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Abstract. In the past 50 years, a large variety of statistically-based models and methods for landslide susceptibility mapping 

and zonation have been proposed in the literature. The methods, applicable to a large range of spatial scales, use a large variety 

of input thematic data, different model combinations and several approaches to evaluate the models performance. Despite the 10 

numerous applications available in the literature, a standard approach for susceptibility modelling and zonation is still missing.  

The literature search revealed that several software and tools are available to evaluate regional slope stability using physically-

based analysis, but only a few use statistically-based approaches. Among them, LAND-SE (LANDslide Susceptibility 

Evaluation) provides the possibility to perform and combine different statistical susceptibility models, and to evaluate their 

performances and associated uncertainties. This paper describes the structure and the functionalities of LAND-SUITE, a suite 15 

of tools for statistically-based landslide susceptibility modelling which integrates LAND-SE. LAND-SUITE completes and 

extends LAND-SE, adding functionalities to i) facilitate input data preparation; ii) perform preliminary and exploratory 

analysis of the available data; iii) test different combinations of variables and select the optimal thematic/explanatory set. 

LAND-SUITE provides a tool to assist the user during the data preparatory phase and to perform diversified statistically-based 

landslide susceptibility applications. 20 

1 Introduction 

Landslide susceptibility measures the degree to which a terrain can be affected by future slope movements and provides an 

estimate of where landslides are likely to occur (Chacon et al., 2006; Guzzetti et al., 2005). A wide variety of statistically-

based models and methods for landslide susceptibility mapping and zonation have been proposed in the literature in the past 

50 years (Aleotti and Chowdhury, 1999; Huabin et al., 2005; Chacón et al., 2006; Fell et al., 2008; van Westen et al., 2008; 25 

Kanungo et al., 2012; Pardeshi et al., 2013; Reichenbach et al., 2018). Statistically-based susceptibility models are applied to 

identify the functional (statistical) relationship between instability factors, described by sets of geo-environmental 
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(independent) variables, and the known distribution of landslides, taken as the dependent model variable. This functional 

relationship is used to ascertain the propensity of the terrain to generate landslides, and to predict susceptibility. 

A recent review article published by Reichenbach et al. (2018), has shown that more than 163 model type names are listed in 30 

the literature by different authors. The models were classified into 19 groups that allowed to highlight that logistic regression, 

neural networks, and data overlay model are the most used modelling approaches. The literature review also revealed a 

considerable variability of landslide and thematic data types, scales selected for the modelling and diversified choice of criteria 

used to evaluate the model performances. All these different issues, as well as their possible combinations, suggest that it is 

possible to select and apply a vast and heterogeneous number of methodologies to assess landslide susceptibility. As a matter 35 

of fact, a standardized methodology, procedure and software for susceptibility assessment is still missing.  

As an attempt to fulfill this gap, Reichenbach et al. (2018) in the final remarks suggest nine interrelated steps to prepare a 

reliable landslide susceptibility assessment and for the proper use of the associated terrain zonations (see Table 3 in 

Reichenbach et al., 2018). Such a methodological guideline allows for proceduralized but flexible susceptibility assessments, 

although it assumes basic expertise and skills in geomorphology, data preparation, data analysis and geo-computation.  40 

In the literature, several articles describe tools suitable for the analysis of shallow landslides using physically based slope 

stability simulators (as for example, SHALSTAB by Dietrich & Montgomery, 1998; SINMAP by Pack et al., 1988; GEOtop-

FS by Simoni at al., 2008; HIRESSS by Rossi et al.; 2013, TRIGRS by Baum et al., 2008, r.slope.stability by Mergili et al., 

2014, etc), but very few articles proposed software for statistically-based landslide susceptibility zonation. Among them, 

Brenning et al. (2008) provides an example of how GIS‐based tools can be combined with powerful statistical models. Osna 45 

et al. (2014) implemented GeoFIS, a tool developed with MATLAB, for the assessment of landslide susceptibility. GeoFIS 

includes two main open source libraries, one for GIS operations and the other for creating a Mamdani fuzzy inference system. 

Bragagnolo et al. (2020) developed r.landslide, a free and open source add-on to the open source GRASS software for landslide 

susceptibility mapping. The tool is written in Python language and works on the top of an Artificial Neural Network fed with 

environmental parameters and landslide databases. In 2020, Sahin et al. proposed a tool package called Landslide Susceptibility 50 

Mapping Tool Pack (LSM Tool Pack) for producing landslide susceptibility maps based on integrating R with ArcMap 

Software. 

