
 

1 
 

The impact of lateral boundary forcing in the CORDEX-Africa 1 

ensemble over southern Africa      2 

 3 

Maria Chara Karypidou1, Stefan Pieter Sobolowski2, Eleni Katragkou1, Lorenzo Sangelantoni3,4, Grigory Nikulin5 4 

1Department of Meteorology and Climatology, School of Geology, Faculty of Sciences, Aristotle University of 5 
Thessaloniki, Thessaloniki, Greece 6 

2NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Bergen, Norway 7 

3CETEMPS—Department of Physical and Chemical Sciences, University of L’Aquila, L’Aquila, Italy  8 

4Department of Physical and Chemical Sciences, University of L’Aquila, L’Aquila, Italy 9 

5Rossby Centre, Swedish Meteorological and Hydrological Institute, Norrköping, Sweden 10 

Corresponding author: Maria Chara Karypidou, karypidou@geo.auth.gr 11 

 12 

Abstract 13 
 14 

The region of southern Africa (SAF) is among the most exposed climate change hotspots and is projected to experience 15 

severe impacts on multiple economical and societal sectors. For this reason, producing reliable projections of the 16 

expected impacts of climate change is key for local communities. In this work we use a set of 19 regional climate 17 

models (RCMs) performed in the context of the Coordinated Regional Climate Downscaling Experiment (CORDEX) 18 

– Africa and a set of 10 global climate models (GCMs) participating in the Coupled Model Intercomparison Project 19 

Phase 5 (CMIP5), that were used as the driving GCMs in the RCM simulations. We are concerned about the degree 20 

to which RCM simulations are influenced by their driving GCMs, with regards to monthly precipitation climatologies, 21 

precipitation biases and precipitation change signal, according to the Representative Concentration Pathway (RCP) 22 

8.5 for the end of the 21st century. We investigate the degree to which RCMs and GCMs are able to reproduce specific 23 

climatic features over SAF and over three sub-regions, namely the greater Angola region, the greater Mozambique 24 

region and the greater South Africa region. We identify that during the beginning of the rainy season, when regional 25 

processes are largely dependent on the coupling between the surface and the atmosphere, the impact of the driving 26 

GCMs on the RCMs is smaller, compared to the core of the rainy season, when precipitation is mainly controlled by 27 

the large-scale circulation. In addition, we show that RCMs are able to counteract the bias received by their driving 28 

GCMs, hence, we claim that the cascade of uncertainty over SAF is not additive, but indeed the RCMs do provide 29 

improved precipitation climatologies. The fact that certain bias patterns over the historical period (1985-2005) 30 

identified in GCMs are resolved in RCMs, provides evidence that RCMs are reliable tools for climate change impact 31 

studies over SAF. 32 

 33 

 34 

 35 
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1 Introduction 37 
 38 
The region of southern Africa (SAF) is among the most exposed climate change hotspots (Diffenbaugh and Giorgi, 39 

2012), and is projected to experience severe impacts on multiple economical and societal sectors (Conway et al., 2015; 40 

Masipa, 2017; Shew et al., 2020). Poverty, food insecurity and high levels of malnutrition (Misselhorn and Hendriks, 41 

2017) render SAF a region particularly vulnerable to the impacts of climate change (Casale et al., 2010; Luan et al., 42 

2013; Wolski et al., 2020). In addition, the population’s reliance on rain-fed agriculture makes strategic planning 43 

necessary as it aims to mitigate the impact of climate change on local communities.  44 

Global climate models (GCM) participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) (Taylor 45 

et al., 2012) project a significant decline in annual precipitation over SAF (IPCC and Stocker, 2013), with the most 46 

pronounced changes projected under representative concentration pathway 8.5 (RCP8.5) (Sillmann et al., 2013). This 47 

reduction is also identified in the regional climate model (RCM) simulations performed in the context of the 48 

Coordinated Regional Climate Downscaling Experiment (CORDEX) – Africa domain (Nikulin et al., 2012; Giorgi 49 

and Gutowski, 2015). More specifically according to CORDEX-Africa simulations, annual precipitation is expected 50 

to decline by up to 50% by the end of the 21st century (Pinto et al., 2018), while duration of dry spells is projected to 51 

increase (Dosio et al., 2019). Despite this, extreme rain events are expected to increase in frequency and intensity 52 

(Pinto et al., 2016; Abiodun et al., 2019). Nevertheless, for a global warming level of 2 oC, certain parts of SAF 53 

(northern Angola, Zambia, northern Mozambique and eastern South Africa) are projected to experience precipitation 54 

increase during specific times of the year (Maúre et al., 2018).                                                                                                                                                                                    55 

The question of whether or not RCMs produce demonstrable added value relative to their driving GCMs, has often 56 

fueled debate between the RCM and GCM modelling communities (Lloyd et al., 2020). The outcome of the debate is 57 

not binary. The literature provides ample evidence that there is indeed evidence of added value in RCMs, but it is 58 

dependent on the region examined, on the season and the climate mechanisms that are at play (Luca et al., 2016, Feser 59 

et al., 2011). RCM ensembles such as those in CORDEX-Africa endeavor to provide added value, by dynamically 60 

downscaling historical and scenario simulations originating from coarse resolution GCMs (Dosio et al., 2019). The 61 

added value in RCM simulations arises as a result of their higher horizontal resolution (<50 km), which makes it 62 

possible for atmospheric waves and synoptic scale disturbances to be represented in a more realistic manner. An 63 

additional aspect that further contributes towards this end, is the more accurate representation of land surface 64 

characteristics (topography, land use etc.) in RCMs (Di Luca et al., 2013).  Moreover, the physics of a RCM can be 65 

targeted for processes specific to the region it is being run for, giving it a local advantage over GCMs that may have 66 

had their physics developed for global applications. Nevertheless, RCMs also are accompanied by a set of model 67 

deficiencies of their own that affect the final output of the downscaled data (Boberg and Christensen, 2012). In Sørland 68 

et al. (2018) it is reported that although RCM biases are affected by the driving GCMs, they are nonetheless not 69 

additive, a result that counters the common “cascade of uncertainty” criticism. Still, uncertainty arising from both the 70 

driving GCM and the downscaling RCM affect the final product, and it is important to diagnose the sources and causes 71 

of these errors (Déqué et al., 2012). 72 
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Attributing this uncertainty into its respective components is key for a better assessment of the reliability of RCM 73 

simulations (Christensen and Kjellström, 2020). GCMs provide the lateral boundary conditions to the RCMs and each 74 

