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Abstract 14 

 15 

Nitrous acid (HONO), one of the reactive nitrogen oxides (NOy), plays an important role 16 

in the formation of ozone (O3) and fine aerosols (PM2.5) in the urban atmosphere. In this study, 17 

a new simulation approach to calculate HONO mixing ratios using a deep neural technique 18 

based on measured variables wad developed. The 'Reactive Nitrogen species simulation using 19 

Deep neural network' (RND) has been implemented in Python. It was trained, validated, and 20 

tested with HONO measurement data obtained in Seoul during the warm months from 2016 to 21 

2019.  22 

A k-fold cross validation and test results confirmed the performance of RND v1.0 with an 23 

Index Of Agreement (IOA) of 0.79 ~ 0.89 and a Mean Absolute Error (MAE) of 0.21 ~ 0.31 24 

ppbv. The RNDV1.0 adequately represents the main characteristics of HONO and thus, RND 25 

v1.0 is proposed as a supplementary model for calculating the HONO mixing ratio in a high-26 

NOx environment.  27 

 28 

1. Introduction 29 
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 30 

Surface ozone (O3) pollution has been reported to be worsen over continental areas 31 

(Arnell et al., 2019;Monks et al., 2015;Varotsos et al., 2013;IPCC, 2014). In particular, a 32 

warmer climate is expected to increase surface O3 and intensity of surface O3 peaks in polluted 33 

regions, depending on its precursor levels (IPCC 2021). As one of the short-lived climate 34 

pollutants (SLCPs), O3 also interacts with the global temperature via positive feedback 35 

(Shindell et al., 2013;Myhre et al., 2017;Stevenson et al., 2013). Therefore, it is imperative to 36 

accurately predict the mixing ratios and variations of surface O3. While operational models such 37 

as community multiscale air quality (CMAQ) have been used widely for this purpose, 38 

uncertainties still arise from poorly understood chemical mechanisms involving reactive 39 

nitrogen oxides (NOy) and volatile organic compounds (VOCs), and lack of their measurements 40 

(Mallet and Sportisse, 2006;Canty et al., 2015;Akimoto et al., 2019;Shareef et al., 2019;Cheng 41 

et al., 2022).  42 

In the urban atmosphere, NOy typically includes NOx (NO + NO2), HONO, HNO3, 43 

organic nitrates (e.g., PAN), NO3, N2O3, and particulate NO3-. These species are produced and 44 

recycled through photochemical reactions until they are removed through wet or dry deposition 45 

(Liebmann et al., 2018;Brown et al., 2017;Wang et al., 2020;Li et al., 2020). NOy play an 46 

important role in critical environmental issues concerning the Earth’s atmosphere, spanning 47 

from local air pollution to global climate change (Sun et al., 2011;Ge et al., 2019). The oxidation 48 

of NO to NO2, and finally to HNO3, is the backbone of the chemical mechanism producing 49 

ozone (O3) and PM2.5 (particulate matter of size ≤ 2.5 μm), and it determines the oxidization 50 

capacity of the atmosphere. Recently, as O3 has increased along with a decrease in NOx emission 51 

over many regions including East Asia, interest in the heterogeneous reaction of reactive 52 

nitrogen oxides, which is yet to be understood, has been newly raised (Brown et al., 53 

2017;Stadtler et al., 2018). Currently, the lack of measurement of individual NOy species 54 

hindered a comprehensive understanding of the heterogeneous reactions (Anderson et al., 55 

2014;Wang et al., 2017b;Chen et al., 2018b;Akimoto and Tanimoto, 2021;Stadtler et al., 2018).  56 

In particular, there are growing number of evidence for heterogeneous formation of 57 

