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Author Response to Referee 1 

We thank the editor and the reviewers for the time and effort put in towards the review of this manuscript. The insightful 

comments and suggestions have helped improve the manuscript significantly. We have incorporated several changes based on 

the suggestions of the reviewers. The detailed responses to the reviewers’ comments are given below. 

 5 

Section 1. Major comments. 

Comment 1. It’s not clear what the contributions of the paper are versus what already exists. Did the authors run the WRF 

and CMAQ models to generate the training data or were these data obtained from some other source? 

Response 1. We understand the concern raised by the reviewer. We directly generated the training data using the WRF and 

CMAQ. We will make revisions to the manuscript to clarify this point. (See lines 128-129 in the revised manuscript) 10 

 

 

Comment 2. Similarly there is no justification for the choice of model. I would like to see the approach benchmarked against 

simpler models (ARIMA, Random Forest, … basically anything from the statistical or machine learning family to compare 

against the deep learning approach). The volume of data that the model is trained on are not huge so it is not apparent that a 15 

DNN is the best choice of algorithm. 

 

Comment 2-1. Similarly, there is no justification for the choice of model. I would like to see the approach benchmarked 

against simpler models (ARIMA, Random Forest, … basically anything from the statistical or machine learning family to 

compare against the deep learning approach). 20 

Response 2-1. Among the statistical models mentioned by the reviewer, the prediction performances of the Random Forest 

(RF) have been evaluated and compared with that of the DNN-ALL. Table 1 shows the results of the statistical evaluations, 

and Table 2 lists the results of the Air Quality Index (AQI) evaluation (Tables 1 and 2 are reflected in Tables S5 and S7 of 

Supplement, respectively). 

Compared to the results of the RF model, the Root Mean Square Error (RMSE) value of the DNN-ALL model decreased by 25 

0.6 to 1.9 μgm-3, and the Correlation Coefficient (R) and Index of Agreement (IOA) values increased slightly (See lines 340-

343 in the revised manuscript). The Accuracy (ACC) of the DNN-ALL model increased by approximately 2–13 %p 

compared to the RF model, and the F1-score decreased by 1 %p at D+1 but increased by 1 %p and 9 %p at D+0 and D+2, 

respectively (See lines 398-400 in the revised manuscript). A comparison of the performance results showed that the DNN-

ALL model outperformed the RF model. We will this information in the revised manuscript to include these results.  30 

 

Table 1. Statistical performance of the DNN-ALL and Random Forest models. 

Model Day 
MSE 

((μgm-3)2) 

RMSE 

(μgm-3) 
R IOA 

DNN-ALL 

D+0 53.3 7.3  0.91  0.95  

D+1 81.0 9.0  0.85  0.90  

D+2 112.4 10.6  0.79  0.86  
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Random Forest 

D+0 62.4 7.9 0.90 0.93 

D+1 106.1 10.3 0.83 0.85 

D+2 156.3 12.5 0.73 0.76 

 

Table 2. Categorical performance of the DNN-ALL and Random Forest model. 

Model Day ACC (%) POD (%) FAR (%) F1-score (%) 

DNN-ALL 

D+0 77.8 70/90 72.7 16/22 11.1 2/18 80 

D+1 64.4 58/90 71.4 15/21 31.8 7/22 70 

D+2 61.1 55/90 76.2 16/21 40.7 11/27 67 

Random 

Forest 

D+0 75.6 68/90 77.3 17/22 19.0 4/21 79 

D+1 61.1 55/90 76.2 16/21 33.3 8/24 71 

D+2 48.9 44/90 71.4 15/21 50.0 15/30 58 

 35 

Comment 2-2. The volume of data that the model is trained on are not huge so it is not apparent that a DNN is the best choice 

of algorithm. 

Response 2-2. We agree that the volume of data in this paper is not sufficiently huge to be applied to artificial intelligence 

(AI). Nevertheless, the reason for choosing DNN algorithm is to take into account the scalability of the model, which can 

reflect training data expansion to forecast the segmentation with a 1-h interval and the future data growth over time. Therefore, 40 

the performance of the AI is expected to improve as the training data increases. (See lines 343-346 in the revised manuscript) 

 

 

Comment 3. Many details on the DNN model setup are presented with no real justification for their choice e.g. using the 

membership function for temporal features, the choice of DNN architecture such as number of layers is not explained. On line 45 

50 – 55 the authors 1) note the advantages of RNN for time series forecasting and 2) that Kim et al. (2019) developed an RNN 

model to predict PM2.5 concentrations at two locations in Seoul. Why was RNN not considered for this study rather than DNN 

and how does the performance of this model compare to that reported by Kim et. al. Similarly it is not clear if the autoregressive 

features of the data were expressed in any form? Of course RNN expresses these implicitly but in other models it can be 

advantageous to feature engineer the autoregressive dependencies. Were any feature combinations other than those reported 50 

explored in the paper. The authors need to justify the choice of algorithm and how the DNN was designed detailing such 

information as feature selection, number of layers/nodes. 

 

Comment 3-1. Many details on the DNN model setup are presented with no real justification for their choice e.g. using the 

membership function for temporal features. 55 

Response 3-1. . In this paper, the membership function was used to reflect these monthly change characteristics. As shown in 

Figure 1 (Figure 5 in the paper), PM2.5 concentration in Seoul is high in January, February, March, and December, and low 

from August to October. PM2.5 concentration has a characteristic that changes gradually from month to month. The examples 

of how membership function is applied are described in lines 160–163 of the paper. The membership function was applied 

based on the results presented by Yu et al. (2019). Yu et al. (2019) performed training that reflected monthly change 60 
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characteristics to improve the high-concentration PM10 forecast performance. As indicated by the experiment results presented 

in Table 3, the POD performance of the training model reflecting the characteristics of the monthly change was improved by 

25 %p. The information related to this will be added in the paper. (See lines 151-153 in the revised manuscript) 

 

Table 3. Results of artificial intelligence model performance evaluation when using and without the membership function presented in Yu 65 

et al. (2019). 

