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Abstract. This paper features the new Atmosphere-Ocean-Aerosol-Chemistry-Climate Model SOCOLv4.0 and its validation. 

The new model was built by interactively coupling the MPI-ESM1.2 Earth System Model (T63, L47) with the chemistry (99 

species) and size-resolving (40 bins) sulfate aerosol microphysics modules from the Aerosol-Chemistry-Climate Model 

SOCOL-AERv2. We evaluate its performance against reanalysis products and observations of atmospheric circulation, 

temperature, and trace gases distribution, with a focus on stratospheric processes. We show that SOCOLv4.0 captures the low- 20 

and mid-latitude stratospheric ozone well in terms of the climatological state, variability and evolution. The model provides 

an accurate representation of climate change, showing a global surface warming trend consistent with observations as well as 

realistic cooling in the stratosphere caused by greenhouse gas emissions, although, as in previous model versions, a too fast 

residual circulation and exaggerated mixing in the surf zone are still present. The stratospheric sulfur budget for moderate 

volcanic activity is well represented by the model, albeit with slightly underestimated aerosol lifetime after major eruptions. 25 

The presence of the interactive ocean and a successful representation of recent climate and ozone layer trends make 

SOCOLv4.0 ideal for studies devoted to future ozone evolution and effects of greenhouse gases and ozone-destroying 

substances, as well as the evaluation of potential solar geoengineering measures through sulfur injections. Potential further 

model improvements could be to increase the vertical resolution, which is expected to allow better meridional transport in the 

stratosphere, as well as to update the photolysis calculation module and budget of mesospheric odd nitrogen. In summary, this 30 

paper demonstrates that SOCOLv4.0 is well suited for applications related to the stratospheric ozone and sulfate aerosol 

evolution, including its participation in ongoing and future model intercomparison projects. 
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1 Introduction 

Global modelling of the atmosphere and its interaction with oceans, cryosphere, biosphere, and land surface dates back several 

decades (e.g., Manabe and Bryan, 1969). The numerical approximation of each of these Earth system components is a complex 35 

task by itself and therefore their development often began and continued independently from each other, with simplified 

descriptions of missing, but important, processes included in the form of boundary conditions. With the rapid development of 

computational facilities and methods, the models grew in their complexity in terms of the number of processes described and 

the quality of their description. Motivated primarily through the context of climate change research, scientific advances in 

global numerical modelling have shown that, even though stand-alone approximations are still sufficient for some specific 40 

modelling tasks, the interaction of Earth system components is required for reasonable model performance in many cases. 

These advances can be tracked in the history of the Climate Model Intercomparison Project requirements for models in its 

different phases (https://www.wcrp-climate.org/wgcm-cmip). Due to the importance of the dynamical links between the 

troposphere and the stratosphere (Kidston et al., 2015), many climate groups have also extended their state-of-the-art models 

vertically into the mesosphere (e.g., Manzini et al., 2006) or even the thermosphere (e.g., WACCM (Marsh et al., 2013) and 45 

HAMMONIA (Schmidt et al., 2006)). For example, variations in the stratospheric polar night jet can induce significant changes 

in surface weather on timescales ranging from daily to long-term climate effects (e.g., Gerber et al., 2012 and references 

therein). Variability of this dynamical coupling can be induced by the earth system itself, i.e., responding to ocean temperature 

changes and vertically propagating wave-forcing from the troposphere, or by external factors such as volcanic eruptions, 

variations in the solar UV irradiance, and greenhouse gas changes (Kidston et al., 2015).  50 

Middle atmosphere studies are closely linked to the representation of atmospheric chemistry since the ozone layer primarily 

determines the temperature structure of the stratosphere through the absorption of solar ultraviolet (UV) irradiance. This has 

an influence on the general circulation of the stratosphere and subsequently also on the tropospheric climate. Stratospheric 

ozone itself is influenced by many factors, such as the heterogeneous chemistry intensification after volcanic eruptions (e.g., 

Revell et al., 2016) or the acceleration of ozone destruction cycles after energetic particle precipitation events (Rozanov et al., 55 

2012; Mironova et al., 2015). Moreover, it is also largely affected by climate change, via radiatively-induced changes in upper 

stratospheric chemistry, as well as changes in the Brewer Dobson circulation (BDC, Chiodo et al., 2018). Changes in ozone 

can also in turn affect the BDC (e.g., Polvani et al., 2019). Therefore, changes in stratospheric ozone and dynamics feedback 

on each other. Ozone-circulation feedbacks have been assessed in several studies, showing their importance for stratosphere-

troposphere coupling in mid-winter (Haase and Matthes, 2019; Oehrlein et al., 2020) and polar stratospheric temperature 60 

variability in springtime (Rieder et al., 2019). Long-term stratospheric ozone variations (e.g., depletion and recovery) are able 

to significantly affect the tropospheric climate (Previdi and Polvani, 2014; Brönnimann et al., 2017), and even the climate 

response to global warming might be biased if ozone feedbacks are not taken into account (Nowack et al., 2015). 

The main driving issue in middle atmosphere chemistry research was the discovery of the ozone hole in the 1980s (Farman et 

al., 1985). The ozone layer plays an important role in shielding the biosphere from dangerous solar ultraviolet radiation and 65 
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the risk of related increasing cases of skin cancer and other diseases induced progress in atmospheric ozone science that led to 

strong limitations on the production of halogen containing ozone depleting substances (hODS) in 1987 through the Montreal 

Protocol and its Amendments (MPA). Since then, observations and models have demonstrated the positive role of these 

restrictive measures (e.g. Velders et al., 2007; Egorova et al., 2013) and some signs of the ozone recovery have already been 

observed (Chipperfield et al., 2017). However, the expected recovery in the lower stratosphere has been questioned, based on 70 

the updated observations (Ball et al., 2018; 2019). This issue is one of many requiring further investigation and deeper 

understanding. Other issues and research fields include the appearance of an unprecedentedly large ozone hole over the 

Northern hemisphere in spring 2020 (Witze, 2020; Manney et al., 2020); the formation of a large and deep Antarctic ozone 

hole in autumn 2020 (NASA Ozone Watch, https://ozonewatch.gsfc.nasa.gov/); continuous unexpected CFC-11 emissions 

(Fleming et al., 2020); a potential decline of the solar activity (Arsenovic et al., 2018); the potential stratospheric injection of 75 

sulfur-containing species for solar geoengineering purposes (Tilmes et al., 2009; Vattioni et al., 2019); and a potential impact 

of increasing trends of iodine in the stratosphere (Koenig et al., 2020). These examples underline that our understanding of 

atmospheric ozone specifically, and atmospheric chemistry in general, is far from being fully resolved and inspires further 

model developments and studies of the ozone layer evolution, in the present and future. 

The need to represent the large number of processes involved in the state evolution of the ozone layer led to the development 80 

of atmospheric chemistry models ranging from simple box models to chemistry-transport models and finally to chemistry-

climate models that include at least interactive chemistry and atmospheric dynamics, but may include ocean dynamics, aerosol 

microphysics and other components (https://www.sparc-climate.org/activities/ccm-initiative). The chemistry climate model 

SOCOL (SOlar Climate Ozone Links) was initially developed for studies related to the ozone layer (Egorova et al., 2005). 

Through its versions from v1 to v3 it was used with prescribed sea surface temperature and sea ice coverage fields, advancing 85 

over time in terms of model numerics, stratospheric chemistry, and transport representation. Since the publication of the base 

version SOCOLv3 (Stenke et al., 2013), the atmospheric-chemistry part has undergone many further improvements, such as 

an addition of the volatile organic compound (VOC) chemistry, an interactive lightning NOx parameterization, corrections in 

schemes for solar heating rates and photolysis rates, parameterization of energetic particles, and interactive deposition schemes. 

The base version of Stenke et al. (2013), however, further branched into two significant sub-versions SOCOL-MPIOM with 90 

interactive ocean (Muthers et al., 2014) and SOCOL-AER with interactive aerosol microphysics (Sheng et al., 2015), each of 

them receiving further, independent, upgrades (Arsenovic et al., 2018; Feinberg et al., 2019), and several smaller variants, 

such as an improved tropospheric ozone budget (Revell et al., 2015, Revell et al., 2018), detailed methane sources and sinks 

(Feinberg et al., 2018), and atmospheric selenium cycling (Feinberg et al., 2020).  

The natural next step was to combine the multiple improvements and model versions into a single fourth version of the SOCOL 95 

model by coupling these updated modules onto an upgraded atmospheric model, since it also underwent many improvements 

in recent years. As a basis for this, we used the Max Planck Institute Earth System Model (MPI-ESM1.2), so that the chemistry 

(MEZON) and aerosol (AER) models are attached to the atmosphere- (ECHAM6.3) ocean- (MPIOM1.6.3) land surface- 

(JSBACH3.2) ocean biogeochemistry- (HAMOCC6) model coupled through the OASIS3-MCT coupler. In this paper we 



4 

 

describe the new Atmosphere-Ocean-Aerosol-Chemistry-Climate SOCOLv4.0 model and its components in detail (section 2) 100 

and validate its performance against available observations and reanalysis products. The main motivation is to provide a solid 

reference of model performance for future improvements and applications, including model intercomparison projects (MIPs). 

The validation is split into two main parts: atmospheric dynamics (section 3.2) and atmospheric chemistry with the primary 

focus on stratospheric ozone (section 3.3). 

2 Model description 105 

SOCOLv4.0 (SOCOLv4 hereafter) consists of the Earth System Model MPI-ESM1.2 (Mauritsen et al., 2019), the chemistry 

model MEZON (Egorova et al., 2003), and the sulfate aerosol microphysical model AER (Weisenstein et al., 1997), with all 

these parts being interactively coupled to each other, as schematically presented in Fig. 1. In simple terms, chemistry and 

aerosol microphysics rely on atmospheric temperature, winds, and relative humidity and in turn influence the atmosphere and 

ocean through the short- and long-wave radiation schemes, while aerosol microphysics depend on sulfur chemistry and provide 110 

the aerosol surface area density and number density necessary for heterogeneous chemistry calculations. Transport of 

individual gases and aerosols is performed by the flux-form semi-Lagrangian scheme of Lin and Rood (1996) in the dynamical 

core of ECHAM6 that has remained unchanged from its predecessor ECHAM5. Transport is calculated every dynamical time 

step (15 min). The dry and wet deposition of gases and aerosols is also based on the ECHAM6 parameters such as near-surface 

turbulence and precipitation. In the following we discuss each of these main components separately and describe the latest 115 

changes. 

SOCOLv4 is based on the low resolution (LR) configuration of the MPI-ESM model. This configuration corresponds to a 

spectral truncation at T63 providing an approximate horizontal grid spacing of 1.9°x1.9°. The vertical resolution of the 

atmosphere is set to 47 levels from the surface to 0.01 hPa, using a hybrid sigma-pressure coordinate system. Although other 

higher horizontal and vertical resolutions of MPI-ESM are also tuned and available for use, we chose the LR configuration 120 

since it is the most used, better tuned (Mauritsen et al., 2019), and better suited for long-term climate simulations in terms of 

required computational resources and storage. It must be noted that we didn’t change anything in the tuning of the MPI-

ESM1.2 LR model version described in Mauritsen et al. (2019). All our changes refer to the coupled chemistry and sulfate 

aerosols modules. Mostly due to the large number of new tracers introduced, SOCOLv4 is about 2.6 times slower than MPI-

ESM, 30% of which is from AER. 125 
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Figure 1. Components and information flow in the atmosphere-ocean-aerosol-chemistry-climate-model SOCOLv4. Green boxes 

symbolize prescribed boundary conditions. 