HONO in relation to high PM2.5 and O3 occurrence in urban areas (e.g., (Li et al., 2021b)). As 58 

an OH reservoir, HONO will expedite the photochemical reactions involving VOCs and NOx 59 

in the early morning, leading to O3 and fine aerosol formation. Nonetheless, its formation 60 
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mechanism has not been elucidated clearly enough to be constrained in conventional 61 

photochemical models. In addition to the reaction of NO with OH (Bloss et al., 2021), various 62 

pathways of HONO formation have been suggested from laboratory experiments, field 63 

measurements and model simulations: direct emissions from vehicles (e.g., (Li et al., 2021a)) 64 

and soil (e.g.,(Bao et al., 2022)), photolysis of particulate nitrate (e.g., (Gen et al., 2022)), and 65 

heterogeneous conversion of NO2 on various aerosol surfaces (e.g., (Jia et al., 2020)), ground 66 

surface (e.g.,(Meng et al., 2022)), and microlayers of sea surface (e.g., (Gu et al., 2022)). 67 

Among these, heterogeneous reaction mechanism at surface is major concern in recently HONO 68 

study.  69 

HONO has been measured mostly during intensive campaigns in urban areas using 70 

various techniques such as a long path absorption photometer (LOPAP) (Kleffmann et al., 71 

2006;Xue et al., 2019), chemical ionization mass spectrometry (CIMS) (Levy et al., 72 

2014;Roberts et al., 2010), ion chromatography (IC) (VandenBoer et al., 2014;Gil et al., 73 

2020;Ye et al., 2016;Xu et al., 2019), and quantum cascade tunable infrared laser differential 74 

absorption spectrometry (QC-TILDAS) (Lee et al., 2011;Gil et al., 2021). Of these methods, 75 

QC-TILDAS has served as a reference for intercomparison of measurement data from different 76 

techniques due to high time resolution and stability (Pinto et al., 2014). These studies reported 77 

the maximum HONO of several ppb levels at nighttime. In comparison, the model captured at 78 

most 67~90 % of the observed HONO in megacities such as Beijing (Tie et al., 2013;Liu et al., 79 

2019).  80 

In recent years, Machine Learning (ML) method has been adopted in the atmospheric 81 

science for pattern classification (e.g. New Particle Formation event) and forecasting and 82 

spatiotemporal modelling of O3 and PM2.5 (Arcomano et al., 2021;Shahriar et al., 83 

2020;Krishnamurthy et al., 2021;Cui and Wang, 2021;Joutsensaari et al., 2018;Chen et al., 84 

2018a;Kang et al., 2021). Among ML methods, the Neural Network (NN) architecture is widely 85 

used owing to its powerful ability to process large amounts of data, allowing improvement in 86 

the performance of conventional models through being integrated with physical equations 87 

(Reichstein et al., 2019;Schultz et al., 2021). As a NN architecture, a multi-layer artificial neural 88 

network, referred to as a Deep Neural Network (DNN), employs a statistical method that learn 89 

non-linear relations in data and obtain the optimum solution for the target species without prior 90 

information on the physicochemical processes. DNN has advantages over other NN architecture 91 
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such as Convolution NN (CNN) or Long-Short Term Memory (LSTM) because it works well 92 

for discrete spatiotemporal data. In general, the performance of DNN is similar to or better than 93 

other ML methods for small number of data as well as large data set (Baek and Jung, 2021;Dang 94 

et al., 2021;Sumathi and Pugalendhi, 2021). 95 

When the DNN method is applied to atmospheric chemical constituents, it requires 96 

large amount of data for training and thus, the size of measurement data becomes a limiting 97 

factor for trace species such as HONO, which are not routinely measured such as O3 or PM2.5. 98 

In this regard, the daily average HONO mixing ratio was attempted to be estimated using 99 

ensemble ML models with satellite measurements (Cui and Wang, 2021). In comparison, the 100 

hourly HONO mixing ratio was calculated using a simple NN architecture with measured 101 

variables, which were thought to be closely linked with HONO formation (Gil et al., 2021). The 102 

accuracy of the hourly HONO estimated from input variables such as aerosol surface areas and 103 

mixed layer height was better than the daily HONO estimate. 104 

In this study, we aimed to construct a user-friendly ‘Reactive Nitrogen species 105 