Model Day ACC (%) POD (%) FAR (%) 

Using Membership 

function 
D+1 70 75 48 

Without Membership 

function 
D+1 76 50 33 

 

 

Figure 1. Time series of the average monthly PM2.5 concentrations from 2016 to 2019. 

 

Comment 3-2. The choice of DNN architecture such as number of layers is not explained. The authors need to justify the 70 

choice of algorithm and how the DNN was designed detailing such information as feature selection, number of layers/nodes. 

Were any feature combinations other than those reported explored in the paper.  

Response 3-2. In order to provide the justification for the layer selection mentioned by the reviewer, we presented the 

evaluation results according to the number of layers. The statistical and AQI evaluation results of the DNN-ALL model based 

on the layer are presented in Tables 4 and 5, respectively (Tables 4 and 5 are reflected in Table S1 and S2 of Supplement, 75 

respectively). The results of the 4-layer and 5-layer models show that the performance is similar. However, compared with 

the 4-layer model, the RMSE of the 5-layer decreases by approximately 0.1 μgm-3 to 1 μgm-3 at D+0 to D+2, and the ACC of 

the 5-layer model increases by approximately 1 %p to 6 %p at D+0 to D+2. Therefore, the 5-layer model shows the best 

performance. The 6-layer and 8-layer models contain errors that converge without decreasing during the training process of 

the model (vanishing gradient problem). The authors believe that the cause of this problem is the activate function. Therefore, as 80 

the layer becomes deeper, the value of the last output cannot be significantly changed due to the sigmoid function. We will 

include this information in the revised manuscript. (See lines 188-194 in the revised manuscript) 

 

Table 4. Statistical evaluation results according to the number of layers. 
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Model Day 
MSE 

((μgm-3)2) 

RMSE 

(μgm-3) 
R IOA 

2-layer 

D+0 59.3 7.7 0.91 0.94 

D+1 92.1 9.6 0.86 0.89 

D+2 156.3 12.5 0.75 0.80 

4-layer 

D+0 54.7 7.4 0.91 0.95 

D+1 88.3 9.4 0.86 0.90 

D+2 134.5 11.6 0.77 0.84 

5-layer 

(DNN-ALL) 

D+0 53.3 7.3 0.91 0.95 

D+1 81.0 9.0 0.85 0.90 

D+2 112.4 10.6 0.79 0.86 

6-layer 

D+0 174.2 13.2 0.81 0.66 

D+1 292.4 17.1 0 0.17 

D+2 292.4 17.1 0 0.17 

8-layer 

D+0 302.7 17.4 0 0.15 

D+1 292.4 17.1 0 0.17 

D+2 292.4 17.1 0 0.17 

 85 
Table 5. AQI evaluation results according to the number of layers. 

Model Day ACC (%) POD (%) FAR (%) F1-score (%) 

2-layer 

D+0 70.0 63/90 81.8 18/22 28.0 7/25 77 

D+1 55.6 50/90 81.0 17/21 39.3 11/28 69 

D+2 51.1 46/90 81.0 17/21 50.0 17/34 61 

4-layer 

D+0 71.1 64/90 81.8 18/22 28.0 7/25 76 

D+1 60.0 54/90 85.7 18/21 35.7 10/28 73 

D+2 60.0 54/90 81.0 17/21 45.2 14/31 65 

5-layer 

(DNN-ALL) 

D+0 77.8 70/90 72.7 16/22 11.1 2/18 80 

D+1 64.4 58/90 71.4 15/21 31.8 7/22 70 

D+2 61.1 55/90 76.2 16/21 40.7 11/27 67 

6-layer 

D+0 55.6 50/90 50 11/22 8.3 1/12 64 

D+1 47.8 43/90 0 0/21 0 0/0 0 

D+2 47.8 43/90 0 0/21 0 0/0 0 

8-layer 

D+0 45.6 41/90 0 0/22 0 0/0 0 

D+1 47.8 43/90 0 0/21 0 0/0 0 

D+2 47.8 43/90 0 0/21 0 0/0 0 

 

Comment 3-3. On line 50 – 55 the authors 1) note the advantages of RNN for time series forecasting. and 2) that Kim et al. 

(2019) developed an RNN model to predict PM2.5 concentrations at two locations in Seoul. Why was RNN not considered 

for this study rather than DNN and how does the performance of this model compare to that reported by Kim et. al. 90 
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Response 3-3-1. (Reason why RNN was not considered) There are very few studies and relatively less research to predict 

air quality using AI such as DNN, RNN and CNN, although it has increased recently. Therefore, the purpose of this study is 

to evaluate the performance of fine dust prediction when using the DNN among various AI algorithms. The RNN is known to 

have the advantage of time series prediction, and the DNN is known to have the advantage of extracting characteristics of 

training data well. There is no convergent result confirming which of the two algorithms is better when applied to fine dust 95 

prediction. Therefore, we first performed the simulation using the DNN rather than the RNN in order to maximize the 

advantages of the DNN for predicting fine dust. In the future, we plan to perform comparative evaluation with the DNN results 

presented in this paper through the development of RNN models. 

 

Response 3-3-2. (Comparison with Kim et al.) We compared the results obtained by Kim et al. (2019) with those obtained 100 

in our study. Kim et al. (2019) performed a PM2.5 concentration prediction for two out of 41 measuring stations that are located 

in the Seoul area. However, in this paper, the average PM2.5 concentration prediction for 41 measuring stations in Seoul was 

performed. In other words, there is a spatial difference for the area to be predicted. In addition, the periods of prediction for 

the two papers are different. The forecast period considered by Kim et al. (2019) was four months, from January 2016 to April 

2016, and the forecast period in this study was three months, from January 2021 to March 2021. Although it is difficult to 105 

directly compare the two studies because of the existence of temporal and spatial differences, the results of the prediction 

performance are presented in Table 6. Because Kim et al. (2019) performed only the D+1 prediction, the comparison of the 

prediction performance with this paper was conducted for D+1. The values indicate that the RMSE is decreased and the IOA 

is increased compared to other models. 

 110 

Table 6. Statistical performance of the DNN-ALL and Kim et al. (2019). 

