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Abstract. This study aims to develop a deep neural netwdXN) model as an artificial neural network (ANN)rfidhe prediction of 6-
hour average fine particulate matter (P/iconcentrations for a three-day period—the daprefliction (D+0), one day after prediction
(D+1) and two days after prediction (D+2)—using @fvation data and forecast data obtained via nealemodels. The performance of
the DNN model was comparatively evaluated agaihat of the currently operational Community Multiseahir Quality (CMAQ)
modelling system for air quality forecasting in $oiorea. In addition, the effect on predictivefpemance of the DNN model on using
different training data was analyzed. For the De€ast, the DNN model performance was superi¢hab of the CMAQ model, and
there was no significant dependence on the traidatg. For the D+1 and D+2 forecasts, the DNN mdu used the observation and
forecast data (DNN-ALL) outperformed the CMAQ modehe root-mean-squared error (RMSE) of DNN-ALL wawér than that of the
CMAQ model by 2.2ugnt®, and 3.0ugm® for the D+1 and D+2 forecasts, respectively, beeathe overprediction of higher
concentrations was curtailed. An IOA increase d60for D+1 prediction and 0.59 for the D+2 prediotivas observed in case of the
DNN-ALL model compared to the IOA of the DNN modélat used only observation data (DNN-OBS). In addiily, An RMSE
decrease of 7.agnv® for the D+1 prediction and 6.3gm? for the D+2 prediction was observed in case of EMNN-ALL model,
compared to the RMSE of DNN-OBS, indicating that ith@dusion of forecast data in the training dataagiseaffected the DNN model
performance. Considering the prediction of the 6rlauerage PNMsconcentration, the 8,8gnm® RMSE of the DNN-ALL model was 2.7
ugnt lower than that of the CMAQ model, indicating theperior prediction performance of the former. Thesgults suggest that the
DNN model could be utilized as a better-performaigquality forecasting model than the CMAQ, andt thiaservation data plays an
important role in determining the prediction penfiance of the DNN model for D+0 forecasting, whitediction data does the same for
D+1 and D+2 forecasting. The use of the proposedDhbdel as a forecasting model may result in acgdio in the economic losses

caused by pollution-mitigation policies and aidteeprotection of public health.
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30 1lntroduction

Fine particulate matter (PM\) refers to tiny particles or droplets in the atptoere that exhibit an aerodynamic diameter of fkeas 2.5
um. Such matter is mainly produced through secgndaemical reactions following the emission of pmsors, such as sulfur oxides
(SOx), nitrogen oxides (N&), and ammonia (Nbj, into the atmosphere (Kim et al., 2017). Stud@aseal that the Pk generated in the
atmosphere is introduced into the human body thHraegpiration and increases the incidence of caaditular and respiratory diseases as
35 well as premature mortality (Pope et al., 2019; Geoet al., 2015). To reduce the negative effectseaith caused by PA\4 the National
Institute of Environmental Research (NIER) under Hhiaistry of Environment of Korea has been perforquidaily average Pk
forecasts for 19 regions since 2016. The foreaabyson the judgment of the forecaster based orCivamunity Multiscale Air Quality
(CMAQ) prediction results and observation data. drecasts are announced four times daily (at 05t@@MO0, 17:00, and 23:00 (LST)),
and the predicted daily average PMoncentrations are represented via four diffeaéntjuality index (AQI) categories in South Korea:
40 good (PMs< 15 ugnt3), moderate (1ignme < PMps< 35 ugnt3), bad (36ugme < PMzs < 75 ugntd), and very bad (76gnme < PMe.s).
When the forecasts were based on the CMAQ modehdburacy (ACC) of the daily forecast for thedling day (D+1) in Seoul, South Korea,
over the three-year period from 2018 to 2020 wé&s,6¢hd the prediction accuracy for the high-corretioh categories ("bad" and "very bad")
was 69%. Furthermore, a high false-alarm rate (F&fRJ9% was obtained. Studies have revealed tlapthdiction performance of the
atmospheric chemical transport model (CTM) is limhiby the uncertainties in the meteorological figdda used as model input (Seaman,
45 2000; Doraiswamy et al., 2010; Hu et al., 2010etlal., 2017; Wang et al., 2021), and in emissi¢tena et al., 2001; Kim and Jang,
2014; Hsu et al., 2019). Moreover, the physical eimeimical mechanisms in the model cannot fullyefreal-world phenomena (Berge
et al., 2001; Liu et al., 2001; Mallet and Spo#is006; Tang et al., 2009).
To overcome the uncertainty and limitations of #teospheric CTM, a model for predicting air qualitsing artificial neural networks
(ANNSs) based on statistical data has recently leseloped (Cabaneros et al., 2019; Ditsuhi et @20P Studies using ANNs, such as
50 the recurrent neural network (RNN) algorithm thaadvantageous for time-series data training (Bidooeft al., 2017; Kim et al., 2019;
Zhang et al., 2020; Huang et al., 2021) and deepah@etwork (DNN) algorithm that is advantageoos éxtracting complex and non-
linear features, are underway (Schmidhuber e@l5; LeCun et al., 2015; Lightstone et al., 202fp et al., 2019; Eslami et al., 2020;
Chen et al., 2021; Lightstone et al., 2021). Kimakt(2019) developed an RNN model to predictzBBMoncentrations after 24-hour
periods at two observation points in Seoul. Thduaten of the prediction performance of the RNN middr the May—June, 2016 period
55 yielded an index of agreement (IOA) range betweé2 @nd 0.76, which constituted a 0.12 to 0.25 i@frovement compared to the
CMAQ model. Lightstone et al. (2021) developed a DNidel that predicted 24-hour BMconcentrations based on aerosol optical
depth (AOD) data and Kriging PM. The DNN-model predictions for the January—Decemb@16 period yielded a root-mean-squared
error (RMSE) of 2.6 Tugm?, thereby demonstrating a prediction-performangaravement of 2.i)gm® compared to the CMAQ model.
It is to be noted that previous studies concertirggprediction of PMs concentrations using ANNs primarily developed awvdluated
60 models for predicting the daily average concerdrativithin a 24-hour periodbased solely on observation data. this study, we
developed a DNN model that predicts PMoncentrations at 6-hour intervals over three d&gysm the day of prediction (D+0) to two
days after the day of prediction (D+2)—by extending prediction period compared to the previoudist Furthermore, the daily and 6-
hour average prediction performance was compaiptigealuated against that of the CMAQ model cursemperational for such
predictions. In addition, the effect of the traigpidata on the daily prediction performance of tté\Dmodel was quantitatively analyzed
65 via three experiments that used different confiians of the training data in terms of predictivetalfrom numerical models as well as

observation data.
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2 DNN model implementation and acquisition of training data