Rossi and Reichenbach (2016), following the previous experience described in Rossi et al. (2010), proposed LAND-SE 

(LANDslide Susceptibility Evaluation), a software designed to perform susceptibility modelling and zonation using different 

statistical models, combining ensemble of models and quantifying their performances and the associated uncertainties. The 55 

software coded in R, is released with an open source licence and has the main intent to distribute a widely accessible and 

repeatable tool to generate high-ranked quality landslide susceptibility zonation (Guzzetti et al., 2006; Reichenbach et al., 

2018) . 

Despite this effort, the quality of the zonations produced with LAND-SE is still extremely variable, with the main sources of 

errors and uncertainty coming from the landslide susceptibility assessment preparatory phases (Reichenbach et al., 2018). 60 
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Indeed, a large complexity and a number of obstacles are present in these apparently basic but highly relevant steps for 

susceptibility evaluations. 

To better support the overall landslide susceptibility assessment process, we have designed and implemented the LAND-

SUITE software (LANDslide - SUsceptibility Inferential Tool Evaluator), which integrates LAND-SE, able to execute 

different susceptibility model types and evaluate their performance and uncertainty. LAND-SUITE completes and extends 65 

LAND-SE, adding functionalities to i) facilitate input data preparation; ii) perform preliminary and exploratory analysis of the 

available data; iii) test different combinations of variables and select the optimal thematic/explanatory set. In synthesis, LAND-

SUITE provides the user with the possibility to perform more easily, more flexible and more informed statistically-based 

landslide susceptibility applications and zonations. 

The article illustrates the major functionalities offered by LAND-SUITE, including inputs and outputs. Section 2 describes the 70 

main software data requirements and specifications. Section 3 describes the software modules and their functionalities, 

providing a basic background for their usage/interpretation; Section 4 illustrates the tool application in a test area, and Section 

5 formalizes some final remarks. We have introduced a test area only with the purpose to show the most relevant results and 

outputs in a real application, but the critical analysis and discussion of the results are out of the scope of the article. The paper 

is completed by a supplement containing the software code and a user guide. 75 

2 Software description & data requirements  

LAND-SUITE is a suite of R (R Core Team, 2021) tools aimed to support the landslide susceptibility inference process. It 

basically extends the LAND-SE software (Rossi and Reichenbach, 2016), which is mainly designed to perform statistically-

based susceptibility modelling. 

LAND-SUITE, requires different input data: 80 

(i) a landslide inventory map (e.g., historical, geomorphological, event and multi-temporal landslide inventories) used 

as dependent or grouping variable in the susceptibility analysis, and 

(ii) a set of thematic maps to be used as independent explanatory variables that can be continuous (e.g., slope, elevation, 

etc.) or categorical (e.g., lithology, land use, etc.). 

The maximum extension of the study area and the relative calculation times are strongly controlled by the data size and 85 

resolution and by the hardware characteristics, chiefly the RAM size and CPU speed. The code, which is essentially an R 

script, is executed in memory. During the execution and computations, the data are converted in a tabular format and stored at 

intermediate software execution steps, in the filesystem in the binary RDATA format.  

During the software execution, LAND-SUITE provides outputs of specific analyses and evaluations in textual or graphical 

formats. At the end of the modelling computation, maps are also available as output in the classical GIS geographical formats. 90 

LAND-SUITE is composed by three modules:  

● LAND-SIP: LANDslide - Susceptibility Input Preparation; 
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● LAND-SVA: LANDslide - Susceptibility Variable Analysis; 

● LAND-SE: LANDslide - Susceptibility Evaluation. 

The three modules are coded as separate .R script files and can be executed under different operating systems (Figure 1).  95 
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Figure 1: Logical schema of LAND-SUITE software. 

 

The common LAND-SUITE run starts with LAND-SIP, which is able to execute in cascade LAND-SVA and successively 

LAND-SE. Alternatively, only one of these last two modules can be executed after LAND-SIP, depending on the user needs 100 

and on the type of software applications. The three modules can also be executed separately, as long as the user is able to 

provide the appropriate data input. 