Model Day 
RMSE 

(μgm-3) 
IOA 

DNN-ALL D+1 9.0  0.90  

Seoul-1 (Kim et al. (2019)) D+1 12.5 0.71 

Seoul-2 (Kim et al. (2019)) D+1 15.1 0.77 

 

Comment 3-4. Similarly, it is not clear if the autoregressive features of the data were expressed in any form? Of course, RNN 

expresses these implicitly but in other models it can be advantageous to feature engineer the autoregressive dependencies.  

Response 3-4. The RNN algorithm implicitly reflects autoregressive features, but the DNN algorithm does not reflect 115 

autoregressive features. This study did not consider any autoregressive features. 

 

 

Comment 4. The manuscript could be improved to enhance readability and replicability of the study. I appreciate the authors 

making code and data available on Zenodo. I would however encourage them to create a GitHub repository with some 120 

documentation to allow people easily replicate the results. As mentioned in 1) authors could be more descriptive when detailing 

data sources. Some parts of the paper could be explained better, e.g. line 161 “average weather and air quality prediction data”. 

What is meant by average here? Spatial or temporal. Are WRF and CMAQ data extracted from the entire Seoul area domain 
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or subset corresponding to location of the observation point. Line 166 – 167 “ensure that the training data were not biased” – 

feature scaling does not ensure unbiased datasets, it simply helps the model learn better. The data could still be biased. Line 125 

173: “undergoes feature scaling through the backpropagation algorithm” – not clear what is meant by feature scaling in this 

context. Line 128 “16 meteorological forecast variables were created by the WRF model” – I believe what is meant here is 

that 16 variables were extracted as features, but many more variables were generated by the WRF model. 

 

Comment 4-1. Line 161 “average weather and asir quality prediction data”. What is meant by average here? Spatial or 130 

temporal. Are WRF and CMAQ data extracted from the entire Seoul area domain or subset corresponding to location of the 

observation point. 

Response 4-1. In “average weather and air quality prediction data” - "average" refers to conversion of 1-h interval data into 

6-h interval data. In addition, spatially, it means the average of 9 km grids corresponding to Seoul. We have clarified the 

meaning and revised it in the paper. (See lines 171-174 in the revised manuscript) 135 

 

Comment 4-2. Line 166 – 167 “ensure that the training data were not biased” – feature scaling does not ensure unbiased 

datasets, it simply helps the model learn better. The data could still be biased. 

Response 4-2. We thank the reviewer for highlighting this issue. We will incorporate changes based on the suggestion of the 

reviewer. 140 

Original: Feature scaling, involving standardization and normalization, was used to convert the data into a uniform format, 

ensure that the training data were not biased and that equal learning took place for the DNN model in each T-step. 

Revise: The feature scaling, including standardization and normalization, was implemented to transform data into uniform 

formats, reduce data bias of training data, and ensure equal learning for the DNN model at each T-step. (See lines 178-179 in 

the revised manuscript) 145 

 

Comment 4-3. Line 173: “undergoes feature scaling through the backpropagation algorithm” – not clear what is meant by 

feature scaling in this context. 

Response 4-3. The phrase “undergoes feature scaling through the backpropagation algorithm” means that feature scaling data 

is used as training data for the DNN model. We will clarify the meaning in the revised manuscript. (See lines 187-188 in the 150 

revised manuscript) 

 

Comment 4-4. Line 128 “16 meteorological forecast variables were created by the WRF model” – I believe what is meant 

here is that 16 variables were extracted as features but many more variables were generated by the WRF model. 

Response 4-4. "16 meteorological forecast variables were created by the WRF model" - In the paper, the reason for using the 155 

weather forecast data was explained through several reference papers in section 2.1. Additionally, PM2.5 is discharged from 

the ground, and it moves at an altitude of 1.5 km or less. Therefore, in this paper, lower altitude data were used. We will add 

this content in the revised manuscript. (See lines 131-133 in the revised manuscript) 

 

Comments 4-5. The manuscript could be improved to enhance readability and replicability of the study. I appreciate the 160 

authors making code and data available on Zenodo. I would however encourage them to create a GitHub repository with some 
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documentation to allow people easily replicate the results. As mentioned in 1) authors could be more descriptive when detailing 

data sources. 

Response 4-5. As suggested by the reviewer, we upload the code to GitHub. (https://github.com/GercLJB/GMD) (See line 

438 in the revised manuscript) 165 

 

 

Comment 5. I really don’t see the relevance of section 4.2. The models have already been compared and evaluated in terms 

of predictive skill in regression. Then you take the same models and evaluate in terms of a classification model but only 

whether they predicted within those bounds (i.e. the model and results are the same the only thing that changes are the 170 

interpretation) 

Response 5. In Korea, the PM2.5 forecast results are categorized and provided to the public as good (PM2.5 ≤ 15 μgm-3), 

moderate (16 μgm-3 ≤ PM2.5 ≤ 35 μgm-3), bad (36 μgm-3 ≤ PM2.5 ≤ 75 μgm-3), and very bad (76 μgm-3 ≤ PM2.5) Therefore, both 

the statistical and category evaluations are necessary to determine whether the DNN model developed in this paper is suitable for 

forecasting. Section 4.2 presents the comparison of the category performance of the DNN-ALL model and that of the CMAQ model 175 

to identify the superior model for actual prediction. 

 

 

Section 2. Minor comments. 

Comment 1. What is the membership function defined in line 144? Is this the generation of temporal features described in 180 

subsequent lines? Why was time data encoded in this manner? It seems more standard to represent as integer values or to 

convert those integer values to cyclic features (i.e. so that month 12 and month 1 are close to each other rather than far away). 

I haven't seen this approach used previously and would like to understand the motivation and/or justification. 

Response 1. As explained in Response 3-1 among the answers to Comments 3 (Section 1), the data was expressed 

stochastically through the membership function to reflect the characteristics of the monthly change. 185 

 

 

Comment 2. The test period is quite short – 3 months out of 51 months. Was there a reason for this? 