simulation using DNN’ (RND) model and estimate HONO mixing ratio using routinely 106 

measured atmospheric variables in a highly polluted urban area. Finally, the model results will 107 

be incorporated into operational photochemical models for air quality forecasting and improve 108 

their performance. Since this is the first attempt to calculate HONO mixing ratios using a first 109 

version of RND model (RNDv1.0), we describe the entire modeling process and evaluate the 110 

model results by comparing them with the measurements. 111 

 112 

2. Model description 113 

 114 

The development of RNDv1.0 model follows the systematic steps similar to a general 115 

machine learning model construction workflow, including collecting data, preprocessing data, 116 

building the DNN, training and validating the model, and testing the performance of the model 117 

(Figure 1). The RNDv1.0 was written in Python and necessary libraries to build and operate 118 

RNDv1.0 are listed in Table 1. The dataset used to train-test-validation can be downloaded from 119 

Gil et al., 2021. 120 
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 121 

2.1. Collection of measurement data for model construction 122 

 123 

As the first step constructing the RNDv1.0, measurement data were obtained including 124 

HONO, reactive gases, and meteorological parameters. It is noteworthy that the HONO 125 

measurement data is for model construction and is not required to run the RND model. The 126 

HONO mixing ratio was measured using a Quantum Cascade – Tunable Infrared Laser 127 

Differential Absorption Spectrometer (QC-TILDAS) system in Seoul during May–June 2016, 128 

June 2018, and April-June 2019 (Lee et al., 2011;Gil et al., 2021). When testing and evaluating 129 

atmospheric HONO measurement methods, QC-TILDAS has been chosen as the reference 130 

method for comparing ambient HONO mixing ratios measured using several different 131 

techniques owing to its advantages of low detection limits (~ 0.1 ppbv) and high temporal 132 

resolution (Pinto et al., 2014). More details on measurements can be found elsewhere (Gil et 133 

al., 2021). HONO was measured at Olympic Park (37.52°N, 127.12°E) during the Korea-United 134 

States Air Quality (KORUS-AQ) study in 2016 (Kim et al., 2020;Gil et al., 2021), at the campus 135 

of Korea University in 2018 (37.59°N, 127.03°E), and at the site near the campus in 2019 136 

(37.59°N, 127.08°E) (NIER, 2020) (Figure S1). Of the three sites, the Korea University campus 137 

and Olympic Park have served as measurement sites representing the air quality of Seoul. In 138 

fact, it has been known that O3 and PM2.5 levels are strongly influenced by the synoptic 139 

circulation throughout the Korean peninsula (Peterson et al., 2019;Jordan et al., 2020). In 140 

addition, trace gases including O3, NO2, CO, and SO2 and meteorological parameters including 141 

temperature (T), relative humidity (RH), wind speed (WS) and direction (WD) were measured. 142 

Note that HONO was not significantly correlated with any of these variables (Figure S2). The 143 

measurement statistics are presented in Table 2 and Table S1. Briefly summarizing, the 10th and 144 

90th percentile mixing ratios of HONO, NO2, and O3 are 0.3 ppbv and 1.9 ppbv, 10.7 ppbv and 145 

48.2 ppbv, and 12.0 ppbv and 80.9 ppbv, respectively for the entire experiment periods.  146 

 147 

2.2. Data preprocessing  148 

 149 
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In the next step, the observation data set was prepared for RNDv1.0 model construction. 150 

As input variables, hourly measurements of chemical and meteorological parameters are used, 151 

including the mixing ratios of O3, NO2, CO, and SO2, along with temperature (T), relative 152 

humidity (RH), wind speed (WS), wind direction (WD), and solar zenith angle (SZA) to 153 

estimate the target species, HONO, as the output. Wind direction in degrees were converted to 154 

a cosine value for continuity. As a last step in data processing, missing values were filtered out 155 

from the input dataset. Finally, 50.7 % of all available measurement data (1636) were used to 156 

construct the RNDv1.0 in this study. 157 

Since the measurements of these nine variables vary over a wide range in different units, 158 

they were normalized to avoid bias during the calculations. Among the widely used 159 

normalization methods, ‘min-max scaling’ method was adopted and input variables were 160 

normalized against the minimum and maximum values in this study (Eq. 1):  161 

 162 

xsca = xraw−F2(X)
 F1(X)