Figure 1 outlines the process for the developménbh® DNN model used herein, which consists of éhibeoad stages: preprocessing,

model training and post-processing. In the premsiog stage, the data necessary for the developohi¢heé DNN model are collected,

70 and the collected data are processed into a seifabinat for use as the training and validatiorad&t the model training stage, the
backpropagation algorithm and parameters are appiemplement the DNN model, and the most optitmeight file" is saved once
training and validation are complete. In the pastepssing stage, prediction is performed usingséved "weight file". Sect. 2.1 provides
a detailed description of the data used for trginand Sect. 2.2 describes the development of M Dodel.

Preprocessing
Data collection Data preprocessing
« Target area : Seoul metropolitan « Delete missing data
« Observation data (6-hourly) « Data standardization : (x — u)/o
- Air quality and weather data from obser! « Data Normalization :(x — min(x))/(max(x) — min(x))
« Forecast data (6-hourly) - 0~1 MinMax scaling based on training data
- weather data from WRF model « Data splitting : Train-set(2016~2018), Validation-set(2019)
- Air quality data from CMAQ model Test-set(2021.1.1 ~ 2021.3.31)
Model training
Training & Validation Parameter setting of DNN architecture
» Max EPOCH : 100,000 « Algorithm : Back-propagation
- Early stopping with learning rate schedule « Layer : 5-stacked layer
« Gradient descent « Activation function : Sigmoid
« Saved parameter weight files « Cost function : MSE(Mean Square Error)
Postprocessing
Model performance test
« Restoration of saved parameter weight files
« Test results obtained from DNN
Figure 1. Flowchart of the PM 25 forecasting system based on the DNN algorithm.

75 2.1 Training data acquisition
For training of the DNN model, validating the trathDNN model, and making predictions using the tgped DNN model, we used
observation data, such as ground-based air qualiyweather data, as well as forecasting data, asignound-based and altitude-specific
weather data and ground-based-BMjenerated via the WRF and CMAQ models in SeoulttSEorea. In addition, the membership
function was used to reflect temporal informatibata pertaining to a three-year period (2016 to82@lere used for training the model,

80 and data pertaining to 2019 were used for validatizata pertaining to a three-month period (Jantdarch 2021) were used to evaluate
the prediction performance.

Figure 2 illustrates the spatial distribution oé tweather and air quality observation points inugeBouth Korea, where the observation
data used for training the model had been measaretTable 1 presents a list of the weather anduality observation data variables
used for the training. Six variables of air qualBQ, NOz, O3, CO, PMg, and PMs), measured with the measuring equipment provigesib

85 Korea on their website, were used to obtain obsiervalata. S@ and NQ are the precursors that directly affect the chengethe PMs

concentration. ®is generated by NOx and volatile organic compoi@Cs) and causes direct and indirect effectherchanges in the P
concentration (Wu et al., 2017; Geng et al., 20€8).affects the generation of @ the oxidation process via the OH reaction, Wwhie turn, has



https://doi.org/10.5194/gmd-2021-356
Preprint. Discussion started: 15 November 2021
(© Author(s) 2021. CC BY 4.0 License.

90

95

100

105

an indirect effect on the changes in thezBbncentration (Kim et al., 2016). Furthermoretipalate matter with particles exhibiting a lesarth
10 pum diameter (PM) is highly correlated with Pb% during periods of high concentration and exhiiitsilar trends in seasonal concentrations
(Mohammed et al., 2017; Gao and Ji, 2018).

Real-time data from the Automated Surface Obser@ggtem (ASOS) were used as the weather data, fhrtheguniform resource
locator-application programming interface (URL-ABperated by the Korea Meteorological Administratidhe eight variables for the
surface-weather data included: vertical and hoteonind speed, precipitation, relative humiditgwdpoint, atmospheric pressure, solar
radiation, and temperature. Wind speeds and ptatigni are known to be negatively correlated with PM.s concentration, whereas an
increase in the relative humidity increases the Ptbncentration. Wind speed is generally associattdturbulence, and an increase in
the intensity of the turbulence facilitates the imgxof air, inducing a decrease in the P\Moncentration (Yoo et al., 2020). Precipitation
affects the PIs concentration owing to the washing effect thergitower than 80% increase in the relative humidiffects the increase
in the PM.s concentration, owing to increased condensation rardeation (Yoo et al., 2020; Kim et al., 2020).eTHew point is
associated with relative humidity; therefore, isten indirect effect on the PM concentration. In addition, atmospheric presssotar
radiation, and temperature affect the occurrenchigii PMb.s concentrations and seasonal changes insPM terms of atmospheric
pressure, the atmospheric stagnation caused byphégisure influences the occurrence of high.Pébncentrations (Park and Yu, 2018).
Solar radiation appears to be negative correlaigdthe PM.s concentration in winter (Turnock et al., 2015)d aemperature is reported
to affect the changes in the Bbconcentration owing to an increased sulfate camagon and decreased nitrate concentraéibhigh
temperatures (Dawson et al., 2007; Jacob and Wig068).

Location of weather and air quality measurement sites in Seoul, South Korea

e Air quality site
o \e 4 Weather site

Ky )

Figure 2. Spatial distributions of weather (A) and air quality () measurement sitesin Seoul.