3.1 LAND-SIP: LANDslide - Susceptibility Input Preparation 

LAND-SIP is designed for the input preparation and has a high relevance for the susceptibility analysis, because its main 

purpose is the subdivision and preparation of the training and validation datasets, that will be used by the other two modules.  105 

The dataset partition is controlled and customized by the user, that can select the type of the mapping unit (i.e., raster or 

polygons), choose the appropriate combination of variables, define the extent (i.e., using a mask) of the training and the 

validation areas, and choose the output types. This large number of options allows the user to decide and perform largely 

diversified types of susceptibility applications. LAND-SIP allows the user to select different functionalities and criteria to 

partition the training and validation datasets: 110 

● Balanced or unbalanced random sampling. In the balanced sampling, an equal number of mapping units with 

grouping values equal to 0 and 1 are selected randomly. Conversely, in the unbalanced sampling the proportions of 

mapping units with grouping values equal to 0 and 1 is different and is defined by the user. In the raster-based 

analyses, the user may choose two ways to select the mapping units with landslides: i) pixels sampling, based on a 

pixels’ random sampling within mapped landslides, and ii) landslides sampling, based on a random landslides 115 

sampling (using an additional landslide vector layer), where all the pixels of a selected landslide are considered either 

part of the training or of the validation datasets; 

● Subsampling, or sampling reducing partitions. In subsampling the size of the original dataset is randomly reduced by 

the user specifying the proportion of data used. This criterion is particularly helpful for preliminary investigations, in 

applications with large datasets or in case of limited computation resources; 120 

● Spatially or temporally-based datasets partition. This criterion uses different input layers for the training and 

validation; 

● Combinations of the criteria described above. 

The criteria are fully customizable by the user. Once a given criteria is chosen and training and validation datasets correctly 

partitioned, all the subsequent analyses will be performed accordingly. As previously mentioned, such datasets are always 125 

stored in RDATA format to guarantee full data handling and control. Detailed information on LAND-SIP configurations can 

be found in the user guide. 
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The flexibility of the choices in the configuration phase allows the user to draw and execute many diversified susceptibility 

applications. It is out of the scope of this paper, if not impossible, to identify all the possible potential software applications. 

However, in the following, five applications (i.e, hereafter referred to as “Cases”) are listed and discussed, with the purpose of 130 

explaining how LAND-SIP, and in turn LAND-SUITE, can be configured and used for executing the most common 

susceptibility investigations (Figure 2).  

Case A: The susceptibility modelling is performed applying a regular cross validation approach. A balanced random sampling 

is used to select the grouping variable mapping units following the “pixels sampling” selection criteria, with the size of training 

and validation datasets (e.g., 70% training and 30% validation) selected by the user (Figure 2 Case A). This configuration is 135 

usually applied for exploratory analysis mainly focused on the preliminary evaluation of the explanatory variables (see LAND-

SVA section), and of the statistical performance of the model. This execution can be performed by the user to select, add or 

remove explanatory variables before the application of the trained model to the entire study area (Case C). 

Case B: This application considers a cross validation approach similar to Case A, but the training and validation datasets 

partition uses the “landslides sampling” selection criteria. As before, a balanced random sampling and a specific size of the 140 

training and validation datasets (e.g., 70% training and 30% validation) are chosen (Figure 2 Case B). As in Case A, it can be 

used to analyse the explanatory variables and to test the modelling results as well as its dependency from the selection of 

different landslide samples. 

Case C: The training configuration can be similar either to Case A or B, but the validation is applied to the entire study area. 

This case should be applied when the definitive set of explanatory variables is selected and the statistical performance of the 145 

model is satisfactory and acceptable. The validation map will show the susceptibility zonation for the entire extent of the study 

area (Figure 2 Case C).  

Case D: This case performs a temporal validation, applicable when a geomorphological/historical inventory map is available 

to train the model and an event (or a successive) landslide inventory map is used for validation. In such a case the landslide 

event map used for the model validation may cover only a portion of the study area, with a spatial extent different from the 150 

inventory map used for the calibration (Figure 2 Case D). This configuration requires two different mask files, one covering 

the entire study area and the other only the area affected by the event. The selection of the explanatory variables and the 

preliminary evaluation of the model can be performed applying Case A or B. The temporal validation may cover the entire 

study area, when an event inventory is available for its total extent. 

