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Abstract 13 
 14 

The region of southern Africa (SAF) is among the most exposed climate change hotspots and is projected to experience 15 

severe impacts on multiple economical and societal sectors. For this reason, producing reliable projections of the 16 

expected impacts of climate change is key for local communities. In this work we use a set of 19 regional climate 17 

models (RCMs) performed in the context of the Coordinated Regional Climate Downscaling Experiment (CORDEX) 18 

– Africa and a set of 10 global climate models (GCMs) participating in the Coupled Model Intercomparison Project 19 

Phase 5 (CMIP5), that were used as the driving GCMs in the RCM simulations. We are concerned about the degree 20 

to which RCM simulations are influenced by their driving GCMs, with regards to monthly precipitation climatologies, 21 

precipitation biases and precipitation change signal, according to the Representative Concentration Pathway (RCP) 22 

8.5 for the end of the 21st century. We investigate the degree to which RCMs and GCMs are able to reproduce specific 23 

climatic features over SAF and over three sub-regions, namely the greater Angola region, the greater Mozambique 24 

region and the greater South Africa region. We identify that during the beginning of the rainy season, when regional 25 

processes are largely dependent on the coupling between the surface and the atmosphere, the impact of the driving 26 

GCMs on the RCMs is smaller, compared to the core of the rainy season, when precipitation is mainly controlled by 27 

the large-scale circulation. In addition, we show that RCMs are able to counteract the bias received by their driving 28 

GCMs, hence, we claim that the cascade of uncertainty over SAF is not additive, but indeed the RCMs do provide 29 

improved precipitation climatologies. The fact that certain bias patterns over the historical period (1985-2005) 30 

identified in GCMs are resolved in RCMs, provides evidence that RCMs are reliable tools for climate change impact 31 

studies over SAF. 32 

 33 
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1 Introduction 37 
 38 
The region of southern Africa (SAF) is among the most exposed climate change hotspots (Diffenbaugh and Giorgi, 39 

2012) and is projected to experience severe impacts on multiple economical and societal sectors (Conway et al., 2015; 40 

Masipa, 2017; Shew et al., 2020). Poverty, food insecurity and high levels of malnutrition (Misselhorn and Hendriks, 41 

2017) render SAF a region particularly vulnerable to the impacts of climate change (Casale et al., 2010; Luan et al., 42 

2013; Wolski et al., 2020). In addition, the population’s reliance on rain-fed agriculture makes strategic planning 43 

necessary as it aims to mitigate the impact of climate change on local communities.  44 

Global climate models (GCM) participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5) (Taylor 45 

et al., 2012) project a significant decline in annual precipitation over SAF (IPCC and Stocker, 2013), with the most 46 

pronounced changes projected under representative concentration pathway 8.5 (RCP8.5) (Sillmann et al., 2013). This 47 

reduction is also identified in the regional climate model (RCM) simulations performed in the context of the 48 

Coordinated Regional Climate Downscaling Experiment (CORDEX) – Africa domain (Nikulin et al., 2012; Giorgi 49 

and Gutowski, 2015). More specifically according to CORDEX-Africa simulations, annual precipitation is expected 50 

to decline by up to 50% by the end of the 21st century (Pinto et al., 2018), while duration of dry spells is projected to 51 

increase (Dosio et al., 2019). Despite this, extreme rain events are expected to increase in frequency and intensity 52 

(Pinto et al., 2016; Abiodun et al., 2019). Nevertheless, for a global warming level of 2 oC, certain parts of SAF 53 

(northern Angola, Zambia, northern Mozambique and eastern South Africa) are projected to experience precipitation 54 

increase during specific times of the year (Maúre et al., 2018).                                                                                                                                                                                    55 

The question of whether or not RCMs produce demonstrable added value relative to their driving GCMs, has often 56 

fueled debate between the RCM and GCM modelling communities (Lloyd et al., 2020). The outcome of the debate is 57 

not binary. The literature provides ample evidence that there is indeed evidence of added value in RCMs, but it is 58 

dependent on the region examined, on the season, and the climate mechanisms that are at play (Luca et al., 2016, Feser 59 

et al., 2011). RCM ensembles such as those in CORDEX-Africa endeavor to provide added value, by dynamically 60 

downscaling historical and scenario simulations originating from coarse resolution GCMs (Dosio et al., 2019). The 61 

added value in RCM simulations arises as a result of their higher horizontal resolution (<50 km), which makes it 62 

possible for atmospheric waves and synoptic scale disturbances to be represented in a more realistic manner. An 63 

additional aspect that further contributes towards this end, is the more accurate representation of land surface 64 

characteristics (topography, land use etc.) in RCMs (Di Luca et al., 2013).  Moreover, the physics of an RCM can be 65 

targeted for processes specific to the region it is being run for, giving it a local advantage over GCMs that may have 66 

had their physics developed for global applications. Nevertheless, RCMs also are accompanied by a set of model 67 

deficiencies that affect the final output of the downscaled data (Boberg and Christensen, 2012). In Sørland et al. (2018) 68 

it is reported that although RCM biases are affected by the driving GCMs, they are nonetheless not additive, a result 69 

that counters the common “cascade of uncertainty” criticism. Still, uncertainty arising from both the driving GCM 70 

(Moalafhi et al., 2017) and the downscaling RCM affect the final product (Nikulin et al., 2012), and it is important to 71 

diagnose the sources and causes of these errors (Déqué et al., 2012). 72 



 

3 
 

Attributing this uncertainty into its respective components is key for a better assessment of the reliability of RCM 73 

simulations (Christensen and Kjellström, 2020). GCMs provide the lateral boundary conditions to the RCMs and each 74 

RCM receives, absorbs, and modulates the received atmospheric forcing in different ways, depending on the numerical 75 

formulations and parameterization schemes employed. Discerning between the signal received by the GCM and the 76 

signal produced by the RCM is critical for assessing the robustness with which different modelling systems are able 77 

to accurately reproduce observed climatologies and generate reliable estimates of the expected climate change. In 78 

addition, the manner in which an RCM responds to the atmospheric forcing provided by a GCM can be region specific 79 

