four

:::::::
weather

:::::::
regimes

:::
for

:::::
each

::::::
season

::::::
(winter

:::
and

::::::::
summer)

:::
that

:::
are

:::::::
coherent

::::
with

:::
the

:::::::
literature

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Cassou et al., 2011; Ghil et al., 2008; Kimoto, 2001; Michelangeli et al., 1995)205

:::
The

::::::
winter

::::::
weather

:::::::
regimes

:::
are

:::
the

:::::::::::
Scandinavian

::::::::
blocking

::::::
(BLO),

:::::::
Atlantic

::::
ridge

::::::
(AR),

:::::::
negative

:::::
phase

::
of

:::
the

:::::
North

:::::::
Atlantic

::::::::
oscillation

:::::::
(NAO-)

::::
and

:::::
Zonal

::::
flow

:::::
(ZO).

::::
The

:::::::
summer

:::::::
weather

:::::::
regimes

:::
are

:::
the

:::::::
negative

:::::
phase

:::
of

:::
the

::::
NAO

::::::::
(NAO-),

:::::::
Atlantic

::::
ridge

:::::
(AR),

::::::::::::
Scandinavian

:::::::
blocking

::::::
(BLO)

::::
and

:::::::
Atlantic

:::
low

::::::
(AL).

:::
The

:::::::
regimes

:::
are

::::
not

:::
the

::::
same

:::
in

::::
both

:::::::
seasons,

:::
due

:::
to

:::
the

:::::::::
seasonality

::
of

:::
the

::::
large

:::::
scale

::::::::::
atmospheric

::::::::::
circulation.210

:::
For

::::
each

:::
day

:::
(in

::::::
winter

:::
and

::::::::
summer)

:::::::
between

:::::
1948

:::
and

:::::
2019,

:::
we

:::::::
classify

:::
the

::::
SLP

::
by

::::::::::
minimizing

:::
the

::::
root

:::::
mean

::::::
square

::
to

:::
four

::::::::
reference

:::::::::::
(1970–2010)

:::::::
weather

:::::::
regimes.

:
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Figure 2.
::::::
Weather

::::::
regimes

::::
over

::::::
Europe

::::
from

::::
SLP

:::::
fields:

:::::
North

:::::::
Atlantic

::::::::
oscillation

:::::::::
(NAO-),the

::::::
Atlantic

:::::
ridge

::::
(AR),

:::
the

:::::::::::
Scandinavian

::::::
blocking

::::::
(BLO),

:::
and

::::::
Atlantic

::::
zonal

:::::::
(NAO+).

::::
The

::::
figure

:::::::::
summarises

:::
the

::::::
different

:::::
states

::
of

::
the

:::::::::
atmosphere

:::::
during

::::::
summer

::
(a

::
to

::
d)

:::
and

:::::
winter

:
(e
::

to
:::
h).

:
It
:::::::

indicates
:::

the
:::
low

::::
and

::
the

::::
high

:::::::
pressure

:::
over

::::::
Europe

:::
and

:::
the

:::::::
direction

::
of

::::
flow

::::
from

::
the

::::
west

::::::::
(Atlantic)

::
to

:::
the

:::
east.

::::
The

::::::
isolines

::::
show

::::::
seasonal

::::::::
anomalies

::::
with

:::::
respect

::
to

:
a
:::::::::::::
June-July-August

::::
and

:::::::::::::::::::::
December-January-February

:::::
means,

::
in

:::
hPa

::::
with

:
2
:::
hPa

:::::::::
increments.

:::
For

::::
each

:::
day

::
t
::::::
(within

:
a
:::::

given
:::::::
season),

:::
we

::::::::
consider

:::
the

::::::
analogs

:::::
dates

::
of

:::
all

::::::::
N = 100

:::::::::
simulations

::::::::
between

:
t
:::
and

:::::
t+T

::::
and

::
the

::::::::::::
corresponding

:::::::::::
classification

::::
into

:::::::
weather

:::::::
regimes.

:::::
Then

::
we

:::::::::
determine

:::
the

::::
most

:::::::
frequent

:::::::
weather

::::::
regime

::
of

:::
the

:::
N

:::::::
member

::::::::
ensemble

::::::
forecast

::::::::
between

:
t
:::
and

::::::
t+T .

:::
We

:::::
hence

::::::
obtain

::::
times

:::::
series

:::
on

:::
the

::::
most

:::::
likely

:::::::
weather

::::::
pattern

::::
that

:::::::::
dominates

::
in

:::
the215

::::::::
ensemble

::::::
forecast

::::::::
between

:
t
:::
and

::::::
t+T .

:::
We

:::::::
evaluate

:::
the

::::::::
influence

:::
of

:::
the

::::::::::
dominating

:::::::
weather

:::::::
regimes

:::
on

:::
the

::::::
SWG

:::::::
forecast

::::::
quality

:::
by

:::::::
plotting

:::
the

::::::::::
probability

:::::::::
distribution

:::
of

:::::
CRPS

::::::
values

::::::::::
conditional

:
to

:::::
each

:::::::
weather

::::::
regime.

:::::
This

::
is

:::::
done

::::::::
separately

:::
for

:::::::
"good"

::::::::
forecasts

::::
(low

::::::
CRPS

::::::
values)

:::
and

::::::
"poor"

::::::::
forecasts

::::
(high

::::::
CRPS

::::::
values).

:

:::
We

::::::
identify

::::
two

::::::
classes

::
of

:::::::::::
predictability

:::::
from

:::::
CRPS

::::::
values:

:
220

–
::::
Low

:::::::::::
predictability

::
is

::::::
related

::
to

::::
high

:::::
values

::
of

::::::
CRPS

:::
that

::::::
exceed

:::
the

::::
75th

::::::::
quantile,

–
::::
High

::::::::::::
predictability

::
is

:::::
linked

:::
to

:::
low

::::::
values

::
of

::::::
CRPS,

:::::
below

:::
the

::::
25th

:::::::
quantile.

:

::::
Then

:::
we

::::::::
associate

:::
the

:::::::::
dominating

:::::::
weather

:::::::
regimes

::::::::
computed

::::::
above

::::
with

::::::
classes

::
of

::::
high

::
or

::::
low

:::::::::::
predictability.