2.1 Earth system model MPI-ESM1.2 

The earth system model MPI-ESM1.2 (Mauritsen et al., 2019) is a further development of its predecessor MPI-ESM (Giorgetta 130 

et al., 2013). The main components of MPI-ESM are highlighted by the blue boxes in Fig. 1. The ocean dynamical model, 

MPIOM1.6.3, transports tracers of the ocean biogeochemistry model, HAMOCC6. The atmosphere model, ECHAM6.3, is 

directly coupled to the land model, JSBACH3.2, through surface exchange of mass, momentum, and heat. These two major 

model blocks are then coupled via the OASIS3-MCT coupler (Craig et al., 2017). The coupler aggregates, interpolates, and 

exchanges fluxes and state variables once a day between ECHAM6-JSBACH and MPIOM-HAMOCC. Here we only describe 135 

the latest states of the MPI-ESM components that are used in SOCOLv4 and do not focus on the differences between MPI-

ESM versions, as this is already discussed in greater detail by Mauritsen et al. (2019). Hereafter we refer to MPI-ESM1.2 as 

MPI-ESM, and ignore version numberings for other components, unless otherwise stated. In terms of differences to the earlier 

versions, we only focus on those between the atmospheric part of the latest version, ECHAM6, and the atmospheric part used 

in SOCOLv3, ECHAM5.4, as changes between versions contribute the differences between the chemical response of 140 

SOCOLv4 and all sub-versions of SOCOLv3. 

2.1.1 Ocean model MPIOM 

The oceanic part MPIOM is formulated on an Arakawa-C grid in the horizontal and on z-levels in the vertical direction and 

solves the primitive equations with the hydrostatic and Boussinesq approximations (Jungclaus et al., 2006; 2013). Subgrid-

scale parameterizations include lateral mixing on isopycnals and tracer transports by unresolved eddies. Vertical mixing is 145 

represented as a combination of the Richardson number-dependent scheme and the wind-driven turbulent mixing in the mixed 

layer (for details see Jungclaus et al., 2013). The horizontal grid is consistent with the MPI-ESM LR configuration, which 
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implies a bipolar grid GR1.5 featuring one grid pole under Greenland and one under Antarctica. The resolutions are then 

regionally enhanced in the deep water formation regions and the overflows across the Greenland-Scotland ridge so that the 

grid varies between 22 and 350 km. In the vertical, 40 levels are unevenly placed in the water column, with the first 20 levels 150 

distributed over the top 700 m. The bottom topography is represented by a partial-step formulation (Wolff et al., 1997). 

The sea ice model combines the codes of MPIOM and ECHAM. In ECHAM, a simplified thermodynamic sea ice model is 

incorporated to provide at each atmospheric time step a physically consistent surface temperature in ice-covered regions. This 

part also contains a melt-pond scheme, which divides the surface of the sea ice into snow, bare ice, and melt pond with 

individual albedos (Pedersen et al., 2009). The atmospheric part of the sea ice model then integrates all surface fluxes into ice 155 

and provides this information to the oceanic part of the code, which uses it to calculate the sea ice surface energy balance and 

related changes in ice thickness. The calculations of sea ice concentration and thickness are based on the Semtner (1976) 

formulation and tuned in MPI-ESM to produce the annual average preindustrial Arctic sea ice volume of roughly 20–25 

thousands of km3 (see Mauritsen et al., 2019). Sea ice dynamics is calculated following a viscoplastic approach of Hibler 

(1979). 160 

2.1.2 Marine biogeochemistry model HAMMOC 

Ocean biogeochemistry in MPI-ESM is represented by the Hamburg Ocean Carbon Cycle (HAMOCC) model (Ilyina et al., 

2013; Paulsen et al., 2017). It simulates the oceanic cycles of carbon and other biogeochemical elements such as nutrients 

(phosphate, nitrate, and iron), oxygen, silicate, phytoplankton, zooplankton, and detritus. HAMOCC includes biogeochemical 

processes in the water column, the sediment, and at the air-sea interface. Biogeochemical tracers in the water column are fully 165 

advected, mixed, and diffused by the flow field of MPIOM. In total, the model has 17 state variables calculated prognostically 

in the water column and 12 state variables in the sediment. Nitrogen-fixing cyanobacteria was added to the model as an 

additional prognostic phytoplankton class by Paulsen et al. (2017). 

2.1.3 Land surface model JSBACH 

The Jena Scheme for Biosphere‐Atmosphere Coupling in Hamburg (JSBACH) is the land component of MPI-ESM1.2. It 170 

provides the lower boundary conditions for the atmosphere over land and describes the dynamics of the land biogeochemistry 

in interaction with global climate. JSBACH treats processes like soil hydrology (five-layer scheme of Hagemann & Stacke, 

2015), soil and litter decomposition, land use change (tiling approach with 12 plant functional types and two types of bare 

surface), fires, and a nitrogen cycle (Goll et al., 2017). Note that soil and marine chemical schemes are not yet combined with 

the atmospheric chemistry scheme in the current model version. 175 

2.1.4 ECHAM6 

ECHAM6 is an atmospheric general circulation model (GCM) that describes the large-scale circulation and its coupling to 

diabatic processes, both of which are ultimately driven by radiative forcing. It consists of a dry spectral-transform dynamical 
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core, a transport model, and a suite of physical parameterizations for the representation of diabatic processes. The prognostic 

variables are temperature, vorticity, divergence, logarithm of surface pressure, humidity as well as cloud ice and water. Tracer 180 

transport and diabatic processes (also referred to as “model physics”) are calculated on a Gaussian transform grid. The adiabatic 

core of ECHAM6 consists of a mixed finite-difference/spectral discretization of the primitive equation that is identical to that 

employed in ECHAM5 (Stevens et al., 2013). All major changes relative to ECHAM5 are therefore related to the model 

physics. These changes include: an improved representation of radiative transfer in the shortwave (or solar) part of the 

spectrum; a completely new description of tropospheric aerosol; an improved representation of surface albedo, including the 185 

treatment of melt ponds on sea ice (see section 2.1.1); and an improved representation of the middle atmosphere through the 

gravity wave forcing. In addition, minor changes have been made in the representation of convective processes. Several coding 

errors in model physics were also corrected in the latest version (see details in Mauritsen et al., 2019). 

Transport of species is performed with the flux-form semi-Lagrangian scheme of Lin and Rood (1996). Though this scheme 

is mass-conservative by design, its application on the sigma-pressure coordinate system can cause a violation of the mass-190 

conservation especially in case of large spatial gradients (Jöckel et al., 2001; Stenke et al., 2013). Turbulent mixing adopts an 

eddy diffusivity and viscosity approach following Brinkop and Roeckner (1995). Moist convection is parameterized according 

to Tiedtke (1989), with extensions by Nordeng (1994) and Möbis and Stevens (2012). Stratiform clouds are computed 

diagnostically based on a relative humidity threshold (Sundqvist et al., 1989). As in ECHAM5, gravity wave drag (GWD) is 

calculated using a subgrid orography scheme (Lott, 1999). The propagation and dissipation of the waves follow the formulation 195 

of Palmer et al. (1986) and Miller et al. (1989). Non-orographic GWD parameterizations are based on a wave-spectrum 

approach (Hines, 1997a, b). However, some parameters of both orographic and non-orographic gravity wave schemes have 

been adjusted for use in ECHAM6 during the tuning process of MPI-ESM (see Mauritsen et al., 2019). Both long-wave and 

short-wave radiative transfer calculations are now described by the PSrad scheme (Pincus and Stevens, 2013), which is based 

on the k-correlated method of RRTM-G (Iacono et al., 2008). Additional extra-heating parameterization in the Hartley, 200 

Huggins, and Schumann-Runge bands and the Lyman-α line is now applied for better representation of the solar cycle in the 

mesosphere and stratosphere (Sukhodolov et al., 2014). The optical properties for radiation are updated every 2 hours. In 

contrast to the base model version, which applies climatological fields for this purpose, the radiation calculation of SOCOLv4 

uses the prognostic tracer concentrations of sulfate aerosol and all radiatively active species (e.g., ozone and methane) except 

CO2. Concentrations for CH4, N2O, and CFCs are prescribed only at the lowermost model level, while CO2 is prescribed for 205 

the entire atmosphere. Note that for photolysis rates calculations, we use a separate subroutine based on the application of 

look-up-tables (Rozanov et al., 1999). Cloud scattering is parameterized according to Mie theory using maximum-random 

cloud overlap and an inhomogeneity parameter to account for three-dimensional effects. Surface albedo is parameterized 

according to Brovkin et al. (2013). The radiative properties of tropospheric aerosols are now represented by the MACv2-SP 

parameterization (Stevens et al., 2017; Fiedler et al., 2017). MACv2-SP is formulated in terms of nine spatial plumes associated 210 

with different major anthropogenic source regions. It prescribes the aerosol optical depth, asymmetry factor and single 

scattering albedo as a function of geographical position, height above ground level, time, and wavelength. The evolution and 
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distribution of anthropogenic aerosol is approximated with mathematical functions, while the natural aerosol is prescribed 

climatologically based on Kinne et al. (2013). MACv2-SP also prescribes aerosol-cloud interactions in the form of a Twomey 

effect (Twomey, 1977), thus allowing the increase in the cloud droplet number concentration and associated reduction in 215 

droplet size under constant liquid water path. 

2.2 Atmospheric chemistry model MEZON 

The atmospheric chemistry part of the new model is a modified version of the chemistry-transport model MEZON (Model for 

Evaluation of oZONe trends; Rozanov et al., 2001; Egorova et al., 2003; Schraner et al., 2008). The last base state of this code 

is described in detail by Stenke et al. (2013). It underwent major upgrades for participation in the Chemistry Climate Model 220 

Initiative Phase 1 (CCMI) presented in Revell et al. (2015). Further upgrades were made in Revell et al. (2018) and Feinberg 

et al. (2019). Below we summarize the current state of MEZON, while the history of main updates that are now included in 

SOCOLv4 is schematically illustrated in Fig. 2. In this paper, the direct comparison with SOCOLv4 is made only for the CCMI 

version (Revell et al., 2015) in sections 3.2.2 and 3.2.4, since it was the most widely used one in publications.  

 225 

 

Figure 2. History of main updates through different versions of SOCOL, which contributed to the version described in this paper. 

Note that there were also other minor changes, adjustments, and error corrections.  

 

MEZON and ECHAM6 are interactively coupled by the 3-dimensional fields of temperature and wind, and by the radiative 230 

forcing induced by water vapor, ozone, methane, nitrous oxide, and chlorofluorocarbons (CFCs). The chemistry scheme is 

called every 2 h. The chemical solver is based on the implicit iterative Newton–Raphson scheme (Ozolin, 1992; Stott and 

Harwood, 1993). The model includes 99 chemical species of the oxygen, hydrogen, nitrogen, carbon, chlorine, bromine, and 

sulfur groups, which are determined by 216 gas-phase reactions, 72 photolysis reactions, and 16 heterogeneous reactions in/on 
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aqueous sulfuric acid aerosols as well as three types of polar stratospheric clouds (PSCs): supercooled ternary solution (STS) 235 

droplets, water ice, and nitric acid trihydrate (NAT). Chemical reaction rate coefficients and absorption cross sections of all 

reactions follow the recommendations from the NASA JPL data evaluation no. 18 (Burkholder et al., 2015). Photolysis rates 

are calculated at every chemical time step using a look-up-table approach (Rozanov et al., 1999), including effects of the solar 

irradiance variability. Based on the stand-alone photolysis codes intercomparison study (Sukhodolov et al., 2016) and 

additional sensitivity tests, the photodissociation rates of molecular oxygen and ozone (O(1D) path) have been supplemented 240 

by the correction factors of 1.2 for oxygen in the 10-1 hPa region and 1.5 for ozone below 100 hPa.  