(Rana et al., 2020; Wu and Gao, 2020)  (e.g., regions located in close proximity to the boundaries of the RCM domain 80 

can be more severely affected by the driving GCMs, than regions at the center of the RCM domain or there can be 81 

region specific response around complex topography versus lowlands). Also, the degree to which an RCM is 82 

influenced by the driving GCM can be process specific. For instance, when there is a strong large-scale circulation 83 

signal that is introduced to an RCM domain (e.g. advective mid-latitude storms), it is quite likely that the RCM will 84 

be able to reproduce the information that is received at its lateral boundaries, however, the GCM’s impact on the RCM  85 

simulation may also vary depending on how far a region lies from the RCM domain boundaries (Kim et al., 2020). If, 86 

however, the large-scale forcing is weak, then the atmospheric conditions simulated within the RCM domain are more 87 

dependent on the dynamic and thermodynamic processes employed by the RCM (e.g. convective thunderstorms). 88 

In this work we aim to assess whether it is the RCMs or their driving GCMs that dominate monthly precipitation 89 

climatology, monthly precipitation bias and climate change signal over SAF. We take into account the region-specific 90 

characteristics of this question by analyzing SAF and three subregions, namely southeastern Angola, Mozambique 91 

and South Africa. We also consider the different atmospheric processes that are in play over each region by analyzing 92 

monthly climatologies. Precipitation over SAF results from various atmospheric processes that are highly variable 93 

during the rainy season (Oct-Mar), so by performing the analysis on a monthly basis, we are able to indirectly study 94 

how certain processes are reproduced by GCM and RCM simulations. In order to differentiate between the signal 95 

emanating from the RCMs and their driving GCMs, we use the analysis of variance (ANOVA) in both the GCM and 96 

the RCM ensembles (Déqué et al., 2007, 2012). Since the information provided by RCMs will eventually be used by 97 

both climate and non-climate scientists, especially in light of climate change impact studies, we aim to provide some 98 

information with regards to how much each RCM output is affected by its driving GCM and what climate change 99 

signals are identified consistently in both RCMs and GCMs.  100 

 101 

2 Material and methods 102 

2.1 Data 103 

The data analyzed in the current work consist of RCM simulations performed in the context of CORDEX-Africa, a 104 

set of simulations performed in the context of CMIP5, and the CHIRPS satellite rainfall product (Funk et al., 2015). 105 

More specifically, the CORDEX-Africa simulations selected are those that were driven by more than two GCMs (at 106 

least three simulations available using the same RCM driven by at least three different GCMs) and for which there are 107 

runs available for both the historical and the future period under RCP8.5. All RCMs employed a relaxation zone which 108 
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was either 10 grid-points wide (CCLM4-8-17.v1) or eight points wide (RCA4.v1 and REMO2009.v1). Relaxation in 109 

all RCM simulations was performed using Davie’s method (Davies, 1976, 1983). The CMIP5 GCMs selected are the 110 

ones that were used to drive the CORDEX-Africa simulations. All RCM and GCM simulations were retrieved from 111 

the Earth System Grid Federation (https://esgf-data.dkrz.de/projects/esgf-dkrz/). The CHIRPS rainfall product is used 112 

for calculating precipitation biases in both the CORDEX-Africa and CMIP5 ensembles and was retrieved from: 113 

https://www.chc.ucsb.edu/data/chirps. CHIRPS is available at 5 km spatial resolution and for the calculation of biases 114 

it was remapped to the coarser resolution grid using conservative remapping. A fact that is commonly obscured is that 115 

observational datasets are often considered as “ground truth” however, they also are subject to multiple sources of 116 

uncertainty, caused by the underlying station datasets used, the statistical algorithms employed in spatially interpolated 117 

methods or the algorithms employed in satellite rainfall products (Le Coz and van de Giesen, 2020). More specifically, 118 

over southern Africa, it was found that gauge-based products employing spatial interpolation methods displayed high 119 

uncertainty over regions where the underlying station network was scarce, mainly over the Angola region and the 120 

northern parts of SAF (Karypidou et al., 2022). In addition, it was found that this attribute was inherited by all rainfall 121 

satellite products that were using direct merging techniques with gauge-based datasets. Here, we display monthly 122 

precipitation during the historical period (1985-2005) across four observational datasets, given in Table 1. More 123 

specifically, we use the CRUv4.06 dataset (Harris et al., 2020), which is a purely gauge-based product (employing 124 

station data and a spatial interpolation algorithm to provide a spatially continuous gridded product), ERA5 (Hersbach 125 

et al., 2020), which is a reanalysis product, CHRIPS (Funk et al., 2015), which is a satellite rainfall product, and 126 

finally, MSWEP (Beck et al., 2017) which is a product merging station data, satellite data and dynamic model outputs. 127 

All datasets have been analyzed using monthly mean values. The results are displayed in Fig. 1. As shown, there is a 128 

substantial agreement among them both with regards to the spatial and temporal pattern of monthly precipitation over 129 

southern Africa. 130 

 131 

Table 1 Gauge-based, satellite, reanalysis and merged precipitation products analyzed over the study region using 132 
monthly mean precipitation for the period 1985-2005. 133 

Dataset Resolution Frequency Type Period 
CRU TS4.06 0.5o Monthly total Gauge-Based 1901-2021 

MSWEP 0.1o 3-hourly Merged product 1979-present 

CHIRPS.v2 0.05o Daily totals Satellite 1981-present 

ERA5 ~0.25 o Hourly Reanalysis 1979-present 

 134 

Our analysis is split into two sections: the qualitative and the quantitative part. In the qualitative part, we aim to 135 

identify if RCMs exhibit systematic behavior relative to their driving GCMs. For the quantitative part, we aim to 136 

quantify the degree to which monthly precipitation climatologies, biases and climate change signal      are affected by 137 

the downscaled RCMs or by the GCMs driving the RCM simulations. For this purpose, we employ an ensemble of 19 138 

RCM simulations driven by 10 GCMs and the driving GCMs that were used to provide the lateral boundary conditions 139 

to the RCMs. From the historical simulations we use the period 1985-2005 and from the projection simulations we 140 

use the period 2065-2095 under RCP8.5. All CORDEX-Africa simulations are available at ~50 km horizontal 141 

resolution and are shown in Table 1, while the horizontal resolution for the driving GCMs is provided in Table 3. 142 