::::
This

:::::::::
procedure

::::
helps

:::::::::
identifying

:::::::::::
atmospheric

:::::::
patterns

:::
that

:::::
could

::::
lead

::
to

:::
low

:::
or

::::
high

:::::::::::
predictability

::::
with

:::
the

:::::
SWG

::::::
model.
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4 Results225

4.1 Sample of forecast
:::::::::
Parameter

::::::::::::
optimization

::
To

::::::
obtain

::::::
optimal

::::::::
forecasts

:::::
some

:::::::::
parameters

:::::
have

::::
been

::::::::
adjusted.

:::
The

::::
first

:::::::::
parameter

::
is

:::
the

:::::::::::
geographical

::::
area.

:::
We

:::::::::
computed

::::::
sample

:::::::::
trajectories

:::
of

:::
the

:::::
SWG

:::
for

:::
the

::::
four

::::::::
domains

:::::::
outlined

::
in

::::::
Figure

:::
1b.

:::
We

:::::
used

:::::::
different

::::::::
domains

::
in

:::::
order

::
to

::::
find

:::
an

::::::
optimal

::::::
region

:::::
which

::::::
allows

::::::::
verifying

:::
the

::::::::::
relationship

::::::::
between

::::::::::
precipitation

::::
and

:::::
Z500.

:::::
Each

:::::::
domain

:::::::
includes

::
a

:::
part

:::
of

:::
the

::::::
Atlantic

::::
and

:
a
::::
part

::
of

:::::::
western

:::::::
Europe.

::::
The

:::::
widest

:::::::
domain

::
of

:::
the

::::::::::
coordinates

:::::
80°W

::
–

::::
20°E

::::
and

::::
30°–

:::::
70°N

:::
did

:::
not

::::
give

:::::
good230

:::::
results

:::
for

:::::::::::
precipitation

:::::::::
forecasting

:::
for

:::
the

::::
four

::::::
studied

::::
areas

::
in
:::::::
western

:::::::
Europe,

:::::
while

:::
the

::::
other

::::
two

::::::
smaller

:::::::
domains

:::
(in

:::::
blue)

::::
gave

::::
good

::::::::
forecasts

:::
for

:::::::
specific

::::::::
locations.

::::::::
However,

:::
in

::::
order

:::
to

:::::
make

:
a
:::::::
forecast

:::
for

:::
the

::::::
whole

::
of

:::::::
Europe,

:::
we

:::::
found

::::
that

:::
the

::::::
domain

:::
for

:::::
Z500

:::::::
analogs

:::
that

:::::::::
optimizes

:::::::::::
precipitation

::::::::::
correlations

::
is

:::::
30°W

::
–

::::
20°E

::::
and

:::
40°

::
–
::::::
60°N.

::::::::
Therefore

:::
we

::::
kept

::::
this

::::::
domain

:::
for

:::
the

:::::::::
subsequent

::::::::
analyses.

:::
We

::::::::::
determined

:::
that

:::
the

:::::
SWG

::::::::::
simulations

::::::
showed

:::::
better

:::::
skills

:::
for

:::
the

:::::::::
geographic

:::::::
domain

:::::::
outlined

::
in

:::
red

::
in

::::::
Figure

:::
1b)

::
as

::
it
::::::
allows

::
to

:::::
make

:::::::
forecasts

:::
for

:::
all

:::
the

::::::
studied

:::::
areas

:::
and

:::
we

::::
find

::::
that

:::
the

::::
skill

:::::
scores

::::
over

::::
this235

:::::::::
geographic

::::::
domain

::::::::
remained

:::
the

:::::::
highest

::::
ones

::
as

::::::::::
represented

::
in

:::
the

::::::::
following

:::::
Table

::
1.

Table 1.
::::::::
Correlation

:::::::
between

::::::::::
observations

:::
and

:::
the

::::::
median

:::
of

:::
100

:::::::::
simulations

:::
for

:::
the

:::::
winter

:::::
(DJF)

:::
for

:::
the

:::::::
different

::::::
studied

:::::::
domains

::::::::
represented

::
in
::::::

Figure
:::
1b,

:::
with

:::
the

:::::::::
coordinates

:::::
80°W

:
–
:::::

20°E
:
;
:::
30°

:
–
:::::

70°N
:::
for

::
the

::::::
largest

:::
one

:::::
(blue)

:::
and

:::::
30°W

::
–

::::
20°E

:
;
:::
40°

::
–

::::
60°N

:::
for

::
the

:::
red

:::::::
rectangle

:::
for

:
a
:::
lead

::::
time

::
of

:
5
::::
days.

Location
The domain 80°W – 20°E ; 30° – 70°N The domain 30°W – 20°E ; 40° – 60°N

::::::::
Correlation

: ::::
95%

::::::::
confidence

::::::
interval

::::::::
Correlation

: :::
95%

::::::::
confidence

::::::
interval

:::::
Berlin

:::
0.32

:::
0.30

:
–
::
0.

::
35

: :::
0.50

:::
0.48

:
–
::::

0.56
:

::::::
Madrid

:::
0.35

:::
0.33

:
–
::
0.

::
39

: :::
0.53

:::
0.51

:
–
::::

0.55
:

:::
Orly

:::
0.39

:::
0.37

:
–
::
0.

::
41

: :::
0.58

:::
0.56

:
–
::::

0.59
:

:::::::
Toulouse

:::
0.34

:::
0.31

:
–
::::

0.36
: :::

0.40
:::
0.39

:
–
::::

0.44
:

:::
For

:::::::::
comparison

::::::::
purposes,

:::::
SWG

::::::::::
simulations

:::
are

:::::::
obtained

:::::
using

::::::::
analogues

::::::::
computed

:::::
from

::::::::
reanalyses

:::
on

:::
the

:::::
NCEP

:::
and

::::::
ERA5

:::::::::
reanalyses.

:::
By

:::::::::
comparing

::::
their

::::
skill

::::::
scores,

:::
we

::::::
found

:::
that

:::::::
CRPSS

:::
and

:::::::::
correlation

::::::::
between

::::::::::
observations

::::
and

::::::::::
simulations

:::
are

::::::
positive

::
in

::::
both

:::::
cases,

::::
and

:::::::
showing

:::::::
positive

:::::::::::
improvement

:::::::::
comparing

::
to

:::::::::
persistence

:::
and

::::::::::
climatology

::::::::
forecasts.