,         (1)  163 

 164 

where xraw is raw data of input variable (X), xsca is scaled data of X, F1 and F2 are scale 165 

factors of X, and are given for each input variable used in Table 2.  166 

 167 

2.3. Neural network architecture and hyperparameters 168 

 169 

At this stage, the network is built to calculate HONO using those input variables. The 170 

RNDv1.0 is composed of five hidden layers (Figure 2), which employed an exponential linear 171 

unit (ELU) as an activation function (Eq. 2).  172 

 173 

ELU :  ϕ(𝑥𝑥) =  �e
𝑥𝑥 − 1 (𝑥𝑥 < 0)
𝑥𝑥 (𝑥𝑥 ≥ 0) .      (2) 174 

 175 
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In a DNN, an activation function creates a nonlinear relationship between an input 176 

variable and an output variable. When constructing a DNN model, an ELU has the advantage 177 

of a fast-training process and better performance in handling negative values than other 178 

activation functions (Wang et al., 2017a;Ding et al., 2018). In addition, the mean squared error 179 

and Adam optimizer were applied as loss function and optimize function, respectively. The 180 

learning rate, epoch, and batch were set to 0.01, 100, and 32, respectively.  181 

 182 

2.4. Train, validation, and test  183 

 184 

The RNDv1.0 model was trained, validated, and tested with HONO measurements obtained 185 

during May ~ June in 2016 and 2019, in June 2018, and in April 2019, respectively (Figure 3). 186 

The number of data used for train, validation, and test were 1122, 381, and 133, respectively. 187 

With the hyperparameters specified in previous section, the performance of the model was 188 

firstly validated using the k-fold cross-validation method, which is especially useful when the 189 

size of dataset is small (Bengio and Grandvalet, 2003). In the k-fold cross-validation method 190 

(Figure 3), the entire data is randomly divided into k subsets, of which k-1 sets were used for 191 

training and the rest one was used for validation. k was set to 5 in this study. The accuracy was 192 

determined by Index Of Agreement (IOA) and Mean Absolute Error (MAE) expressed by the 193 

following equation (Eq. 3, Eq. 4):  194 

 195 

IOA = 1 −  ∑ (Oi−Pi)2n
i=1

∑ (|Pi−O�|+|Oi−O�|)2n
i=1

,       (3)  196 

MAE = ∑ |Oi−Pi|n
i=1

𝑛𝑛
,         (4)  197 

 198 

where 𝑂𝑂𝑖𝑖, 𝑃𝑃𝑖𝑖, 𝑂𝑂�, and n are the observed value, predicted value, average of the observed 199 

values, and number of nodes, respectively. The overall accuracy of  200 

As IOA and MAE vary according to the number of nodes, they were calculated for the 201 

measured (HONOobs) and calculated (HONOmod) mixing ratios by varying the number of nodes 202 

from 0 to 100 in each hidden layer. The best performance was found with 41 nodes, with which 203 
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the averaged IOA and MAE were 0.89 ± 0.01 (mean ± standard deviation) and 0.31 ± 0.02 ppbv, 204 

respectively (Figure 4). The high level of IOA and low MAE demonstrates that the performance 205 

of RNDv1.0 model is adequate, and it is capable of simulating the ambient HONO mixing ratio 206 

using the routinely measured chemical and meteorological parameters. In particular, MAE was 207 

commensurate with the detection limit of HONO measurement. 208 

After the network validation, HONO mixing ratio was calculated for May ~ June in 2016 209 

and 2019, and the model results were compared with the measured values (Figure 5). The 210 

average mixing ratios of measured and calculated HONO was 0.94 ppbv and 0.89 ppbv in 2016, 211 