 143 

https://esgf-data.dkrz.de/projects/esgf-dkrz/
https://www.chc.ucsb.edu/data/chirps
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Table 2 Input RCM and GCM simulations used. The CORDEX-Africa simulations are given in the columns. The 144 
CMIP5 GCMs used as driving fields are given in the rows. 145 

 CCLM4-8-17.v1 RCA4.v1 REMO2009.v1 

CanESM2   √   

CNRM-CM5 √ √   

EC-EARTH √ √ √ 

HadGEM2-ES √ √ √ 

MIROC5   √ √ 

MPI-ESM-LR √ √ √ 

IPSL-CM5A-LR   √ 

IPSL-CM5A-MR  √  

CSIRO-Mk3-6-0  √  

GFDL-ESM2M  √  

NorESM1-M  √  

 146 

Table 3 Horizontal resolution of the CMIP5 GCMs used as driving fields in the CORDEX-Africa simulations. 147 

GCMs Latitude Res. Longitude Res. References 
CanESM2 2.7906 o 2.8125 o (CCCma, 2017) 

CNRM-CM5 1.40008 o 1.40625 o (Voldoire et al., 2013) 

CSIRO-Mk3-6-0 1.8653 o 1.875 o (Jeffrey et al., 2013) 

EC-EARTH 1.1215 o 1.125 o (Hazeleger et al., 2010) 

GFDL-ESM-2M 2.0225 o 2.5 o (Dunne et al., 2012) 

HadGEM2-ES 1.25 o 1.875 o (Collins et al., 2011) 

IPSL-CM5A-MR 

 

 

IPSL-CM5A-LR 

1.2676 o 2.5 o  

(Dufresne et al., 2013) 

1.894737 o 3.75 o 

MIROC5 1.4008 o 1.40625 o (Watanabe et al., 2010) 

MPI-ESM-LR 1.8653 o 1.875 o (Giorgetta et al., 2013) 

NorESM1-M 1.894737 o 2.5 o (Bentsen et al., 2013) 

 148 

2.2 Methods 149 

The study region and subregions considered are depicted in Fig. 2. The subregions are selected based on particular 150 

phenomena and processes that are of importance for the seasonal cycle of precipitation. More specifically, Region A 151 

(hereafter: SAF-All) encompasses the entire SAF region and is defined as the area extending from 10 oE to 42 oE  and 152 

from 10 oS to 35 oS. Region B (hereafter: Angola region) was selected to capture the main region of interest with 153 

regards to the Angola Low (AL) pressure system (Howard and Washington, 2018) and covers the area extending from 154 

14 oE to 25 oE  and from 11 oS to 19 oS. Region C (hereafter: East Coast) covers the eastern coastline, Mozambique and 155 

surrounding countries and extends from 31 oE to 41 oE  and from 10 oS to 28 oS. Lastly, we define the SAfr region, 156 

which covers  much of South Africa and extends from 15 oE to 33 oE  and from 26 oS to 35 oS. 157 

One of the primary synoptic scale features controlling precipitation over SAF is the Angola Low (AL) pressure system 158 

(Reason and Jagadheesha, 2005; Lyon and Mason, 2007; Crétat et al., 2019; Munday and Washington, 2017; Howard 159 

and Washington, 2018), which has a distinct seasonal cycle throughout the rainy season (Oct-Mar). This motivates its 160 
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selection as a subregion for our study. The AL exhibits heat low characteristics during Oct-Nov and tropical low 161 

characteristics during Dec-Feb (Howard and Washington, 2018). This suggests that during Oct-Nov, since 162 

precipitation is thermally induced and thus tightly dependent on land-atmosphere interactions, it will be the RCMs 163 

that are dominant in controlling precipitation processes. As the rainy season progresses, the AL changes to a tropical 164 

low pressure system and its formation is controlled  by the large-scale circulation that is  characterized by easterly 165 

winds from the Indian Ocean that enter SAF via the Mozambique channel. Since precipitation during Dec-Feb is 166 

caused by the tropical low phase of the Angola low pressure system, which is the monthly aggregate of frequent 167 

transient low pressure systems crossing southern African (Munday and Washington, 2017; Howard and Washington, 168 

2018; Howard et al., 2019), we hypothesize that the impact of the driving GCM fields during Dec-Feb is enhanced.       169 

In addition, the wider area of Mozambique is a region where the majority of tropical cyclones/depressions make 170 

landfall over continental SAF. The occurrence of transient low-pressure systems is enhanced during the core of the 171 

rainy season (Dec-Feb) and thus we are interested in identifying whether the impact of the driving GCMs is dominant 172 

during Dec-Feb. Also, since according to (Muthige et al., 2018), the number of landfalling tropical cyclones under 173 

RCP8.5 is expected to decline in the future, we are interested in examining whether the impact of the driving GCMs 174 

to the RCM simulations will be altered under future conditions. Hence, the East Coast region is used as a region 175 

indicative of the landfalling tropical cyclones/depressions. Lastly, we examine the area encompassing South Africa 176 

(hereafter: SAfr) due to its strong land-ocean gradients, complex topography and strong seasonal variations in rainfall 177 

zones.   178 

   179 

2.2.1 Monthly precipitation climatology and bias 180 

In order to assess whether or not the RCMs improve the monthly precipitation climatologies relative to their driving 181 

GCMs, we employ a method initially described in Kerkhoff et al. (2015) and later employed by Sørland et al. (2018), 182 

which displays in a scatterplot form the RCM increment as a function of the GCM bias. More specifically, the RCM 183 

increment is described as the difference of each RCM simulation from its driving GCM (RCM-GCM). The RCM 184 

increment is plotted against the GCM bias (GCM-OBS). This plot displays whether or not the RCM increment 185 

counteracts the GCM bias. If the RCM increment reduces the GCM bias, then points are expected to lie along the y=-186 

x line (negative correlation). On the contrary, if the RCM increment increases the GCM bias, then points are expected 187 

to lie along the y=x line (positive correlation). If the RCM increment and the GCM bias are independent, then points 188 

are expected to be scattered randomly. 189 

 190 

2.2.2 Climate change signal 191 

The climate change signal (CCS) is identified as the monthly mean difference between the future period (2065-2095) 192 

minus the historical period (1985-2005). As an exploratory method of inspecting the differences between each RCM 193 

simulation from its respective driving (GCM) for monthly precipitation during both the historical and the future period, 194 

we subtract the downscaled precipitation field (RCMDRI) from its driving (DRI), as in Eq.  1: 195 