::::
The

::::::
CRPSS

::::
and

:::::::::
correlation

:::
for

:::::::::
simulations

:::::
with

::::::
analogs

::
of

::::::
NCEP

:::
are

::::::
almost

::::::::
identical

::
to

::::
those

:::::
with

::::::
ERA5,

::
as

:::::::
showed

::
in

:::::
Table

::
2.

:::::::::
Therefore,240

::
we

:::::
focus

:::
on

:::::
SWG

:::::::::
simulations

:::::
with

::::::
analogs

:::::
from

:::
the

:::::
NCEP

:::::::::
reanalysis

::
in

:::
the

:::::
sequel

:::
as

::::
both

:::::
NCEP

::::
and

:::::
ERA5

:::::
(1950

:::
to

:::::
2019)

::::
have

:::
the

:::::
same

::::
skill,

::::
and

:::::
NCEP

::
is
::::::
easier

::
to

::::::
handle,

:::
as

::
its

:::::::::
horizontal

:::::::::
resolution

:
is
::::::

much
:::::
lower.

::::
The

:::::::::::
computations

:::::
were

:::::
made

::::
using

:::::::::::
observations

::
of

:::::::::::
precipitation

::::
from

:::
the

::::::
ECAD

::::
and

::::::
E-obs.

:::
We

:::::
found

:::
the

:::::
same

::::::
results

::::::
because

::::
the

::::::
ECAD

:::
and

::::::
E-Obs

:::
are

:::::
highly

:::::::::
correlated

:::
(by

::::::::::
construction

::
of

:::::::
E-Obs),

::
as

::::::
shown

::
in

:::::
Table

::
2.

:::
We

:::::::
quantify

:::
the

::::::::::
dependence

:::
of

:::
the

:::::::
forecast

:::
on

:::
the

::::
time

::::::::::
embedding

:::
for

:::
the

:::::::
analogs

::
by

::::::::::
calculating

:::
the

:::::::
analogs

:::::
based

:::
on245

:::::::
different

:::::::::
embedding

:::::
going

:::::
from

::
1

::
to

:
4
:::::
days.

:::
We

::::
find

::::
that

::
an

::::::::::
embedding

::
of

:
4
:::::

days
::::::
helped

::
to

:::::
better

:::::
catch

:::
the

:::::::::
persistence

::::
and

:::::::
improve

::
the

::::
skill

::::::
scores

::
for

:::
the

:::::::
forecast

::::::::
compared

::
to

::
1

:::
day,

::
as

::::::
shown

::
in

:::::
Table

::
3.

::::::::
Therefore

:::
we

::::
kept

::
the

:::::::
forecast

:::::
based

::
on

::
a
:::::
4-day

10



Table 2.
:::::::::
Comparison

::::::
between

:::
the

:::::
values

:::
of

::
the

:::::::
CRPSS

::
of

::::
SWG

::::::::
computed

:::::
using

:::::::
different

:::::::
reanalysis

::::::
dataset

::::::
(NCEP,

:::::
ERA5

::::
and

:::::
ERA5

:::::::
extended)

:::
for

:
a
:::
lead

::::
time

::
of

:::::
T = 5

::::
days

::
for

:::::
winter

:::::
(DJF)

:::::::
Location

::::::
CRPSS

::::
DJF

:::::
ERA5

::::::
CRPSS

::::
DJF

:::::
ERA5

:::::::
extended

::::::
CRPSS

::::
DJF

::::::
(NCEP)

::::::
CRPSS

:::
JJA

:::::::
(NCEP)

:::::
Berlin

:::
0.47

::::
0.50

::::
0.50

:::
0.21

:

::::::
Madrid

:::
0.50

::::
0.55

::::
0.57

:::
0.25

:

::::
Orly

:::
0.51

::::
0.53

::::
0.53

:::
0.23

:

:::::::
Toulouse

:::
0.39

::::
0.41

::::
0.41

:::
0.24

:

:::::::::
embedding.

::::
This

::::::
choice

::::
was

:::::
based

::
on

:::
the

:::::::::
numerical

::::::::::
experiments

:::
we

:::::
made

:::
for

:::
the

::::::
studied

::::::::
locations.

::::
This

::
is

::::
also

::::::::
supported

:::
by

:::::::::::::::
Yiou et al. (2013)

::::
where

::::
the

:::::
analog

:::::::::::
computation

::::
with

::::::
delays

:::
was

::::::
argued

::
to
::::::::

improve
:::
the

:::::::
temporal

::::::::::
smoothness

::
of

:::::::::::
simulations.

::::
With

::::
such

::
an

::::::::::
embedding,

::::::::
forecasts

:::
for

::::
lead

::::
times

:::
of

:::::
T = 5

::::
days

:::::
yield

::
at

::::
least

:::
two

::::
time

::::::::::
increments.

:
250

Table 3.
::::::::
Correlation

:::::::
between

:::::::::
observations

::::
and

::
the

::::::
median

:::
of

:::
100

:::::::::
simulations

:::
for

::
the

::::::
winter

::::
(DJF)

:::::
based

:::
on

::::::
analogs

::::::::
computed

:::
with

:::
an

::::::::
embedding

::
of

:
1
:::
and

::
4

:::
days

:::
for

:::
the

::::::::
geographic

::::::
domain

::::
with

::
the

:::::::::
coordinates

:::::
30°W

:
–
::::
20°E

:
;
:::
40°

:
–
:::::
60°N

::
for

:
a
::::
lead

::::
time

:
of
::

5
::::
days.

Location
Analogs with 1 day time embedding Analogs with 4-day time embedding

::::::::
Correlation

: :::
95%

:::::::::
confidence

::::::
interval

::::::::
Correlation

: :::
95%

:::::::::
confidence

::::::
interval

:::::
Berlin

:::
0.39

:::
0.37

:
–
::
0.

::
43

: :::
0.50

:::
0.48

:
–
::::
0.56

::::::
Madrid

:::
0.40

:::
0.38

:
–
::
0.