Response 2. The data from 2016 to 2018 were used as training data, and those from 2019 were used as evaluation data. The 

data from January to March 2021 were used as test data to find out the performance when the actual DNN model was predicted. 190 

 

 

Comment 3. Line 159 – 163: This is a quite confusing way to present forecast horizons. I'd suggest to just use hours and 

present forecast horizons as T06, T12, T18, T24, ... Mixing days + hours and having different chunks within each day is 

confusing to the reader. 195 

Response 3. The T-step presented in Table 3 of the paper was revised and is shown in Table 7 (Table 7 is reflected in Table 

3 of the revised manuscript). (See lines 171-172 in the revised manuscript) 
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Table 7. Configuration of the training data for each T-step to implement the DNN model for the 6-hour average prediction. 

Day T-Step Time Composition of learning data 

D+0 

T12_D0 07:00 to 12:00  

01:00 to 06:00 observations data on D+0 at each T-step 

+ 

Forecast data of Tx_Dy (x: 06, 12, 18, 24, y: 0 to 2) from CMAQ and WRF 

T18_D0 13:00 to 18:00 

T24_D0 19:00 to 00:00 

D+1 

T06_D1 01:00 to 06:00 

T12_D1 07:00 to 12:00 

T18_D1 13:00 to 18:00 

T24_D1 19:00 to 00:00 

D+2 

T06_D2 01:00 to 06:00 

T12_D2 07:00 to 12:00 

T18_D2 13:00 to 18:00 

T24_D2 19:00 to 00:00 

 200 

 

Comment 4. Line 167 – 168: I don't quite understand why data was both standardized and normalized? Did this improve 

performance versus just using normalization (if you wished to have bounded between 0 and 1) or indeed versus the unscaled 

data? Generally people chose either standardization or normalization so I'm curious why you did both. 

Response 4. The normal distribution of input variables was standardized through standardization. The normalization was 205 

applied thereafter to ensure that the scale of each variable is equal. The reason why both normalization and standardization 

were applied was to train the characteristics of input variables equally to the DNN model. (See lines 179-180 and 183-184 in 

the revised manuscript) 

 

 210 

Comment 5. Figure 4: What does Epoch_n = Epoch_n-1 + 1 mean? What does Epoch_n-1 of validation cost > Epoch_n of 

validation cost mean? Should it be Validation cost of Epoch_n? 

Response 5. While addressing the concern raised by the reviewer, we found out that the formula was incorrect. The modified 

picture is shown in Fig 1. First, "Epochn=Epochn-1+1" expresses that the epoch increases by one as the algorithm is repeated. 

We modified this part to "Epochn+1 = Epochn + 1". In addition, "Epochn-1 of Validation cost > Epochn of Validation cost" is an 215 

incorrect expression, and we will revise it as "Validation cost of Epochn-1> Validation cost of Epochn". In addition, in this part, 

we found that the inequality sign was incorrectly marked, and it was corrected to "Validation cost of Epochn-1 < Validation 

cost of Epochn". (Figure 2 is reflected in Figure 4 of the revised manuscript) 
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Figure 2. Structure of DNN model training process. 

 220 

 

Comment 6. Equation 11 and 12, I’m not sure the use of both MSE and RMSE is necessary and could probably drop one.  

Response 6. In this paper, the MSE was used as the cost function of the DNN model. Therefore, it was intended to indicate 

the degree of difference in MSE for each model. In addition, the RMSE was presented to compare the model errors in units of 

the PM2.5 concentration. 225 

 

 

Comment 7. Line 225 – 230: In classification problems, accuracy, precision and recall are the standard metrics presented. I 

would suggest in this paper you also include (you already do accuracy so I suggest adding precision and recall) 

Response 7. Based on the suggestion of the reviewer, we have added the precision and recall in Table 8 (Table 8 is reflected 230 

in Table S6 of Supplement). The precision and recall of all categories for the DNN-ALL model in D+0 is presented to be 

0.12 equally higher than that of the CMAQ model. However, in D+1 and D+2, the precision of the DNN-ALL and the CMAQ 
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models is found to be similar, and the recall of the DNN-ALL model shows a slight decrease compared to the CMAQ model. 

The reason for these results is that the two indexes of the good and moderate categories of DNN-ALL are reduced compared 

to the CMAQ model. 235 

On the other hand, the precision and recall of the DNN-ALL model in the bad category are presented to be higher than those 

of the CMAQ model. In the bad category of D+0, the precision and recall of DNN-ALL are greater than those of the CMAQ 

model by 0.24 and 0.04, respectively. In addition, in the very bad category, the precision and recall of DNN-ALL are to be 1.0 

equally higher than those of the CMAQ model. In D+1, the precision of DNN-ALL in the bad category is greater than that of 

the CMAQ model by 0.1, but the recall is similar to the CMAQ model. In D+2, the precision and recall for the bad category 240 

of DNN-ALL increased by 0.14 and 0.20 compared to the CMAQ model, respectively. These results show that the performance 

of the DNN-ALL model is superior to that of the CMAQ model for predicting high concentrations that affect the health of the 

people. (See lines 256-258 and 390-397 in the revised manuscript) 

 

Table 8. Precision and recall of DNN-ALL and CMAQ models by four categories : "good" (PM2.5 ≤ 15 μgm-3), "moderate" (16 μgm-3 245 

≤PM2.5 ≤35 μgm-3), "bad" (36 μgm-3 ≤ PM2.5 ≤ 75 μgm-3), and "very bad" (76 μgm-3 ≤ PM2.5). 

Model Day 

Precision Recall 

Good Moderate Bad 
Very 

bad 
Total Good Moderate Bad 

Very 

bad 
Total 

DNN- 

ALL 

D+0 0.83 0.71 0.88 1.0 0.86 0.70 0.85 0.71 1.0 0.82 

D+1 0.83 0.61 0.64 0.0 0.52 0.38 0.79 0.70 0.0 0.47 

D+2 0.79 0.59 0.56 0.0 0.49 0.42 0.67 0.75 0.0 0.46 

CMAQ 

D+0 0.74 0.67 0.64 0.0 0.51 0.64 0.68 0.67 0.0 0.50 

D+1 0.85 0.69 0.54 0.0 0.52 0.65 0.67 0.70 0.0 0.51 

D+2 0.82 0.69 0.42 0.0 0.48 0.69 0.63 0.55 0.0 0.47 

 

 

Comment 8. Line 280 – 281: This is a difficult narrative to support. You are using the CMAQ model output as the training 
data and then saying the usage of that training data allows the model to better represent the long-term-transport-induced 250 
phenomenon. 