 𝐷𝐼𝐹𝐹 =  𝑅𝐶𝑀𝐷𝑅𝐼 − 𝐷𝑅𝐼 Eq.  1 
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If DIFF>0 (monthly precipitation), then we assume that the RCM enhances precipitation, relative to its driving GCM, 196 

while if DIFF<0 then we assume that the RCM reduces precipitation, relative to its driving GCM. This method is 197 

employed in the qualitative part of the analysis.  198 

 199 

2.2.3 Analysis of variance 200 

Additionally, we employ an ANOVA decomposition (Déqué et al., 2007, 2012), in order to understand whether it is 201 

the RCMs or their respective driving GCMs that are responsible for controlling precipitation over the historical (1985-202 

2005) period and the future period (2065-2095). For this purpose, we use two quantities, namely the “inter-RCM” 203 

variance and the “inter-GCM” variance, as in (Déqué et al., 2012). More specifically, the “inter-RCM variance” is the 204 

variance between all the RCM simulations that are driven by the same GCM. Subsequently, all variances obtained for 205 

all driving GCMs are averaged.  206 

 
𝑅𝐶𝑀𝑣𝑎𝑟 =

1

𝑁𝑅𝐶𝑀

𝛴𝑅𝐶𝑀𝑗
(𝑃𝑗 − 𝑃𝑗)

2
 

Eq.  2 

The quantity Pj is the monthly precipitation obtained from all RCMs (j) that were driven by the same GCM. The 207 

quantity Pj is the mean monthly precipitation obtained by all RCMs (j) that share a common driving GCM. As a final 208 

step, the average of all variances is calculated. 209 

 
𝐼𝑛𝑡𝑒𝑟_𝑅𝐶𝑀𝑣𝑎𝑟 =

∑𝐺𝐶𝑀𝑗

𝑁
 

  Eq.  3 

 

Similarly, the “inter-GCM” variance describes the variance between all the GCMs that were used to drive a single 210 

RCM and then averaged over all the variances obtained for all driven RCMs. N refers to all available simulations 211 

contributing to either the inter-RCM or inter-GCM variance.                    212 

 
𝐺𝐶𝑀𝑣𝑎𝑟 =

1

𝑁𝐺𝐶𝑀

𝛴𝐺𝐶𝑀𝑖
(𝑃ⅈ − 𝑃ⅈ)

2
 

Eq.  4 

 

Likewise, the average of all variances is calculated. 213 

 
𝐼𝑛𝑡𝑒𝑟_𝐺𝐶𝑀𝑣𝑎𝑟 =

∑𝑅𝐶𝑀ⅈ

𝑁
 

Eq.  5 

 

Both “inter-RCM” and “inter-GCM” variances are normalized by the total variance obtained for all months, as in 214 

(Vautard et al., 2020), so that all values, both for historical and projection runs and RCM and GCM simulations are 215 

comparable. A schematic of the process described above is provided in Fig. S1.  216 

3 Results 217 

The October and January precipitation climatologies for the period 1985-2005 are displayed in Fig. 3 and Fig. 4, 218 

respectively. We use October and January climatologies, because these 2 months may be considered  representative       219 

of the distinctive processes controlling precipitation over SAF (see section 2.2). We avoid using seasonal means, since 220 

the temporal averaging of precipitation often obscures attributes that are better identified on a monthly level. The 221 

remaining months of the rainy season are shown in the supplementary material. More specifically, we use October as 222 

it is the month that heralds the onset of the rainy season and is often associated with weak precipitation and convective 223 

processes that are mainly due to excess surface heating. Also, it is during October that the most intense formations of 224 

the heat low expression of the AL are observed. Likewise, we use January as it represents the core of the rainy season, 225 
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with very strong large-scale precipitation, mainly from the southeastern (SE) part of SAF, through transient synoptic 226 

scale low pressure systems. 227 

As it is displayed in Fig. 3, precipitation during October occurs in the northwestern (NW) part and the SE part of SAF. 228 

Precipitation in the NW part is associated with the southward migration of the rainband (Nicholson, 2018), while 229 

precipitation over the SE part is associated with an early formation of the tropical temperate troughs (TTTs). As it is 230 

evident from Fig. 3, CCLM4-8-17.v1 reduces precipitation amounts (approximately 4-5 mm/d) in both the NW and 231 

SE parts of SAF, relative to the lateral boundary forcing it receives. On the contrary, RCA4.v1 systematically enhances 232 

precipitation amounts, regardless of the driving GCM. Also, precipitation according to RCA4.v1 displays a very 233 

localized spatial pattern with very strong spatial heterogeneity. This attribute is indicative of specific structural model 234 

biases related to how high-resolution elevation affects precipitation in RCA.v1 (Van Vooren et al., 2019). This is 235 

particularly evident in the mountainous region over coastal Angola. REMO2009.v1 also enhances precipitation 236 

amounts regardless of the driving GCM, however in a much more spatially homogeneous way than RCA4.v1. 237 

 238 

As it is shown in Fig. 4, high precipitation amounts during January are observed over the northern and eastern regions 239 

of SAF. During January, differences among the driving GCMs become more pronounced, however, all models agree 240 

on the dry conditions observed over the southwestern (SW) part of SAF. With regards to the downscaled products, 241 

CCLM4-8-17.v1 produces high precipitation amounts over the central part of northern SAF but displays varying 242 

amounts of precipitation over the coastal parts, depending on the driving GCM. RCA4.v1 downscales precipitation in 243 

a very localized pattern and enhances precipitation over areas with steep terrain. Also, precipitation over the lake 244 

Malawi region is particularly enhanced, regardless of the driving GCM. REMO2009.v1 displays similar precipitation 245 

amounts to its driving GCMs, however it enhances precipitation over the coastal part of Angola and Mozambique and 246 

yields excess precipitation over lake Malawi, when it is driven by HadGEM2-ES and IPSL. The monthly climatologies 247 

for the rest of the rainy season months are shown in the supplementary material (Fig. S2 – S5). 248 