Case E: This case performs a spatial validation, with the model calibration performed in a given region of the study area and 155 

the validation in a different one. For example, the model training and validation can be performed in two contiguous but not 

overlapping river basins. In such a case, the variable selection and the preliminary model testing could be performed only in 

one of the two basins similarly to Case A or B. In this case the explanatory variables and landslide inventory map should be 

available in the two regions with the same characteristics (Figure 2 Case E). This configuration requires two different landslide 

inventory maps, two mask files and two explanatory variables datasets, respectively for the calibration and for the validation 160 

region. 
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Figure 2: Simplified representations of the five LAND-SUITE applications, referred to as “Cases” in the figures and text, 

representing common susceptibility investigations. Red boxes highlight the cases described in the application (Section 4). 

 165 

3.2 LAND-SVA: LANDslide - Susceptibility Variable Analysis 

LAND-SVA is designed for the explorative analysis of the LAND-SE training and validation input datasets and facilitates the 

selection of the optimal set of variables. The tool automatically detects continuous or dummy variables (i.e., derived from 

categorical data and normally represented with numerical discrete values) and selects the outputs accordingly. All the analyses 

are performed separately for the training and validation datasets, with the main purpose to provide the possibility to analyse 170 

and control the dataset differences. 

In this step, the user may decide whether or not to scale the variables and the option is applied jointly to the two datasets, to 

guarantee the comparability and applicability of the trained susceptibility model to the validation datasets. The variable scaling 

introduces advantages, particularly during numerical models convergence, avoiding working with variables with diversified 

ranges. However, two susceptibility analyses, performed with scaled or not scaled variables, lead to the same results when 175 

both are able to converge. It is important to note that two analyses performed using scaled variables in two different areas, do 

not necessarily guarantee the comparability of the variable coefficients. Similarly, such comparability does not hold for 

coefficients of variables derived at different data resolutions (e.g. coefficients of slope derived using two different DEM 

resolutions). 

LAND-SVA performs the following analyses on continuous and categorical input variables (Figure 3 and 4, Table 1): 180 

● Conditional density analysis (Figure 3): 
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o Density plots for continuous variables that show the distribution of the values of numeric variables, stratified 

by the corresponding grouping variable value (0 and 1). Such plots use a kernel density estimator to show 

the probability density function of the variable. It basically corresponds to a smoothed version of a histogram 

plot and can be interpreted similarly; 185 

o Conditional density plots for continuous variables that examine the proportion of the grouping variable 

values (0 and 1) against the variation of a given continuous variable; 

o Histogram plots for categorical variables that, similarly to density plots, show the distribution of the values 

of categorical variables stratified by the corresponding grouping variable value (0 and 1). These plots use a 

normalized histogram counting to estimate the probability density function; 190 

o Mosaic plots for categorical variables that, similarly to conditional density plots, show the proportion of the 

grouping variable values (0 and 1) for different variable categories; 

● Pairwise correlation analysis (Figure 4) of the input variables; in the analysis a correlogram chart and a correlation 

matrix are prepared to show pairwise correlation statistics among the different explanatory variables. The correlogram 

shows: in the upper triangular matrix, the values of the Pearson correlation coefficient for each pair of variables (i.e.; 195 

R coefficient ranging between −1 and 1, respectively for a perfect negative and positive correlation); in the lower 

triangular matrix, a graphical representation of the level of correlation (i.e.; flattened negatively and positively 

oriented ellipses, respectively for a negative and positive correlation); in the diagonal, the R value for the correlation 

of a variable with itself (R=1). Colours indicate different levels of correlation (i.e.; white for no correlation, red and 

blue respectively for negative and positive correlations); 200 

● Multicollinearity test (Table 1) of the input variables; the analysis follows the diagnostic procedures described by 

Belsley et al. (1980), which examines the conditioning of the matrix of independent variables computing a test statistic 

called condition index. In LAND-SVA, a multicollinearity table is prepared to identify multicollinearity among the 

explanatory variables. Multicollinearity exists whenever a variable is highly correlated with one or more of the other 

variables and represents a problem undermining the statistical significance of the independent variables. 205 

Multicollinearity implies that one variable in a multiple regression model can be linearly predicted from the others, 

with a substantial degree of accuracy. 
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Figure 3: Example of the conditional density analysis outputs generated by LAND-SVA for 5 synthetic explanatory variables. 