::
42

: :::
0.53

:::
0.51

:
–
::::
0.55

:::
Orly

:::
0.42

:::
0.39

:
–
::
0.

::
45

: :::
0.58

:::
0.56

:
–
::::
0.59

:::::::
Toulouse

:::
0.35

:::
0.34

:
–
::::
0.37

:::
0.40

:::
0.39

:
–
::::
0.44

4.2
::::::

Sample
:::::::
forecast

As an example, we illustrate the behavior of the trajectories in Orly for the summer and winter of 2002. Figure 3 shows

the observed and simulated values of precipitation for lead times of 5 and 10 days for summer (June–July–August: JJA) and

winter (December–January–February: DJF), for Orly precipitation data. We observe significantly positive correlations between

observed values and the median of the forecasts, for the four data sets as represented in Table 4 . The correlation is generally255

smaller in the summer than in the winter.

The correlation skill is low for some extremes values of precipitation. For a lead time of 10 days, SWG simulation still show

capacity to predict precipitation especially for winter with a correlation equal to 0.23 (Orly), 0.30 (Berlin), 0.43 (Madrid), 0.31

(Toulouse).

We observe that the 5th and 95th quantiles of simulations include the different values of observations. This heuristically260

confirms the good skill of SWG to forecast precipitation from Z500 for several seasons (winter and summer) in several locations

for T = 5 and T = 10 day lead times.
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Table 4. Correlation between observations and the median of 100 simulations for both seasons winter (DJF) and summer (JJA) for a lead

time of 5 days

Location Correlation DJF p-values
:::
95%

::::::::
confidence

::::::
interval

:
Correlation JJA p-values

:::
95%

::::::::
confidence

::::::
interval

Berlin 0.42
:::
0.50 2.2−16

:::
0.48

:
–
::::
0.56 0.22 2.2−16

:::
0.21

:
-
::::
0.23

Madrid 0.58
:::
0.53 2.2−16

:::
0.51

:
–
::::
0.55

:
-
:::
0.59

:
0.29 2.2−16

:::
0.27

:
-
::::
0.30

Orly 0.58 2.2−16
:::
0.56

:
–
::::
0.59 0.23 2.2−16

:::
0.20

:
-
::::
0.24

Toulouse 0.43
:::
0.40 2.2−16

:::
0.39

:
–
::::
0.44 0.18 2.2−16

:::
0.15

:
-
::::
0.19

The difference of the forecast correlation skills between the six
::::
four studied locations may be related to the variation of the

local climate from one region to an other. The studied areas are in different climate types according to Köppen-Geiger’s climate

classification map (Peel et al., 2007). From the south western side of Europe, Madrid is in the arid zone (Peel et al., 2007),265

which indicates that convective rains are less significant, so that the origin of precipitation might be the result of humidity

coming from the Atlantic. Conversely, Berlin is located in a cold zone characterised by warm summer and the absence of a dry

season (Peel et al., 2007), so that the precipitation could be the result of both convective rains and Atlantic humidity.

Time series of analogue ensemble forecasts for 2002, for lead times of 5 days (top) and 10 days (bottom) for summer (June

to August) a) and c) and winter (December to February) b) and d) for Orly. The median of 100 simulations is represented by red270

line. Black line represent observations values. Gray lines represent the 5th and 95th quantiles. Blue lines represent persistence

forecasts and green lines represent the climatology forecasts.

In this paper, we decided (for simplicity) to use the same analogs to forecast precipitation for those four stations. A refinement

of the analog regions would be necessary when focusing on Madrid vs. Berlin.

4.3 Forecast probability skill275

We first computed the CRPSS for precipitation in Orly for lead times from 5 to 20 days (Figure 4). The skill score was also

computed for
:::
The

::::
skill

::::::
scores

::::::
CRPSS

::::
and

:::::::::
correlation

::::
are

::::::::
computed

:::
for

:::
the

:::::
four

::::::
studied

:::::::
stations

::::
Orly

:
Berlin, Madrid and

Toulouse, as shown in illustrations are represented in Figure ??
::::::
showed

:::
in

::::::::::
illustrations

:::::::::
represented

:::
in

::::::
(Figure

::
4)

::::
and

:::
for

::::
lead

::::
times

:::::
from

:
5
:::

to
::
20

:::::
days. We represent skill scores for January and July in order to evaluate the skill of the SWG to predict

precipitation in both seasons (winter and summer). For comparison purposes, SWG simulations are obtained using analogues280

computed from reanalyses on the NCEP and ERA5 reanalyses.

Comparing their skill scores, we found that CRPSS and correlation between observations and simulations are positive in both

cases, and showing positive improvement comparing to persistence and climatology forecasts. The CRPSS and correlation for

simulations with analogs of NCEP are slightly higher than with ERA5, due to the longer length of the NCEP reanalysis, which

has a better potential to find good analogues.285

We determined that the SWG simulations showed better skills for the geographic domain outlined in red, in Figure 1b) as it

allows to make forecasts for all the studied areas and we find that the skill scores over this geographic domain remained the
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Figure 3.
:::
Time

:::::
series

::
of
::::::

analog
:::::::
ensemble

:::::::
forecasts

:::
for

:::::
2002,

::
for

::::
lead

:::::
times

::
of

:
5
::::

days
::::
(top)

::::
and

::
10

::::
days

:::::::
(bottom)

:::
for

::::::
summer

:::::
(June

::
to

::::::
August)

::
a)

:::
and

::
c)

:::
and

:::::
winter

:::::::::
(December

::
to

:::::::
February)

::
b)

:::
and

::
d)
:::

for
::::
Orly.

::::
The

:::::
median

::
of
::::

100
:::::::::
simulations

:
is
:::::::::
represented

::
by

:::
red

::::
line.

:::::
Black

:::
line

:::::::
represent

:::::::::
observations

::::::
values.

::::
Gray

::::
lines

:::::::
represent

::
the

:::
5th

:::
and

::::
95th

:::::::
quantiles.

::::
Blue

::::
lines

:::::::
represent

::::::::
persistence

:::::::
forecasts

:::
and

:::::
green

::::
lines

:::::::
represent

::
the

:::::::::
climatology

::::::::
forecasts.