Response 8. In the DNN model (DNN-OBS) that uses only observation data, the RMSE for three months is 11.4 μgm-3 in 

D+0. The predictive performance is improved by decreasing the RMSE to 9.4 μgm-3 for three months, excluding high 

concentration cases (February 11-14, 2021) by long-distance transport. These results imply that the prediction of high 

concentration occurrence due to long-distance transportation is insufficient in the case of the DNN model when only the 255 

observation data are used. On the other hand, when both the observation data and prediction data are used in the DNN model 

(DNN-ALL), the RMSE for three months is 7.3 μgm-3, and the RMSE for excluding high concentration cases by long-distance 

transport is 7.0 μgm-3, showing no significant difference. In addition, the RMSE of DNN-ALL is reduced compared to the 

CMAQ model, showing a superior performance. Therefore, it is inferred that the use of prediction data produced by CMAQ 

improved the predictive performance of high concentration phenomena by long-distance transport. 260 
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Comment 9. What do the dashed lines in the residual figures represent in Figure 7. 

Response 9. In Fig. 7 (a1), (b1), and (c1), each of the dashed lines represents values of 15.5 μgm-3, 35.5 μgm-3, 75.5 μgm-3, 

and average value of observation (27 μgm-3). Moreover, 15.5 μgm-3 is the boundary between “Good” and “Moderate,” 35.5 

μgm-3 is the boundary between “Moderate” and “Bad,” and 75.5 μgm-3 is the boundary between “Bad” and “Very bad.” In Fig. 265 

7 (a2), (b2) and (c2), the dashed lines represent the standard deviation of observed PM2.5 as negative and positive. (See lines 

266-268 in the revised manuscript) 
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Author Response to Referee 2 

We thank the editor and the reviewers for the time and effort put in towards the review of this manuscript. The insightful 270 

comments and suggestions have helped improve the manuscript significantly. We have incorporated several changes based on 

the suggestions of the reviewers. The detailed responses to the reviewers’ comments are given below. In Section 1, the answers 

to major comments are provided, and in Section 2, answers to minor comments are given. 

 

Section 1. Major comments. 275 

Comment 1. Line 75~80: “In addition, the membership function was used to reflect temporal information.” More information 

is needed about "membership function". How does this function reflect temporal information? 

Response 1. The concept of the membership function is derived from the fuzzy theory, and it defines the probability that a 

single element belongs to a set. In this study, the probability that the date (element) belongs to 12 months (set) was calculated 

using the membership function. The date change probability was trained as a factor that reflected the characteristics of the 280 

monthly change. As shown in Figure 3 (Figure 5 in the paper), the PM2.5 concentration in Seoul is high in January, February, 

March, and December, and low from August to October. PM2.5 concentration has a characteristic that changes gradually from 

month to month. In this paper, the membership function was used to reflect these monthly change characteristics. The examples 

of how membership function is applied are described in lines 160–163 of the paper. (See lines 151-153 in the revised 

manuscript) 285 

 

 

Figure 3. Time series of the monthly average PM2.5 concentrations from 2016 to 2019. 

 

 290 

Comment 2. Line 145-155: The authors want to predict PM2.5 within 3 days. Why do you need to add the time information 

(“adjacent month”) of the next month that hasn't happened yet in Eq. (2)? If you know the information of next month, you can 

predict PM2.5 of next month. Why only forecast PM2.5 within 3 days. This is very difficult to understand. 

Response 2. As described in Response 1, the probability of reflecting the characteristics of the monthly change was calculated 

using the membership function. The calculated probability was referred to as "adjacent month" and "month." Therefore, 295 

"adjacent month" is not a factor that provides information for the next month, but the one that represents the characteristics of 

the monthly change according to the corresponding date. 
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Comment 3. In Section 2.2, what are the super parameters of DNN model? Why only use five stacked-layer DNN model? 

Generally, a neural network model with more than 8 hidden layers is considered as a deep neural network (Hinton et al., 2012). 300 

Response 3. The statistical and AQI evaluation results of the DNN-ALL model based on the layer are presented in Tables 9 

and 10, respectively (Tables 9 and 10 are reflected in Tables S1 and S2 of Supplement, respectively). The results of the 4-

layer and 5-layer models indicate similar performance. However, compared to the 4-layer model, the RMSE of the 5-layer 

model decreases by approximately 0.1 μgm-3 to 1 μgm-3 at D+0 to D+2, and the ACC of the 5-layer model increases by 

approximately 1 %p to 6 %p at D+0 to D+2. Therefore, the 5-layer model shows a superior performance. 305 

The 6-layer and 8-layer models have a problem of errors that converge without any decrease in the training process of the 

model (vanishing gradient problem). The authors believe that the reason for this problem is the activate function. Therefore, as 

the layer becomes deeper, the value of the last output cannot be significantly changed due to the sigmoid function. (See lines 

188-194 in the revised manuscript) 

 310 

Table 9. Statistical evaluation results according to the number of layers. 

Model Day 
MSE 

((μgm-3)2) 

RMSE 

(μgm-3) 
R IOA 

2-layer 

D+0 59.3 7.7 0.91 0.94 

D+1 92.1 9.6 0.86 0.89 

D+2 156.3 12.5 0.75 0.80 

4-layer 

D+0 54.7 7.4 0.91 0.95 

D+1 88.3 9.4 0.86 0.90 

D+2 134.5 11.6 0.77 0.84 

5-layer 

(DNN-ALL) 

D+0 53.3 7.3 0.91 0.95 

D+1 81.0 9.0 0.85 0.90 

D+2 112.4 10.6 0.79 0.86 

6-layer 

D+0 174.2 13.2 0.81 0.66 

D+1 292.4 17.1 0 0.17 

D+2 292.4 17.1 0 0.17 

8-layer 

D+0 302.7 17.4 0 0.15 

D+1 292.4 17.1 0 0.17 

D+2 292.4 17.1 0 0.17 

 

Table 10. AQI evaluation results according to the number of layers. 