 210 

Some guidance is provided for the interpretation of the conditional density outputs shown in Figure 3. The density and 

histogram plots highlight significant numerical and categorical variables when the distribution of the values corresponding to 

the grouping variable categories (0 or 1) are significantly different (i.e., different shapes and lack of overlapping). Only under 

these circumstances, a variable may have a high significance in the modelling. The conditional density and mosaic plots need 

to be interpreted considering the variation and trend of the proportion of the grouping variable categories (i.e., the proportion 215 

of 0 or 1 along the vertical axis) along with the variable value (i.e., along the horizontal axis). A distinct increase or decrease 

of such proportion, along with a reduced oscillation of it, and without lack of data, is the expected behaviour to identify a 

variable contributing significantly to the susceptibility zonation. Under these circumstances, an independent explanatory 
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variable may have an unambiguous effect on the dependent grouping variable used in the modelling (i.e., the presence or 

absence of landslides in the mapping unit). Following these considerations, only the variables A and D should be considered 220 

in the susceptibility modelling (Figure 3). 

The pairwise correlation analysis and multicollinearity test are easier to interpret. When a significant high correlation is 

detected among two or more variables, one or more of the correlated variables should be excluded from the analysis. This is 

relevant for the following reasons: 

● the joint use of two or more correlated variables does not introduce a significant advance for the multivariate 225 

modelling; 

● generally, multivariate models assume independence among explanatory variables and when correlation exists, the 

independence assumption is not verified; 

● when the degree of correlation among variables is high, it can introduce problems during the model fitting and for the 

interpretation of the model results; 230 

● multicollinearity can introduce two main types of problems: i) the coefficient estimates can vary largely depending 

on the other independent variables considered in the model, with such coefficients’ values becoming very sensitive 

to small model changes; ii) multicollinearity may reduce the precision of the estimated coefficients, weakening the 

statistical significance of the model, leading to a limited p-values reliability when identifying statistically significant 

independent variables; 235 

● when collinearity occurs, the model coefficient values and their signs may change significantly depending on the 

specific variables included in the model, leading to difficulties to evaluate the results. Slightly different models may 

lead to different conclusions, making the actual contribution of variables impossible to understand. 
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Figure 4 : Example of the graph showing the output of the pairwise correlation analysis, generated by LAND-SVA. 240 

 

Condition index Variable coefficients 

intercept A B C D E F 

1.000 . . . . . . . 

1.031 . . . . . . . 

1.246 . . . . . . . 

1.421 0.999 . . . . . . 

1.711 . 0.654 . . 0.654 . . 

4.555 . . . . . . . 

746341312145290.375 . . 1.0 1.0 . 1.0 1.0 

Table 1: Example of the table showing the output of the multicollinearity test generated by LAND-SVA. 

 

Pairwise correlated variables are those with a Pearsons’ R values in the correlogram matrix close to +1 or -1 (Figure 4). Instead, 

multicollinearity is detected when the test statistic (i.e., the condition index in Table 1) is greater than 30 (Belsley, 1991). 245 

When a large condition index (rows with condition index > 30) is associated with two or more variables with large variance 

decomposition proportions (values corresponding to variables > 0.5), these variables may cause collinearity problems. Based 

on the above considerations, the variables B, C, E and F show multicollinearity (Table 1) and the correlogram (Figure 4) helps 

to identify correlations between B and C, and E and F. These results suggest to exclude alternatively B or C (negatively 

correlated), and E or F (positively correlated). 250 

3.3 LAND-SE: LANDslide - Susceptibility Evaluation 

LAND-SE is the module for landslide susceptibility modelling and zonation that is described in detail in Rossi and 

Reichenbach (2016). The software holds on the possibility to perform and combine different statistical susceptibility modelling 

methods, evaluate the results and estimate the associated uncertainty. In particular, it allows for: i) the selection of different 

combinations of multivariate approaches; ii) the evaluation of the model prediction skills and performances using success 255 

contingency matrices and plots, ROC curve and prediction rate curves; iii) the estimation of the associated uncertainty and 

errors; iv) the production of results in standard geographical formats (shapefiles, geotiff); and v) the usage of additional 

computational parameters to tune the calculation procedure for the analysis of large data sets. 