RCM receives, absorbs, and modulates the received atmospheric forcing in different ways, depending on the numerical 75 

formulations and parameterization schemes employed. Discerning between the signal received by the GCM and the 76 

signal produced by the RCM is critical for assessing the robustness with which different modelling systems are able 77 

to accurately reproduce observed climatologies and generate reliable estimates of the expected climate change. In 78 

addition, the manner in which an RCM responds to the atmospheric forcing provided by a GCM can be region specific 79 

(Rana et al., 2020; Wu and Gao, 2020)  (e.g., regions located in close proximity to the boundaries of the RCM domain 80 

can be more severely affected by the driving GCMs, than regions at the center of the RCM domain or there can be 81 

region specific response around complex topography versus lowlands). Also, the degree to which an RCM is 82 

influenced by the driving GCM can be process specific. For instance, when there is a strong large-scale circulation 83 

signal that is introduced to an RCM domain (e.g. advective mid-latitude storms), it is quite likely that the RCM will 84 

be able to reproduce the information that is received at its lateral boundaries. If, however, the large-scale forcing is 85 

weak, then the atmospheric conditions simulated within the RCM domain are more dependent on the dynamic and 86 

thermodynamic processes employed by the RCM (e.g. convective thunderstorms). 87 

In this work we aim to assess whether it is the RCMs or their driving GCMs that dominate monthly precipitation 88 

climatology, monthly precipitation bias and climate change signal over SAF. We take into account the region-specific 89 

characteristics of this question by analyzing SAF and three subregions, namely southeastern Angola, Mozambique 90 

and South Africa. We also consider the different atmospheric processes that are in play over each region by analyzing 91 

monthly climatologies. Precipitation over SAF results from various atmospheric processes that are highly variable 92 

during the rainy season (Oct-Mar), so by performing the analysis on a monthly basis, we are able to indirectly study 93 

how certain processes are reproduced by GCM and RCM simulations. In order to differentiate between the signal 94 

emanating from the RCMs and their driving GCMs, we use the analysis of variance (ANOVA) in both the GCM and 95 

the RCM ensembles (Déqué et al., 2007, 2012). Since the information provided by RCMs will eventually be used by 96 

both climate and non-climate scientists, especially in light of climate change impact studies, we aim to provide some 97 

information with regards to how much each RCM output is affected by its driving GCM and what climate change 98 

signals are identified consistently in both RCMs and GCMs.  99 

 100 

2 Material and methods 101 

2.1 Data 102 

The data analyzed in the current work are displayed in Table 1 and consist of RCM simulations performed in the 103 

context of CORDEX-Africa, a set of simulations performed in the context of CMIP5, and the CHIRPS satellite rainfall 104 

product (Funk et al., 2015). More specifically, the CORDEX-Africa simulations selected are those that were driven 105 

by more than two GCMs and for which there  are runs for both the historical and the future period under RCP8.5. The 106 

CMIP5 GCMs selected are the ones that were used to drive the CORDEX-Africa simulations. All RCM and GCM 107 

simulations were retrieved from the Earth System Grid Federation (https://esgf-data.dkrz.de/projects/esgf-dkrz/). The 108 
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CHIRPS rainfall product is used for calculating precipitation biases in both the CORDEX-Africa and CMIP5 109 

ensembles and was retrieved from: https://www.chc.ucsb.edu/data/chirps. CHIRPS is available at 5 km spatial 110 

resolution and for the calculation of biases it was remapped to the coarser resolution grid using conservative 111 

remapping. 112 

Our analysis is split into two sections: the qualitative and the quantitative part. In the qualitative part, we aim to 113 

identify if RCMs exhibit systematic behavior relative to their driving GCMs. For the quantitative part, we aim to 114 

quantify the degree to which monthly precipitation climatologies, biases and climate change signals are affected by 115 

the downscaled RCMs or by the GCMs driving the RCM simulations. For this purpose, we employ an ensemble of 19 116 

RCM simulations driven by 10 GCMs and the driving GCMs that were used to provide the lateral boundary conditions 117 

to the RCMs. From the historical simulations we use the period 1985-2005 and from the projection simulations we 118 

use the period 2065-2095 under RCP8.5. All CORDEX-Africa simulations are available at ~50 km horizontal 119 

resolution, while the horizontal resolution for the driving GCMs is provided in Table 2. 120 

 121 

Table 1 Input RCM and GCM simulations used. The CORDEX-Africa simulations are given in the columns. The 122 
CMIP5 GCMs used as driving fields are given in the rows. 123 

 CCLM4-8-17.v1 RCA4.v1 REMO2009.v1 

CanESM2   √   

CNRM-CM5 √ √   

EC-EARTH √ √ √ 

HadGEM2-ES √ √ √ 

MIROC5   √ √ 

MPI-ESM-LR √ √ √ 

IPSL-CM5A-LR   √ 

IPSL-CM5A-MR  √  

CSIRO-Mk3-6-0  √  

GFDL-ESM2M  √  

NorESM1-M  √  

 124 

Table 2 Horizontal resolution of the CMIP5 GCMs used as driving fields in the CORDEX-Africa simulations. 125 