Model Day ACC (%) POD (%) FAR (%) F1-score (%) 

2-layer 

D+0 70.0 63/90 81.8 18/22 28.0 7/25 77 

D+1 55.6 50/90 81.0 17/21 39.3 11/28 69 

D+2 51.1 46/90 81.0 17/21 50.0 17/34 61 

4-layer 
D+0 71.1 64/90 81.8 18/22 28.0 7/25 76 

D+1 60.0 54/90 85.7 18/21 35.7 10/28 73 
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D+2 60.0 54/90 81.0 17/21 45.2 14/31 65 

5-layer 

(DNN-ALL) 

D+0 77.8 70/90 72.7 16/22 11.1 2/18 80 

D+1 64.4 58/90 71.4 15/21 31.8 7/22 70 

D+2 61.1 55/90 76.2 16/21 40.7 11/27 67 

6-layer 

D+0 55.6 50/90 50 11/22 8.3 1/12 64 

D+1 47.8 43/90 0 0/21 0 0/0 0 

D+2 47.8 43/90 0 0/21 0 0/0 0 

8-layer 

D+0 45.6 41/90 0 0/22 0 0/0 0 

D+1 47.8 43/90 0 0/21 0 0/0 0 

D+2 47.8 43/90 0 0/21 0 0/0 0 

 

 315 

Comment 4. Line 210~215: The input data of the three experiments (DNN-OBS, DNN-OPM and DNN-ALL) are not very 

clear. Why should the predicted PM2 5 into the model (DNN-ALL)? Reason? 

Response 4. The measurement variables presented in Table 1 in Section 2.1 of the paper were used as common variables in 

the three experiments (DNN-OBS, DNN-OPM, and DNN-ALL). The DNN-OBS used the observation data as the sole training 

data. Among the predictors shown in Table 2 in Section 2.1 of the paper, the variables produced in the WRF model were used 320 

in the DNN-OPM and DNN-ALL experiments, whereas the variables produced in the CMAQ model were used only in the 

DNN-ALL experiments. (See lines 235-237 in the revised manuscript) 

The predicted PM2.5 from CMAQ tends to be over-simulated than the observed PM2.5, but the correlation appears to be good. 

Therefore, it was judged as training data that can reflect the features of observed PM2.5. The predicted PM2.5, the predicted 

weather data from WRF, and observation data were studied together to improve PM2.5 prediction performance using DNN-325 

ALL. 

 

 

Comment 5. Line 230~240: There's something wrong with Eq. (18). The commonly used expression for F1-score is 

(2*ACC*Recall)/(ACC+Recall). F1-score is for one category. My understanding is that there are four categories (Good, 330 

Moderate, Bad and Very bad). Has anyone else used it like this? More explanation is needed. 

Response 5. The authors agree that F1-score is generally referred to as (2*Precision*Recall)/(Precision + Recall). The F1-

score used in this paper is not an evaluation of four categories, but an index that simultaneously considers (1-FAR) and POD 

to evaluate the prediction performance for exceeding 35 μgm-3 as a bad criterion. Tables 11 and 12 show the intervals 

corresponding to the four and two categories for POD and FAR calculation, respectively. The I in Table 12 is a corresponding 335 

category for the conditions of a1, a2, b1, and b2 of Table 11. Similarly, II in Table 12 correspond to c1, c2, d1, and d2, III in 

Table 12 correspond to a3, a4, b3, b4, and Ⅳ in Table 12 correspond to c3, c4, d3, and d4. Eq. (3) represents a ratio when 

prediction concentration in the model corresponds to the observation category in the case that the observation concentration 

appears in the bad or very bad category. Eq. (4) is the ratio when observation concentration is in the good or moderate category 

in the case that the prediction concentration appears in bad or very bad category. The POD means Recall, and FAR means (1-340 

precision). Therefore, we use F1-score to reflect the harmonious mean of POD and (1-FAR). (See lines 256-258 in the revised 
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manuscript) 

POD (%) =
(ୡଷାୡସାୢଷାୢସ)

(ୟଷାୟସାୠଷାୠସାୡଷାୡସାୢଷାୢସ)
× 100 ,       (1) 

FAR (%) =
(ୡଵାୡଶାୢଵାୢ )

(ୡଵାୡଶାୡଷାୡସାୢଵାୢଶାୢଷାୢ )
× 100 ,       (2) 

Table 11. Intervals corresponding to the four categories for calculating POD and FAR: "good" (PM2.5 ≤ 15 μgm-3), "moderate" (16 μgm-3 345 
≤PM2.5 ≤35 μgm-3), "bad" (36 μgm-3 ≤ PM2.5 ≤ 75 μgm-3), and "very bad" (76 μgm-3 ≤ PM2.5). 

Level 
Model forecast 

Good Moderate Bad Very bad 

Observation 

Good a1 b1 c1 d1 

Moderate a2 b2 c2 d2 

Bad a3 b3 c3 d3 

Very bad a4 b4 c4 d4 

 

POD =
Ⅳ

Ⅲା Ⅳ
 ,         (3) 

FAR = 1 −
Ⅳ

Ⅱା Ⅳ
 ,        (4) 

Table 12. Intervals corresponding to the two categories for calculating POD and FAR : "good and moderate" (PM2.5 ≤ 35 μgm-3), "bad and 350 
very bad" (PM2.5 ≥ 36 μgm-3). 