 249 

In Fig. 5 the monthly precipitation bias for October over SAF is shown. Biases are calculated using the CHIRPS 250 

satellite rainfall product as a reference. With the exception of IPSL-CM5A (LR/MR) and CanESM2, all other GCMs 251 

display a consistent wet bias that ranges from 0.1 – 30 mm/d (in isolated areas), with most values over SAF falling 252 

0.1-3 mm/d. Overall, the same pattern generally holds for RCA4.v1 and REMO2009.v1, while CCLM4-7-18.v1 253 

displays a systematic dry bias that reaches 2 mm/d, when forced with EC-EARTH, MPI-ESM-LR and HadGEM2-ES. 254 

More specifically, concerning RCA4.v1, the region where the highest wet bias is observed is over the Angola region 255 

and over the NW parts of coastal Angola. The dry bias regions in RCA4.v1 are identified over the northeastern (NE) 256 

and southern parts of SAF and they rarely exceed -1.5 mm/d.  257 

Τhe monthly precipitation biases for January over SAF are shown in Fig. 6. There is a prevailing wet bias identified 258 

in almost all GCMs that typically reaches 3 - 3.5 mm/d, however, in MIROC5, NorESM and GFDL-ESM2M the 259 

biases exceed 5 mm/d over a major part of SAF. Another feature that systematically appears in GCMs is a dry bias 260 

over the NE part of SAF. This bias pattern is also identified in almost all RCMs with a systematic wet bias over central 261 

and western SAF and a region of dry bias in the NE part. More specifically, in RCA4.v1 and REMO2009.v1, there is 262 
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a dry bias over the NE and the southern coast of SAF, while in CCLM4-7-18.v1 the dry bias over the eastern region 263 

extends inland to cover almost the whole of Mozambique. Another interesting feature is identified around the Angolan 264 

coast, where wet biases exceed 5 mm/d, while over an adjacent region there is a strip of dry biases that reaches 2 265 

mm/d. Considering the abrupt increase in elevation and the steep escarpment over the coastal Angola-Namibia region, 266 

this is possibly caused by local circulation driving excess moisture transport from the Atlantic Ocean and overly 267 

aggressive orographically triggered precipitation on the windward side of the topography (wet bias strip), that leads 268 

to dry conditions in the lee side (dry bias strip) (Howard and Washington, 2018). It is noted that the wet bias over the 269 

coastal region is identified in most of the RCA4.v1 simulations and in all REMΟ2009.v1 simulations, however, the 270 

dry bias in the lee side is seen in CCLM4-7.18.v1 only. The monthly precipitation biases for the rest of the rainy 271 

season months are shown in the supplementary material (Fig. S6 – S9). Monthly precipitation biases averaged over 272 

southern Africa (SAF-All) and the three subregions examined are displayed in Fig. S10. 273 

 274 

A more detailed look into specific subregions over SAF where certain climatological features and processes are at 275 

play, can help gain a more in-depth insight of how the precipitation biases are distributed during each month of the 276 

rainy season and whether or not the RCMs display any improvement relative to their driving GCMs. For this reason, 277 

we plot the RCM increments (RCM-GCM) as a function of the GCM biases (GCM-OBS). The results for October 278 

over SAF and the 3 subregions are displayed in Fig. 7. In general, all points are identified close to the y=-x line, hence 279 

there is a tendency that RCMs systematically counteract GCM biases. There are nonetheless substantial differences 280 

between the four regions. For instance, over SAF-All region the IPSL-MR GCM has a wet bias equal to almost 1 281 

mm/day, which is counteracted by RCA by an increment of -0.4 mm/month. Other RCA simulations when driven by 282 

HadGEM2-ES, CNRM-CM5 or EC-EARTH, display an RCM increment similar to that of the GCM bias, hence RCMs 283 

mitigate the GCM bias. Over the Angola region most of the RCMs display an RCM increment that is nearly equal to 284 

the GCM bias. Similar conclusions are drawn for Regions C and D also. The RCM increments as a function of the 285 

GCM biases for January are shown in Fig. 8. For all regions except the SAfr region points are lying closely to the y=-286 

x line, hence overall, RCM increments counteract the GCM biases. The scatterplots for the rest of the months of the 287 

rainy season are shown in the supplementary material (Fig. S11 – S14). In general, although precipitation in RCMs is 288 

strongly dependent on the driving GCMs, the RCM increments are anticorrelated to the GCM biases. The 289 

anticorrelations are particularly strong for the Dec-Mar period of the rainy season over SAF-All region, B and C, but 290 

not over D (Fig. S15).                    291 

In Fig. 9 the mean analysis of variance of all RCMs driven by the same GCM and of all GCMs driving the same RCM 292 

is shown. Values are spatially averaged for southern Africa and the 3 subregions examined (land pixels only) and refer 293 

to the period 1985-2005. In SAF-All region, monthly precipitation during October and November is dominated by the 294 

RCMs, while during Jan-Mar, it is the GCMs that play a dominant role in formulating precipitation over SAF. This is 295 

indicative of the impact that RCMs exert on the formulation of precipitation during Oct-Nov-Dec and the fact that the 296 

contribution from the GCMs becomes dominant during Jan-Feb-Mar. The fact that the contribution of RCMs during 297 

Oct-Nov-Dec dominates can be attributed to the fact that precipitation during these months is the result of regional 298 
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processes that are largely dependent on the coupling between the surface and the atmosphere. The land-atmosphere 299 

coupling is a characteristic resolved by the RCMs, through mechanisms described in land surface models, planetary 300 

boundary layer schemes, convection schemes etc., making the contribution of the large scale drivers from the GCM 301 

less important. However, during Jan-Feb-Mar we observe that the contribution from the RCMs is reduced, and it is 302 

the GCMs that control the monthly precipitation variability. This can be attributed to the fact that during Jan-Feb-Mar 303 

it is the large-scale circulation that modulates precipitation over SAF and the GCMs control the transient synoptic 304 

scale systems that enter SAF. Over the Angola region, the pattern is similar, however, October and November 305 

precipitation are closer to the diagonal, indicating an almost equal contribution by both RCMs and GCMs. Also, Dec-306 