Dry deposition of species is based on the surface resistance approach for the estimation of dry deposition velocities proposed 

by Wesely (1989). This scheme takes into account actual meteorological conditions, different surface types and trace gas 

properties like solubility and reactivity. Further details are given by Kerkweg et al. (2006). The wet deposition scheme is based 

on the SCAV scheme proposed by Tost et al. (2006). Wet deposition velocities are calculated using cloud and precipitation 245 

variables from ECHAM6, including cloud cover, liquid and ice water contents, precipitation fluxes and the convective upward 

mass flux. Scavenging coefficients of gaseous species depend on their Henry’s law constants. Upon evaporation of clouds and 

rainwater, scavenged species are transferred back into the gas phase. An additional sink for HNO3, in the form of a constant 

removal rate of 1×10−6 s−1, was introduced in the upper troposphere (above 300 hPa), compensating the missing uptake of 

HNO3 by ice particles (e.g., Voigt et al., 2006).  250 

The parameterization of heterogeneous chemistry in the stratosphere is based on Carslaw et al. (1995). It coincides with HNO3 

uptake by aqueous sulfuric acid aerosols resulting in the formation of STS. The parameterization of the liquid-phase reactive 

uptake coefficients follows Hanson and Ravishankara (1994) and Hansen et al. (1996). The PSC scheme for water ice uses a 

prescribed particle number density of 0.01 cm−3 and assumes that the cloud particles are in thermodynamic equilibrium with 

their gaseous environment. NAT is formed if the partial pressure of HNO3 exceeds its saturation pressure, assuming a mean 255 

particle radius of 5 μm for NAT. The particle number densities are limited by an upper boundary of 5×10−4 cm−3 to account 

for the fact that observed NAT clouds are often strongly supersaturated. The sedimentation of NAT and water ice is based on 

the Stokes theory as described in Pruppacher and Klett (1997). Water ice and NAT are not explicitly transported but are 

evaporated back to water vapor and gaseous HNO3 after each chemical time step, transported in the vapor phase, and then 

depending on the saturation conditions regenerated in the next time step with the thermodynamic approximation described 260 

above. In the troposphere, the heterogeneous hydrolysis of N2O5 on tropospheric aerosols contributes to the sink of odd 

nitrogen. Note that since the MACv2-SP parameterization that is used for radiation does not provide the aerosol mass, for the 

tropospheric chemistry we use the tropospheric aerosol climatology that considers the aerosol properties of 11 Global Aerosol 

Data Set types (GADS, Koepke et al., 1997) as in the previous model version. The reaction probabilities for the different 

aerosol types are calculated following the parametrization by Evans and Jacob (2005). 265 

Parameterizations of the N, NO, and OH production by galactic cosmic rays, solar protons, and energetic electrons with 

energies of <300 keV are introduced as 0.55, 0.7, and up to 2 molecules of N, NO, and OH per ion pair respectively (Matthes 

et al., 2017). The contribution of thermospheric NO from downward intrusions is parameterized as a flux-form upper boundary 
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condition (Funke et al., 2016). The lightning source of NOx is parameterized based on the cloud top approach by Price and 

Rind (1992). The tropospheric budget of CO is supplemented by the Mainz Isoprene Mechanism (MIM-1, Pöschl et al., 2000) 270 

that describes the degradation of isoprene, formaldehyde and acetic acid. Contributions of all other non-methane volatile 

organic compounds (NMVOCs) to CO is accounted for via the addition of a certain fraction of NMVOC emissions to CO. For 

anthropogenic, biomass burning, and biogenic NMVOC emissions the conversion factors to CO are 1.0, 0.31 and 0.83, 

respectively (Ehhalt et al., 2001). 

Several newly discovered hODS (CFC-112, CFC-112a, CFC-113a, CFC114a and HCFC-133a) have been added to the model 275 

chemistry scheme together with some additional chlorine containing very short-lived substances (VSLSs: CHCl3, CH2Cl2, 

C2Cl4, C2HCl3, C2H4Cl2) that are not controlled by the MPA. The bromine containing VSLSs forcing is now also transient 

compared to the previous model versions and includes CH3Br, CHBr3 and CH2Br2 species. The sulfur family is represented by 

eight gas-phase species: OCS, CS2, H2S, DMS, methanesulfonic acid (MSA), SO2, SO3, and H2SO4 (Sheng et al., 2015). 

2.3 Sulfate aerosol microphysics model AER 280 

The sulfate aerosol microphysical scheme AER is based on the two-dimensional sulfate aerosol model of Weisenstein et al. 

(1997). It was upgraded and combined with SOCOLv3 by Sheng et al. (2015) and later further improved by Feinberg et al. 

(2019). Sulfate aerosol particles are resolved in 40 size bins, ranging in dry radius from 0.39 nm to 3.2 μm, corresponding to 

a range of 2.8 - 1.6×1012 molecules of H2SO4 per particle (assuming an H2SO4 density of 1.8 g cm-3). H2SO4 molecule number 

doubles between bins, while the corresponding wet sulfate aerosol radii can be much larger depending on local conditions. 285 

H2SO4 weight percent is calculated online based on actual temperature and relative humidity. The AER scheme includes 

submodules for the nucleation (Vehkamäki et al., 2002), composition (Tabazadeh et al., 1997), growth, evaporation (Ayers et 

al., 1980; Kulmala and Laaksonen, 1990), coagulation (Fuchs, 1964; Jacobson and Seinfeld, 2004), and sedimentation of 

sulfate aerosol (Kasten, 1968; Walcek, 2000). In addition to gas phase H2SO4 production, the model calculates aqueous 

oxidation of S(IV) by ozone (O3) and hydrogen peroxide (H2O2) (Jacob, 1986). The spatial distribution of cloud pH in the 290 

aqueous phase chemistry routine is approximated based on Tost et al. (2007). The aqueous production flux of S(VI) is added 

directly to the scavenged aerosol flux in cloud water. Dry and wet deposition of sulfate aerosol are calculated by the similar 

schemes as for gas-phase species (Tost et al., 2006; Kerkweg et al., 2006). Dry and wet deposition as well as gravitational 

velocities of sulfate aerosol are calculated through radius-dependent parametrizations. During cloud evaporation, evaporating 

scavenged sulfate aerosol mass is transferred to the largest aerosol size bin. Transport of aerosols in each bin is also performed 295 

in the same way as transport of gases with a timestep of 15 min. The microphysical module is called every 2 h with 20 sub-

time-steps yielding an aerosol microphysical time step of 6 min. 

The influence of the aerosol on radiation fluxes at all wavelengths (14-band shortwave and 16-band longwave) is taken into 

account. Extinction coefficients, single-scattering albedo, and asymmetry factors required by the radiation codes are treated 

following a lookup table approach with precalculated aerosol physical properties using Mie theory for actual H2SO4 weight 300 
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percent and temperature using refraction indices from Biermann et al. (2000). The aerosol surface area density and composition 

are used to calculate heterogeneous reaction rates in a chemical module. Note that AER aerosols in the model impact chemistry 

and radiation only in the stratosphere. In the troposphere, we use MACv2-SP for radiation and GADS for N2O5 hydrolysis (see 

sections 2.1.4 and 2.2).  

2.4 Model set-up and boundary conditions 305 

As described above, SOCOLv4 is based on the latest version of MPI-ESM that was also used for the Climate Model 

Intercomparison Project Phase 6 (CMIP6) runs. To test the new coupled model, we initialized all its parts from the MPI-ESM 

restart files (snapshots of the model’s state at a specified time) from the end of the year 1949 and then continued the calculation 

until the end of 2018. The initialization of chemistry was based on SOCOLv3 runs from Revell et al. (2016). In 1980 the 

reference run was split into an ensemble of three runs by imposing a temporary (1-month long) small perturbation in 310 

atmospheric CO2 concentrations. For the analysis performed here, we skip the first 30 years of simulations and focus on the 

1980-2018 period, which is well covered by observations.  

Model boundary conditions mostly follow the recommendations of CMIP6 provided by the input4MIPs database (https://esgf-

node.llnl.gov/search/input4mips/). All forcings are historical before 2015 and switched to the SSP2-4.5 scenario for the last 

four years till 2018. These include concentrations of greenhouse gases (Meinhausen et al., 2016), surface anthropogenic and 315 

biomass-burning emissions of NOx (as well as aircraft emissions), CO, SO2, and NMVOCs (Hoesly et al., 2018), ionization 

rates by galactic cosmic rays, solar protons, and energetic electrons, solar spectral irradiance variations, and the influx of 

thermospheric NO (Matthes et al., 2017). Biogenic emissions of all NMVOCs use a climatology for the year 2000 based on 

MEGAN (Model of Emissions of Gases and Aerosols from Nature; Guenther et al., 2006). For the long- and short-lived 

halogenated source gases (ODSs and VSLSs) we used the WMO Ozone Assessment 2018 baseline mixing ratio scenario, 320 

which is a combined atmospheric observation record up to the year 2017 (Engel et al., 2018). For some ODSs we also used 

the input4MIPs database. Agricultural land-use changes are based on the Land Use Harmonization project data (LUHv2h, 

Hurtt et al., 2011). 

Continuous degassing emissions of SO2 are prescribed according to volcano locations (Andres and Kasgnoc, 1998; Dentener 

et al., 2006). To represent eruptive emissions, we applied a satellite-derived dataset from Carn et al. (2016). Since the emission 325 

profiles are unknown in this database, they are emitted into the upper third of the total plume height. Air-sea DMS fluxes are 

calculated online through a wind-driven parametrization (Nightingale et al., 2000) and climatological gridded sea surface DMS 

concentrations (Lana et al., 2011). 1 Tg S yr-1 of CS2 is emitted between the latitudes of 52°S and 52°N based on Weisenstein 

et al. (1997). The surface mixing ratios of H2S and OCS are prescribed as 30 pptv (Weisenstein et al., 1997) and 510 pptv 

(Timmreck et al., 2018), respectively. 330 

Since the model vertical resolution is insufficient for a reasonable self-generation of the QBO, we nudge it to the observed 

equatorial wind profiles. The nudging is applied between 20°N and 20°S from 90 hPa up to 3 hPa. Within the QBO core 

https://esgf-node.llnl.gov/search/input4mips/
https://esgf-node.llnl.gov/search/input4mips/
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domain (10°N–10°S, 50–8 hPa) the relaxation time is uniformly set to 7 days; outside of this region the damping depends on 

latitude and altitude (Giorgetta, 1996).  

Tropospheric aerosols are represented by two separate datasets for radiation and chemistry. For radiation, to be consistent with 335 

the base model and CMIP6 recommendations we used the MACv2-SP approach (Stevens et al., 2017), which however provides 

only optical parameters of aerosols. Surface area densities required for the N2O5 hydrolysis, are based on the tropospheric 

aerosol climatology of 11 aerosol types from the Global Aerosol Data Set (GADS, Koepke et al., 1997), as in SOCOLv3. 