Level 
Model forecast 

Good and moderate Bad and very bad 

Observation 

Good and 

Moderate 
Ⅰ Ⅱ 

Bad and 

Very bad 
Ⅲ Ⅳ 

 

 

Comment 6. In Table 2, why are 925hPa and 850hPa variables selected? Why not consider 700hPa and 500hp variables? Is 

there any reason? 355 

Response 6. Various forecast data for each altitude are produced in the WRF model. However, the reason why the upper layer 

altitude (700 and 500 hPa) was not used in this study is that the emission of PM2.5 mainly occurs on the ground and moves 

up to an altitude of 1.5 km. Therefore, we only used the lower altitude forecast data. (See lines 131-133 in the revised 

manuscript) 

 360 

 

Comment 7. Table 5 only provides the performance of the model in the test set (January–March 2021) and it is recommended 

to add the performance of the model in the training set (2016 to 2018) and validation set (2019). 
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Response 7. Table 13 shows the statistical evaluation results of three experiments (DNN-OBS, DNN-OPM, and DNN-ALL) 

and CMAQ models from 2016 to 2018 (Table 13 is reflected in Table S3 of Supplement). In D+0 to D+2, the DNN-ALL 365 

model performs the best in terms of all statistical indicators. In addition, the values of all three experiments indicate a decrease 

in the RMSE compared to the CMAQ model. 

Table 14 presents the statistical evaluation results of the three experiments (DNN-OBS, DNN-OPM, and DNN-ALL) and 

CMAQ models for 2019 (Table 14 is reflected in Table S4 of Supplement). The DNN-OBS model shows similar 

performance for D+0 compared to the CMAQ model but decreased performance owing to an increased RMSE of D+1 and 370 

D+2 by 2 μgm-3 and 2.2 μgm-3, respectively. The DNN-OPM model shows an increase in performance owing to a decrease in 

the RMSE of D+0 by 3 μgm-3 compared to the CMAQ model. Moreover, the RMSE of D+1 and D+2 decrease by 0.4 μgm-3 

and 0.4 μgm-3 compared to the CMAQ model, respectively, indicating that the performance is similar. For the DNN-ALL 

model, the RMSE from D+0 to D+2 decreased by 4.6 μgm-3, 2.7 μgm-3, and 2.1 μgm-3, compared to the CMAQ model, which 

shows an improved performance. (See lines 284-293 in the revised manuscript) 375 
 

Table 13. Statistical evaluation results of CMAQ, DNN-OBS, DNN-OPM, and DNN-ALL models from 2016 to 2018. 

Model Day 
MSE 

((μgm-3)2) 

RMSE 

(μgm-3) 
R IOA 

CMAQ 

D+0 136.9 11.7 0.76  0.86  

D+1 146.4 12.1 0.74  0.84  

D+2 185.0 13.6 0.67  0.80  

DNN-OBS 

D+0 79.2  8.9  0.78  0.87  

D+1 139.2  11.8 0.54  0.65  

D+2 158.8  12.6 0.43  0.54  

DNN-OPM 

D+0 53.3  7.3 0.86  0.92  

D+1 88.4  9.4 0.75  0.83  

D+2 108.2  10.4 0.68  0.77  

DNN-ALL 

D+0 39.7 6.3 0.90  0.94  

D+1 57.8 7.6 0.84  0.90  

D+2 72.3 8.5 0.80  0.87  

 

Table 14. Statistical evaluation results of CMAQ, DNN-OBS, DNN-OPM, and DNN-ALL models for 2019. 

Model Day 
MSE 

((μgm-3)2) 

RMSE 

(μgm-3) 
R IOA 

CMAQ 

D+0 123.2 11.1 0.82  0.90  

D+1 132.3 11.5  0.80  0.89  

D+2 156.3 12.5  0.75  0.86  

DNN-OBS 

D+0 92.2  9.6  0.84  0.88  

D+1 182.3  13.5  0.63  0.65  

D+2 216.1  14.7  0.52  0.52  
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DNN-OPM 

D+0 65.6  8.1  0.89  0.92  

D+1 123.2 11.1  0.78  0.81  

D+2 166.4  12.9 0.66  0.72  

DNN-ALL 

D+0 42.3 6.5  0.93  0.95  

D+1 77.4 8.8  0.88  0.90  

D+2 108.2 10.4 0.81  0.84  

 380 

 

Comment 8. In Table 5: The DNN-ALL model uses the forecast variable (F_PM2.5 predicted by CMAQ). However, IOA of 

F_PM2.5 in CMAQ is 0.9, 0.9 and 0.85 respectively, and IOA of PM2.5 in DNN-ALL is 0.95, 0.9 and 0.86 respectively. Could 

it be understood that compared with CMAQ, IOA in DNN-ALL model is improved by 0.05, 0.0 and 0.01 respectively? More 

explanation is needed. 385 

Response 8. The denominator of IOA indicates the trends of the model and observation based on the average of observation, 

and the numerator of IOA represents the deviation of the model and observation. In other words, the IOA can be interpreted 

as an indicator that considers trends and quantitative differences. Therefore, the quantitative difference (error) of the DNN-

ALL model decreases compared to the CMAQ model, but the trend toward the mean of observation is similar between the two 

models, showing no significant difference in IOA. 390 

 

 

Comment 9. In Table 6: From T04 to T11, why does the indicators (RMSE and IOA) not decrease monotonically? The IOA 

of T09 is larger than T04. Meanwhile, the mean IOA of D+2 is 0.79 ((0.77+0.85+0.74+0.80)/4.0) and IOA of D+2 in table 5 

is 0.86, What are the reasons for the unequal values? 395 

Response 9. There could be a difference in the performance of the model according to the conditions of target time such as 

daytime, nighttime, high concentration, and low concentration. As shown in the CMAQ results, the prediction performance of 

the DNN-ALL model degrades or improves monotonically over time. (See lines 352-355 in the revised manuscript) 

The IOA of D+2 is not equal to (0.77+0.85+0.74+0.80)/4.0. The IOA of D+2 refers to the value calculated using the IOA 

method after calculating the daily average concentration using the predicted concentration of each T-step such as T08, T09, 400 

T10, and T11. (0.77+0.85+0.74+0.80)/4.0 is simply averaged after calculating IOA using the predicted concentration by T-

step.  
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Section 2. Minor comments. 

Comment 1. Line 19: “IOA” should be "index of agreement (IOA)". The first abbreviation needs to give the complete name. 