GCMs Latitude Res. Longitude Res. References 
CanESM2 2.7906 o 2.8125 o (CCCma, 2017) 

CNRM-CM5 1.40008 o 1.40625 o (Voldoire et al., 2013) 

CSIRO-Mk3-6-0 1.8653 o 1.875 o (Jeffrey et al., 2013) 

EC-EARTH 1.1215 o 1.125 o (Hazeleger et al., 2010) 

GFDL-ESM-2M 2.0225 o 2.5 o (Dunne et al., 2012) 

HadGEM2-ES 1.25 o 1.875 o (Collins et al., 2011) 

IPSL-CM5A-MR 

 

 

IPSL-CM5A-LR 

1.2676 o 2.5 o  

(Dufresne et al., 2013) 

1.894737 o 3.75 o 

MIROC5 1.4008 o 1.40625 o (Watanabe et al., 2010) 

MPI-ESM-LR 1.8653 o 1.875 o (Giorgetta et al., 2013) 

NorESM1-M 1.894737 o 2.5 o (Bentsen et al., 2013) 
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2.2 Methods 126 

The study region and subregions considered are depicted in Fig. 1. The subregions are selected based on particular 127 

phenomena and processes that are of importance for the seasonal cycle of precipitation. More specifically, Region A 128 

encompasses the entire SAF region and is defined as the area extending from 10 oE to 42 oE  and from 10 oS to 35 oS. 129 

Region B was selected to capture the main region of interest with regards to the Angola Low (AL) pressure system 130 

(Howard and Washington, 2018) and covers the area extending from 14 oE to 25 oE  and from 11 oS to 19 oS. Region 131 

C covers the eastern coastline, Mozambique and surrounding countries and extends from 31 oE to 41 oE  and from 10 132 

oS to 28 oS. Lastly, we define Region D, which covers  much of South Africa and extends from 15  oE to 33 oE  and 133 

from 26 oS to 35 oS. 134 

One of the primary synoptic scale features controlling precipitation over SAF is the Angola Low (AL) pressure system 135 

(Reason and Jagadheesha, 2005; Lyon and Mason, 2007; Crétat et al., 2019; Munday and Washington, 2017; Howard 136 

and Washington, 2018), which has a distinct seasonal cycle throughout the rainy season (Oct-Mar). This motivates its 137 

selection as a subregion for our study. The AL exhibits heat low characteristics during Oct-Nov and tropical low 138 

characteristics during Dec-Feb (Howard and Washington, 2018). This suggests that during Oct-Nov, since 139 

precipitation is thermally induced and thus tightly dependent on land-atmosphere interactions, it will be the RCMs 140 

that are dominant in controlling precipitation processes. As the rainy season progresses, the AL changes to a tropical 141 

low pressure system and its formation is controlled  by the large-scale circulation that is  characterized by easterly 142 

winds from the Indian Ocean that enter SAF via the Mozambique channel. Since precipitation during Dec-Feb is 143 

caused by transient low-pressure systems, we hypothesize that the impact of the driving GCM fields during Dec-Feb 144 

is enhanced.       145 

In addition, the wider area of Mozambique is a region where the majority of tropical cyclones/depressions make 146 

landfall over continental SAF. The occurrence of transient low-pressure systems is enhanced during the core of the 147 

rainy season (Dec-Feb) and thus we are interested in identifying whether the impact of the driving GCMs is dominant 148 

during Dec-Feb. Also, since according to (Muthige et al., 2018), the number of landfalling tropical cyclones under 149 

RCP8.5 is expected to decline in the future, we are interested in examining whether the impact of the driving GCMs 150 

to the RCM simulations will be altered under future conditions. Hence, Region C is used as a region indicative of the 151 

landfalling tropical cyclones/depressions. Lastly, we examine the area encompassing South Africa (Region D) due to 152 

its strong land-ocean gradients, complex topography and strong seasonal variations in rainfall zones.   153 

   154 

2.2.1 Monthly precipitation climatology and bias 155 

In order to assess whether or not the RCMs improve the monthly precipitation climatologies relative to their driving 156 

GCMs, we employ a method initially described in Kerkhoff et al. (2015) and later employed by Sørland et al. (2018), 157 

which displays in a scatterplot form the RCM increment as a function of the GCM bias. More specifically, the RCM 158 

increment is described as the difference of each RCM simulation from its driving GCM (RCM-GCM). The RCM 159 

increment is plotted against the GCM bias (GCM-OBS). This plot displays whether or not the RCM increment 160 

counteracts the GCM bias. If the RCM increment reduces the GCM bias, then points are expected to lie along the y=-161 

x line (negative correlation). On the contrary, if the RCM increment increases the GCM bias, then points are expected 162 
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to lie along the y=x line (positive correlation). If the RCM increment and the GCM bias are independent, then points 163 

are expected to be scattered randomly. 164 

 165 

2.2.2 Climate change signal 166 

The climate change signal (CCS) is identified as the monthly mean difference between the future period (2065-2095) 167 

minus the historical period (1985-2005). As an exploratory method of inspecting the differences between each RCM 168 

simulation from its respective driving (GCM) for monthly precipitation during both the historical and the future period, 169 

we subtract the downscaled precipitation field (RCMDRI) from its driving (DRI), as in Eq.  1: 170 