Feb move closer to the diagonal, nevertheless, precipitation during March is mainly formulated by GCMs. Over the 307 

East Coast region, October remains equally influenced by both RCMs and GCMs, however November and December 308 

are dominated by the influence of the RCMs. Over the SAfr region, precipitation for all months except October is 309 

influenced by GCMs. 310 

In Fig. 10 the climate change signal for October precipitation over SAF is depicted. All GCMs agree that October 311 

precipitation  will decline by approximately 2 mm/d over the regions that experience precipitation during this period, 312 

namely the NW and SE parts of SAF. In addition, some GCMs display a minor precipitation increase (0 - 0.5 mm/d) 313 

in the SW part of SAF, while some others display a slightly larger (1.5 mm/d) precipitation increase over the eastern 314 

parts of South Africa. Moreover, it is seen that the precipitation change signal is replicated by almost all the 315 

downscaling RCMs, nevertheless, there are some considerable differences between the RCMs and their driving GCM. 316 

More specifically, RCA4.v1 in almost all simulations, displays a larger reduction of the precipitation change signal 317 

relative to its driving GCM, both in magnitude and in spatial extent. Precipitation changes in CCLM4-8-17.v1 seem 318 

to follow closely the driving GCMs, with a severe exception when CNRM-CM5 is used (the NW part of SAF 319 

experiences precipitation decline almost 4 mm/d larger than in the driving GCM). The case for when CCLM4-8-17.v1 320 

is driven by CNRM-CM5 may be partly caused by the fact that the historical simulation had erroneously used lateral 321 

boundary conditions from a different simulation member of CNRM-CM5 (Vautard et al., 2020). In REMO2009.v1, a 322 

precipitation decline region is identified in the NW part of SAF and a minor precipitation increase over eastern South 323 

Africa is identified. This pattern for REMO2009.v1 appears to be consistent, regardless of the driving GCM, which 324 

could be partly explained by the fact that precipitation during October is thermally driven, and thus the impact of the 325 

driving GCMs is not dominant. The precipitation increase in the SE part of SAF is seen over a localized region and 326 

could be associated with an increase in the precipitation caused by the Tropical Temperate Troughs (TTTs) (Ratna et 327 

al., 2013; Macron et al., 2014; Shongwe et al., 2015).  328 

In Fig. 11 the climate change signal for precipitation during January is displayed. The precipitation change displays a 329 

very strong regional heterogeneity. It is also observed that although there is a strong precipitation change signal in all 330 

driving GCMs, not all RCMs downscale the signal uniformly. It is also notable that, even among the GCMs, there are 331 

substantial differences in the spatial extent and sign of the change. Nevertheless, there are some features that appear 332 

in most of the simulations. For instance, almost all GCMs project drying conditions over the SW part of SAF,      333 

especially the coastal zone. The precipitation decline is equal to -1 mm/d. This could be explained by a consistent 334 
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increase in frequency of the Benguela Coastal Low-Level Jet events (Lima et al., 2019; Reboita et al., 2019), causing 335 

oceanic upwelling and a subsequent reduction in precipitation. In addition, there is a subset of GCMs that identify a 336 

severe precipitation decline over the Angola region that reaches -5 mm/d. Furthermore, in many GCMs a region of 337 

precipitation increase is identified, extending from central SAF towards SE SAF. This is particularly identifiable in 338 

HadGEM2-ES, and the RCM simulations forced by it. The monthly precipitation changes for the rest of the rainy 339 

season months is shown in the supplementary material (Fig. S16 – S19).                   340 

In Fig. 12 the spatial average of the RCMDRI – DRI difference (DIFF) is shown for the whole of SAF (land pixels 341 

only). If DIFF>0, it indicates that the RCMs enhance precipitation relative to their driving GCM, while if DIFF<0 342 

then RCMs reduce precipitation relative to their driving GCM. As it is shown, DIFF values for October are symmetric 343 

around zero and do not exceed the range (-1) – 1 mm/d, either for the historical or the future period. Almost symmetric 344 

are the DIFF values for November also, however, their spread increases, reaching values that range (-2) – 2 mm/d. In 345 

both months, CCLM4-7-18.v1 always reduces precipitation amounts relative to the lateral boundary forcing it 346 

receives, regardless of the driving GCM or the period examined. During December, the precipitation reduction in all 347 

RCMs becomes more pronounced and reaches values equal to -3 mm/d. In January, only 1 RCM enhances 348 

precipitation (~0.5 mm/d) with all the rest displaying precipitation reduction. During February and March, some 349 

positive DIFF values re-appear for some simulations. Overall, there is a strong linear relationship between DIFF in 350 

1985-2005 and 2065-2095, which further implies that if an RCM is drier than its driving GCM during the historical 351 

period, then it will retain this attribute during the future period also. Nonetheless, we highlight that RCMs preserve 352 

precipitation change signal generated by the GCMs. Considering that one primary shortcoming of the GCMs over 353 

SAF is their wet bias and that RCMs systematically reduce this bias, we gain increased confidence that RCMs can be 354 

reliably used for future projections with regards to precipitation change. 355 

In Fig. 13 the spatial average of the precipitation change signal from RCMs and their driving GCMs relative to 1985-356 

2005 for SAF and the 3 subregions is displayed. Concerning SAF-All region, all models during October identify a 357 

precipitation reduction at the end of the 21st century that can reach -0.9 mm/d. The precipitation decline signal is also 358 

identified during November, indicating a later onset of the rainy season over SAF, as it has already been shown for 359 

CMIP5 (Dunning et al., 2018). During December and January there is a variability in the spatial averages of the change 360 

signal that ranges from -0.8 to 0.8 mm/d. A similar pattern is also seen for February and March. The distribution of 361 

the ensemble members for both RCMs and GCMs in Regions B and C is similar to that of SAF-All region, however 362 

in Regions B and C precipitation change values display a considerably larger spread. Over the SAfr region the climate 363 

change signal is symmetric around 0 for all months, except March. 364 

The impact the RCMs and GCMs on monthly precipitation for the period 2065-2095 under RCP8.5 is shown in Fig. 365 