:::
The

:::::
y-axis

:::::::
represent

::
the

::::::
average

::
of
::::::::::
precipitation

:::
over

::::::::
T = 5,10

highest ones as represented in the following Table 3. Correlation between observations and the median of 100 simulations for

the winter (DJF) for the different studied domains represented in figure 1b, with the coordinates 80°W – 20°E ; 30° – 70°N for

the largest one (blue) and 30°W – 20°E ; 40° – 60°N for the red rectangle for a lead time of 5 days.290

Correlation 95% confidence interval Correlation 95% confidence intervalBerlin 0.32 0.30 – 0. 35 0.58 0.55 – 0.60 Madrid

0.35 0.33 – 0. 39 0.66 0.64 – 0.68 Orly 0.39 0.37 – 0. 41 0.56 0.54 – 0.59 Toulouse 0.34 0.31 – 0.36 0.59 0.56 – 0.61 Therefore,

we focus on SWG simulations with analogs from the NCEP reanalysis in the sequel.

The CRPSS for
:::
The

::::::
CRPSS

:::
for

:
persistence and climatology references show positive values for lead times of up to 20

days (Figure 4). The values of CRPSS with persistence reference (represented by squares) decrease with lead times, showing295

high values over 5 days. The CRPSS for climatology (triangles) show lower values, although positive. The correlation skill is
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positive for both seasons but higher in winter (January) than in summer (July). For a lead time of 5 days, the correlation is

equal to 0.59 for Madrid, 0.50 for Berlin and to 0.40 for Toulouse. For a lead time of 10 days, it is equal to 0.42 for Madrid,

0.30 for Berlin and to 0.41 for Toulouse.

The SWG was tested in previous work Yiou and Déandréis (2019) to forecast North Atlantic oscillation (NAO) and tem-300

perature in western Europe. Comparing the performance of the SWG to forecast those different meteorologic variables, we

notice that the model shows good performance to forecast the temperature and NAO in the winter, also the best performance

of the model is at a lead time of 5 days. We find that the skill scores (CRPSS and correlation) decrease with lead of times. The

forecast skill of the SWG shows variability from one locations to another. However, the model was able to forecast temperature

until 40 days in Berlin, Orly , Toulouse and De Blit
::
and

::::::::
Toulouse

:
with positive skill scores.305

From a visual inspection of the CRPSS and correlations, we chose to focus on lead times of T = 5 days, for which the

correlation exceeds 0.5 in the winter. It is rather low in the summer, due to convective events leading to a high precipitation

variability (from no rain to very high values). Correlation scores become barely significant for lead times of 20 days, so that,

like temperature, the SWG should not be used beyond that horizon.
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Figure 4. Skill scores for the precipitation of Orly for lead times of 5, 10, 20 days for January (blue) and July (red) for analogs computed

from reanalyses of (a) NCEP and (b) ERA5. Squares indicate CRPSS where the Persistence is the baseline, triangles indicates CRPSS where

the climatology is the reference, and box-plots indicates the
::::::::
probability

:::::::::
distribution

::
of

:
correlation between observation and

::
the median of

100 simulations
::
for

::
all

::::
days.
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4.4 Relation between weather regimes and CRPS310

In this subsection, we investigate the role of North Atlantic weather patterns on the CRPS of the SWG precipitation simulations.

We use weather regimes, which are defined as large-scale quasi stationary atmospheric states. They are characterised by

their recurrence, persistence and stationarity (Michelangeli et al., 1995). They help describing the features of the atmospheric

circulation. Surface variables like temperature and precipitation are largely correlated with weather regimes (van der Wiel et al., 2019)

.315

The North Atlantic weather regimes were computed with the procedure of (Yiou et al., 2008), with the NCEP reanalysis.

The first 10 principal components of SLP (large region in Figure 1b) are classified with a k-means algorithm onto four classes,

over a reference period between 1970 and 2010. The procedure is repeated 100 times with random k-means initialization, so as

to determine the most probable classification. Figure 5 shows four weather regimes for each season (winter and summer) that

are coherent with the literature (?Ghil et al., 2008; Kimoto, 2001; Michelangeli et al., 1995)320

The winter weather regimes are the Scandinavian blocking (BLO), Atlantic ridge (AR), negative phase of the North Atlantic

oscillation (NAO-) and Zonal flow (ZO). The summer weather regimes are the negative phase of the NAO (NAO-), Atlantic

ridge (AR), Scandinavian blocking (BLO) and Atlantic low (AL). The regimes are not
:::
start

:::
by

:::::::::
comparing

:::
the

:::::::::
frequencies

:::
of

::
the

:::::::
weather

:::::::
regimes

:::::
from

:::
the

::::::::::
observations

:::
and

:
the same in both seasons, due to the seasonality of the large scale atmospheric

circulation
:::
most

::::::::
frequent

:::::::
weather

::::::
regime

::::::
found

::
in
::::::

SWG
::::::::::
simulations

:::
for

::
a

:::::
given

::::
lead

::::
time

::::::
T = 5

:::::
days.

::::
We

::::
find

:::
that

::::
the325

:::::::::
percentages

:::
are

::::
very

::::::
similar

:::::::
(Figure

::
5).

For each day (in winter and summer) between 1948 and 2019, we classify the SLP by minimizing the root mean square to

four reference (1970–2010) weather regimes.

We evaluate the influence of weather regimes on the SWG forecast quality by plotting the probability distribution of CRPS

values conditional to each weather regime. This is done separately for "good " forecasts (low CRPS values ) and "bad" forecasts330

(high CRPS values) . Weather regimes were considered at the time of the forecast at t = t0 +T
::::
This

:::::
means

::::
that

:::
the

:::::::
weather

::::::
regimes

::
of
:::
the

:::::::::
simulated

:::::::::
trajectories

:::
do

:::
not

::::
yield

:::::
major

::::::
biases

:::
for

::
the

:::::::
summer

:::
or

:::::
winter

:::::::
seasons.