Please check other parts of the paper. 405 

Response 1. We thank the reviewer for highlighting this issue. We have included the complete name at the first mention of 

the abbreviation. (See line 19 in the revised manuscript) 

 

 

Comment 2. Line 100 Figure 3: Nested-grid is often used in models. It is recommended to combine figure 2 and figure 3 into 410 

one figure. 

Response 2. Figure 2 shows the location information of the measuring station where the measurement data are obtained, and 

Figure 3 depicts the domain of the model. Therefore, the information conveyed by the two images is different. 

 

 415 

Comment 3. Add the temporal and spatial resolution of the variables in Tables 1 and 2. 

Response 3. Based on the suggestion of the reviewer, the descriptions are added to Tables 15 and 16. (Tables 15 and 16 are 

reflected in Tables 1 and 2 of the revised manuscript) 

 

Table 15. Training variables in the PM2.5 prediction system using a DNN based on surface-weather observations. Air quality 420 

variables are obtained from 41 air quality measurement equipment in Seoul. Surface weather variables are obtained from 

ASOS in Seoul. Observation data are collected every hour. 

Observation 

Variable 
Description Unit 

O_SO2 Sulfur dioxide ppm 

O_NO2 Nitrogen dioxide ppm 

O_O3 Ozone ppm 

O_CO Carbon monoxide ppm 

O_PM10 Particulate matter (aerodynamic diameters ≤ 10 μm) μgm-3 

O_PM2.5 Particulate matter (aerodynamic diameters ≤ 2.5 μm) μgm-3 

O_V Vertical wind velocity m/s 

O_U Horizontal wind velocity  m/s 

O_RN_ACC Accumulative precipitation Mm 

O_RH Relative humidity % 

O_Td Dew point temperature ℃ 

O_Pa Pressure hPa 

O_Radiation Solar radiation 
0.01 MJ per 

hr-m3 

O_Ta  Air temperature ℃ 
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Table 16. Training variables in the PM2.5 prediction system using a DNN based on the WRF and CMAQ models. WRF and 

CMAQ model results are obtained from 9 km horizontal grid resolution. These values are collected on an hourly interval. 425 

Model 
Forecast 

Variable 
Description Unit 

CMAQ F_PM2.5 Particulate matter (aerodynamic diameter ≤ 2.5 μm) μgm-3 

WRF 

F_V Vertical wind velocity at surface m/s 

F_U Horizontal wind velocity at surface m/s 

F_RN_ACC Accumulative precipitation mm 

F_RH Relative humidity at surface % 

F_Pa Pressure at surface pa 

F_Ta Air temperature at surface K 

F_MH Mixing height m 

F_925hpa_gpm Position altitude at 925 hPa m 

F_925hpa_V Vertical wind velocity at 925 hPa m/s 

F_925hpa_U Horizontal wind velocity at 925 hPa m/s 

F_850hpa_gpm Position altitude at 850 hPa m 

F_850hpa_V Vertical wind velocity at 850 hPa m/s 

F_850hpa_U Horizontal wind velocity at 850 hPa m/s 

F_850hpa_RH Relative humidity at 850 hPa % 

F_850hpa_Ta Potential temperature at 850 hPa Θ 

F_Temp_ 

850hpa-925hpa 

Potential temperature difference between 

850 hPa and 925 hPa 
Θ 
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Comment 4. The font in Figure 4 is too small to see clearly. 430 

Response 4. We have increased the font size to improve the clarity of the Figure 4. (Figure 4 is reflected in Figure 4 of the 

revised manuscript) 

 

Figure 4. Structure of DNN model training process. 

  435 
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Comment 5. It is suggested to add the content between DNN model and other machine learning models 

(https://doi.org/10.5194/amt-14-5333-2021, https://doi.org/10.1016/j.scitotenv.2021.150338). 

Response 5. Based on the paper mentioned by the reviewer, a comparative evaluation is performed between the DNN-ALL 

model and the Random Forest (RF) model, which is a machine learning model. Tables 17 and 18 show the results of the 

statistical evaluations and that of the AQI evaluation, respectively (Tables 17 and 18 are reflected in Tables S5 and S7 of 440 

Supplement, respectively). The RMSE value of the DNN-ALL model decreased from 0.6 to 1.9 μgm-3 compared to the RF 

model and the R and IOA values increased slightly (See lines 340-343 in the revised manuscript). The ACC of the DNN-

ALL model increased by about 2 to 13 %p compared to the RF model and the F1-score decreased by 1 %p at D+1 but increased 

by 1 %p and 9 %p at D+0 and D+2, respectively (See lines 398-400 in the revised manuscript). From the results, it is 

observed that the DNN-ALL model showed a superior performance compared to the RF model. The machine learning method 445 

was selected according to the scalability of the model for future data growth and 1-h forecast time segmentation. (See lines 

343-346 in the revised manuscript) 

 

Table 17. Statistical performance of the DNN-ALL and Random Forest models. 

Model Day 
MSE 

((μgm-3)2) 

RMSE 

(μgm-3) 
R IOA 

DNN-ALL 

D+0 53.3 7.3  0.91  0.95  

D+1 81.0 9.0  0.85  0.90  

D+2 112.4 10.6  0.79  0.86  

Random Forest 

D+0 62.4 7.9 0.90 0.93 

D+1 106.1 10.3 0.83 0.85 

D+2 156.3 12.5 0.73 0.76 

 450 

Table 18. Categorical performance of the DNN-ALL and Random Forest model. 

Model Day ACC (%) POD (%) FAR (%) F1-score (%) 

DNN-ALL 

D+0 77.8 70/90 72.7 16/22 11.1 2/18 80 

D+1 64.4 58/90 71.4 15/21 31.8 7/22 70 

D+2 61.1 55/90 76.2 16/21 40.7 11/27 67 

Random 

Forest 

D+0 75.6 68/90 77.3 17/22 19.0 4/21 79 

D+1 61.1 55/90 76.2 16/21 33.3 8/24 71 

D+2 48.9 44/90 71.4 15/21 50.0 15/30 58 

 