14. Regions A and B show a similar behavior as in the historical period (Fig. 9), however, over the East Coast region, 366 

precipitation during March is more strongly dominated by GCMs. The same observation holds also over the SAfr 367 

region. In general, regional processes continue to dominate contributions to variability during Oct-Nov, while large 368 

scale features dominate during Dec-Mar. 369 
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 370 

3 Discussion and conclusions 371 

In this work we investigate whether it is the RCMs or the driving GCMs that control the monthly precipitation 372 

variability, monthly precipitation biases and the climate change signal over southern Africa and how these 373 

relationships vary from month-to-month throughout the rainy season. Our work examines monthly precipitation 374 

variance caused by the lateral boundary conditions and does not examine parameter and structural uncertainty 375 

separately in the multi-RCM and the multi-GCM ensembles analyzed. More specifically, we use an ensemble of 19 376 

RCM simulations performed in the context of CORDEX-Africa and their driving GCMs. According to the literature 377 

(Munday and Washington, 2018), precipitation in the CMIP5 simulations  is characterized by a systematic wet bias 378 

over southern Africa. In the CORDEX-Africa RCM simulations there is also a persistent wet bias, especially during 379 

the core of the rainy season (DJF), however, it is of smaller magnitude and of smaller spatial extent.. It is found that 380 

all RCMs  reduce monthly precipitation compared to their driving GCMs for both historical (1985-2005) and future 381 

period (2065-2095) under RCP8.5.      382 

The Angola region, which encompasses the activity of the Angola Low pressure system, displays the highest wet 383 

biases with regards to mean monthly precipitation, among all subregions examined. The months with the largest wet 384 

biases (for the Angola region) is found to be November, while the month with the largest precipitation bias spread is 385 

found to be March. In all months except of October, the CMIP5 GCMs display biases that are approximately 1-1.5 386 

mm/d wetter than the wettest CORDEX-Africa RCM ensemble members. Over the East Coast region, representing 387 

the wider area over Mozambique, the bias signal is reversed after January, with most of the RCMs displaying a dry 388 

bias. Over the SAfr region, the majority of models display a consistent wet bias for all months of the rainy season. All 389 

models (CMIP5 and CORDEX-Africa) display an intense dry bias in the NE part of SAF, which can be related to the 390 

misrepresentation of the moisture transport entering the region from the Indian Ocean (Munday and Washington, 391 

2018). In general, although RCMs display an improvement of precipitation biases relative to their driving GCMs, still 392 

some bias patterns persist even in RCMs, calling for a process-based evaluation of specific climatological features 393 

such as the formulation of the Angola Low and the transport of moisture from the NE part of SAF towards central 394 

SAF. 395 

More specifically, we found that CCLM4-7-18.v1 produces the smallest bias when the whole of SAF is examined, 396 

however, it displays a systematic dry bias over the East Coast region (greater Mozambique region), hence, CCLM4-397 

7-18.v1 should be used with caution over eastern SAF, especially if it is exploited within drought-related climate 398 

services. Concerning RCA4.v1, we find a very regionally heterogeneous -almost pixelated- spatial pattern for 399 

precipitation, which can be attributed to the sharp topography used (Van Vooren et al., 2019). RCA4.v1, due to the 400 

large size of its ensemble, is optimal for analyzing its behavior under different driving GCMs. In general, we find that 401 

RCA4.v1 is more prone to follow the signal received from the driving GCMs, contrary to what is observed for 402 

CCLM4-7-18.v1. REMO2009.v1 presents a compromise between the behaviors of RCA4.v1 and CCLM4-7-18.v1. 403 

It is highly recommended that when RCM simulations are used for the whole of SAF or a subregion thereof, the spread 404 

and statistical properties of all available RCMs and their driving GCMs should be examined and an ensemble of RCMs 405 

should be employed based on their ability to reproduce key climatic features of the region of interest. Increasing 406 
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evidence is provided that not all models are fit for constructing an ensemble mean (or median) for all regions (Her et 407 

al., 2019; Raju and Kumar, 2020; Tebaldi and Knutti, 2007). Lastly, a very important aspect when the calculation and 408 

characterization of biases is discussed for GCMs and RCMs, is that biases are assessed based on a satellite or gauge-409 

based product, which are often erroneously regarded as “the ground truth” (Harrison et al., 2019; Alexander et al., 410 

2020). Of course, the climate community is bound to work with the state-of-the-science products that are available, 411 

however, biases and errors in the “observational datasets” should be kept in mind when the bias of climate models is 412 

discussed. In this work we use the CHIRPS precipitation product, as it has been shown to outperform other satellite 413 

precipitation products (Toté et al., 2015; Ayehu et al., 2018; Dinku et al., 2018).  414 

Concerning the climate change signal, there is a strong agreement among all GCMs and RCMs that precipitation 415 

during October will decrease by (-0.1) – (-1) mm/d, a fact associated with a projected later onset of the rainy season, 416 

which is further linked with a northward shift of the tropical rain belt (Dunning et al., 2018; Lazenby et al., 2018). 417 

The topic of reduced early rainfall over southern Africa for the end of the 21st century under all emission 418 

scenarios/pathways has been examined extensively for the CMIP3 and CMIP5 GCM ensembles (Seth et al., 2011; 419 

Cook and Vizy, 2021; Lazenby et al., 2018; Howard and Washington, 2019). A common observation in all CMIP5 420 

GCMs for the early rainy season by the end of the 21st century is that instability over southern Africa reduces, surface 421 

temperature increases, and the heat low phase of the Angola Low pressure system is strengthened (Howard and 422 

Washington, 2019). However, rainfall decline in the CMIP5 ensemble over southern Africa should be additionally 423 

considered in the context of the systematic precipitation biases already diagnosed in the historical simulations 424 