Hence identify those two classes of predictability from CRPS values: Low predictability is related
::::
Then

:::
we

::::
look

:::
at

:::
the

::::::
relation

:::::::
between

:::::::
weather

::::::
regime

::::
and

:::
the

::::::
CRPS,

:::
by

::::
using

::::
the

::::
most

:::::::
frequent

:::::::
weather

::::::
regime

::::
and

:::
the

:::
two

:::::::
classes

::
of

::::::::
quantiles

::
of

:::
the

:::::
CRPS

::::
that

::::::
related

::
to
:::::

good
::::::
quality

:::
of

:::::::
forecast

:::::::::
(attributed

::
to

::::
low

:::::
values

:::
of

:::::
CRPS

::::::
≤ q25)

::::
and

::::
poor

::::::
quality

:::
of

:::::::
forecast335

::::::::
(attributed

:
to high values of CRPS that exceed the 75th quantile, High predictability is linked to low values of CRPS, below the

75th quantile. This procedure helps identifying atmospheric patterns that could lead to low/high predictability with the SWG

model.

Weather regimes over Europe from SLP fields: North Atlantic oscillation (NAO-),the Atlantic ridge (AR), the Scandinavian

blocking (BLO),and Atlantic zonal (NAO+). The figure summarises the different states of the atmosphere during summer (a to340

d) and winter (e to h). It indicates the low and the high pressure over Europe and the direction of flow from the west (Atlantic)

to the east. The isolines show seasonal anomalies with respect to a June-July-August and December-January-February means,

in hPa with 2 hPa increments.
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::::::
≥ q75).

::::
This

::::::
relation

::
is
::::::::::
represented

::
in

::::::
Figure

:
6
:::
for

::::
Orly

:::
and

:::
for

:::
the

:::
rest

:::
of

::
the

:::::::
studied

::::::
stations

::
in

::::::
Figure

:::
A1.

:
We find a small,

albeit significant, influence of specific weather regimes on the CRPS distribution . This relation is represented in Figure 6a for345

Orly and for the rest of the studied stations in Figure A1. Good forecasts (low quantiles of CRPS ) are mainly related to the

Scandinavian blocking for Berlin and Orly in winterand summer, while they are related to the Atlantic ridge weather regime in

the winter and to the Atlantic Low
::
for

::::::::
summer.
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Figure 5.
:::::::
Percentage

:::
of

:::
each

:::::::
weather

:::::
regime

:::
for

::::::::::
observations

::::
dates

:::::
(Obs)

:::
and

:::
the

::::
most

::::::
frequent

:::::::
weather

:::::
regime

::::
from

:::::
SWG

:::::::::
simulations

::::::
between

::
t0:::

and
::::::::
t0 +T = 5

::::
days

:::::::
(Analog)

::::
over

::
the

:::::
period

::::
from

::::
1948

::
to

::::
2019

:::
for

::::::
summer

::::
(JJA)

:::
and

:::::
winter

:::::
(DJF).

:::
The

:::::::::
percentage

::
of

::::::
weather

:::::
regime

:::
are

::
the

::::
same

::
in
::::
Obs

:::
and

::::::
Analog.

:::
The

:::::::
weather

::::::
regime

::::::
signal

:::
for

::::::
"good"

::::::::
forecasts

:::::::
depends

::
on

::::
the

::::::
season

:::
and

:::
the

:::::::::
considered

:::::::
station.

:::::
When

:::
the

:::::::
forecast

::::
has

:
a
:::
low

::::::
CRPS

:::::
value

:::
(for

::::::
Orly),

:::
we

::::
find

:::
that

:::
the

::::::::::::
Scandinavian

:::::::
Blocking

:::::::
regime

::::::
slightly

:::::::::
dominates

::::::
(green

:::
bar

::
in

::::::
Figure

:::
6a,

:::
b).350

::::
This

:
is
::::

also
:::
the

::::
case

:::
for

::::::
Berlin

::
(in

:::::::
winter)

:::
and

::::::::
Toulouse

::::::
Figure

:::
A1

::
b,

::
j.

:::
The

::::
low

:::::
CRPS

::::::
values

::
in

::::::
Madrid

:::
are

::::::::
obtained

:::
for

:::
the

::::::
Atlantic

::::::
Ridge

::::::
regime

:::::
Figure

:::
A1

::
f.
:

:::
The

:::::::
weather

::::::
regime

:::::
signal

:::
for

::::::
"poor"

:::::::
forecasts

::::
also

:::::
yields

::
a
::::::::::
dependence

::
on

:::
the

::::::
season

:::
and

:::::::
station.

::::::
Higher

:::::
CRPS

::::::
values

:::
are

:::::::
obtained

::::
with

:::
the

:::::::
Atlantic

:::::
Ridge

::::::
regime

:
in the summer for Madrid and to the Atlantic ridge in the winter and to NAO- in the

summerfor Toulouse.355
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The low quality forecasts (high quantiles of CRPS ) are related to the Atlantic ridge in both seasons for Berlin, to Atlantic

Zonal (NAO+) in the summerfor Orly (Figure 6b), to the Atlantic Zonal in the winter for Madrid and to NAO- for Toulouse.

::::
Orly

:::
(red

::::
line

::
in

::::::
Figure

:::
6c)

::::
and

:::::
Berlin

:::
in

:::::
winter

::::
and

:::::::
summer.

::::
The

:::::::
Atlantic

:::::
ridge

::::::
regime

:::::
favors

:::::
high

:::::
CRPS

::::::
values

:::
(i.e.

:::::
poor

::::::::
forecasts)

:::
for

::::::
Madrid

::
in

::::::
winter

:::::
Figure

:::
A1

::
h.
::::
The

:::::::
Atlantic

:::::
ridge

::::::
regime

:::::
favors

::::
high

:::::
CRPS

::::::
values

:::
for

::::::::
Toulouse

::
in

:::::::
summer.

::::
The

:::::::
different

:::::::
impacts

::
of

:::
the

:::::::
weather

::::::
regimes

:::
on

:::
the

::::::
studied

:::::
areas

::
is

::::::
related

::
to

:::
the

:::::::
position

::
of

:::
the

::::
high

:::
and

::::
low

:::::::
pressure

:::::::
regions

::
of360

::::
each

::::::
weather

:::::::
regime

:::
and

::::
their

:::::::
position

::::::::
regarding

:::
the

::::::
studied

:::::
areas.