and 1.02 ppbv and 0.96 ppbv in 2019, respectively. The MAE and IOA of the measurement and 212 

calculation were 0.27 ppbv and 0.90 in 2016, and 0.29 ppbv and 0.91 in 2019, respectively, 213 

demonstrating the ability of the RNDv1.0 to simulate ambient HONO levels. In both cases, 214 

however, the model slightly underestimated the highest and lowest HONO mixing ratios, which 215 

is mainly due to the limited number of data used for training, but also related to the intrinsic 216 

nature of DNN. The model calculation well captured the diurnal variation of ambient HONO 217 

with a slight underestimation (Figure 6). In addition, the correlation between HONOmod and 218 

HONOobs was better in 2019 (MAE = 0.06 ppbv) than in 2016 (MAE = 0.08 ppbv). Since the 219 

MAE of the two cases was far below the detection limit of HONO measurements (~ 0.1 ppbv), 220 

the RNDv1.0 is considered adequate to simulate HONO in urban areas. 221 

Finally, the RND model was validated and tested against the measurement data obtained in 222 

June 2018 and April 2019. The calculated HONO mixing ratios are compared with those 223 

measured in Figure 7, and their MAE and IOA are listed in Table 3. The two sets of model 224 

performance test showed that the model reasonably traced what was observed. As the validation 225 

result of RND, the MAE and IOA of the calculated and measured in June 2018 are comparable 226 

to those of 2016~2019 result. However, the MAE and IOA of the April 2019 measurements 227 

were relatively poor compared to the validation results. Especially, the MAE of the April 2019 228 

is about twice as high as those of validation.  229 

In these two test periods, HONO levels were lower than those observed on validation days 230 

(Figure 5), and the model tended to overestimate high HONO concentrations. The large 231 

discrepancy in April 2019 is probably due to seasonality: the difference in meteorological and 232 

chemical regime of the atmosphere. For example, the monthly average temperature, relative 233 

humidity, and NO2 mixing ratio of Seoul in 2019 were 12.1 ℃, 50.9 %, and 29 ppbv in April 234 
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2019 and 22.5 ℃, 60.6 %, and 21 ppbv in June 2019 (https://cleanair.seoul.go.kr; 235 

https://weather.go.kr). Note that the RNDv1.0 model was trained with the 9 variables measured 236 

in early summer (Table 2). Therefore, the more measurement data spanning a full year for 237 

training, the more accurate the model estimates will be. 238 

 239 

2.5. Influence of input variables to HONO concentration 240 

 241 

Additionally, a simple bootstrapping test was conducted by setting each variable to zero 242 

with keeping other variables (Kleinert et al., 2021). Then, the importance of each input variable 243 

to HONO concentration was evaluated using MAE and root mean square error (RMSE). Of 244 

nine input variables, NO2 was found to have the most significant influence on HONO 245 

concentration, followed by RH, temperature, and solar zenith angle (Table S2). The result of 246 

bootstrap test is in good agreement with those from our previous study (Gil et al., 2021), where 247 

more detailed information such as aerosol surface area and mixing layer height were 248 

incorporated into the model and highlighted the role of precursor gases and heterogeneous 249 

conversion in HONO formation. Therefore, these results demonstrate that the RND model 250 

constructed using routinely observed variables, reasonably traced the level of HONO in urban 251 

atmosphere. 252 

 253 

3. Operation and application of RNDv1.0 254 

 255 

The RNDv1.0 package is provided as an operational model, .h5 files that can be opened in 256 

Python. To run the RNDv1.0, the measurement data for nine input variables are required and 257 

need to be properly prepared as described in Section 2.2. A sample of preprocessed input dataset 258 

is provided as a .csv file (Dataset_for_model.csv). Once the input data is ready, open the RND 259 

model with input data files using the code provided in the example (Figure S3). Then, RND 260 

v1.0 calculates and presents the HONO results as scaled values (xsca), which will be finally 261 

converted to HONO mixing ratio (ppbv) by the two scale factors in Table 2 (Eq. 5):  262 
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 263 