The basic LAND-SE execution flow involves the following steps: 

● the single susceptibility models’ executions and zonation production; 260 

● the combination of the single susceptibility models using a logistic regression approach; 

● the evaluation of the single and combined susceptibility models; 

● the estimation of the uncertainty of the single and combined susceptibility models. 
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Additional details on the LAND-SE tool specifications, configuration, functioning, and the scientific assumption can be found 

in Rossi and Reichenbach (2016), Rossi et al. (2010), as well as in the LAND-SUITE user guide. 265 

4 LAND-SUITE application 

To better illustrate the LAND-SUITE functionalities, we selected a portion of the study area located in the Gipuzkoa Province 

(northern sector of the Iberian Peninsula), where a landslide inventory and 14 explanatory variables were mapped (Bornaetxea 

et al., 2018). This set of thematic data is used to describe different applications of LAND-SUITE (i.e. Case A and C in Figure 

2) and to provide examples of the susceptibility analysis outputs, including plots and maps. The critical discussion of results 270 

and their scientific relevance is out of the scope of this article and requires dedicated analysis, such as those described by 

Bornaetxea et al. (2018) and Rossi et al. (2021). 

4.1 Description of the study area and available data 

The Gipuzkoa Province is located in the northern part of the Iberian Peninsula, along the western end of the Pyrenees and 

covers an area of 1980 km2, with an altitude ranging from the sea level to 1528 m a.s.l. The province, characterised by a steep 275 

morphology, is subdivided in six main watersheds that drain the territory toward the Cantabrian Sea (Figure 5). The 

investigated area is lithologically heterogeneous, with materials ranging from Paleozoic rocks to Quaternary deposits, 

corresponding to a hilly and mountainous Atlantic landscape (Mücher et al., 2010). The average annual precipitation is 1597 

mm (González-Hidalgo et al., 2011) with two maximum rainy seasons: November–January and April.  

The landslide inventory was prepared by an experienced geomorphologist during field surveys. The map shows the location 280 

and shape of 793 individual landslides in polygon format, mainly classified as shallow mass movements. A total of 14 geo-

environmental maps were available as explanatory variables. Morphometric variables, such as elevation, slope, sinusoidal 

slope (Santacana Quintas, 2001; Amorim, 2012), aspect, surface area ratio (SAR), terrain wetness index (TWI), curvature, 

plan curvature and profile curvature, were derived from a DEM with a 5 m × 5 m spatial resolution. Lithology, permeability, 

regolith thickness, land use and vegetation were downloaded from the official spatial data repository of the Basque Country 285 

(GeoEuskadi). Relative landslide incidence, by means of the Frequency Ratio (Bonham-Carter, 1994; Lee et at., 2002), was 

used to assign a numerical value to each category (hence transformed into dummy variables). For simplicity, we limited the 

model application to the two central and largest watersheds, which correspond to the Urola and Oria basins.  
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Figure 5 : Location of the Gipuzkoa Province study area and the two river basins Urola and Oria. 290 

4.2 LAND-SIP: preparation of the training and validation datasets 

Among all the possible LAND-SUITE applications, we selected the cross-validation approach with pixel sampling method 

(Case A). Moreover, we applied the balanced random sampling criteria to select the same number of pixels with and without 

landslides, for both the training and validation datasets. The susceptibility model was calibrated using 70% of the data and 

validated using the remaining 30%.  295 

As a first step, using LAND-SVA, we performed a preliminary evaluation of the available data. After the selection of the most 

significant explanatory variables, we evaluated the statistical performance of the calibrated model with the inspection of the 

susceptibility outputs produced by LAND-SE. At the final step, we applied Case C (Figure 2) to obtain a susceptibility zonation 

for the entire area. 

4.3 LAND-SVA: variables analysis and selection for the training and validation datasets 300 

We selected Case A and we ran LAND-SVA with the complete set of variables, for the explorative analysis of training and 

validation datasets in order to select the optimal combination of explanatory variables. The multicollinearity table (Table 2) 

shows one condition index larger than 30 and one close (29,722), with variance decomposition proportion values larger than 
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0.5. Thereby, the test detected two groups of variables (group I: curvature, planar curvature and profile curvature; group II: 

SAR, slope, senoidal slope) with multicollinearity problems. 305 

 

Conditional 

index 

Variable coefficients 

Int. a b c d e f g h i j k l m n 

1 . . . . . . . . . . . . . . . 

1.117 . . . . . . . . . . . . . . . 

1.521 . . . . . . . . . . . . . . . 

1.583 . . . . . . . . . . . . . . . 

1.804 . 0.699 . . . . . . . . . . . . . 