:

This relation between predictability (or the CRPS distribution) and weather regimes,
:::::
albeit

:::::
weak,

:
is consistent with previous

work (Faranda et al., 2017).
::::::
Similar

:::::::
relation

::::
were

:::::
found

::::::::
between

::::::
weather

:::::::
regimes

::::
over

::::::
Europe

::::
and

::
the

:::::::::::
Temperature

::
in

:
a
::::::
recent

::::
study

:::
by

:::::::::::::::::::
(Ardilouze et al., 2021)

:
. We find that the sensitivity of the forecast to weather regime is larger for low values of CRPS

and in the winter. The sensitivity of forecast skill to weather regimes is rather small on average, even for low lead times.365
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Figure 6. Evaluation of the forecast quality by
::::::
Relation

::::::
between

::::::
CRPS

:::
and

:
weather regimes

::
for

::::
Orly,

:::
for

:::::
SWG

:::::::
forecasts

::::
with

::::
lead

:::
time

:::::::::
T = 5days.

::::
Upper

::::::
panels

:
(a and b)low values of

:
:
:
CRPS and

::::
value

:::::::::
distribution

::::::::::
conditioned

::
on

::::
four

:::::::
weather

:::::::
regimes,

:::::
when

::::
CRPS

::
is
:::::

lower
::::

than
::::
q25.

:::::
lower

::::::
panels (c and d)high values of :

:
CRPS for summer

:
is
::::::

higher
::::
than

:::
q75.

::::
The

:::::::
boxplots

:::::::
indicate

:::
the

:::::
median

::::
(q50)

:::
of

::
the

:::::::::
distribution

:::::
(thick

::::
bar).

::::
25th

::::
(q25)

:
and winter

::::
75th

::::
(q75)

:::::::
quartiles

:::::
(lower

:::
and

:::::
upper

::::::::
segments).

::
The

:::::
upper

::::::
whisker

:::
is:

:::::::::::::::::::::::::::::::
min 1.5(q75− q50)+ q50,max(CRPS)}

:
.
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4.5 Comparison with ECMWF forecast

We first compared the CRPSS of SWG forecasts for winter and summer with the CRPSS of ECMWF forecasts.

The CRPSS of ECMWF forecast is operationally computed for different lead times going from 1 day to 10 day for the

precipitation. It uses the climatology as a reference (Haiden et al., 2018). The values of CRPSS for Europe for 2020 decrease

with lead times. They are about 0.16 in the summer (JJA) and 0.25 in the winter (DJF) for a lead time of T = 5 days. The370

values of CRPSS for ECMWF for both seasons are computed over whole Europe (Haiden et al. , 2019).
:::::::::::::::::
(Haiden et al., 2018).

:

The CRPSS of SWG for a lead time of T = 5 days for winter (DJF) and summer (JJA) Location CRPSS DJF CRPSS JJA

Berlin 0.42 0.21 Madrid 0.57 0.25 Orly 0.53 0.23 Toulouse 0.41 0.24 The CRPSS of SWG for a lead time of T = 5 days

showed in Table 2, and this suggests that the predictive skill of SWG is qualitatively promising for short lead times, compared

with ECMWF forecasts.375

A quantitative comparison was made by comparing the empirical cumulative distribution function (ECDF; Hersbach,2000
::::::::::::::
(Hersbach, 2000)

) of the CRPS of ECMWF and SWG forecasts for 5 days (Figure 7). We found that the values of CRPS of ECMWF forecast

and SWG forecast are 80%, 39% 50% and 40 % equal or near to zero for respectively Orly, Berlin, Madrid and Toulouse,

which indicates the small variations of the CRPS.

We used the Kolmogorov-Smirnov test (von Storch and Zwiers, 2001)
::::::::::::::::::::::::::::::::
(von Storch and Zwiers, 2001, Chap.1) to compare380

the probability distributions of the CRPS of SWG and ECMWF forecasts. The null hypothesis was defined as the
:::
that

:::
the

:::
the

two series of CRPS have the same distribution. It was verified with p.values = 2.2−16. We found
::::
This

:::
KS

:::
test

:::::::
allowed

::
to

:::::
reject

:::
this

::::
null

:::::::::
hypothesis

::::
with

:::::::
p-values

::::::::::::
= 2.2 · 10−16.

:::
We

::::::::
conclude

:::
that

:::
the

::::
two

:::::
series

::
do

::::
not

::::
have

:::
the

::::
same

:::::::::::
distribution.

::
A

::::::
similar

::::
result

::::
was

:::::
found

:::
by

:::::::::::::::::::
Ardilouze et al. (2021),

::::::
where

::::
they

::::::::
compared

:::
the

::::::::
efficiency

::::::::
between

:::::::
ECMWF

::::
and

::::::
CNRM

:::::::::
forecasts.

:::
We

:::
also

:::::
found

:
that the maximum distance between both ECDFs is ≈ 0.2

:::
(i.e.

:::::::
≈ 20%

::
of

:::
the

:::::
whole

::::::
range). This confirm the overall385

good skill of the SWG to forecast precipitation, compared to ECMWF. One notable difference between SWG and ECMWF

forecasts is that although the proportion of CRPS values close to zero is higher in ECMWF, the CRPS for the worse forecasts

are much higher than those of SWG.

Finally, we computed the CRPSS for ECMWF forecasts taking as a baseline
:::::::
reference

:
the CRPS of SWG (Figure 8).

:::
We

:::::
hence

:::::::
compute

:::
the

::::::
CRPSS

:::
of

:::::::
ECMWF

:::::::
forecast

:::
by

::::::::::
normalizing

:::
the

:::::
CRPS

:::
by

:::
the

:::::
CRPS

::
of

:::::
SWG

:::::::
forecast

::
in

:::
Eq.

::
3.
:

390

This evaluates the added value of the deterministic ECMWF forecast over the SWG forecast. We found that the SWG is still

showing a positive improvement especially
::::
find

:::
that

:::
the

::::::::
ECMWF

:::::::
forecast

:::
has

:::
no

:::::::::::
improvement

::::
over

:::
the

:::::
SWG

:::::::
forecast

:
for a

lead time of 5 days for the different studied areas .
::::::
because

:::
the

:::::::
CRPSS

::::
value

:::
are

::::::::
negative.