Table 1. Training variables in the BMprediction system using a DNsed on surface-weather observations.

Observation Description Unit
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Variable
0_So Sulfur dioxide ppm
O_NQG Nitrogen dioxide ppm
0O Ozone ppm
O_Cco Carbon monoxide ppm
O_PMo Particulate matter (aerodynamic diameted® um) ugnr3
O_PMs Particulate matter (aerodynamic diametegs5um) ugnt?
o_V Vertical wind velocity m/s
o u Horizontal wind velocity m/s
O_RN_ACC Accumulative precipitation Mm
O_RH Relative humidity %
O_Td Dew point temperature °C
O_Pa Pressure hPa
O_Radiation Solar radiation 0.01 MJ per
hr-m?
O_Ta Air temperature °C

Figure 3 depicts the nested-grid modeling domaseslio generate the forecast data in terms ofastével and altitudinal weather and
air quality that is used for training the DNN madeith Northeastern Asia represented as Domain71k(g), and the Korean Peninsula
represented as Domain 2 (9 km). The simulationltesd the Weather Research and Forecasting (WRB) vBodel, a regional-scale
weather model developed by the National Center forirBnmental Prediction (NCEP) under the Nationak&gdc and Atmospheric
Administration (NOAA) in the United States, wereedsas the weather forecast data. The simulatiautsesbtained via the CMAQ
system (v4.7.1) developed by the US EPA were uséleaPM: s prediction data. The Unified Model (UM) global émast data provided
by the Korea Meteorological Administration were disgs the initial and boundary conditions of the WRBdel for the weather
simulation. In the WRF model simulation, the YonSeiversity Scheme (YUS) (Hong et al., 2006) wasdufee the planetary boundary
layer (PBL) physics, the WRF single-moment class-3S¥8) scheme (Hong et al., 1998; Hong et al., 2004% used for cloud
microphysics, and the Kain—Fritsch scheme (KairQ430vas used for cloud parameterization. The metegical field generated was
converted into a form of data input to the air gyalumerical model using the Meteorology-Chemistrierface Processor (MCIP, v3.6).
The Sparse Matrix Operator Kernel Emission (SMOKB,1) model was applied to the emissions invenwinyNortheastern Asia
(excluding South Korea). The Model Inter-Compari§indy for Asia, Phase 2010 (MICS-Asia; Itahashilgt2®20) and the Clean Air
Policy Support System, 2010 (CAPSS) were appliethéoemissions inventory of South Korea. The MarfeéEmissions of Gases and
Aerosols from Nature (MEGAN, v2.0.4) was used tpresent natural emissions. In case of the CMAQ mfmtePM..s concentration
simulation, the Statewide Air Pollution Research €entersion 99 (SAPRC-99; Carter et al., 1999) meshawas used for the chemical
mechanism, the fifth-generation CMAQ aerosol mod@AEROS5; Binkowski et al., 2003) was used for the aefanechanism, and the

Yamartino scheme for mass-conserving advection (YA8¢heme) (Yamartino, 1993) was used for the areptocess.
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Table 2 presents a list of the weather and airityualediction model data variables used for tnagnthe PM.s prediction system. The air

quality forecast variable of the CMAQ model was 2M16 meteorological forecast variables were createdhe WRF model. The

130

An increase or decrease in mixing height, whichethels on thermal and mechanical turbulence, affbetspread of air pollutants. As the

135

inversion layer, which has a significant effectthbe PM.sconcentration (Wang et al., 2014). Finally, altéuthta are associated with the

atmospheric stability and long-term transport ofpailutants (Lee et al., 2018).

Resolution : 27km (174x128)

w
2

Figure 3. CMAQ modeling domains applied to generate the DNN model training data: (a) Northeast-Asian area with 27 km
horizontal grid resolution and (b) Korean-Peninsula area with 9 km horizontal grid resolution.

140

Table 2. Training variables in the B¥prediction system using a DNN based on the WRFGMAQ models.

Resolu

(b) Domain2
tion : 9km

meteorological forecast variables on the grountlitred vertical and horizontal wind speed, precijutg relative humidity, atmospheric
pressure, temperature, and mixing height. In antditthe predicted meteorological variables for ealtitude included the geopotential
height as well as the vertical and horizontal wapeed at 925 hPa. The geopotential height, veritdlhorizontal wind speed, relative

humidity, potential temperature at 850 hPa, anddifference in the potential temperature betweeh &3d 925 hPa were also included.

mixing height increases, the diffusion intensitgreases and the concentration of air pollutanish st PMs, decreases. The potential
temperature is an indicator of the vertical stapitif the atmosphere, and the vertical stability ba used to identify the formation of the

(67x82)
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Model CZ:?S? Description Unit
CMAQ F_PMs Particulate matter (aerodynamic diamet&.5um) ugnt3
F_V Vertical wind velocity at surface m/s
F U Horizontal wind velocity at surface m/s
WRF F_RN_ACC Accumulative precipitation mm
F_RH

Relative humidity at surface

6

%
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F_Pa Pressure at surface pa
F Ta Air temperature at surface K
F_MH Mixing height m
F_925hpa_gpm Paosition altitude at 925 hPa m
F_925hpa_V Vertical wind velocity at 925 hPa m/s
F_925hpa_U Horizontal wind velocity at 925 hPa m/s
F_850hpa_gpm Position altitude at 850 hPa m
F_850hpa_V Vertical wind velocity at 850 hPa m/s
F_850hpa_U Horizontal wind velocity at 850 hPa m/s
F_850hpa_RH Relative humidity at 850 hPa %
F_850hpa_Ta Potential temperature at 850 hPa (€]
F_Temp_ Potential temperature difference between o
850hpa-925hpa 850 hPa and 925 hPa