HONO (ppbv) = HONOsca × F1(HONO) + F2(HONO).   (5) 264 

 265 

The result of the RNDv1.0, HONO, can be applied to an urban photochemical cycle 266 

simulation. It is already known that the photolysis of HONO is a major source of OH radicals 267 

in the early morning when the OH level is low, and this OH affects daytime O3 formation 268 

through photochemical reactions with VOCs and NOx, which are primarily emitted during 269 

morning rush hour in urban areas. Therefore, the OH produced from HONO expedites 270 

photochemical reactions, promoting O3 formation. However, the HONO formation mechanism 271 

is still poorly understood, and concentrations are not correctly simulated in conventional 272 

photochemical models; therefore, the absence of HONO causes great uncertainty in O3 273 

prediction (Figure 8).  274 

The 0-Dimension Atmospheric Modelling (F0AM) utilizing the MCM v3.3.1 chemical 275 

reaction mechanisms (Wolfe et al., 2016), can be used to simulate the diurnal variation of O3 276 

with the measurements of several reactive gases (NO, NO2, CO, HCHO, VOCs, and HONO). 277 

Detailed information about F0AM can be found in 278 

(https://sites.google.com/site/wolfegm/models) and in previous works published elsewhere 279 

(Wolfe et al., 2016; Gil et al., 2020). When the F0AM model is run without HONO, it is not 280 

able to reproduce the concentration and diel cycle of the observed O3 (Figure 8). In comparison, 281 

the model simulates the O3 well within 2 ppbv when adding HONO, which is the product of 282 

RND v1.0. This is mainly due to the missing OH produced by HONO photolysis in the early 283 

morning. Its production rate is estimated to be 0.57 pptv s-1, contributing approximately 2.28 284 

pptv to OH budget during 06:00 ~ 11:00 (LST) (Gil et al., 2021). Given that OH is mainly 285 

produced from the photolysis of O3 under high sun, the early morning source of OH will 286 

expedite the photochemical cycle involving NOx and VOCs, promoting O3 and secondary 287 

aerosol formation. Since the presence of HONO in the photochemical model allows for accurate 288 

estimation of OH radicals, the incorporation of RND into conventional models will improve 289 

their overall performance.  290 

 291 

4. Summary and implications 292 
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 293 

In this study, we developed the RND model to calculate the mixing ratio of NOy in an urban 294 

atmosphere using a DNN along with measurement data. The target species of RNDv1.0 is 295 

HONO, and its mixing ratio is calculated using trace gases including O3, NO2, CO, and SO2, 296 

and meteorological variables including T, RH, WS, and WD, along with the SZA. These 297 

variables are routinely measured through monitoring networks. The RNDv1.0 was trained and 298 

validated using the HONO measurements obtained in Seoul by adopting a k-fold cross 299 

validation method and tested with other HONO datasets measured using the same instrument. 300 

The validation and test results demonstrate that RND adequately captures the characteristic 301 

variation of HONO and confirms the efficacy of RND v1.0. 302 

RNDv1.0 was constructed using measurements made in a high NOx environment during 303 

early summer (May–June). It is noteworthy that in this period, the HONO mixing ratio was 304 

raised above 3 ppbv with the highest O3 levels under stagnant conditions. If RND is applied to 305 

areas under significant influence of outflows, the model possibly overestimates or 306 

underestimate the level of HONO without detailed information such as nanoparticles. In the 307 

previous study, the formation of HONO was shown to be intimately related with surface areas 308 

of submicron particles (Gil et al., 2021). Nevertheless, the HONO concentration produced from 309 

RNDv1.0 with routine measurements provides the benefit of relatively inexpensive test for 310 

measurement quality control, location selection, and supports the data used for traditional 311 

chemistry model based on the current knowledge of the urban photochemical cycle. Therefore, 312 

it is reasonable to argue that RND can serve as a supplementary tool for conventional 313 

photochemical models.  314 

 315 
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Figures and Tables 337 

 338 

 339 

Figure 1. The main processes for configuring the RNDv1.0 (*: calculated values)  340 
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  341 