3 SOCOLv4 evaluation 

3.1 Atmospheric dynamics 340 

3.1.1 Reference data for evaluation 

We validate the simulated climate variables from SOCOLv4 against observations. For this purpose, we use reanalysis data 

because they incorporate various observations combined in one data set using comprehensive techniques that allow gaps in 

space and time to be estimated. It should be noted that the combination of different data can lead to some errors in the reanalysis 

data, both in trends and variability, that have a purely methodological nature, like those due to changes in the observation 345 

systems or aging of instruments as well as the details of underlying models used for assimilation. Intercomparison of different 

reanalysis products by Long et al. (2017) showed that reanalyses agree in the lower/middle stratosphere but deviate more from 

each other in the upper stratosphere and lower mesosphere because of the decreased availability of direct observations and 

thus the increased dependence on the assimilating model details, like the model top and vertical resolution. This should be 

considered when making conclusions about deviations between model results and reanalysis. To validate the thermo-dynamical 350 

structure of the modelled atmosphere, we use the recent ERA5.1 reanalysis data set (Simmons et al., 2020, Hersbach et al. 

2020) from ECMWF (European Center for Medium Range Weather Forecast) and MERRA-2 (Modern Era Retrospective 

Analysis for Research and Applications Version 2, Gelaro et al. (2017)). For surface air temperature we additionally use the 

BEST data (the Berkeley Earth Surface Temperatures, Cowtan et al. (2015)), which is a merged land-ocean data set. 

3.1.2 Temperature and winds 355 

To assess the ability of SOCOLv4 to reproduce the climate and its response to historical forcing, we show variability in annual 

mean surface air temperature and its anomaly (Fig. 3a, b), the Arctic sea ice extension anomaly (Fig. 3c), as well as the El 

Niño Southern Oscillation (ENSO) Niño3.4 statistics (Fig. 4a, b) for the historical period 1980 to 2018. Anomalies were 

calculated as a deviation from the mean over the 1980-2018 period. Figure 5 (a, c) also shows the global mean 2-meter 

temperature and its anomaly simulated with the SOCOLv4 and various reanalysis data. The model reveals a warming trend 360 

similar to observations, whereas the ensemble mean curve shows less inter-annual variability, as expected (Fig. 3a). As can be 

seen from the figure, the reanalysis data slightly disagree in terms of the absolute level and the model data are within this 
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spread. Modelled global mean surface air temperature is somewhat warmer than the ERA5.1 and MERRA-2 data, but colder 

than the BEST data. Temperature anomalies (Fig. 3b) agree very well with observational composites. The annual Arctic sea 

ice extent anomalies are also accurately reproduced by SOCOLv4 in line with observations, showing a pronounced decline 365 

with time because of global warming and fluctuations of magnitudes to observations (Fig. 3c). According to Ding et al. (2019), 

the spread in sea-ice extent between the ensemble members can be attributed to internal variability driven by fluctuations in 

Arctic pressure expressed as high pressure enhancing the sea ice loss and low pressure restraining it. Based on the analysis of 

Fig. 3, we conclude that the model response to historical radiative forcing is sufficiently close to observations, which proves 

suitability of the model for studies of past and future climate changes. 370 

 

Figure 3. Global and annual mean 2-meter temperature (a) and its anomalies relative to 1980-2018 mean (b) and Arctic sea ice extent 

annual anomaly (c) in comparison with reanalysis data. The black thick line represents simulated mean of 3-member SOCOLv4 

ensemble, thin black lines are individual ensembles members, red line is ERA5.1 reanalysis, green line is MERRA-2 reanalysis, and 

blue line is BEST reanalysis. 375 
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ENSO is known as the largest mode of sea surface temperature anomalies with irregular period of ~2–7 years, which influences 

atmospheric circulation globally in the troposphere (e.g., Bulgin et al., 2020) as well as in the middle atmosphere (Domeisen 

et al., 2019). It is tracked as a variability of the sea surface temperature in the so-called Niño3.4 region (5N-5S, 120W-170W). 

These temperature anomalies are usually in the range of ±3K with positive fluctuations being associated with El Niño events 380 

and negative with La Niña events. There were several El Niño events observed with positive deviations stronger than +1.5 K 

during the considered decades, with the strongest being those in 1982/1983, 1997/1998, and 2015/2016. To verify the model 

performance in this context, we analysed the fast Fourier transform (FFT) and the probability density function (PDF) (Fig. 4a 

and b, respectively) of the modelled and ERA5.1 Niño3.4 indices. The analysis indicates that SOCOLv4 has realistic ENSO 

in terms of amplitude and periodicity, however the 40-year period is rather short for a robust estimation of ENSO frequencies, 385 

which is illustrated as a pronounced variability among the ensemble members. The common bias shared by all members is that 

ENSO events in the model mostly last longer than in observations. This is expressed as the power spectrum shift to shorter 

frequencies and a flattened PDF. It must be noted that this is a known feature of our underlying model MPI-ESM and our FFT 

results are very similar to those shown by Müller et al. (2018) in their Figure 13, where they analysed a 140-year period. Spatial 

pattern of ENSO in the model is reasonable, but also has some biases related to the asymmetry between El Niño and La Niña 390 

events (for details see Tian et al. 2019). This drawback could be minimized by increasing coupling frequency between ocean 

and atmosphere from daily to hourly. However, this change also increases the computational demands to levels, which are less 

suitable for long-term climate calculations. Therefore, the LR version of MPI-ESM which we used for SOCOLv4 was tuned 

with a daily coupling (Mauritsen et al., 2019). 

 395 
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Figure 4. (a): 1980-2018 Nino3.4 power spectra (°C/cycles mo-1) calculated from the ERA5 data (orange) as well as from the three 

SOCOLv4 ensemble members (black). Dashed lines are the 95% significance levels based on an auto-regressive AR(1) process fitting. 

(b): histogram of Nino3.4 temperature anomalies. 

 400 

 

The left panel of Fig. 5 shows the geographical distribution of the 2-meter air temperature climatology for 1980-2018 as 

simulated with SOCOLv4 and derived from the ERA5.1 reanalysis, as well as their difference. ERA5.1 data have been 

interpolated to the model grid. SOCOLv4 properly reproduces the observed geographical pattern of the surface air temperature 

with cold high-latitude areas in both hemispheres and warm tropics and subtropics. However, there are some regional 405 

discrepancies between the model and the reanalysis data. The model surface air temperature is generally slightly (~0.2 K) 

warmer than in ERA5.1, which is also seen from the global means (Fig. 3a), but there are also several spots with cold biases. 

In the tropical area, the discrepancies are within ±1 K, except in the eastern part of South America over the Brazilian Highlands, 

where negative bias reaches -5 K, and over the Tibetan Plateau and the Indochinese Peninsula, with up to -3 K bias. In the 

northern middle latitudes, we obtain negative discrepancies of about -5 K over the Rocky Mountains and the North Atlantic 410 

Ocean. The most pronounced biases of ±6 K are located in the Southern Hemisphere over Antarctica. Most of these biases in 

high-altitude regions are a common feature of all coupled models, which is usually attributed to the simplified model’s 

topography and uncertainties in the observational data (e.g., Guo et al., 2020). The right panel of Fig. 5 shows the 2-m surface 
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air temperature trends over 1980-2018 over the northern hemisphere simulated by SOCOLv4 and calculated from ERA5.1 

reanalysis data. The linear trend and its significance were calculated using a robust nonparametric Sen–Mann–Kenndall test 415 

applying 95% confidence interval. Simulated and observed trends over the Northern Hemisphere show a good spatial 

agreement including the location of the warming maximum north of Siberia. The maximum simulated trend amounts to 

1.69±0.16 K, which is only about 0.25 K smaller than the maximum trend of 1.93 K derived from the reanalysis.  

 

Figure 5. Left panels: Global distribution of 2-m surface air temperature (K, contours are -5, -3, -1, 0, 1, 3, 5, 7, 9) averaged over the 420 

period 1980-2018 simulated by SOCOLv4 (a, ensemble mean), ERA5.1 reanalysis data (b), and their difference (c, SOCOL4-

ERA5.1). Right panels: 2-m surface air temperature trend over the northern hemisphere (K/10years, contours are -0.5, -0.2, 0, 0.2, 

0.5, 0.7, 1.0, 1.5) simulated (d) and observed (e) over the Northern Hemisphere. White spots show where the trend is not statistically 

significant at 95% level.  
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 425 

Figure 6. Zonal mean zonal wind climatology (m/s) for DJF (left panel) and JJA (right panel) simulated with SOCOLv4 (a, b), mean 

of ERA5.1 and MERRA-2 reanalysis (c, d) and differences between simulated and reanalysis data (e, f). Contour intervals for the 

difference are -30, -20, -10, -5, -2, 2, 5, 10, 20, 30 m/s. White places denote regions where the difference between model and reanalysis 

data is not statistically significant at 95% confidence level calculated with the Student’s t-test. 
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 430 

Zonal mean climatology of zonal winds and temperatures for boreal winter and summer as simulated by SOCOLv4 are 

presented in comparison with observations (mean data from reanalysis ERA5.1 and MERRA-2) in Fig. 6 and 7, respectively. 

Even though the model has an upper limit at 0.01 hPa, we analyze the results only up to a height of 0.1 hPa, since above 

ERA5.1 data are not reliable and MERRA-2 data are not available. In general, the model reproduces the observations well, but 

there are deviations which are, however, typical for most coupled models (Bock et al., 2020, Gettelman et al., 2019, Matthes 435 

et al., 2020). The tropospheric jets, their position and strength are reasonably reproduced by the model with biases of ±2-5 m/s. 

There is a tendency of the westerlies in the mid-latitudes to be insufficiently poleward, which is more pronounced in the 

Southern Hemisphere and represented as negative and positive deviations around 60 and 40oS, respectively. The differences 

between the model and observations increase with altitude. In the stratosphere, the simulated summer-time easterly jets are of 

similar strength as in the observations but have some deviations in their shapes. The deviations between about 90 and 3 hPa in 440 

the (sub)tropics are related to the hemispherically symmetric QBO nudging approach, which is applied between 20°N to 20°S 

(see section 2.4). The winter-time polar night jets show larger deviations in both hemispheres. In the Northern Hemisphere, 

the modelled polar vortex is significantly weaker than in the observations and is extended equatorward in the lower 

mesosphere. The southern hemispheric vortex is of similar strength as in reanalysis mean data in the stratosphere and the main 

model deviations are related to its positioning. The core of the southern polar jet is shifted to 60o and located between 10 hPa 445 

and 1 hPa, while in the reanalysis data the vortex core (80 m/s isoline) extends higher and shifts towards 40oS. Therefore, the 

modelled southern polar vortex area is more isolated in the middle stratosphere. Oppositely, in the lower mesosphere it is 

extended equatorwards, similar to the northern one. The latter feature might suggest that there is some overestimation in the 

gravity wave forcing that is dominant in this region (Plumb, 2002; Butchart, 2014). 