To train the DNN model to understand the changéepa in the PMsconcentration over time and consider the propagaifdemporal
change, time data were generated using the menipédusiction presented by Yu et al. (2019). The terapdata contained twelve variables,
representing the months from January to Decemiher sim of the variables was set to 1. Of the twebréables, ten had a value of 0, and
two had values between 0 and 1. The two non-zeriahlas were determined based on the day of geoeraf the temporal data and
were defined as "month" and "adjacent month". & thmporal data were generated between the fitstetéourteenth day of a "month”,
the "adjacent month" referred to the month preagthiis "month". If the temporal data were generdtetiveen the sixteenth to the thirty-
first day of a "month", the "adjacent month" reéefrto the month succeeding this "month". The "afjaenonth" was not considered
when the temporal data were generated on the riiftegay of the "month". The values of the "adjaceointh" and "month" variables
were calculated through Eq. (1) to Eq. (4). Fomepi, when generating the temporal data for Janb@yyhe "month" would be January,
and the "adjacent month" would be December. Basetth@wralculations in Eq. (1), the "month" varialsdue would equal 0.82 and the

"adjacent month" variable value would equal 0.18] the rest of the variable values from Februafjdeember would equal 0.

If (Day < 15) then 'Month value’ = % X Day + g, 1)
If (Day > 15) then 'Month value’ = —% x Day + %, )
If (Day = 15) then 'Month value’ = 1, 3)
'Adjacent Month value’ = 1— 'Month value’ , 4)

2.2 Implementation of the DNN model

To develop DNN models over six-hour intervals, tisteps (T-steps) were constructed for the targébghef three days (D+0 to D+2) to
perform predictions as shown in Table 31  Tos correspond to the day of prediction (D+0)4 T To7 to the day after D+0 (D+1), and
Tos to Ta1 to two days after D+0 (D+2). The training datadach T-step consisted of the average weatheriagdadity prediction data,
and the observation data averaged for the preceihirigour period at the beginning of the forec84t@0-06:00 on D+0).
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Table 3. Configuration of the training data forkedestep to implement the DNN model for the 6-haverage prediction

Day T-step Time Configuration of the training data
To1 07:00 to 12:00
D+0 Toz2 13:00 to 18:00
Tos 19:00 to 00:00
Tos 01:00 to 06:00
Ds1 07:00 to 12:00 01:00 to 06:00 observations data on D+0
Tos 13:00 to 18:00 +
Tor 19:00 to 00:00 Forecast data ofxT(x: 01-11) from CMAQ and WRF
Tos 01:00 to 06:00
D2 Tog 07:00 to 12:00
Tio 13:00 to 18:00
Tu 19:00 to 00:00

Feature scaling, involving standardization and radization, was used to convert the data into aoumifformat, ensure that the training
data were not biased and that equal learning tdakepfor the DNN model in each T-steéphe variables in the training data were
standardized to be distributed in the range of amwd 0 and standard deviation of 1. The standeddVariables of the training data were
subsequently normalized to the minimum (min(x)) amakimum (max(x)) values so that the values woddbunded in an equal range
between 0 and 1. Standardization and normalizatiene performed using thi&score (Eq. (5)) and Min-max scaler (Eq. (6)), resipely.
Z-score =* (5)

. _  x—-min(x)
Min-max scaler m ,

(6)

Figure 4 depicts the training process of the DNNdeio The training data undergoes feature scalimgutth the backpropagation

algorithm in the five-stacked-layer DNN model. Thackpropagation algorithm consists of the feedfodwand backpropagation

processes. Feedforward is the process of calcglahia difference (cost) between the output valygpdgthesis) and target value (true
value) in the output layer, after the calculati@s fproceeded from the input layer to subsequestdagnd finally reached the output layer.
Backpropagation is the process of creating new nadiges for the input layer by updating the weighing the cost calculated in the
feedforward process.

In the feedforward process, the noijevélue xi(l)) of the previous layell)(is converted to the hypothesizexi(l“)), the noderp) value

of the subsequent layel + 1) is converted through the weigrw,ln,i), deviation b,,), and sigmoid functionQ)(Z,(,ll“))), which is an

activation function. Equations (7) and (8) outlthe calculation process.

1+1 1 1
' = T X wip + b | )
(+1) _ +1)Y _ 1
Xm - Q)(Zm ) - 1+e(_Z‘(_}|+1)) 1 (8)
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The mean squared error (MSE), a cost functionpiied to the difference (cost) between the hypsittezl and target value calculated
during the forward propagation process, as denwgdel. (9) (Hinton and Salakhutdinov, 2006).

Outlayer
Xm

Cost = '—11 ( — Target)? = % (Hypothesis — Target)? , 9)

In the backpropagation process, the weights catedilia the feedforward process are updated vigtheient descent method. For weight
updating, the corresponding magnitude can be ajusy multiplying it with a scalar value known & tlearning raten) (Eq. (10))
(Bridle, 1990).

o _ WO aCost
Woi= Woi—n

m, m,i o
oW,

(10)

Therefore, the backpropagation algorithm is configuas expressed in Eq. (5) to Eq. (10), and th&l Bddel learns the features of the
training data by repeating the backpropagationratgn as many times as the number of epochs.

In this study, early-stopping was applied to avibid overfitting that occurred in the form of a deage in the cost of the training data
while the cost of the validation data increasedhwlite number of epochs. The early-stopping condisoapplicable when the cost value
of the validation data iEpoch, is lower than the cost of the validation data fiEpoch,,,, to Epochy,,. When the early-stopping
condition is satisfied, the user-defined varial®unt" increases by 1 if the "Count” is zero, antCibunt" is non-zero, the learning rate
decreases h10~1*¢ount 5o that learning is performed with an updatednieg rate fromEpoch,,,; onwards. When the cost values of
the validation data frorEpoch,,,, to Epochy,, exceed the cost valuesEpoch, in the previous "Count," the learning of the moidel
completed.