 𝐷𝐼𝐹𝐹 =  𝑅𝐶𝑀𝐷𝑅𝐼 − 𝐷𝑅𝐼 Eq.  1 

If DIFF>0, then we assume that the RCM enhances precipitation, relative to its driving GCM, while if DIFF<0 then 171 

we assume that the RCM reduces precipitation, relative to its driving GCM. This method is employed in the qualitative 172 

part of the analysis.  173 

 174 

2.2.3 Analysis of variance 175 

Additionally, we employ an ANOVA decomposition (Déqué et al., 2007, 2012), in order to understand whether it is 176 

the RCMs or their respective driving GCMs that are responsible for controlling precipitation over the historical (1985-177 

2005) period and the future period (2065-2095). For this purpose, we use two quantities, namely the “inter-RCM” 178 

variance and the “inter-GCM” variance, as in (Déqué et al., 2012). More specifically, the “inter-RCM variance” is the 179 

variance between all the RCM simulations that are driven by the same GCM. Subsequently, all variances obtained for 180 

all driving GCMs are averaged.  181 

 
𝑅𝐶𝑀𝑣𝑎𝑟 =

1

𝑁𝑅𝐶𝑀

𝛴𝑅𝐶𝑀𝑗
(𝑃ⅈ𝑗 − 𝑃𝑗)

2
 

Eq.  2 

The quantity Pij is the monthly precipitation obtained from all RCMs (j) that were driven by the same GCM (i). The 182 

quantity Pj is the mean monthly precipitation obtained by all RCMs (j) that share a common driving GCM (i). As a 183 

final step, the average of all variances is calculated. 184 

 
𝐼𝑛𝑡𝑒𝑟_𝑅𝐶𝑀𝑣𝑎𝑟 =

∑𝐺𝐶𝑀𝐼

𝑁
 

  Eq.  3 

 

Similarly, the “inter-GCM” variance describes the variance between all the GCMs that were used to drive a single 185 

RCM and then averaged over all the variances obtained for all driven RCMs. 186 

 
𝐺𝐶𝑀𝑣𝑎𝑟 =

1

𝑁𝐺𝐶𝑀

𝛴𝐺𝐶𝑀𝑖
(𝑃ⅈ𝑗 − 𝑃ⅈ)

2
 

Eq.  4 

 

Likewise, the average of all variances is calculated. 187 

 
𝐼𝑛𝑡𝑒𝑟_𝐺𝐶𝑀𝑣𝑎𝑟 =

∑𝑅𝐶𝑀ⅈ

𝑁
 

Eq.  5 

 

Both “inter-RCM” and “inter-GCM” variances are normalized by the total variance obtained for all months, as in 188 

(Vautard et al., 2020), so that all values, both for historical and projection runs and RCM and GCM simulations are 189 

comparable. A schematic of the process described above is provided in Fig. S1.  190 
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3 Results 191 

The October and January precipitation climatologies for the period 1985-2005 are displayed in Fig. 2 and Fig. 3, 192 

respectively. We use October and January climatologies, because these 2 months may be considered  representative       193 

of the distinctive processes controlling precipitation over SAF (see section 2.2). We avoid using seasonal means, since 194 

the temporal averaging of precipitation often obscures attributes that are better identified on a monthly level. The 195 

remaining months of the rainy season are shown in the supplementary material. More specifically, we use October as 196 

it is the month that heralds the onset of the rainy season and is often associated with weak precipitation and convective 197 

processes that are mainly due to excess surface heating. Also, it is during October that the most intense formations of 198 

the heat low expression of the AL are observed. Likewise, we use January as it represents the core of the rainy season, 199 

with very strong large-scale precipitation, mainly from the southeastern (SE) part of SAF, through transient synoptic 200 

scale low pressure systems. 201 

As it is displayed in Fig. 2, precipitation during October occurs in the northwestern (NW) part and the SE part of SAF. 202 

Precipitation in the NW part is associated with the southward migration of the rainband (Nicholson, 2018), while 203 

precipitation over the SE part is associated with an early formation of the tropical temperate troughs (TTTs). As it is 204 

evident from Fig. 2, CCLM4-8-17.v1 reduces precipitation amounts (approximately 4-5 mm/d) in both the NW and 205 

SE parts of SAF, relative to the lateral boundary forcing it receives. On the contrary, RCA4.v1 systematically enhances 206 

precipitation amounts, regardless of the driving GCM. Also, precipitation according to RCA4.v1 displays a very 207 

localized spatial pattern with very strong spatial heterogeneity. This may be attributed to the fact that the topography 208 

is not smoothed enough and leads to high precipitation values over grid boxes with high elevation (Van Vooren et al., 209 

2019). This is particularly evident in the mountainous region over coastal Angola. REMO2009.v1 also enhances 210 

precipitation amounts regardless of the driving GCM, however in a much more spatially homogeneous way than 211 

RCA4.v1. 212 

 213 

As it is shown in Fig. 3, high precipitation amounts during January are observed over the northern and eastern regions 214 

of SAF. During January, differences among the driving GCMs become more pronounced, however, all models agree 215 

on the dry conditions observed over the southwestern (SW) part of SAF. With regards to the downscaled products, 216 

CCLM4-8-17.v1 produces high precipitation amounts over the central part of northern SAF but displays varying 217 

amounts of precipitation over the coastal parts, depending on the driving GCM. RCA4.v1 downscales precipitation in 218 

a very localized pattern and enhances precipitation over areas with steep terrain. Also, precipitation over the lake 219 

Malawi region is particularly enhanced, regardless of the driving GCM. REMO2009.v1 displays similar precipitation 220 

amounts to its driving GCMs, however it enhances precipitation over the coastal part of Angola and Mozambique and 221 

yields excess precipitation over lake Malawi, when it is driven by HadGEM2-ES and IPSL. The monthly climatologies 222 

for the rest of the rainy season months are shown in the supplementary material (Fig. S2 – S5). 223 