The zonal mean temperature distribution is generally well reproduced by the model (Fig. 7), but there are also strong biases in 450 

the middle atmosphere with respect to the observations that are consistent with the biases in zonal winds. Namely, the winter-

time high-latitude middle and upper stratosphere and the low mesosphere are warmer by 2-10 K suggesting weaker vortices 

and stronger meridional transport and mixing. In the rest of the stratosphere the difference is negative (about -2 K). This is 

consistent with a too fast Brewer-Dobson circulation (BDC), which would cause increased adiabatic cooling in the tropics and 

in the summer-time high-latitudes. In the lowermost extra-tropical stratosphere, there are up to -5 K temperature deviations in 455 

both hemispheres, which leads to some downward displacement of the extratropical tropopause. The modelled tropospheric 

temperatures agree very well with observations and only show a warm bias over Antarctica.  

It has to be noted that all of the presented model deviations in thermodynamics are long-term issues of the ECHAM-family 

models and global models in general (Stevens et al., 2013; Mauritsen et al., 2019). In Figure A1, we present the same 

differences as in Fig. 6 and 7 but for the pure MPI-ESM CMIP6 run. As can be seen from there, SOCOLv4 and MPI-ESM 460 

share the same deviation patterns indicating weaker and warmer polar vortices in the stratosphere. Some differences between 

SOCOLv4 and MPI-ESM results are mostly related to the stratospheric ozone distribution at mid- and high-latitudes, as well 

as to the distribution of other GHGs except CO2 that are now 3-dimensional, and the QBO nudging in SOCOLv4 in the tropics. 
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Many of these problematic features were shown to be greatly improved using a version of ECHAM with more detailed (95-

level) vertical resolution (Schmidt et al., 2013; Stevens et al., 2013; Mauritsen et al., 2019; Matthes et al., 2020), especially 465 

the strength of the northern polar vortex and the extratropical lower-stratospheric cold biases. The increase of the vertical 

resolution implies, however, a strong increase in computational time, because of the column physics design. It can be partly 

compensated by increasing the amount of processing units, but there is also a limit in model’s scalability defined by horizontal 

resolution. 

  470 

Figure 7. Zonal mean temperature climatology for DJF (left panel) and JJA (right panel) simulated with SOCOLv4 (a, b), mean of 

ERA5.1 and MERRA-2 reanalysis (c, d) and differences between simulated and reanalysis data (e, f). Contour intervals for the 

differences are -30, -20, -10, -5, -2, 0, 2, 5, 10, 20, 30, 40 K. White places denote regions where the difference between model and 

reanalysis data is not statistically significant at 95% confidence level. 



20 

 

3.2 Atmospheric chemistry and transport 475 

3.2.1 Reference data for validation 

All data sets that were used for the chemistry validation are listed in Table 1. For the comparison of HCl, H2O, and N2O we 

used the Global OZone Chemistry And Related trace gas Data records for the Stratosphere database (GOZCARDS, Froidevaux 

et al., 2015), which is a composite based on the data from 8 satellite instruments. The ENVISAT satellite Michelson 

Interferometer for Passive Atmospheric Sounding (MIPAS, Funke et al., 2014) instrument data was used for NOy, while the 480 

SCISAT Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) data climatology is used for NOy 

and CH4. Besides GOZCARDS, the ozone mixing ratio is also compared to the BAyeSian Integrated and Consolidated 

composite ozone (BASIC, Alsing and Ball, 2019), and the CMIP6 Ozone forcing dataset (Checa-Garcia, 2018). The latter is a 

compilation of CESM1-WACCM and CMAM modelling results and is used as a standard forcing for MPI-ESM. Ozone total 

column is validated against Multi Sensor Reanalysis version 2 (MSRv2, Van der A et al., 2015) and SBUVv8.6 (McPeters et 485 

al., 2013) composites. Stratospheric aerosol sulfur mass is compared to MIPAS (Günther et al., 2018) and HIRS (Baran and 

Foot, 1994) observations and a composite recommended by CMIP6 (GloSSACv1.1, Thomason et al., 2018). 

It has to be noted that observations themselves are not perfect, especially for the shorter-lived species with pronounced diurnal 

cycles, low concentrations, and specific regions like high-latitudes and the upper troposphere/lower stratosphere (UTLS). 

Different satellite instruments vary in terms of measurement method, geographical coverage, spatial and temporal sampling 490 

and resolution, time period, and retrieval algorithm. All of this has also to be dealt with while constructing the observational 

composites, which imposes further potential uncertainties related to the homogenization methods applied. The SPARC Data 

Initiative (SPARC, 2017) overviewed the existing trace gases and aerosol measurements and provided a set of useful 

recommendations concerning the related uncertainties that we used in the further sections for our validation. 

Table 1. Data used in this study for chemistry validation. 495 

Data Period Source 

O3 mixing ratio  1985-2012  GOZCARDS composite (Froidevaux et al., 2015) 

1985-2012  BASICv3 composite (Alsing and Ball, 2019)  

1985-2012 CMIP6 composite (Checa-Garcia, 2018) 

CH4, NO, NO2, N2O5, HNO3, 

and ClONO2 mixing ratio 

2004-2012  ACE-FTSv3.5 (Bernath et al., 2005) 

H2O and HCl mixing ratio 1991-2012  GOZCARDS 

N2O mixing ratio 2004-2012  GOZCARDS 

NOy mixing ratio 2004-2012  ACE-FTSv3.5 
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2002-2012 MIPAS (Funke et al., 2014) 

H2O mixing ratio 1991-2012  GOZCARDS 

Liquid H2SO4 mass 1991-1993 HIRS (Baran and Foot, 1994) 

1980-2016 CMIP6 stratospheric aerosol composite 

(GloSSACv1.1, Thomason et al., 2018) 

2002-2012 MIPAS (Günther et al., 2018) 

O3 total column  1980-2018 MSRv2 composite (Van der A et al., 2015) 

1980-2018 SBUVv8.6 (McPeters et al., 2013) 

 

3.2.2 Trace gases climatology 

In this section we discuss the SOCOLv4 performance in reproducing observed distributions of various trace species. Figures 

8, 11, and 12 show the data from the model and observations and the relative differences between them. Figures 9 and 13 show 

mean seasonal cycles of several species that are also compared to observations.  500 
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Figure 8. Annually averaged zonal mean distributions of CH4, H2O, HCl, and N2O (from top to bottom). First column: SOCOLv4 

data. Second column: ACE-FTS and GOZCARDS observational data. Third column: relative difference between the model and 

observations in %. Observational missing data mask is applied to the modelling results. Note that different species have different 505 

averaging periods. White areas are either the missing data or regions where the difference between model and observations is not 

statistically significant at 95% confidence level. 
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CH4. Methane (CH4) is an important source of water vapour (H2O) in the stratosphere. On average two H2O molecules are 

produced per CH4 molecule oxidized. Methane mixing ratios drop very fast with height due to increasing availability of 510 

hydroxyl radical (OH), the excited atomic oxygen (O(1D)), and atomic chlorine (Cl). In the lower mesosphere, photolysis by 

Lyman-α radiation also becomes an important sink for CH4. Methane is also an important atmospheric tracer for tracking the 

stratospheric circulation because of its long lifetime. CH4 mixing ratio isolines in Fig. 8b are lifted upward in the low latitudes 

by the ascending branch of the BDC and are pushed downward in the middle and high latitudes by the descending branch. 

Isolines in the mid-latitudes are flattened as a result of rapid mixing by breaking planetary waves. The balance between 515 

horizontal mixing and the diabatic circulation produces the observed tracer slope and deviations in this distribution can hint to 

potential problems in transport processes (e.g., Strahan, 2015).  

SOCOLv4 nicely reproduces the methane distribution in the lower stratosphere with only about ±5% deviations from 

observations. However, above ~10 hPa the model deviation gradually increases with height to up to 50% overestimation in the 

lower mesosphere. The highest overestimation close to the model top in the mesosphere is likely related to the treatment of the 520 

Lyman-α line photolysis, while the rest is due to the problems in dynamics. Thus, a too fast vertical transport in the tropics 

(Fig. 8a-c) would mean that there is less time for CH4 loss on the way upwards and therefore more CH4 arrives in the 

mesosphere, which can be partly enhanced by underestimation of CH4 photolysis. Dynamical lifetime got smaller with respect 

to chemical lifetime and the tracer became more vertically mixed. The increased concentration in the upper stratosphere is then 

also distributed polewards and downwards in the middle and high latitudes. Difference in skewness of the isolines suggests an 525 

overestimation of mid-latitude mixing in the upper stratosphere/lower mesosphere, which is consistent with analysis of winds 

showing that the vortices are weaker at those altitudes (Fig. 6). Middle and lower stratospheric midlatitudes, however, show 

some hemispheric asymmetry with a negative bias of 5% in the SH and a positive bias of 5-10% in the NH. Figure 9a-b shows 

the CH4 seasonal cycle at 20 hPa and suggests that this anomaly is likely related to the deficiencies in horizontal mixing. 

Namely, while the model reproduces very well the tropical values (1.4 ppmv isoline), the midlatitude values (1 ppmv isoline) 530 

are excessively shifted poleward in the NH and slightly equatorward in the SH. This is also generally consistent with Fig. 6, 

which shows at these altitudes a weaker NH polar vortex and the SH polar vortex that is more confined to the pole.  



24 

 

 

Figure 9. CH4, HCl, and NOy zonal mean seasonal cycles at 20, 70, and 6 hPa, respectively. First column: SOCOLv4 data. Second 

column: ACE-FTS, GOZCARDS, and MIPAS observational data. Two consecutive cycles are shown. 535 

 

H2O. Water vapour (H2O) provides a source for hydroxyl radicals (HOx) in the stratosphere. Hydroxyl catalytic cycles 

dominate the ozone destruction above the stratopause and are also very important in the lower and middle stratosphere. The 

two main sources of H2O in the stratosphere are methane oxidation and the transport from the H2O-rich troposphere. Transport 

from the troposphere is important for the lower stratosphere and is highly dependent on the cold point temperature at the 540 

tropical tropopause and vertical transport in the tropics. As seen from Fig. 8d-f, SOCOLv4 agrees very well with observations 

around the stratopause. In the lower stratosphere, the model is 5-10% too moist, which is due to some overestimation of H2O 

at the entry point. In the mesosphere, the model underestimates H2O by up to 30% (or 1 ppmv) around the model top. This 

partly results from the underestimated destruction of methane (about 0.2 ppmv) but mostly comes from the overestimated 

water vapour photolysis, which was also previously reported for SOCOL in the stand-alone photolysis codes intercomparison 545 

study (Sukhodolov et al., 2016; Karagodin-Doyennel et al., 2021). Water vapour sink (dehydration) by PSCs in the south polar 

lowermost stratosphere is well captured by the model.  

Water vapor is a relatively long-lived species with a highly pronounced seasonality in the lower tropical stratosphere. This 

seasonality is related to tropospheric wave forcing, which is strongest in northern winter and weakest in northern summer, 

leading to enhanced upwelling and colder temperatures at the tropical tropopause during boreal winter, and vice versa. In 550 



25 

 

combination with the tropical pipe and the subtropical transport barrier, this makes H2O useful as a tracer of transport processes 

in the tropical stratosphere (Mote et al., 1998). Figure 10 shows the water vapor ‘tape recorder’ signals obtained from 

GOZCARDS and SOCOLv4 to illustrate the model performance in terms of vertical transport in the tropical low and middle 

stratosphere. SOCOLv4 reproduces the seasonal cycle of water vapor at the tropopause level well. However, it also shows too 

fast vertical propagation of the water vapor tape recorder in the observations similar to its predecessor versions (Stenke et al., 555 

2013), which is a common peculiarity for chemistry-climate models (e.g., Dietmüller et al., 2018). This issue is related to the 

problems in horizontal and vertical mixing and diffusion and also to representation of the residual circulation in general, all of 

which are largely dependent on resolution. The overestimation of H2O of about 0.5 ppmv throughout the middle and lower 

stratosphere (see also Fig. 7) is mostly due to the higher entry value during summer but can also be partly related to the 

overestimation of mixing with higher altitudes.  560 

 

Figure 10. Annual cycle of water vapor mixing ratio (ppmv) averaged between 15°N and 15°S and over 1991-2012 for the 

GOZCARDS satellite composite (upper panel) and SOCOLv4 (lower panel). Two consecutive cycles are shown. The white line in 

both panels indicates the approximate slope of the GOZCARDS tape recorder signal. 