:::
For

::
a

:::
lead

:::::
time

::
of

::::::
T = 20

:::::
days,

:::
the

:::::::::::
improvement

::
of

::::::::
ECMWF

:::::::
forecast

::::
over

:::
the

:::::
SWG

::
is

:::
also

::::::::::
negligible.

:::::
There

::
is

:
a
:::::
major

::::::::::::
improvement

:::
for

:
a
::::
lead

::::
time

::
of

:::::::
T = 10

::::
days

::
for

:::::
Orly

:::
and

::::::::
Toulouse.

::::
This

:::::::
confirm

:::
the

::::::::
relatively

::::
good

::::
skill

::
of

:::
the

:::::
SWG

::
to

:::::::
forecast

:::::::::::
precipitation,

:::::::::
compared

::
to

::::::::
ECMWF.395
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Figure 7. Empirical cumulative distribution function of the CRPS of ECMWF and SWG forecasts for 5 days for Orly (a), Berlin (b), Madrid

(c) and Toulouse (d)

5 Conclusions

In this work, we showed the performance of a stochastic weather generator (SWG) to simulate precipitation over different

locations in western Europe and for various times scales from 5 to 20 days. The input of our model was analogs of geopotential

heights at 500 hPa (Z500). The choice of such input was made in order to evaluate the impact of large scale circulation on local400

weather variables. SWG showed a good skill to predict precipitation for a lead time of 5 and 10 days from analogues of Z500.

This study complements the work of Yiou and Déandréis (2019), for precipitation. We explored the sensitivity of the SWG

model on analogs computed from different geographical areas and from different reanalyses (ERA5 and NCEP). We found

that the NCEP
:::
and

:::::
ERA5

::::::::
extended reanalyses provide better performances for simulations

:::
than

::::::
ERA5

::::::::::
(1979–2019), due to its

larger
:::::
longer

:
length (≈ 70 years in NCEP vs. ≈ 40 years in ERA5). Therefore the length of the analog database does make a405

difference, as already suggested by Jézéquel et al. (2018a).
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reference the CRPS of SWG, for lead times T = 5,10 and 20 days.

:
It

:::::
shows

:::
that

::
for

:
5
::::
days

:::
the

::::
SWG

:::
has

:
a
::::::
positive

::::::::::
improvement

:::::::::
comparing

:
to
:::

the
:::::::
ECMWF

::::::
forecast

::
as

:::
the

::::::
CRPSS

::
are

::::
less

:::
then

::::
zero.

:

We evaluated the relation between the quality of the forecast and weather regimes over Europe, we found that low and high

predictability was slightly related to specific weather regimes,although this dependence is weak
::::
more

:::::::::
significant

::
in

::::::
winter

::::
than

::
in

:::::::
summer,

::::::::
especially

:::
for

:::
the

:::::
good

:::::::::::
predictability,

::
it

::
is

:::::
found

::
to

::
be

::::::
mainly

::::::
related

::
to

::::::::
Blocking.

A comparison with the ECMWF forecast system over Western Europe confirmed the good performance of the SWG quantita-410

tively and qualitatively, for lead times T ≤ 10 days. Of course, the SWG model cannot replace a numerical weather prediction,

as the SWG parameters (e.g. region of analogues) are
:::
need

::
to
:::

be tuned to local variables, and rely on the existence of a fairly

large database to compute analogues. Here we used the same domain of circulation analogues for stations from Madrid to

Berlin. Obviously, this region should be optimized for each individual station. Therefore, the main utility of the SWG forecast

system is to make local ensemble simulations, where its performances can challenge a numerical weather prediction, if the415

parameters are well tuned.

This paper hence confirms the proof of concept to generate ensembles of (local) precipitation forecasts from analogs of

circulation. Its performance relies on the relation between precipitation and the synoptic atmospheric circulation, which is

verified for western Europe. Transposing this SWG to other regions of the globe requires observations covering several decades.

Numerical weather models obviously do not yield this constraint.420

Code availability. The code and data files are available at http://doi.org/10.5281/zenodo.4524562
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Appendix A: Skill scores for other stations
:::::
CRPS

::::
and

:::::::
weather

:::::::
regimes

To avoid a tedious redundancy we deferred the figures of the individual CRPSS and correlation scores
::::::::
evaluation

::
of

:::
the

:::::::
forecast

::::::
quality

::
by

:::::::
weather

:::::::
regimes to this appendix section.

Skill scores for the precipitation of Madrid, Berlin and Toulouse for lead times of 5, 10, 20 days for January (blue) and430

July (red) for analogues computed from reanalyses of ERA5 (left) and NCEP (right). Squares indicate CRPSS where the

Persistence is the baseline, triangles indicates CRPSS where the climatology is the reference, and box-plots indicates the

correlation between observation and median of 100 simulations.

Appendix B: CRPS and weather regimes
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Figure A1. Evaluation of the forecast quality by
::::::
Relation

::::::
between

:::::
CRPS

:::
and

:
weather regimes , for Berlin

::::
(a–d)), Madrid

::::
(e–h) and Toulouse

low values of CRPS (
:::
i–l),

:::
for

::::
SWG

:::::::
forecasts

::::
with

::::
lead

:::
time

:::::
T = 5

:::::
days.

:::
The

:::::
panels

:
(ato

:
,
::
b,

:
e,
:

f) ,
:
i
:

and high values of
:
j)
:::::::::
correspond

::
to

CRPS
::::
value

:::::::::
distribution

::::::::
conditioned

:::
on

:::
four

::::::
weather

:::::::
regimes,

::::
when

:::::
CRPS

::
is
:::::
lower

:::
than

::::
q25.

:::
The

:::::
panels (

:
c,
::
d

:
, gto ,

::
h,
::
k

:::
and l)

::::::::
correspond

:
to
:::::
higher

:::::
CRPS

:::::
value

:::::::::::
CRPS ≥ q75.

:::
The

:::::::
boxplots

::::::
indicate

::
the

::::::
median

::::
(q50)

::
of

:::
the

::::::::
distribution

:::::
(thick

::::
bar).
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