 224 

 225 

 226 
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In Fig. 4 the monthly precipitation bias for October over SAF is shown. Biases are calculated using the CHIRPS 227 

satellite rainfall product as a reference. With the exception of IPSL-CM5A (LR/MR) and CanESM2, all other GCMs 228 

display a consistent wet bias that ranges from 0.1 – 30 mm/d (in isolated areas), with most values over SAF falling 229 

0.1-3 mm/d. Overall, the same pattern generally holds for RCA4.v1 and REMO2009.v1, while CCLM4-7-18.v1 230 

displays a systematic dry bias that reaches 2 mm/d, when forced with EC-EARTH, MPI-ESM-LR and HadGEM2-ES. 231 

More specifically, concerning RCA4.v1, the region where the highest wet bias is observed is over Region B (the 232 

Angola Low region) and over the NW parts of coastal Angola. The dry bias regions in RCA4.v1 are identified over 233 

the northeastern (NE) and southern parts of SAF and they rarely exceed -1.5 mm/d.  234 

Τhe monthly precipitation biases for January over SAF are shown in Fig. 5. There is a prevailing wet bias identified 235 

in almost all GCMs that typically reaches 3 - 3.5 mm/d, however, in MIROC5, NorESM and GFDL-ESM2M the 236 

biases exceed 5 mm/d over a major part of SAF. Another feature that systematically appears in GCMs is a dry bias 237 

over the NE part of SAF. This bias pattern is also identified in almost all RCMs with a systematic wet bias over central 238 

and western SAF and a region of dry bias in the NE part. More specifically, in RCA4.v1 and REMO2009.v1, there is 239 

a dry bias over the NE and the southern coast of SAF, while in CCLM4-7-18.v1 the dry bias over the eastern region 240 

extends inland to cover almost the whole of Mozambique. Another interesting feature is identified around the Angolan 241 

coast, where wet biases exceed 5 mm/d, while over an adjacent region there is a strip of dry biases that reaches 2 242 

mm/d. Considering the abrupt increase in elevation and the steep escarpment over the coastal Angola-Namibia region, 243 

this is possibly caused by local circulation driving excess moisture transport from the Atlantic Ocean and overly 244 

aggressive orographically triggered precipitation on the windward side of the topography (wet bias strip), that leads 245 

to dry conditions in the lee side (dry bias strip) (Howard and Washington, 2018). It is noted that the wet bias over the 246 

coastal region is identified in most of the RCA4.v1 simulations and in all REMΟ2009.v1 simulations, however, the 247 

dry bias in the lee side is seen in CCLM4-7.18.v1 only. The monthly precipitation biases for the rest of the rainy 248 

season months is shown in the supplementary material (Fig. S6 – S9). 249 

 250 

A more detailed look into specific subregions over SAF where certain climatological features and processes are at 251 

play, can help gain a more in-depth insight of how the precipitation biases are distributed during each month of the 252 

rainy season and whether or not the RCMs display any improvement relative to their driving GCMs. For this reason, 253 

we plot the RCM increments (RCM-GCM) as a function of the GCM biases (GCM-OBS). The results for October 254 

over SAF and the 3 subregions are displayed in Fig. 6. In general, all points are identified close to the y=-x line, hence 255 

there is a tendency that RCMs systematically counteract GCM biases. There are nonetheless substantial differences 256 

between the four regions. For instance, over Region A (SAF region) the IPSL-MR GCM has a wet bias equal to almost 257 

1 mm/day, which is counteracted by RCA by an increment of -0.4 mm/month. Other RCA simulations when driven 258 

by HadGEM2-ES, CNRM-CM5 or EC-EARTH, display an RCM increment similar to that of the GCM bias, hence 259 

RCMs mitigate the GCM bias. Over Region B (Angola Low region) most of the RCMs display an RCM increment 260 

that is nearly equal to the GCM bias. Similar conclusions are drawn for Regions C and D also. The RCM increments 261 

as a function of the GCM biases for January are shown in Fig. 7. For all regions except Region D (South Africa) points 262 
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are lying closely to the y=-x line, hence overall, RCM increments counteract the GCM biases. The scatterplots for the 263 

rest of the months of the rainy season are shown in the supplementary material (Fig. S10 – S13). In general, although 264 

precipitation in RCMs is strongly dependent on the driving GCMs, the RCM increments are anticorrelated to the GCM 265 

biases. The anticorrelations are particularly strong for the Dec-Mar period of the rainy season over Region A, B and 266 

C, but not over D (Fig. S14).                    267 

In Fig. 8 the mean analysis of variance of all RCMs driven by the same GCM and of all GCMs driving the same RCM 268 

is shown. Values are spatially averaged for southern Africa and the 3 subregions examined (land pixels only) and refer 269 

to the period 1985-2005. In Region A, monthly precipitation during October and November is dominated by the 270 

RCMs, while during Jan-Mar, it is the GCMs that play a dominant role in formulating precipitation over SAF. This is 271 

indicative of the impact that RCMs exert on the formulation of precipitation during Oct-Nov-Dec and the fact that the 272 

contribution from the GCMs becomes dominant during Jan-Feb-Mar. The fact that the contribution of RCMs during 273 

Oct-Nov-Dec dominates can be attributed to the fact that precipitation during these months is the result of regional 274 

processes that are largely dependent on the coupling between the surface and the atmosphere. The land-atmosphere 275 

coupling is a characteristic resolved by the RCMs, through mechanisms described in land surface models, planetary 276 

boundary layer schemes, convection schemes etc., making the contribution of the large scale drivers from the GCM 277 

less important. However, during Jan-Feb-Mar we observe that the contribution from the RCMs is reduced, and it is 278 

the GCMs that control the monthly precipitation variability. This can be attributed to the fact that during Jan-Feb-Mar 279 

it is the large-scale circulation that modulates precipitation over SAF and the GCMs control the transient synoptic 280 

scale systems that enter SAF. In Region B, the pattern is similar, however, October and November precipitation are 281 

closer to the diagonal, indicating an almost equal contribution by both RCMs and GCMs. Also, Dec-Feb move closer 282 

to the diagonal, nevertheless, precipitation during March is mainly formulated by GCMs. In Region C, October 283 

remains equally influenced by both RCMs and GCMs, however November and December are dominated by the 284 

influence of the RCMs. In Region D, precipitation for all months except October is influenced by GCMs. 285 