 565 

HCl. HCl is a chlorine reservoir that is widely used for tracking the overall chlorine abundance in the stratosphere, which also 

plays an important role in polar ozone chemistry. SOCOLv4 reproduces the HCl climatology pretty well with deviations mostly 

on the order of ±5-10% throughout the stratosphere (Fig. 8g-i). The most pronounced deviation is the ~5% underestimation by 
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the model at the stratopause and the tropical mid-stratosphere. Figure 9c-d illustrates the seasonal cycle at 70 hPa, 

demonstrating a rather good representation of the southern high-latitude variations with some underestimation of the PSC 570 

activation effects, the reasons for which are yet unclear. A limiting factor here can be the amount of available ClONO2 

(Nakajima et al., 2016), whose observations are, however, rather sparse for these conditions. Note that HCl observational 

uncertainties are also the largest in the SH polar vortex (SPARC, 2017). In the northern polar regions, SOCOLv4 reproduces 

the semi-annual variability seen in observations, but overestimates the winter-time decrease and underestimates the summer-

time one, which might be related to the weaker northern vortex that leads to higher temperature and lower frequency of PSCs 575 

formation. 

NOy. Figure 11 shows the odd nitrogen (NOy=NO+NO2+2N2O5+HNO3) climatology from the model and its difference to the 

ACE-FTS and MIPAS instruments data. Odd nitrogen provides another important sink of ozone in the stratosphere and also 

negatively contributes to and is affected by other catalytic cycles of ozone destruction by deactivating odd hydrogen, chlorine, 

and bromine in the reservoir species HNO3, ClONO2, and BrONO2, respectively. The main source of NOy in the middle 580 

atmosphere is oxidation and photolysis of nitrous oxide (N2O). The lowermost stratosphere is additionally highly affected by 

the mixing with the troposphere and therefore the NOy budget also depends on the free tropospheric sources of odd nitrogen 

such as aircraft engines and lightning (Grewe, 2009). In the mesosphere, where odd nitrogen is mostly present in the form of 

nitric oxide (NO), the most important sources become the in-situ N2 ionization by solar protons and middle energy electrons 

(MEE) and the transport from the thermosphere, where it is produced by auroral electrons and N2 photolysis. Compared to 585 

ACE-FTS and MIPAS, which generally agree with each other, SOCOLv4 overestimates by ~10% the maximum concentrations 

in the mid-upper stratosphere, the region where the odd nitrogen catalytic cycle of ozone destruction is the most effective. In 

the upper stratosphere and the mesosphere, the model also overestimates NOy everywhere except polar mesospheric regions. 

The overestimation increases gradually with height, reaching 80% in the tropical mesosphere, where the absolute values, 

however, are rather small. As there is almost no N2O left at these altitudes, the overestimation likely comes from the 590 

underestimated sink through the NO photolysis. Despite the strong percentage deviation in the tropical mesosphere, the model 

underestimates NOy in its polar regions, though the differences are almost insignificant due to a large interannual variability. 

The polar bias is most likely related to an underestimated contribution of either MEE or the thermospheric NO downward flux. 

Mironova et al. (2019) compared CMIP6 MEE ionization effects to calculations based on polar balloon measurements and 

found that the related odd nitrogen signal can be up to 100% too low when CMIP6 forcing was used. High- and mid-latitude 595 

upper stratospheric NOy concentrations are then affected by both the positive bias in the low-latitudes and the negative bias in 

the polar high-latitudes.  
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Figure 11. NOy zonal mean annual mean climatology (ppbv) calculated by (a) the SOCOLv4 model and (b) provided by MIPAS. (c 

and d) - relative difference between the model and the ACE-FTS and MIPAS observations. White areas are either the missing data 600 

or regions where the difference between model and observations is not statistically significant at 95% confidence level. 

 

NOy observational uncertainty is the largest in the lower stratosphere (±30%, SPARC, 2017), however both instruments suggest 

that the model has a pronounced low bias there. This can be explained by the insufficient production from N2O oxidation, 

which shows an underestimation in the middle and upper stratosphere (Fig. 7). This underestimation is very similar to that in 605 

methane, which suggests that both are probably related to the overestimation of the vertical transport. Another potential reason 

could be overestimated sinks to reservoir species, however modelled HNO3 and CLONO2 (Fig. A2) agree reasonably well 

(±10%) with observations in the areas of their maximum concentrations in the lower stratospheric mid-latitudes. The middle 

stratospheric overestimation of HNO3 is likely related to the overestimated abundance of H2O and hence HOx at these altitudes 

and the underestimated sink through photolysis (Sukhodolov et al., 2016). The tropical UTLS region shows large 610 

underestimation of both NOy and HNO3, which suggests that either the free-tropospheric sink of odd nitrogen through HNO3 

washout or the source through production by lightning activity is biased. Overall, NOy representation in the model is defined 

by an underestimated sink in the upper stratosphere and the mesosphere, and the underestimated production in the lower 

stratosphere, which results in the slight vertical shift of the maximum NOy concentrations upwards.  

Modelled NOy seasonal cycle at 6 hPa is presented in Fig. 9e-f. The model shows generally higher values than MIPAS due to 615 

NOy burden being biased high, as discussed before. However, the seasonality of the variations is reasonably well reproduced 

at this altitude. The high and mid-latitude seasonality is controlled by the vertical motions, which either bring the NOy-low air 

from above during the wintertime or the NOy-high air from below in the summertime. This transport is modulated by horizontal 

mixing, which can cause some time shifts in the appearance of minima, like seen in the NH winter modelled results, where the 

contribution of the vertical transport is largely diminished by the mixing with midlatitudes. In the southern vortex, this is better 620 

reproduced by SOCOLv4 for the upper stratosphere, however in the middle and lower stratosphere (not shown) there are traces 
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of the modelled southern vortex being too isolated, which is consistent with the analysis of CH4 and N2O. Boreal winter 

minimum in the tropics appears due to increased upwelling and, thus, transport from below, which is well caught by the model. 

 

Figure 12. Ozone zonal mean annual mean climatology (1985-2012) calculated by the SOCOLv4 model (ppmv) (a) and provided by 625 

the GOZCARDS data (b). (c and d): relative difference between the model and the observational composites BASIC and GOZCARD. 

White areas are either the missing data or regions where the difference between model and observations is not statistically significant 

at 95% confidence level. 

 

O3. Figure 12 represents the ozone mixing ratio climatology calculated by the model versus two different ozone datasets. Both 630 

observational datasets (BASIC and GOZCARDS) agree very well with each other. The difference plots demonstrate that 

SOCOLv4 has a very good representation of ozone in the tropics and subtropics throughout the stratosphere, except some 

overestimation in its lowermost part. The lower stratospheric overestimation spreads further to mid-latitudes and reaches values 

of more than 20%. This overestimation is a common feature in many CMIP6 models (Keeble et al., 2021 - see their Fig.4). 

The lower stratosphere is a complex region with competing transport, mixing, and chemistry processes, variations of the 635 

tropopause, and exchange with the troposphere (Holton et al., 1995), which makes it difficult to identify exact factors 

responsible for these biases. From the chemistry side, there is no clear evidence from our analysis that can explain this 

overestimation. The low NOy model bias (Fig. 11) would also contribute negatively to the ozone burden at these altitudes 

through reduced production by oxidation of carbon monoxide, methane, and higher hydrocarbons, similarly to the troposphere 

(Gauss et al., 2006; Grewe, 2009). Therefore, it is most likely that the high ozone bias is related to the photolysis problems in 640 

SOCOLv4. Sukhodolov et al. (2016) analyzed the stand-alone performance of the look-up table photolysis scheme applied in 

SOCOL and found that the ozone photolysis in both channels is underestimated especially in the lower stratosphere. Although 

that study also showed the underestimated molecular oxygen photolysis at the same altitudes, which could partly compensate 

for the ozone photolysis underestimation, it appears that the latter still dominates. Comparison to the results of other codes in 

Sukhodolov et al. (2016) showed that the lower stratospheric problems in photolysis are probably related to the neglected 645 

Rayleigh scattering effect and temperature dependence of absorption cross sections and quantum yields. The applied photolysis 

corrections, as discussed in the MEZON module description, seem to improve ozone throughout the stratosphere, however a 
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more qualitative treatment of photolysis is already planned for the future. Insufficient ozone photolysis also might affect HOx 

formation via O(1D) + H2O and related catalytic ozone destruction, thus intensifying the ozone high bias. Other factors that 

could contribute to the lower stratospheric overestimation in ozone are the ~2 K underestimation in local temperatures (Fig. 650 

6), which would slow down the ozone destroying chemistry, and overestimated tropospheric ozone. In addition, SOCOLv4 so 

far does not include iodine chemistry, while some recent studies suggested that it can be responsible for ~30% of the halogen-

induced ozone loss in the lowermost stratosphere (e.g., Koenig et al., 2020).  

In the upper stratosphere at mid-latitudes, SOCOLv4 underestimates ozone by up to -20%. This feature has been present in 

SOCOL models since the first version (Egorova et al., 2005) and is related to the transport issues, caused by the insufficient 655 

vertical resolution affecting the wave propagation and breaking in the stratosphere/mesosphere. Though SOCOLv4 now has 

47 vertical levels compared to 39 in previous versions, all additional levels are located in the troposphere, while the number 

of levels in the middle atmosphere remains almost the same. As was discussed earlier, SOCOLv4 and its atmospheric base 

ECHAM6 show stronger residual circulation that causes stronger vertical transport in the tropics and also stronger meridional 

and downward transport in the winter hemisphere. The increased BDC, however, also implies a stronger wave forcing for the 660 

polar vortex making it weaker and blurring the midlatitude transport barriers (Butchart, 2014). An associated increase of 

stirring, which dominates over the horizontal transport by the meridional circulation in these conditions (Plumb, 2007) would 

then lead to a decrease in the meridional gradient of tracers. As depicted in Figure 6, the modelled polar vortex strength in 

both hemispheres is notably underestimated in the uppermost stratosphere and the lower mesosphere.  

Figure 13 shows that the midlatitude ozone underestimation at 1 hPa appears in the winter months and that it happens together 665 

with an underestimation in the polarmost latitudes due to the more intense downward transport from the mesosphere. These 

results are consistent with those seen from the analysis of methane. Part of the model biases here could be related to the 30% 

NOy overestimation (Fig. 11) that would intensify the ozone destruction. In the lower levels (10 hPa and 70 hPa), the model 

shows a generally good agreement with GOZCARDS with some deviations in timing and magnitude of extremes that can also 

be partly attributed to the deficiencies in transport. Thus, a too deep ozone drop at 10 hPa in the southern polar vortex is 670 

consistent with the too low methane values under these conditions and can be explained by the insufficient mixing. Seasonality 

of the tropical values at all latitudes agrees very well with observations, showing a decrease of ozone in the lower stratosphere 

during boreal winter and a pronounced semi-annual oscillation in the middle and upper stratosphere. 