1.841 0.997 . . . . . . . . . . . . . . 

1.949 . . . . . . . . . . 0.537 . . . . 

2.078 . . . . . 0.695 . . . . . . . . . 

2.156 . . . . . . . . . . . . . . 0.644 

2.453 . . . 0.573 0.669 . . . . . . . . . . 

2.799 . . 0.758 . . . 0.692 . . . . . . . . 

3.001 . . . . . . . . . . . . . . . 

3.637 . . . . . . . . . . . . . . . 

29.722 . . . . . . . . . . . 0.892 0.998 0.981 . 

323243.074 . . . . . . . 1 1 1 . . . . . 

Table 2. Multicollinearity table generated by LAND-SVA for the Gipuzkoa study area. Int: intercept, a: Aspect, b: Land-Use, c: 

Lithology, d: Permeability, e: Regolith thickness, f: Vegetation, g: Curvature, h: Planar Curvature, i: Profile Curvature, j: Elevation, 

k: SAR, l: Slope, m: Senoidal Slope, n: TWI.  
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 310 

Figure 6 : The figure shows the correlogram obtained by LAND-SVA for the complete set of variables available in the Gipuzkoa 

study area (Case A). 

 

Inspection of the correlogram (Figure 6) confirms the pairwise correlations within groups I and II and highlights an additional 

correlation between vegetation and land use, assuming a Pearsons’ R absolute value of 0.5 as thresholds for detecting 315 

correlations. 

To obtain additional information on the highly correlated continuous variables, the relation of each explanatory layer with the 

dependent variable was analyzed through the density plots and conditional density plots reported in Figure 7. Similarly, we 
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checked the histogram plots and mosaic plots (Figure 8) to analyze the categorical variables. All the remaining outputs of the 

conditional density analysis were also evaluated, to check their relevance for the susceptibility modelling.  320 

The evaluation of LAND-SVA outputs allowed: 

● the removal of all the variables in group I, due to high correlation and to the lack of relevant differences between 1 

and 0 in the density plots and conditional plots; 

● the selection of slope in group II, based on the better distribution separation and trend shown in the density and 

conditional plots; 325 

● the selection of both vegetation and land use, with a weak correlation, confirmed by their Pearsons’ R values only 

slightly higher than 0.5. 
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Figure 7 : Density plots and Conditional density plots for some continuous explanatory variables that show a significant correlation 330 
between them. 

 

 

Figure 8: Histogram plots and mosaic plots for two categorical explanatory variables that show a significant correlation. 

 335 

4.4 LAND-SE: susceptibility models’ execution and zonation production 

After the analysis of the results produced by LAND-SVA, the final set of explanatory variables used to run LAND-SE included 

aspect, land use, lithology, permeability, regolith thickness, vegetation, elevation, slope and topographic wetness index. The 

same training set was used to prepare the four single landslide susceptibility models and the combined model (Figure 9). The 

figure shows the different landslide zonation maps and the plots (i.e., ROC plot, evaluation plot, success rate plot and 340 

contingency or fourfold plot) used to evaluate the training performance of the combined model. The two small maps at the 

bottom, illustrate the errors and uncertainty values associated with the combined susceptibility model (Rossi et al, 2010). This 

set of outputs, restituted by LAND-SE, is commonly used for the verification and analysis of the susceptibility zonations 

obtained by LAND-SUITE. 
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 345 

Figure 9 : Examples of most relevant outputs of LAND-SE obtained in the Gipuzkoa study area. LDA = Linear discriminant analysis; 

LRM = Logistic regression model; QDA = Quadratic discriminant analysis; NNM = Neural network analysis; CFM = Combined 

models’ function. 
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5 Scientific contributions and Ffinal remarks 350 

LAND-SUITE was developed to support the landslide susceptibility inference process, which is a complex task. LAND-SUITE 

It is includes a suite of tools for statistically-based landslide susceptibility zonation implemented in R and released with an 

open source license. The tool was developed to support the landslide susceptibility inference process, which is a complex task 