DNN-0BS

ey 1

DNN-OPM

[reom | ‘

orreT
e ) g eser s s (e o

DNN-ALL

e ] [reem |

0100 to 06:00
observation data of D+0

[ Input data

(oo twcarans [t ans |4 (eroe raon o)

[Training & Validation |

(Parameter of training |
Count=0

Batch size = 32
=0.09 x 1010wt

Step=0

Stop, = Step,., + 1

__{ The weight file in Step, is applied to the ]
validation data.

[ Epoch,, of validation cost > ]
Epoch, of validation cost

Epoch, = Epoch,., + 1

Increase the Count by 1

Validation cost in previous Count <
Validation cost in current Count

<>

* len(data) : Training data total length
* 85 : Batch size

Figure4. Structure of DNN model training process.



https://doi.org/10.5194/gmd-2021-356
Preprint. Discussion started: 15 November 2021
(© Author(s) 2021. CC BY 4.0 License.

3 Experimental design and indicatorsfor prediction performance evaluation

Figure 5 displays the average monthly 2Moncentrations observed in Seoul from 2016 to 20h@ highest average monthly BM
concentration between 2017 and 2019 was observéahimary, March, and December, i.e., during théeriseason. The average monthly
PMzsconcentration ranged between 28.8 and 8@r&2 in winter and 16.6 and 26;&ym? in summer over the four-year period (2016 to
205 2019). This indicated that the concentration intairexceeded that in summer by approximatelynd@r3. In this study, the prediction
performance of the DNN model was evaluated durimgter months (January 1, 2021, to March 31, 2084} exhibited high Pkk

concentrations.

Monthly PM, s Concentration in Seoul

—— 2016
—— 2017
40 —— 2018
—— 2019

—e— Overall

w
o

Obs. [ug/m?3]

-
o

0
Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Figure5. Time series of the average monthly PM 25 concentrations from 2016 to 2019.

210 Three experiments (DNN-OBS, DNN-OPM, and DNN-ALL)regerformed to examine the effects of the trairdatp configuration on
the prediction performance of the DNN model. TheNDB®BS model used the observation data as the sofertg data, the DNN-OPM
model used both observation and weather forecdst fda Tx (x: 1 to 11) as the training data, and the DNN-Afrlodel used the
observation data, weather forecast data, anglsihcentration prediction data {x: 1 to 11) as the training data.

The prediction performances of the three DNN-maedgleriments were evaluated based on statisticth@ndQl. The MSE, RMSE, IOA,

215 and correlation coefficient (R) were used as thecatdrs in statistical evaluation. The MSE and RM8Mich represented the loss
functions of the DNN model, were used to deterntiveequantitative difference between the model piemiis and observed values. The
I0A indicator determined the level of agreementigein the model predictions and observed valuedbaséhe ratio of the MSE to the
potential error. The R indicator determined the elation between the model predictions and obsevafees. Equations (11) to (14) were

used to calculate these five indicators.

220 MSE (ugm~3)2 = LT ¥(Model — Obs)? , (1D

RMSE (ugm™3) = /%Zfi‘(Model — 0bs)?, (12)

N(Model-0bs)?
»N(|Model-0bs|+|0bs—0bs|)* '
R= ¥ (Model-Model)x(Obs—0bs) ’ (14)

J}:(Ivloalel—MoclelfxE(Obs—m)2

I0A=1-
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The AQI for PMs was classified into four categories based on tizdtoncentration standards used in South Koreazs$M

225 concentrations betweeny@n? to 15ugnt® were classified as "good"; 1&m? to 35ugnt3, "moderate”; 3eugm? to 75ugnr3, "bad";
and 76ugnt® or higher, "very bad". The ACC determined the catiegb prediction accuracy of the model pertainiogtite four AQI
categories, and the probability of detection (P@B)ermined the prediction performance of the mddelhigh PM.s concentrations
("bad" and "very bad" AQI categories). The FAR detieed the rate of incorrect predictions when theeobations tended to be
"moderate” or "good" but the predictions pointedhigh concentrations ("bad" or "very bad" AQI caiggs). A low FAR value indicated

230 better performance. The F1l-score indicator, whichhie harmonic mean of the POD and FAR, reflecked ROD as well as FAR
evaluations. Equations (15) to (18) were used &cutating the AQI prediction-evaluation indicatoend Table 4 lists the intervals
corresponding to the four categories for calcutah€C, POD and FAR.

ACC (%) = EHR2EEHD 5 400, (15)
_ (c3+c4+d3+d4)
POD (%) = (a3+a4+b3+ba+c3+ca+d3+d4) x 100, (16)
_ (c1+c2+d1+d2)
235 FAR(%) = (c1+c2+c3+ca+d1+d2+d3+d4) x 100, an
F1-score= 2 x PODX(00-FAR) (18)

POD+(100—FAR) ’

Table 4. Intervals corresponding to the four catiegofor calculating ACC, POD and FAR: "good" (P34 15 pgnts), "moderate” (16
ugnT® <PM2,5 <35 ugnr3), "bad" (36ugnt® < PMz2s< 75ugnt®), and "very bad" (7agns < PMs).

Model forecast

Level
Good Moderate Bad Very bad
Good al bl cl di
) Moderate a2 b2 c2 d2
Observation
Bad a3 b3 c3 d3
Very bad a4 b4 c4 d4

240 The effect of the training data on the predicti@mfprmance of the DNN model was quantitatively gmedl using the RMSE indicator.
The overall effect of the forecast data on modeldfmtions was calculated based on the RMSE-differdretween the DNN-ALL and
DNN-OBS models. The effect of the predicted weatt&a on model predictions was calculated baseth@RMSE-difference between
the DNN-OPM and DNN-OBS models (Eq. (19)). The dffcthe predicted Pbk data on model predictions was calculated basdtien
RMSE-difference between the DNN-ALL and DNN-OBS madgéq. (20)).