Although the observations are very uncertain in the polar night regions, both the ozone mixing ratio (Fig. 13) and the total 

ozone measurements (Fig. 14) suggest that in SOCOLv4 the size and intensity of the Antarctic ozone hole is overestimated. 675 

This can be related to either a too strong vortex isolation, as discussed before, or to problems in the polar heterogeneous 

chemistry. Since the low bias is also apparent in the higher levels, another potential reason could be the poleward dislocation 

of the southern polar night jet in the upper and middle stratosphere (Fig. 6), which would imply less upper-stratospheric ozone 

production inside the vortex (McConnel and Jin, 2008) and, thus, less ozone available for the downward transport. The 

downward transport itself might also be biased high, as illustrated by small negative anomalies of N2O and CH4 in Fig. 8, 680 

which would negatively contribute to ozone by bringing too much chlorine from above.  



30 

 

A comparison of SOCOLv4 ozone to the prescribed CMIP6 ozone used by MPI-ESM (Fig. A3) is useful for understanding 

the differences in temperature and winds between SOCOLv4 and MPIESM in Figure A1. The comparison shows that 

SOCOLv4 has slightly more ozone in the tropical and subtropical upper stratosphere, but less ozone in the winter-time high 

latitudes. SOCOLv4 also has higher ozone in the mesosphere (up to 70%) and in the troposphere (up to 20%). Upper and mid-685 

stratospheric differences in ozone contribute to a slightly stronger meridional temperature gradient due to less heating in the 

high latitudes and more heating in the tropics. This makes the polar vortices, which are too weak in MPIESM, slightly stronger 

in SOCOLv4. It is the most pronounced for the SH polar vortex, which is weaker than in observations throughout the whole 

stratosphere in MPIESM (Fig. A3d), while in SOCOLv4 (Fig. 6f) the negative anomaly is vanished in the middle stratosphere.  

 690 

Figure 13. 1, 10, and 70 hPa ozone zonal mean seasonal cycles (ppmv). First column: SOCOLv4 data. Second column: GOZCARDS 

observational data. Two consecutive cycles are shown. 

3.2.3 Total ozone climatology 

Total ozone column (TOC) represents an aggregate of all features and model biases discussed above, as well as their 

compensating effects. Figures 14 and 15 show that SOCOLv4 has a very good representation of tropical and subtropical TOC 695 

compared to MSRv2 and SBUV data, which is consistent with the results of Fig. 12 and 13. The model accurately simulates 
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both the seasonal cycle (Fig. 14) and the annual mean climatologies (Fig. 15). Mostly due to the corrected photolysis rates, 

SOCOLv4’s TOC is about 20 DU lower in the tropics and subtropics than in the previous model version, which results in 

better agreement with observations. Compared to MSRv2 data, SOCOLv4 shows almost perfect annual mean TOC in the 

tropics with some regional biases in the order of ±10 DU (see also Fig. A4 for TOC anomalies). Mid-latitudes are also generally 700 

well captured, with the most pronounced overestimation of up to 30 DU being the spring seasons in the Northern Hemisphere. 

Note also the ±10 DU disagreement between SBUV and MSRv2 in the mid-latitudes.  

 

Figure 14. Seasonal cycle of total ozone simulated by SOCOLv4 (a) against SOCOLv3 (b), MSRv2 (c), and SBUV observations (d) 

averaged for the 1980-2014 period. 705 

 

Major model bias appears in the polar latitudes under wintertime conditions. It has to be mentioned that the polar night 

observations are subject to substantial uncertainties. SBUV data give no information for the polar night conditions at all, while 

MSRv2 provides almost full spatial and temporal coverage by assimilating a large variety of data including the ground-based 

observations into a chemistry-transport model (Van der A et al., 2015). This model, however, exploits a simplified scheme of 710 

stratospheric chemistry by Cariolle and Teyssèdre (2007) that tends to overestimate TOC under the ozone hole conditions by 

about 20 DU. However, taking this uncertainty into account while also using the direct satellite information by SBUV and 

GOZCARDS (Fig. 12) at the edge of the polar vortices, SOCOLv4 still shows some pronounced biases. Namely, the polar 

ozone depletion in the SH starts right after the vortex formation (Fig. 14a), while the observations and the current state of 
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knowledge suggests that it starts later under the spring-time conditions (Fig. 14c). This feature is fully inherited from the 715 

previous model version (Fig. 14b) and needs further detailed investigation. Likely reasons, as discussed earlier, could be related 

to the transport issues, the details of polar heterogeneous chemistry, or also to the treatment of photolysis under high solar 

zenith angles. In the Northern Hemisphere, Fig. 6 and 7 suggest a clear underestimation of the NH vortex strength in the model, 

which can explain the difference with respect to observations. The observations suggest some local ozone decrease in the 

middle of the winter, which is then followed by a fast increase in the springtime caused by inflow from the mid-latitudes. The 720 

vortex in the model is weaker, meaning that polar air masses are less isolated and can get enriched with ozone from mid-

latitudes throughout the wintertime, and therefore the modelled field shows a more gradual increase instead of an abrupt rise. 

This stronger mixing of polar vortex air is also responsible for the NH results in Fig. 15, where the model correctly reproduces 

the shape of the high ozone values but also shows some overestimation in the modelled annual mean total ozone. 

 725 

Figure 15. Global distribution of annual mean total ozone for 1980-2018 as (a) simulated by SOCOLv4 and (b) from the MSRv2 

data record in DU.  (c) Difference (a)-(b) in DU with contour lines -40, -30, -20, -10, -5, 0, 5, 10, 20, 30 DU.   
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3.2.4 Ozone evolution 

The upper panel of Fig. 16 shows the evolution of the total ozone column (TOC). Near global TOC was calculated for this 

comparison, because SBUV has no data over polar night regions and the reliability of MSRv2 there is also low. SOCOLv3 730 

and SOCOLv4 are presented as three separate ensemble members to illustrate the uncertainty due to the internal variability. 

SOCOLv3 data are taken from the RefC1 runs of CCMI-1, which assume prescribed historical sea surface temperatures and 

sea ice coverages. Using prescribed SSTs in v3 explains why the variability among ensemble members is smaller in v3 than 

in v4, where the ocean is now interactive, and the ENSO variability is stochastic rather than fixed (Fig. 4). It is clearly seen 

that SOCOLv3 has a large overestimation in TOC compared to other time-series. As was discussed above, this is mostly related 735 

to the problems in the photolysis scheme that are now manually corrected. SOCOLv4 and MSRv2 agree well in terms of the 

mean values, while the mean TOC from SBUV is lower by about 5-7 DU with respect to MSRv2. Generally, the slight 

overestimation of global TOC is also seen in many CMIP6 models, and SOCOL is well within the spread across CMIP6 models 

(Keeble et al., 2021, see their Fig. 6a). The CMIP6 ozone composite, instead, shows slightly lower TOC than SOCOLv4 and 

MSRv2 in Fig. 16a.  740 
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Figure 16. Upper panel: Near global (55S-55N) mean ozone evolution simulated with SOCOLv4 (black), MSR2 (red), SBUV (dark 

blue), SOCOLv3 (light blue), and CMIP6 (green). Lower panel: the same but anomalies with respect to the mean over the whole 

period. 

 745 

For easier comparison of the TOC variability we also show anomalies in Fig. 16b. The four decades shown are characterized 

by contributions from anthropogenic and natural forcings with varying importance during different periods. From 1980 to the 

mid-90s there is a strong hODSs-induced ozone decline. This negative tendency is further enhanced by the two strong volcanic 

eruptions of El Chichón in 1982 and Pinatubo in 1991, which are then followed by several years of recovery. Since the mid-

90s, following a recovery after Pinatubo, ozone starts to increase further, induced by the leveling-out of the hODS emissions 750 

as a consequence of the Montreal Protocol (Egorova et al., 2013; Chipperfield et al., 2015). Since the 2000s, there were no 
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major eruptions and the ozone evolution is mostly determined by the decreasing halogen load and the global warming effects, 

though there are still many related uncertainties and other important factors in specific regions, especially in the lower 

stratosphere (Ball et al., 2018; Stone et al., 2018). Upper stratospheric ozone was shown to have the most pronounced recovery 

(Petropavlovskikh et al., 2019; Chipperfield et al., 2018) due to being the most sensitive to the chlorine catalytic cycle of ozone 755 

destruction. Furthermore, decreasing stratospheric temperatures also led to some deceleration of ozone destruction cycles. The 

contribution of these positive changes to the total column is partly supplemented by an increase of the tropospheric column 

ozone at a rate of about 6-7%/decade resulting from the continuous increase of the surface anthropogenic emissions of ozone 

precursors like CH4, CO, NOx, and VOC (Ball et al., 2018). The recovery in the middle and lower stratosphere in the tropical 

and extratropical areas is still unclear and observations even suggest negative trends in the lowermost stratosphere, which are, 760 

however, barely significant due to a large dynamical variability of this region (Ball et al. 2018; 2019; Petropavlovskikh et al., 

2019). There are indications that these negative trends are dynamically driven (Orbe et al, 2020) and can be related to 

acceleration of the BDC due to rising GHGs, however models mostly fail to reproduce the observations in detail (Ball et al., 

2020).  

In Figure 16b, we show that SOCOLv3 had a reasonable TOC evolution under volcanically quiescent conditions, while the 765 

volcanic effects were strongly overestimated. Unlike SOCOLv4, which uses an interactive sulphate aerosol scheme, SOCOLv3 

used prescribed fields recommended for CCMI that seem to be biased, probably because of the uncertain observations and also 

the assumptions made during the calculation of aerosol mass from extinction observations. The interactive aerosol scheme 

clearly improves the performance of SOCOLv4 in terms of volcanic effects on ozone. Sukhodolov et al. (2018) showed though 

that the observed hemispheric asymmetry of volcanic signals in ozone are still difficult to properly reproduce with a free-770 

running model. Overall, the general behavior of the TOC evolution is very well captured by the new model both in terms of 

the mean values of the near-global field and the variability.  

In Figure 16, we looked into some drivers of the total column evolution. Depletion and further recovery of ozone in the middle 

stratosphere is well captured by the model (Fig. 17a), due to the good representation of changes in stratospheric chlorine (Fig. 

17e) and the continuous cooling of the stratosphere (Fig. 17b). The lower stratospheric (60 hPa) temperature and ozone 775 

observations show a much larger uncertainty, but still somewhat pronounced negative trends that are also well captured by the 

model. A thorough analysis of lower stratospheric processes requires comprehensive statistical tools, and a set of sensitivity 

runs, which is already planned for future model applications.  