Figure 2. The structure of deep neural network built for RND v1.0. 342 

 343 

  344 
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 345 

Figure 3. Design of training, validation, and test to build RNDv1.0 using measurement data. 346 

The k-fold cross validation were performed using randomly divided five subsets of 347 

training data set. 348 

  349 
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 350 

Figure 4. Index Of Agreement (IOA) for k-fold cross validation. Solid circle and red line 351 

represent IOA for each validation (k=5) and the average of 5 validation sets at each node number. 352 

  353 
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 354 

Figure 5. Comparison between the measured (HONOobs) and calculated (HONOmod) HONO 355 

mixing ratios in Seoul during May~June in (a) 2016 and (b) 2019. The blue and red lines 356 

indicate the measured and calculated HONO mixing ratio, respectively. 357 

  358 
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 359 

Figure 6. Average diurnal variations of the measured (HONOobs) and the calculated (HONOmod) 360 

HONO mixing ratios in Seoul during May ~ June in (a) 2016 and (b) 2019.  361 

  362 
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 363 

Figure 7. Comparison between the measured (HONOobs) and calculated (HONOmod) HONO 364 

mixing ratios in Seoul during (a) June 2018 and (b) April 2019. The blue and red lines indicate 365 

the measured and calculated HONO mixing ratio, respectively. The x axis indicates the hour 366 

from the beginning of the experiment, which is (a) 00:00 on 1st June 2018 and (b) 00:00 on 12th 367 

April 2019. 368 
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 371 

Figure 8. For June 2016, diurnal variations of O3 (line) and OH production rate (bar) calculated 372 

from the F0AM photochemical model with (orange) and without (blue) HONO estimated from 373 

the RNDv1.0 model. The measured O3 is compared with the calculated.  374 

  375 
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Table 1. Resources for constructing RND model. 376 

 Version Remark 

Python v3.8.3  

CUDA v10.1 *If using GPU 

CuDNN v7.6.5 *If using GPU 

Tensorflow v2.3.0 Python library 

Keras v2.4.3 Python library 

Pandas v1.0.5 Python library 
Numpy v1.18.5 Python library 

*GPU denotes graphic processing unit  377 
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Table 2. Input variables of the RNDv1.0 model and their ranges (10th and 90th percentile) 378 

observed in Seoul during May ~ June in 2016 and 2019.  379 

 
10th~90th percentile 

(unit) 

Coverage 

 (%) 

Scale Factor1 

(F1)* 

Scale Factor 2 

(F2)** 

Input Variables 

O3 12.1 ~ 90.4 (ppbv) 95.5  204.738 0.842 

NO2 11.0 ~ 48.6 (ppbv) 80.6 79.925 2.375 

CO 252 ~ 743 (ppbv) 95.1 975.248 137.253 

SO2 1.9 ~ 6.4 (ppbv) 95.6  12.479 0.958 

Solar Zenith Angle  22.7 ~ 118.4 (º) 100.0 112.317 14.195 

Temperature 15.9 ~ 26.7 (°C) 99.4  24.240 8.610 

Relative Humidity 29.2 ~ 79.1 (%) 99.4  88.545 10.555 

Wind Speed 0.2 ~ 3.7 (m/s) 99.4  7.581 0.005 

Wind Direction 45.4 ~ 287.5 (º) 99.4  359.565 0.235 

Output Variables 

HONO 0.3 ~ 2.0 (ppbv) 81.1% 3.447 0.013 
* Maximum – Minimum 380 

** Minimum value 381 
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Table 3. The result of validation and test of RNDv1.0 model using measurement data. 383 

Measurement data 
Validation Test 

MAE (ppbv) IOA MAE (ppbv) IOA 

May 2016* 0.26 0.93   

June 2016* 0.29 0.86   

June 2018 0.21 0.79   

April 2019   0.56 0.65 

May 2019* 0.26 0.93   

June 2019* 0.36 0.76   

*Re-using the data already used for training 384 
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