
Reply to reviewer 2: DINCAE 1: multivariate convolutional neural network with error
estimates to reconstruct sea surface temperature satellite and altimetry observations

We thank the reviewer for the careful reading of the manuscript and the constructive
criticisms. We copied the reviewer’s comments below and our responses are in bold.

The paper presents an update on the previous version of DINCAE, a convolutional autoencoder method
for in-painting of sparse satellite data. DINACE2 presents some improvements over the previous version, most
notably in performance (vs DINCAE1), speed (presumably due to being rewritten to Julia from Python)
and an option to treat ungridded data like satellite altimetry observations. It also introduces an extra
refinement step in the cost function to increase its depth, and an intermediate loss term is included in the
total loss to compensate for the vanishing gradients of the deep network. When treating sparse data, the
error variance estimation of DINCAE2 is more reliable than that from variational interpolation method
DIVAnd. The results are solid, the paper is well written, the figures are clear. I recommend publication
after minor revision. I do have some comments which might be worth discussing further.

Specific comments

� page 4, eq4: In the comment to equation 4, the authors state that CAE refinement leads to a deeper
network and thus to potential worsening of the vanishing gradient problem. They attempt to mitigate
this by including intermediate loss term into the total loss function. They state that by doing so, the
vanishing gradient problem is reduced. Can the authors perhaps illustrate more clearly that this is
indeed the case? Is there a way to say a bit more about this, so that the reader does not have to take
the author’s word for this?

We added the following to the manuscript to clarify this question about the vanishing
gradient:

With a refinement step, the neural network becomes essentially twice as deep and the
number of parameters (approximately) doubles. The increased depth would make it prone
to the vanishing gradient problem. However, by including the intermediate results in the
cost function this problem is reduced. In fact, the information from the observations is
injected during back-propagation by the loss function. Due to the refinement step and
the loss function which also depends on the intermediate result, the information from the
observation is injected at the last layer and at the middle layer of the combined neural
network (Szegedy et al., 2015). The relationship between the first layers of the neural
network and the cost function is therefore more direct, which helps in the training of
these first layers.

� Also, wouldn’t an arbitrary number of refinements further exacerbate the vanishing gradient problem?
Which term would be dominant in this case – adding further refinement steps versus including further
intermediate losses to the total loss?

It is important to note that for every refinement step an additional term must be added
to the total loss. The number of refinement steps and terms in the loss function cannot be
varied independently. In simple terms, the vanishing gradient problem can be expressed
by the distance (counted as the minimal number of intermediate layers) between each
layer and the loss function. For regular deep neural networks (without refinement), this
distance would increase in average with the number of layers. However, this distance
would be kept constant if additional refinement steps were added. In practice, adding

1



a refinement step would double the amount of required GPU memory (two additional
refinements, triple the amount of GPU memory,...). Regarding in-painting applications,
we are only aware of applications with a single additional refinement step (Liu et al.,
2019) while for image classification the loss function of the Inception network provides
class labels at three different steps of the network, which is conceptually similar to the
refinement approach used in our work (Szegedy et al., 2015).

� Page5: when handling missing data there is an interpretation throughout the text that setting the
missing value to zero corresponds to an infinitely large error. This is undoubtedly true for variables
which are normalized by their variance, as those in this paper. However there are a number of other
scalings where variables are not normalized by their variance. In these cases, it seems to me, the authors
interpretation is not the most appropriate. I would propose an independent interpretation that setting
the missing values to zero simply numerically means that there will be no back-propagation of error
from those missing data – thus the training can continue without any impact from the missing data.
This interpretation does not have anything with the specific variable normalization at hand.

For the output value of the network, one can indeed ignore the missing values e.g. on land
grid cells (this is also done here) and their associated value (0 or anything else) would
not be used to update the network when computing the gradients via back-propagation.
However, the more difficult aspect is how to treat missing values in the input. If the inputs
are normalized, then a zero input value could either be the average or a missing value.
To disambiguate between the two cases, we think it is important to provide an additional
field which could either be a binary mask or the inverse of the error variance (both would
be equivalent if the error variance of present data is assumed constant, as it is the case
here). Other scales might be possible leading to a different interpretation and handling
of missing value, but we found that the present one is the most natural from a data
assimilation perspective when using Gaussian distributed errors (as discussed in Barth
et al. (2021), equation 1 and 2). Once the scaling is chosen, the interpretation of missing
values follows from the scaling. We clarified in the manuscript that our interpretation is
specific to the chosen scaling.

� A cosmetic remark. The hyperparameters were tuned using Bayesian optimization, which seems ad-
equate. Let’s say hyperparameter optimization gives you an optimal network. Separate instances of
training this same optimal network (with the same fixed optimal hyperparameters) would provide sep-
arately trained versions of this same network. We can use these set of the same network to create a
set of predictions. What is the error variance of this set of predictions? I would expect that this error
variance is on the order of a 5

We agree with this comment and reduced the number of decimals in Table 2. The revised
table now has only 2 decimals. This way we could also more easily add more information
in this table as asked by the other reviewer.

References

Barth, A., Troupin, C., Reyes, E., Alvera-Azcárate, A., Beckers, J.-M., and Tintoré, J.: Variational in-
terpolation of high-frequency radar surface currents using DIVAnd, Ocean Dynamics, 71, 293–308, doi:
10.1007/s10236-020-01432-x, 2021.

2



Liu, H., Jiang, B., Xiao, Y., and Yang, C.: Coherent Semantic Attention for Image Inpaint-
ing, in: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4169–4178,
doi:10.1109/ICCV.2019.00427, URL http://openaccess.thecvf.com/content_ICCV_2019/html/Liu_

Coherent_Semantic_Attention_for_Image_Inpainting_ICCV_2019_paper.html, 2019.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Ra-
binovich, A.: Going Deeper with Convolutions, in: Computer Vision and Pattern Recognition (CVPR),
URL http://arxiv.org/abs/1409.4842, 2015.

3