 

 780 
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Figure 17. (a and c): Near global (55°S-55°N) annual mean ozone evolution at 60 and 10 hPa compared to the BASIC composite. (b 

and d): Tropical annual mean evolution of temperature at 60 and 10 hPa compared to ERA5. (e): tropical monthly mean (smoothed 
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with the 3-month running mean) evolution of HCl at 10 hPa compared to the GOZCARDS composite. Black lines: three model 

ensemble members. Orange lines: observations. 785 
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3.2.5 Stratospheric sulfur 

 

Figure 18. Global total stratospheric sulfur mass in sulfate aerosols (a) and its zonal mean values (b-d) simulated with SOCOLv4 

against HIRS, CMIP6, and MIPAS. Data is plotted in a logarithmic scale so that both large and small eruptions can be distinguished. 
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Figure 18 shows the total stratospheric sulfur load as well as the zonal mean stratospheric column of liquid H2SO4 for 790 

SOCOLv4 against CMIP6, MIPAS and HIRS. The tropopause that was applied to calculate the stratospheric burden for the 

CMIP6 and MIPAS datasets was calculated from the ERA-interim temperature data using the WMO definition of the 

tropopause as the lowest level at which the temperature decreases less than 2 K/km, while for SOCOLv4 the modelled 

tropopause is used. The peaks in aerosol originate from volcanic eruptions with the largest being the El Chichón (1982) and 

Pinatubo (1991) eruptions in the earlier time period and Kasatochi (2008), Sarychev (2009), Nabro (2011), and Calbuco (2015) 795 

as well as some others in the more recent past. 

Generally, the aerosol evolution in the stratosphere is depicted quite well by the model in terms of the total aerosol amount, 

lifetime and meridional transport. There are, however, a few differences that need to be addressed. Prior to and after the 1982 

El Chichón eruption there are some significant discrepancies between SOCOLv4 and CMIP6. In addition, the peak of 

stratospheric burden caused by this eruption (see Fig. 18a) is slightly shifted in time in comparison to the SOCOLv4 800 

simulations. In Figure 18c, the delayed peak of CMIP6 is seen mostly in the northern hemisphere and the tropical aerosol 

levels, where the eruption took place, are lower than in SOCOLv4. The El Chichón eruption occurred between the activities 

of SAGE and SAGEII. Data from this time is a composite of SAMII data in the extratropics, as well as several airborne lidar 

missions at low latitudes, which delivered data often many months apart, leading to very sparse data coverage. The gaps were 

then filled by means of interpolation (Thomason et al., 2018). It is, therefore, difficult to make a conclusive statement on the 805 

SOCOLv4 performance of this time due to large uncertainties in observations. The next larger event, Nevado del Ruiz in 1985, 

already occurred during the SAGE II era, which is deemed more reliable by Thomason et al. (2018). 

The 1991 Mt. Pinatubo eruption has been discussed several times, since observations show a plateaued value for several months 

after the eruption instead of a more distinct peak as models like SOCOLv4 suggest (e.g., Dhomse et al., 2020). Something 

similar has not been observed since then. However, no other well observed eruption was the size of the 1991 Mt. Pinatubo. A 810 

source for measurement artefacts during this time is the increase in opacity of the atmosphere due to large amounts of aerosol 

resulting from the eruption. From the modelling side, a potential deficiency could be insufficient vertical resolution of the 

stratosphere leading to increased vertical diffusion and faster meridional transport of aerosols. Niemeier and Schmidt (2017) 

used a model with a similar dynamical core, ECHAM-HAM, with 39 and 90 vertical levels. They showed that the version with 

a higher vertical resolution maintains aerosols longer in the tropical reservoir, which increases their lifetime after low-latitude 815 

emission events. The post-plateau e-folding time looks very similar for CMIP6 and SOCOLv4, but in the CMIP6 data there is 

another small increase after the main Mt. Pinatubo plateau without there having been any other major eruptions. Again this 

could be due to a change in the instruments used for the construction of this dataset.  

The volcanically quiescent period in the late 1990s and early 2000s and the minor volcanic activity later, which is also better 

covered by observations, are well reproduced by the model. MIPAS observations are added here, as they are not included in 820 

the CMIP6 composite and thus represent an independent source of information. MIPAS and CMIP6 agree with each other 

quite well in terms of elevated values after eruptions, while the background level is slightly lower in MIPAS. Background 

levels in SOCOLv4 are located between CMIP6 and MIPAS and there is some spread over the ensemble members, which is 
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caused by the variable tropopause in the model combined with vertically prescribed SO2 emission profiles. The model also 

captures the zonal mean distribution of elevated aerosol values, reproducing some equatorward transport after high-latitude 825 

eruptions of Kasatochi, Sarychev, and Calbuco, as well as dominant northward transport after the equatorial eruption of Nabro. 

It should be noted that our modelling results here are largely defined by the emission database that we used (Carn et al., 2016). 

Other volcanic emission databases report quite different estimates for each volcanic event, both in terms of emitted amount of 

SO2 and its vertical distribution (Timmreck et al., 2018).  

Overall, we can conclude that SOCOLv4 nicely reproduces background aerosol levels and minor volcanic activity compared 830 

to observations, while potentially underestimating the aerosol lifetime after major eruptions of El Chichón, Nevado del Ruiz, 

and Pinatubo. The latter can be attributed to a number of factors. As mentioned above, the data from earlier periods is less 

reliable and had a lower temporal coverage (Thomason et al., 2018), which influences the forcing data used in the model, as 

well as the observational composites for its validation. Furthermore, the physical processes influencing aerosol concentrations 

after these larger eruptions differ from the smaller but better observed ones that happened more recently. Since more SO2 is 835 

injected into the stratosphere at once in a larger event, OH radicals are depleted more quickly, which can cause a delay in 

sulfate aerosol formation. Nevertheless, all SO2 is eventually (in 2-3 months time) converted to sulfate aerosol and in higher 

concentrations the particles will collide and grow in size. These larger aerosols are subjected more to the force of gravity and 

more easily sediment to the troposphere (Timmreck et al., 2009), while the long-term decay of aerosols after smaller eruptions 

is more controlled by the BDC transport (Günther et al., 2018). Given that all major eruptions were tropical, a bias in vertical 840 

numerical diffusion due to insufficient vertical resolution could further intensify the sedimentation to the lower stratosphere 

and the troposphere and also reduce the confinement of aerosols in the tropical reservoir via increased leakage through the 

shallow branch of the BDC. 

4 Conclusions and outlook 

This paper presents the fourth generation of the coupled model chemistry-climate SOCOL. Unlike its predecessor chemistry-845 

climate model SOCOLv3, SOCOLv4 includes both an interactive ocean and the sulfate aerosol module, which significantly 

broadens the range of potential model applications. The underlying general circulation model has also been updated from 

ECHAM5 to ECHAM6. Our validation of the new model showed that it performs very well in terms of the mean state of most 

variables and the large-scale variability of the system. Namely, the warming trends in the troposphere, the cooling trends in 

the stratosphere, and variability of the stratospheric and the total column ozone agree very well with observations. In the 850 

stratosphere, SOCOLv4 shows very good results for the low- and mid-latitude ozone and reasonably well reproduces 

climatologies of other trace gases. Compared to SOCOLv3, the new version of the model now performs significantly better 

both in terms of absolute values and variability of ozone, which is mostly due to corrections in the photolysis scheme and the 

inclusion of interactive stratospheric aerosol scheme.  
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However, as in the previous version, there are still some issues. Stratospheric polar night jets are weaker in the model 855 

throughout the whole stratosphere in the NH and in the upper SH stratosphere in comparison with the reanalysis data. 

Accordingly, the advective Brewer-Dobson circulation and horizontal diffusion are also biased and too strong. All this affects 

the transport and distribution of tracers, introducing biases in CH4, N2O, ozone, and related species. Photochemistry itself also 

suffers from the outdated photolysis look-up-table (LUT) scheme, which needs to be replaced either by a LUT that also 

considers temperature dependence or by an online radiative-transfer scheme. Furthermore, photolysis parameterizations of the 860 

short-wave UV need to be reviewed and updated, as we identified clear biases in the mesospheric budget of odd nitrogen, 

hydrogen, and oxygen. SOCOLv4 still underestimates polar winter and spring ozone in the SH, which needs further detailed 

investigation. Performance of the sulfate aerosol scheme is very good for the smaller eruptions and background conditions, 

but the duration of volcanic peaks after major events is likely underestimated. An increase of the vertical resolution to 95 levels 

could be a potential source for major improvements, especially for stratospheric circulation and transport. However, it would 865 

at least double the computational needs, which might be too expensive for long-term experiments, given the number of tracers 

in the model. Marine emissions of species are currently prescribed in the model, but the interactive ocean and marine 

biogeochemistry modules now allow either to directly couple some emissions or to parameterize them as a function of other 

parameters. Inclusion of iodine chemistry is being currently tested and will also contribute to future updates.  

Nevertheless, we showed that the model version documented here is already in a good condition to be used as a tool for 870 

studying interactions between the earth system components. The presence of the interactive ocean and a successful 

representation of recent climate and ozone layer trends provide a strong case for this model to be applied for studies looking 

at future evolution and effects of greenhouse gases and ozone-destroying substances, as well as potential geoengineering 

measures through sulfur injections. SOCOLv4 will also be used in the upcoming model intercomparison project CCMI phase 

2. 875 
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Appendix A 

 

Figure A1: Zonal mean climatology differences between data simulated by MPI-ESM and the reanalysis data for temperature (a-b) 890 
and zonal wind (c-d). White places denote regions where the difference between model and reanalysis data is not statistically 

significant at 95% confidence level calculated with the Student’s t-test. 
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Figure A2. HNO3 and ClONO2 zonal mean annual mean climatologies (ppbv). First column: SOCOLv4 data. Second column: ACE-

FTS and GOZCARDS observational data. Third column: relative difference between the model and observations in %. 895 
Observational missing data mask is applied to the model data. Note that different species have different averaged periods. 

 

Figure A3. Ozone zonal and annual mean climatology (1985-2012) calculated by (a) the SOCOLv4 model (ppmv) and (b) provided 

by the CMIP6 modelling composite. The relative difference between SOCOLv4 and CMIP6 are shown in (c). White areas are either 

missing data or regions where the difference between model and observations is not statistically significant at 95% confidence level. 900 
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Figure A4. Mean seasonal cycle differences between the total ozone column simulated by SOCOLv4 and SOCOLv3 and estimated 

by MSRv2 reanalysis and SBUV observations. 
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Code and data availability 

The SOCOLv4.0 code can be downloaded from https://doi.org/10.5281/zenodo.4570622 (Sukhodolov et al., 2021). In case of 

problems, please contact the corresponding author. ERA5 data is available on the Copernicus Climate Change Service (C3S) 

Climate Data Store: https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset. MERRA-2 data are available at 910 

MDISC, managed by the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC): 

https://disc.gsfc.nasa.gov/datasets?project=MERRA-2. The Berkeley Earth Surface Temperatures data is available at 

http://berkeleyearth.org/data/. GOZCARDS data can be found here: https://gozcards.jpl.nasa.gov/info.php. The latest BASIC 

ozone composite data is available at https://data.mendeley.com/datasets/2mgx2xzzpk/3. The ACE-FTS data can be found in 

http://www.ace.uwaterloo.ca/climatology/3.5/netcdf/. The GloSSAC data v1.1 prepared for CMIP6 is available at 915 

ftp://iacftp.ethz.ch/pub_read/luo/CMIP6_SAD_radForcing_v4.0.0/. MSRv2 data can be downloaded from 

https://www.temis.nl/protocols/O3global.php. SBUVv8.6 merged ozone data set can be found in https://acd-

ext.gsfc.nasa.gov/Data_services/merged/instruments.html. The CMIP6 ozone composite is accessible via the input4MIPs data 

server.  
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