_ |(DNN-OPMp,{)~(DNN=OBSp.)|

245  Contribution of predicted weather (%) = | (ONNALLy ) (DNN—0BSp) |
- D+i/) ™ - D+i.

x100(i=0to2), (19)

|(DNN=ALLp,;)~(DNN=OPMp.)|

Contribution of predicted PM, s (%) = | ONN=ALLy.)~(DNN—0BSps) |
+1i +1i

x 100 (i=0t02), (20)
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4 Evaluation of prediction performance

The evaluations based on statistics and AQI ciaasibns were conducted for each of the DNN-modgleeiments (DNN-OBS, DNN-

OPM, and DNN-ALL), and the results were comparethwhose of the CMAQ model currently operationaBmuth Korea. In Sect. 4.1,
250 we examine the daily prediction performance ofttiree DNN-model experiments and CMAQ model usiragistical indicators for the

three-day period (D+0 to D+2), and quantitativehalgze the effect of different training data conattians on the prediction performance

of the DNN model. A comparative evaluation with B®MAQ model was conducted to assess whether the-BNINmodel was more

comprehensive for 6-hour average forecasting thanekisting daily average forecasting model. IntS&@, to assess the potential of

DNN-ALL as a superior forecasting model, the da@! predictions therein for the three-day period-(Dto D+2) were compared to
255 those of the CMAQ model.

4.1 Evaluation of daily prediction performance based on the training data

Table 5 summarizes the results of the statistiealuations of the prediction performances of threehDNN-model experiments (DNN-
OBS, DNN-OPM, and DNN-ALL) and the CMAQ model. Fig@elepicts the corresponding Taylor diagrams, dagdrE 7 illustrates the
corresponding time series. For D+Be CMAQ model RMSE was 11p4nv3 with a 0.90 10A, and that of the DNN-OBS was 10g813
260 with a 0.86 IOA, thereby indicating a lower erradalOA compared to those of the CMAQ model. The RM8&Ethe DNN-OPM and
DNN-ALL were 8.0ugn and 7.3ugnt3, respectively, and their IOAs were 0.93 and Or@Spectively, indicating decreased errors and
increased I0As compared to those of the CMAQ mdgk$ed on the RMSE and IOA values, the DNN-ALL exleithithe best prediction
performance. The Taylor diagram (Fig. 6 (a)), whdelpicts the RMSE, R, and standard deviation indisatimultaneously, confirms that
DNN-ALL demonstrated the best prediction perform@mamong the evaluated moddigg. 7(al) and 7(a2) reveal that all the three DNN-
265 model experiments exhibited improved overpredicperformance compared to the CMAQ model; howeverDNN-OBS exhibited the
highest underprediction of P concentration during the high-concentration per{pdbruary 11 to February 14). The domestic and
foreign contributions to the high-concentrationipérwere analyzed using the CMAQ with brute-forcetnod (CMAQ-BFM) model
(Bartnicki, 1999; Nam et al., 2019). The BFM revedieal the foreign contribution to the BMconcentration because of the long-term
transport of pollutants to the Seoul area was 68%ebruary 11, 54% on February 12, 66% on Febrlidryand 41% on February 14.
270 This aspect of the high P concentration could not be characterized solelysizg observation data (data observed at each) gairtthe
training data. This phenomenon seemed to causecagaise in the concentration on the day subsedoéehe day a high concentration
occurred. The DNN-OBS RMSE obtained on excludingtigih-concentration period was Qugnt3, which was lower than that of the
CMAQ model (10.9ugn3) and 1.4ugnve lower than that exhibited by the DNN-OBS model witee highconcentration period was
included. In contrast, the RMSEs of the DNN-OPM &NN-ALL were 7.3ugnt® and 7.0ugm?, respectively, the I0As were 0.93 and
275 0.94, respectively, and the R-values were 0.89 fith bmodels,when the high-concentration period was excluded. No iS@amt
difference in results was observed even on indtusiothe high-concentration period (February 1Fébruary 14). These results suggest
that when the observation and prediction data aesl was the training data, the DNN model refleces dharacteristics of the high-
concentration phenomenon caused by long-distaaosport. Excluding the high PMconcentration caused by long-term transport, the
DNN model demonstrated a marginally improved priaticperformance compared to the CMAQ model on Bex@&@n when using only
280 the observation data as the training data. In exidithe use of the prediction data as the trainiag facilitated an improved prediction

performance concerning the long-term-transport-teduphenomenon compared to that of the CMAQ model.
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For D+1 and D+2, the CMAQ model RMSEs were 1igar and 13.6:gn73, respectively, and the IOAs were 0.90 and 0.8§paetively.

In contrast, the DNN-OBS RMSEs for D+1 and D+2 weBe2 ignt® and 16.9ugm?, respectively, and the I0OAs were 0.44 and 0.27,
respectively. Thus, the DNN-OBS model resulted igda errors and smaller IOAs compared to the CMAQI@hoThe errors increased
and the 10As decreased for the DNN-OPM, when cosetpan those of the CMAQ model. However, the DNN-ORMdel RMSEs
decreased by 4.6gm? and 2.9ugnt3, and the 10As increased by 0.34 and 0.45 comparétbse of the DNN-OBS model, for D+1 and
D+2, respectively. The DNN-ALL model performed thest, with RMSEs of 9.Qgnt® and 10.6ugnt® and IOAs of 0.90 and 0.86 for
D+1 and D+2, respectively, exhibiting smaller esrand larger IOAs compared to those of the CMAQ ehcothe standard deviations of
the DNN-ALL model were 13.5gm? and 12.7ugnv® for D+1 and D+2, respectively. For D+1 and D+2, N\DRLL outperformed the
remaining DNN-models and the CMAQ model (Fig. 6(bp &(c)). This was concluded based on the sup&MBE and R-values
exhibited therein. Moreover, as shown in Fig. 7)(32), (c1), and (c2), the DNN-ALL model exhildtéower overprediction compared to
that by the CMAQ model. However, the DNN-OBS and DRRM models overpredicted low BMlconcentrations and underpredicted
high PMesconcentrations, when compared to the observatitsn @ae DNN-OBS model did not predict the changthéobserved Pbs
concentration after D+0, indicating a decrease @A land a limited range of predicted BMconcentrations with respect to the
observations. Although the DNN-OPM model outperfedtDNN-OBS, it was inferior to DNN-ALL because thé&lR-OPM training
data lacked sufficient features for predicting tenge in the observed BMconcentration. The DNN-ALL model outperformed the
CMAQ model for D+1 and D+2, while all three DNN-bdsmodels outperformed the CMAQ model for D+0. ForlDand D+2, the
RMSE of the DNN-ALL model using the prediction ddtam numerical models decreased by g and 6.3ugm?, respectively,
compared to DNN-OBS. The effects of weather forecagh were 56% (4gm3) and 46% (2.9ugm?3), respectively, and those of
predicted PMs concentration were 44% (3unr3) and 54% (3.4.gm), respectively, when used as training data. Theselts suggest
that as the prediction period lengthens, the wedihrecast and Pk concentration prediction data are more importaahtburrent
observation data for improving the model predicp@nformance.