(Munday and Washington, 2018; Howard and Washington, 2019). Considering that the systematic wet precipitation 425 

bias is significantly reduced in the CORDEX-Africa ensemble relative to their driving CMIP5 GCMs (Karypidou et 426 

al., 2022), we gain confidence that future precipitation projections according to the CORDEX-Africa ensemble 427 

provide a more plausible future scenario. For the rest of the months, the results are variable, indicating the need for a 428 

multi-model approach, when climate change impacts are assessed. A feature that is identified in some GCMs and is 429 

transferred to the downscaling RCMs, is a precipitation increase that extends from the central SAF region towards the 430 

southeast. This result is consistent with previous work that  shows an increase in frequency of landfalling cyclones 431 

along the eastern seaboard of SAF (Muthige et al., 2018). Since tropical cyclones are a particular cause of severe 432 

flooding events over the region of Mozambique, there is an urgent need for planning and mitigation strategies over 433 

the region.  434 

Concerning precipitation variability and whether it is the RCMs or the driving GCMs that dominate monthly 435 

precipitation, we find that, as expected, over the whole of SAF (SAF-All region), October and November are 436 

dominated by RCMs, while during Dec-Mar it is the GCMs that mainly formulate the precipitation climatologies. This 437 

is explained by the fact that after December there is a strong large-scale forcing, which is provided to the RCMs by 438 

the lateral boundary conditions given through the GCMs. The results for the historical period are comparable to that 439 

for future projections. 440 

Lastly, it is imperative to highlight that the impact of the lateral boundary conditions on RCM simulations comprise 441 

only a portion of the potential sources of uncertainty in the CORDEX-Africa ensemble examined, therefore attributing 442 

entirely the variance of RCM simulations to the driving GCMs would be erroneous. Therefore, we mention that 443 
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uncertainty in RCM simulations can have a plethora of sources that are mainly categorized as parameter or structural 444 

uncertainty (Günther et al., 2020; Howland et al., 2022). These types of uncertainty sources may relate to the 445 

parameterization schemes employed by each RCM or assumptions and numerical choices involved in the dynamics 446 

of each specific RCM. However, since within CORDEX-Africa only a limited number of variables is being made 447 

available to the community, it would be impossible to meticulously comment on all possible sources of uncertainty 448 

and access the impact of their variance on monthly precipitation. 449 

Code and data availability 450 

For the data processing and statistical analysis we used the R Project for Statistical Computing (https://www.r-451 

project.org/), the Climate Data Operators (CDO) (https://code.mpimet.mpg.de/projects/cdo/) and Bash programming 452 
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 689 

Figure 1. Monthly mean precipitation climatology for the period 1985-2005. 690 
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 691 

Figure 2. Study region and subregions over southern Africa. 692 
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 704 

Figure 3. Monthly precipitation climatologies (mm/d) during October for the period 1985-2005. First column (from 705 
the left) displays precipitation from the driving GCMs and columns 2-4 display the downscaled precipitation output       706 
from RCA4.v1, CCLM4-8-17.v1 and REMO2009.v1. 707 

 708 



 

22 
 

 709 

Figure 3. Continued. 710 
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 716 

Figure 4. Monthly precipitation climatologies (mm/d) during January for the period 1985-2005. First column (from 717 
the left) displays precipitation from the driving GCMs and columns 2-4 display the downscaled precipitation output             718 
from RCA4.v1, CCLM4-8-17.v1 and REMO2009.v1. 719 

 720 



 

24 
 

 721 

Figure 4. Continued. 722 
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 728 

Figure 5. Monthly precipitation bias (model – CHIRPS in mm/d) during October for the period 1985-2005. First 729 
column (from the left) displays the biases in the driving GCMs and columns 2-4 display the biases in the downscaled 730 
precipitation output according to RCA4.v1, CCLM4-8-17.v1 and REMO2009.v1. 731 

 732 



 

26 
 

 733 

Figure 5. Continued. 734 
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 740 

Figure 6. Monthly precipitation biases (model – CHIRPS in mm/d) during January for the period 1985-2005. First      741 
column (from the left) displays precipitation biases from the driving GCMs used and columns 2-4 display the 742 
downscaled products according to RCA4.v1, CCLM4-8-17.v1 and REMO2009.v1. 743 
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Figure 6. Continued. 746 
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 752 

Figure 7. Scatterplots of the RCM increment (RCM-GCM) for precipitation (mm/day) as a function of the GCM bias 753 
(GCM-OBS) for October. Colors indicate the driving GCM and shapes indicate the downscaling RCMs. The four 754 
panels indicate spatial averages over southern Africa (SAF-All region), the Angola region, the East Coast region and 755 
the SAfr region. 756 
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 757 

Figure 8. Scatterplots of the RCM increment (RCM-GCM) for precipitation (mm/day) as a function of the GCM bias 758 
(GCM-OBS) for January. Colors indicate the driving GCM and shapes indicate the downscaling RCMs. The four 759 
panels indicate spatial averages over southern Africa (SAF-All region), the Angola region , the East Coast region and 760 
the SAfr region. 761 
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 763 

Figure 9. Analysis of variance for monthly precipitation during 1985-2005 for southern Africa (SAF-All region) and 764 
the 3 sub-regions examined, namely the Angola region, East Coast region and the SAfr region.. The x and y-axis 765 
display standardized precipitation variances. 766 
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 773 

Figure 10. Monthly precipitation change (future – present in mm/d) during October for the period 2065-2095 relative 774 
to 1985-2005. First column (from the left) displays precipitation change from the driving GCMs used and columns 2-775 
4 display the downscaled products according to RCA4.v1, CCLM4-8-17.v1 and REMO2009.v1. 776 
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Figure 10. Continued. 779 
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 785 

Figure 11. Monthly precipitation change (future – present in mm/d) during January for the period 2065-2095 relative 786 
to 1985-2005. First column (from the left) displays precipitation change from the driving GCMs used and columns 2-787 
4 display the downscaled products according to RCA4.v1, CCLM4-8-17.v1 and REMO2009.v1. 788 
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Figure 11. Continued. 791 
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 797 

Figure 12. Monthly RCMDRI – DRI spatial averages over southern Africa for the historical period (1985-2005) on the 798 
x-axis and the future period (2065-2095) under RCP8.5 on the y-axis.   799 
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 800 

Figure 13. Spatial average of the precipitation change signal (mm/d) from RCMs and their driving GCMs relative to 801 
1985-2005 for southern Africa and the 3 sub-regions examined. 802 
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 803 

Figure 14. Analysis of variance for monthly precipitation during 2065-2095 for southern Africa (SAF-All region) and 804 
the 3 sub-regions examined, namely the Angola region, East Coast region and the SAfr region.. The x and y-axis 805 
display standardized precipitation variances. 806 
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