In Fig. 9 the climate change signal for October precipitation over SAF is depicted. All GCMs agree that October 286 

precipitation  will decline by approximately 2 mm/d over the regions that experience precipitation during this period, 287 

namely the NW and SE parts of SAF. In addition, some GCMs display a minor precipitation increase (0 - 0.5 mm/d) 288 

in the SW part of SAF, while some others display a slightly larger (1.5 mm/d) precipitation increase over the eastern 289 

parts of South Africa. Moreover, it is seen that the precipitation change signal is replicated by almost all the 290 

downscaling RCMs, nevertheless, there are some considerable differences between the RCMs and their driving GCM. 291 

More specifically, RCA4.v1 in almost all simulations, displays a larger reduction of the precipitation change signal 292 

relative to its driving GCM, both in magnitude and in spatial extent. Precipitation changes in CCLM4-8-17.v1 seem 293 

to follow closely the driving GCMs, with a severe exception when CNRM-CM5 is used (the NW part of SAF 294 

experiences precipitation decline almost 4 mm/d larger than in the driving GCM). The case for when CCLM4-8-17.v1 295 

is driven by CNRM-CM5 may be partly caused by the fact that the historical simulation had erroneously used lateral 296 

boundary conditions from a different simulation member of CNRM-CM5 (Vautard et al., 2020). In REMO2009.v1, a 297 

precipitation decline region is identified in the NW part of SAF and a minor precipitation increase over eastern South 298 
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Africa is identified. This pattern for REMO2009.v1 appears to be consistent, regardless of the driving GCM, which 299 

could be partly explained by the fact that precipitation during October is thermally driven, and thus the impact of the 300 

driving GCMs is not dominant. The precipitation increase in the SE part of SAF is seen over a localized region and 301 

could be associated with an increase in the precipitation caused by the Tropical Temperate Troughs (TTTs) (Ratna et 302 

al., 2013; Macron et al., 2014; Shongwe et al., 2015).  303 

In Fig. 10 the climate change signal for precipitation during January is displayed. The precipitation change displays a 304 

very strong regional heterogeneity. It is also observed that although there is a strong precipitation change signal in all 305 

driving GCMs, not all RCMs downscale the signal uniformly. It is also notable that, even among the GCMs, there are 306 

substantial differences in the spatial extent and sign of the change. Nevertheless, there are some features that appear 307 

in most of the simulations. For instance, almost all GCMs project drying conditions over the SW part of SAF,      308 

especially the coastal zone. The precipitation decline is equal to -1 mm/d. This could be explained by a consistent 309 

increase in frequency of the Benguela Coastal Low-Level Jet events (Lima et al., 2019; Reboita et al., 2019), causing 310 

oceanic upwelling and a subsequent reduction in precipitation. In addition, there is a subset of GCMs that identify a 311 

severe precipitation decline over the Angola region that reaches -5 mm/d. Furthermore, in many GCMs a region of 312 

precipitation increase is identified, extending from central SAF towards SE SAF. This is particularly identifiable in 313 

HadGEM2-ES, and the RCM simulations forced by it. The monthly precipitation changes for the rest of the rainy 314 

season months is shown in the supplementary material (Fig. S15 – S18).                   315 

In Fig. 11 the spatial average of the RCMDRI – DRI difference (DIFF) is shown for the whole of SAF (land pixels 316 

only). If DIFF>0, it indicates that the RCMs enhance precipitation relative to their driving GCM, while if DIFF<0 317 

then RCMs reduce precipitation relative to their driving GCM. As it is shown, DIFF values for October are symmetric 318 

around zero and do not exceed the range (-1) – 1 mm/d, either for the historical or the future period. Almost symmetric 319 

are the DIFF values for November also, however, their spread increases, reaching values that range (-2) – 2 mm/d. In 320 

both months, CCLM4-7-18.v1 always reduces precipitation amounts relative to the lateral boundary forcing it 321 

receives, regardless of the driving GCM or the period examined. During December, the precipitation reduction in all 322 

RCMs becomes more pronounced and reaches values equal to -3 mm/d. In January, only 1 RCM enhances 323 

precipitation (~0.5 mm/d) with all the rest displaying precipitation reduction. During February and March, some 324 

positive DIFF values re-appear for some simulations. Overall, there is a strong linear relationship between DIFF in 325 

1985-2005 and 2065-2095, which further implies that if an RCM is drier than its driving GCM during the historical 326 

period, then it will retain this attribute during the future period also. Nonetheless, we highlight that RCMs preserve 327 

precipitation change signal generated by the GCMs. Considering that one primary shortcoming of the GCMs over 328 

SAF is their wet bias and that RCMs systematically reduce this bias, we gain increased confidence that RCMs can be 329 

reliably used for future projections with regards to precipitation change. 330 

In Fig. 12 the spatial average of the precipitation change signal from RCMs and their driving GCMs relative to 1985-331 

2005 for SAF and the 3 subregions is displayed. Concerning Region A, all models during October identify a 332 

precipitation reduction at the end of the 21st century that can reach -0.9 mm/d. The precipitation decline signal is also 333 

identified during November, indicating a later onset of the rainy season over SAF, as it has already been shown for 334 
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CMIP5 (Dunning et al., 2018). During December and January there is a variability in the spatial averages of the change 335 

signal that ranges from -0.8 to 0.8 mm/d. A similar pattern is also seen for February and March. The distribution of 336 

the ensemble members for both RCMs and GCMs in Regions B and C is similar to that of Region A, however in 337 