In modern times, people demand the availabilitynofe detailed forecasts, well in advance of theaye daily forecast, to enable better
planning of daily lives and the mitigation of aioljuting emissions. Therefore, the applicability tbe DNN-ALL model as a 6-hour
forecast model was evaluateBurthermore, the 6-hour mean prediction performaoic®NN-ALL, which exhibited the best daily
prediction performance, was evaluated againstahtite CMAQ model. Table 6 presents the RMSE and f@/4ach T-step of the DNN-
ALL and CMAQ. The RMSEs of the DNN-ALL ranged betwegs ugn® to 16.0ugn?, a decrease of 2ygnt? to 8.8ugnt® compared
to the CMAQ model. The DNN-ALL IOAs ranged betwee@®Dand 0.97, indicating higher or similar IOAsrhthose of the CMAQ-
model. These results suggest that the DNN-ALL madeld be utilized as a model for daily and 6-hfmuecasting.

Table 5. Statistical summary of daily Bkconcentration prediction performance of the CMADIN-OBS, DNN-OPM, and DNN-ALL

models.
MSE RMSE
Model Day N2 3 R I0A
((ngnr2)?) (ngn)
D+0 130.4 11.4 0.83 0.90
CMAQ D+1 125.4 11.2 0.82 0.90
D+2 185.0 13.6 0.74 0.85
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D+0 116.6 10.8 0.79 0.86
DNN-OBS D+1 262.4 16.2 0.31 0.44
D+2 285.6 16.9 0.17 0.27
D+0 64.0 8.0 0.89 0.93
DNN-OPM D+1 148.8 12.2 0.70 0.78
D+2 196.0 14.0 0.59 0.72
D+0 53.3 7.3 0.91 0.95
DNN-ALL D+1 81.0 9.0 0.85 0.90
D+2 112.4 10.6 0.79 0.86

—3
Standard deviation [ugm 3] Standard deviation [ugm 3]
00/%1718;2) 13:2 Taylor Diagram * Obs
24~ o7 T4
S iy~ B CMAQ
K B DNN-OBS

B DNN-OPM
B DNN-ALL

Standard deviation [ugm 3]

Figure 6. Taylor diagrams for D+0 to D+2 ((a) to (c)) of the CMAQ, DNN-OBS, DNN-OPM, and DNN-ALL models. In each
diagram, the contour line connecting the x- and y-axes represents the standard deviation, and the dark gray contour line

315 represents the RMSE. The smaller the RMSE, the higher the R value; the closer the standard deviation is to the standard
deviation of the observation, the closer it isto the Obs ().
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Figure 7. Time series of PM2s concentrations from observations and predictions using the CMAQ, DNN-OBS, DNN-OPM and
DNN-ALL. 7 (al) to (c1) depict the time series of predictions and observations and (a2) to (c2) depict the differences between the
320 predictionsand observations (predictions minus obser vations).

Table 6. Statistical summary of the performancethefCMAQ and DNN-ALL models in case of 6-hour aage PM sforecasts.

T-step
Model Indicator

Tox To2 Tos Toa Tos Tos Toz Tos Tos T1o T

RMSE (pugm®) 16.1 142 165 181 169 129 153 190 16.6 185 163

CMAQ

I0A 085 085 082 080 084 088 084 078 084 0.75 0.82
DNN-ALL RMSE (ugn?) 7.3 9.0 124 145 134 102 123 16.0 135 139 136
I0A 097 092 086 083 086 087 086 077 085 0.74 0.80

4.2 AQI-prediction performance

Among the three experiments described in Sect.tAelDNN-ALL model demonstrated the best resultthin statistical evaluation. The
325 AQI-prediction performance of the DNN-ALL model wasmpared with that of the CMAQ model. Table 7 aigl B present the AQI
evaluation results of the DNN-ALL and CMAQ models.
The overall ACC of the DNN-ALL model for D+0 was 7%8approximately 12% higher than that of the CMAQdelo The categorical-
prediction ACC of the DNN-ALL was greater than tledtthe CMAQ model by approximately 7% for "good7% for "moderate"”, 4%
for "bad", and 100% for "very bad". During the targeriod of this study, "very bad" occurred ongithough DNN-ALL predicted this
330 occurrence accurately, the CMAQ predicted "bad"iciathg a 100% difference in accuracy between we models (Fig. 8 (al), (b1)).
The F1-score was 80%, 3% higher than that of the QModel. The FAR of the DNN-ALL model improved bypapximately 17%,
although the POD decreased by approximately 9%sdnesults suggest that the DNN-ALL model overmtedi less than the CMAQ

model, whose predicted PMlconcentrations were generally higher than therwlsevalues.
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335

340

For D+1 and D+2, the overall ACC was 64.6% and % .despectively, an approximate decrease of 2%léhdrespectively, compared to
the CMAQ model. The AQI-prediction ACC of the DNN:A model decreased by approximately 27% on botts daygood", and increased
by approximately 12% for D+1 and 5% for D+2 in "recate”. The "good" ACC was low because the CMAQ ehadderpredicted, and the
DNN-ALL overpredicted, with respect to the observetlies. An equal "bad" ACC of 70% was obtaineddNN-ALL and CMAQ for D+1,
which increased by 20% for the DNN-ALL model on DF2g. 8(a2), 8(a3), 8(b2), and 8(b3)). The Fl-ssaf DNN-ALL and CMAQ for
D+0 were 70% and 67%, respectively; however, thedete increased for DNN-ALL by 1% for D+1 and 786 D+2. For the DNN-ALL
model, in case of D+1, the POD decreased by 10%-ARdimproved by 8%p, whereas, in case of D+2 @ increased by 5% and FAR
improved by 8%.