As highlighted by Reichenbach et. (2018), only a reducedreduce number of scientificsceintific contributionscontribution on 

statistical landslide susceptibilitysusceptivbility modelling, properly select and combine the suitable variables and apply 355 

account all the relevant statistical evaluations for realisingrealizing high-quality zonations. This is mainly due to the lack of a 

comprehensivecomphreshesive and shared approach for susceptibilityfor the susceptibility modelling. to LAND-SUITE can 

be used for cathe preparation and the selection of the variables/data required for a reliable statistical analysis and it is it is was 

not is designed to to support substitute the geomorphological/geological experience and competence of the operator., but to 

facilitate the preparation and the selection of the variables/data required for a reliable statistical analysis. LAND-SUITE 360 

facilitates and simplifies can be used the testing of to test diversified geomorphological hypotheses allowing the verification 

to verify and discussion of the initial modelling assumptions,  and theo preparationprepation ofre less subjective statistically-

based susceptibility zonation and the evaluation of to test the quality of and the modelling results of the modelling. Few initial 

skills are required to run the software, but the learning curve is not really steep. A user with a good knowledge of LAND-

SUITE is able to run different models changing options, configurations and data. 365 

A key step for a reliable landslide susceptibility modelling, is the preparation of robust and unbiased input data, which largely 

depends on the user's skill and experience. In many cases, the data classification approaches, reliability and representativeness 

of the thematic information are more important than the statistical methods and tools used for the landslide susceptibility 

estimation. Low quality output and errors often derivederive often from incomplete or not significant data. The tool has the 

ambition to help a skilled user withfor the preparation of statistically correct and robust models, allowing to apply and test 370 

easily different classical statistical procedures (e.g., random sampling, data scaling, use of common machine learning 

approaches and commonly-used evaluation metrics).   

Moreover, Using LAND-SUITE,  the user can compare results of can be applied using different mapping units (e.g., pixel, 

slope units, administrative units, etc.), with distinct configurations and data resolution at diverse spatial scales. The tool uses 

standard geographical formats in input and output and can facilitate the massive code execution via command line interface. 375 

We acknowledge that LAND-SUITE does not consider all the statistical approaches for landslide susceptibility modelling and 

zonation, which can be potentially included in future software upgrades. Possible LAND-SUITE advancements can also be 

achieved by implementing new procedures to evaluate the variables' significance across the different statistical approaches. 

The suite has high flexibility and allows to perform different partitions of the training/validation dataset and diversified 

validation tests (e.g., temporal, spatial, cross validation, etc.), which are relevant evaluation steps to realiserealize robust 380 

scientific susceptibility modelling exercises.  
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LAND-SUITE can be used to model and evaluate the spatial probability of the occurrence of other types of natural phenomena 

(such as floods, forest fires, rock falls source areas, e.g. see Rossi et al., 2021) and this use may highlight the need for specific 

code modifications and refinements. Indeed, as an open source tool, LAND-SUITE can be easily modified by a R programming 

skilled user and adapted to any specific needs. 385 

6 Code availability and licence 

LAND-SUITE is composed of three modules (LAND-SIP, LAND-SVA, LAND-SE) coded as separate .R script files and can 

be executed under different operating systems. The software was mainly tested under WindowsOS and LinuxOS, with the 

version of R-4.1.1 (64bit). Some code functionalities of LAND-SIP require GRASS GIS binding. We tested the script using 

GRASS GIS version 7 under WindowsOS and LinuxOS. We recommend LinuxOS, due to the better software integration at a 390 

bash scripting level. 

LAND-SUITE is free software; it can be redistributed or modified under the terms of the GNU General Public (either version 

2 of the license, or any later version) as published by the Free Software Foundation. The program is distributed in the hope 

that it will be useful, but without any warranty; without even the implied warranty of merchantability or fitness for a particular 

purpose. See the GNU General Public License for more details. 395 

LAND-SUITE V1.0 is archived in ZENODO repository with the DOI: 10.5281/zenodo.5650810. 

7 Data availability 

In this work, example data have been used only to show different LAND-SUITE applications and they are not needed to apply 

LAND-SUITE elsewhere. The software can in fact be used in other areas using the appropriate input data. 

8 Author contribution 400 

MR conceptualized the work, designed the overall methodology behind the software and supervised the research activity; MR 

wrote the core of the codes LAND-SIP, LAND-SVA and LAND-SE; TB implemented specific functionalities of LAND-SIP 

and LAND-SVA, reviewed the codes and performed the overall LAND-SUITE code validation/testing; PR participated to the 

LAND-SUITE code validation/testing; MR wrote the original draft of the manuscript; TB and PR largely contributed to the 

review, edit and writing of the manuscript. 405 
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