Regions B and C precipitation change values display a considerably larger spread. In Region D the climate change 338 

signal is symmetric around 0 for all months, except March. 339 

The impact the RCMs and GCMs on monthly precipitation for the period 2065-2095 under RCP8.5 is shown in Fig. 340 

13. Regions A and B show a similar behavior as in the historical period (Fig. 8), however, in Region C, precipitation 341 

during March is more strongly dominated by GCMs. The same observation holds also for Region D. In general, 342 

regional processes continue to dominate contributions to variability during Oct-Nov, while large scale features 343 

dominate during Dec-Mar. 344 

 345 

3 Discussion and conclusions 346 

In this work we investigated  whether it is the RCMs or the driving GCMs that control the monthly precipitation 347 

variability, monthly precipitation biases and the climate change signal over southern Africa and how these 348 

relationships vary from month-to-month through the rainy season. Towards this end, we use an ensemble of 19 RCM 349 

simulations performed in the context of CORDEX-Africa and their driving GCMs. According to the literature 350 

(Munday and Washington, 2018), precipitation in the CMIP5 simulations  is characterized by a systematic wet bias 351 

over southern Africa. In the CORDEX-Africa RCM simulations there is also a persistent wet bias, especially during 352 

the core of the rainy season (DJF), however, it is of smaller magnitude and of smaller spatial extent in the RCMs than 353 

the GCMs. It is found that all RCMs  reduce monthly precipitation compared to their driving GCMs for both historical 354 

(1985-2005) and future period (2065-2095) under RCP8.5.      355 

Over Region B, which encompasses Angola Low (AL) activity, the months with the largest biases are found to be 356 

November and March. November is the month during which there is a transition of the AL from a heat low phase to 357 

a tropical low system, and March indicates the end of the rainy season. Hence, precipitation during the transition 358 

months is challenging for both RCMs and GCMs. Over Region C, representing the wider area of Mozambique, the 359 

bias signal is reversed and after January most of the models display a dry bias. Over South Africa (Region D), the 360 

majority of models display a consistent wet bias for all months of the rainy season. All models (CMIP5 and CORDEX-361 

Africa) display an intense dry bias in the NE part of SAF, which can be related to the misrepresentation of the moisture 362 

transport entering the region from the Indian Ocean (Munday and Washington, 2018). In general, although RCMs 363 

display an improvement of precipitation biases relative to their driving GCMs, still some bias patterns persist even in 364 

RCMs, calling for a process-based evaluation of specific climatological features such as the formulation of the Angola 365 

Low and the transport of moisture from the NE part of SAF towards central SAF. 366 

More specifically, we found that CCLM4-7-18.v1 produces the smallest bias when the whole of SAF is examined, 367 

however, it displays a systematic dry bias over Region C (greater Mozambique region), hence, CCLM4-7-18.v1 368 

should be used with caution over eastern SAF, especially if it is exploited within drought-related climate services. 369 

Concerning RCA4.v1, we find a very regionally heterogeneous -almost pixelated- spatial pattern for precipitation, 370 
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which can be attributed to the sharp topography used (Van Vooren et al., 2019). RCA4.v1, due to the large size of its 371 

ensemble, is optimal for analyzing its behavior under different driving GCMs. In general, we find that RCA4.v1 is 372 

more prone to follow the signal received from the driving GCMs, contrary to what is observed for CCLM4-7-18.v1. 373 

REMO2009.v1 presents a compromise between the behaviors of RCA4.v1 and CCLM4-7-18.v1. 374 

It is highly recommended that when RCM simulations are used for the whole of SAF or a subregion thereof, the spread 375 

and statistical properties of all available RCMs and their driving GCMs should be examined and an ensemble of RCMs 376 

should be employed based on their ability to reproduce key climatic features of the region of interest. Increasing 377 

evidence is provided that not all models are fit for constructing an ensemble mean (or median) for all regions (Her et 378 

al., 2019; Raju and Kumar, 2020; Tebaldi and Knutti, 2007). Lastly, a very important aspect when the calculation and 379 

characterization of biases is discussed for GCMs and RCMs, is that biases are assessed based on a satellite or gauge-380 

based product, which are often erroneously regarded as “the ground truth” (Harrison et al., 2019; Alexander et al., 381 

2020). Of course, the climate community is bound to work with the state-of-the-science products that are available, 382 

however, biases and errors in the “observational datasets” should be kept in sight when the bias of climate models is 383 

discussed. In this work we use the CHIRPS precipitation product, as it has been shown to outperform other satellite 384 

precipitation products (Toté et al., 2015; Ayehu et al., 2018; Dinku et al., 2018).  385 

 386 

Concerning the climate change signal, there is a strong agreement among all GCMs and RCMs that precipitation 387 

during October will decrease by (-0.1) – (-1) mm/d, a fact which is associated with a projected later onset of the rainy 388 

season, which is further associated by a northward shift of the tropical rain belt (Dunning et al., 2018). For the rest of 389 

the months, the results are variable, indicating the need for a multi-model approach, when climate change impacts are 390 

assessed. A feature that is identified in some GCMs and is transferred to the downscaling RCMs, is a precipitation 391 

increase that extends from the central SAF region towards the southeast. This result is consistent with previous work 392 

that  shows an increase in frequency of landfalling cyclones along the eastern seaboard of SAF (Muthige et al., 2018). 393 