Table 7. Categorical forecast scores of the perfoomaf the CMAQ and DNN-ALL.

Model Day ACC (%) POD (%) FAR (%) F1-score (%)
D+0 65.6 59/90 81.8 18/22 28.0 7125 77
CMAQ D+1 66.7 60/90 81.0 17/21 39.3 11/28 69
D+2 62.2 56/90 71.4 15/21 48.3 14/29 60
D+0 77.8 70/90 72.7 16/22 11.1 2/18 80
DNN-ALL D+1 64.4 58/90 71.4 15/21 31.8 7122 70
D+2 61.1 55/90 76.2 16/21 40.7 11/27 67
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(a) Scatter plot of the CMAQ model for D+0 to D+2
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(b1) DNN-ALL D+0 Scatter of Seoul (b2) DNN-ALL D+1 Scatter of Seoul (b3) DNN-ALL D+2 Scatter of Seoul
¥ = 1.0x-1.05, R = 0.91 Y= 11X3.79, R = 0.85 Y=11x3.59,R=0.79
1207 4 other: 20/90 1207 4 other: 32190 1207 4 other: 35/90
o Good :19/27 o Good :10/26 o Good:11/26
o Moderate : 35/41 o Moderate : 34/43 o Moderate : 29/43
1007 o Bad:1s/21 1004 o Bad: 14720 1007 o Bad:15720

Very Bad : 1/1 Very Bad : 0/1 Very Bad : 0/1

@
S
T
@
S
T
@
3
T

Obs PM, s[ugm=3]
8

Obs PM, s[ugm=3]
8

Obs PM; s[ugm 3]

40+ 40- 40-
ZDj 20 20 ‘._.
;o :.
0+ U T T T T T 0+ T T T v T T 0+ ¥ T T T T T
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
DNN-ALL PM, s[pgm~3] DNN-ALL PM, s[pgm~3] DNN-ALL PM, s[pgm~3]

(b) Scatter plot of the DNN-ALL model for D+0 to D+2
Figure 8. Observations from D+0 to D+2 and corresponding scatter plots of the DNN-ALL and CMAQ models. The blue dots

345 indicate the observation and prediction valuesin the AQI category "good" ; the green dots, "moderate" ; the red dots, "bad"; the
orangedots, " very bad."
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5 Conclusion

This study aimed to develop a deep neural netwDtkN) model for predicting the 6-hour average 2Moncentration for three days
350 (D+0 to D+2) using the DNN algorithm based on obason, weather forecast, and Pdconcentration forecast data. The prediction
performance of the DNN model was comparatively eatd against that of the CMAQ model currently uteébrecast air quality in
South Korea. The effects of different training datethe prediction performance of the DNN modelenaiso analyzed.
For D+0, the DNN-ALL, DNN-OPM and DNN-OBS models ésted RMSE decreases of 4ugnt3, 2.8 ugm?3, and 0.6pgn,
respectivelyand similar IOA values, compared to the CMAQ modeéreby indicating improved performance. For D+8 &n2, the
355 prediction performance of the DNN-ALL model was thest, with RMSE decreases (owing to lower overptaui) compared to those in
the CMAQ model of 2.2igm? and 3.0ugnt3, for D+1 and D+2, respectively. In contrast, thdNDOBS performed poorly compared to
the CMAQ model, with RMSE-increases of 21§n and 3.3ugn® and sharp 10A-decreases of 0.46 and 0.58, for Brd D+2,
respectively. The DNN-OPM prediction performanceswarginally inferior to that of the CMAQ, with RMSkcreases of 1.0gnte for
D+1 and 0.4ugntéfor D+2. The RMSE decrease in case of DNN-ALL wasgnt? for D+1 and 6.31ign for D+2, compared to DNN-
360 OBS, indicating that the use of forecasting datahastraining data greatly affected the performaottéhe DNN model pertaining to
longer forecasting periods. The RMSE of the DNN-Atlécreased within a range of 21igm® to 8.8 ugnt® compared to the CMAQ
model in case of the 6-hour average prediction,lying that the DNN model could perform better thitne CMAQ in both, 6-hour
average and daily forecasting. The F1-score oDiRBI-ALL improved by 3%, 1% and 7%, and false alamhesreased by 17%, 8% and 8%
compared to the CMAQ model for each day. These tesi@monstrate the better prediction ability of BN model in case of high
365 PMgas concentrations, as it rendered fewer false aldmnslecreasing overpredictions, unlike the CMAQ modélus, the evaluation
results reveal that the DNN model could be usefub6r average and daily forecasts.
For further performance-improvement of the DNN nipdpatial training data should be expanded toeceéfthe changes in P
concentration induced by the surrounding areas,tladraining duration should be increased to allearning pertaining to the varying
concentrations. In addition, the improvement of thenerical models used for generating weather anduality prediction data is
370 necessary.
When high PMs concentrations are predicted, mitigation polices implemented for the protection of public heatttSouth Korea.
These policies aim to reduce air-polluting emissibyg limiting the power-generation capacity of that power plants and operation of
vehicles, which are processes that involve soctmemic costs. Consequently, inaccurate forecastsighf PMb.s concentrations can
result in socio-economic losses. Therefore, theafighe DNN model for forecasting is expected tduse economic losses and protect
375 public health.
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