Since tropical cyclones are a particular cause of severe flooding events over the region of Mozambique, there is an 394 

urgent need for planning and mitigation strategies over the region.  395 

Lastly, concerning precipitation variability and whether it is the RCMs or the driving GCMs that dominate monthly 396 

precipitation, we find that, as expected, over the whole of SAF (Region A), October and November are dominated by 397 

RCMs, while during Dec-Mar it is the GCMs that mainly formulate the precipitation climatologies. This is explained 398 

by the fact that after December there is a strong large-scale forcing, which is provided to the RCMs by the lateral 399 

boundary conditions given through the GCMs. The results for the historical period are comparable to that for future 400 

projections. 401 

Code and data availability 402 

For the data processing and statistical analysis we used the R Project for Statistical Computing (https://www.r-403 

project.org/), the Climate Data Operators (CDO) (https://code.mpimet.mpg.de/projects/cdo/) and Bash programming 404 

routines. Processing scripts are available via ZENODO under DOI: https://doi.org/10.5281/zenodo.5569984. CMIP5 405 

and CORDEX-Africa precipitation data were retrieved from the Earth System Grid Federation (ESGF) portal 406 
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(https://esgf-data.dkrz.de/projects/esgf-dkrz/). The Climate Hazards Group InfraRed Precipitation with Station data 407 

(CHIRPS) products were retrieved from: https://www.chc.ucsb.edu/data/chirps. 408 
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 643 

Figure 1. Study region and subregions over southern Africa. 644 
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 656 

Figure 2. Monthly precipitation climatologies (mm/d) during October for the period 1985-2005. First column (from 657 
the left) displays precipitation from the driving GCMs and columns 2-4 display the downscaled precipitation output       658 
from RCA4.v1, CCLM4-8-17.v1 and REMO2009.v1. 659 
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Figure 2. Continued. 662 
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 668 

Figure 3. Monthly precipitation climatologies (mm/d) during January for the period 1985-2005. First column (from 669 
the left) displays precipitation from the driving GCMs and columns 2-4 display the downscaled precipitation output             670 
from RCA4.v1, CCLM4-8-17.v1 and REMO2009.v1. 671 
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 673 

Figure 3. Continued. 674 
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 680 

Figure 4. Monthly precipitation bias (model – CHIRPS in mm/d) during October for the period 1985-2005. First 681 
column (from the left) displays the biases in the driving GCMs and columns 2-4 display the biases in the downscaled 682 
precipitation output according to RCA4.v1, CCLM4-8-17.v1 and REMO2009.v1. 683 
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Figure 4. Continued. 686 
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 692 

Figure 5. Monthly precipitation biases (model – CHIRPS in mm/d) during January for the period 1985-2005. First      693 
column (from the left) displays precipitation biases from the driving GCMs used and columns 2-4 display the 694 
downscaled products according to RCA4.v1, CCLM4-8-17.v1 and REMO2009.v1. 695 
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 697 

Figure 5. Continued. 698 
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 704 

Figure 6. Scatterplots of the RCM increment (RCM-GCM) for precipitation (mm/day) as a function of the GCM bias 705 
(GCM-OBS) for October. Colors indicate the driving GCM and shapes indicate the downscaling RCMs. The four 706 
panels indicate spatial averages over southern Africa (Region A), the Angola Low region (Region B), the Mozambique 707 
region (Region C) and South Africa region (Region D). 708 
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 709 

Figure 7. Scatterplots of the RCM increment (RCM-GCM) for precipitation (mm/day) as a function of the GCM bias 710 
(GCM-OBS) for January. Colors indicate the driving GCM and shapes indicate the downscaling RCMs. The four 711 
panels indicate spatial averages over southern Africa (Region A), the Angola Low region (Region B), the Mozambique 712 
region (Region C) and South Africa region (Region D). 713 
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 715 

Figure 8. Analysis of variance for monthly precipitation during 1985-2005 for southern Africa (Region A) and the 3 716 
sub-regions examined, namely Region B (Angola region), Region C (Mozambique region) and Region D (South 717 
Africa region). The x and y-axis display standardized precipitation variances. 718 
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 725 

Figure 9. Monthly precipitation change (future – present in mm/d) during October for the period 2065-2095 relative 726 
to 1985-2005. First column (from the left) displays precipitation change from the driving GCMs used and columns 2-727 
4 display the downscaled products according to RCA4.v1, CCLM4-8-17.v1 and REMO2009.v1. 728 

 729 

https://doi.org/10.5194/gmd-2021-348
Preprint. Discussion started: 18 January 2022
c© Author(s) 2022. CC BY 4.0 License.



 

31 
 

730 

Figure 9. Continued. 731 
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 737 

Figure 10. Monthly precipitation change (future – present in mm/d) during January for the period 2065-2095 relative 738 
to 1985-2005. First column (from the left) displays precipitation change from the driving GCMs used and columns 2-739 
4 display the downscaled products according to RCA4.v1, CCLM4-8-17.v1 and REMO2009.v1. 740 
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Figure 10. Continued. 743 
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 749 

Figure 11. Monthly RCMDRI – DRI spatial averages over southern Africa for the historical period (1985-2005) on the 750 
x-axis and the future period (2065-2095) under RCP8.5 on the y-axis.   751 
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 752 

Figure 12. Spatial average of the precipitation change signal (mm/d) from RCMs and their driving GCMs relative to 753 
1985-2005 for southern Africa and the 3 sub-regions examined. 754 

https://doi.org/10.5194/gmd-2021-348
Preprint. Discussion started: 18 January 2022
c© Author(s) 2022. CC BY 4.0 License.



 

36 
 

 755 

Figure 13. Analysis of variance for monthly precipitation during 2065-2095 for southern Africa (Region A) and the 756 
3 sub-regions examined, namely Region B (Angola region), Region C (Mozambique region) and Region D (South 757 
Africa region). The x and y-axis display standardized precipitation variances. 758 
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