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Abstract.  

Knowledge about muon tomography has spread in recent years in the geoscientific community and several collaborations 

between geologists and physicists have been founded. As the data analysis is still mostly done by particle physicists, we 15 

address the need of the geoscientific community to participate in the data analysis, while not having to worry too much about 

the particle physics equations in the background. The result hereof is SMAUG, a toolbox consisting of several modules that 

cover the various aspects of data analysis in a muon tomographic experiment. In this study we show how a comprehensive 

geophysical model can be built from basic physics equations. The emerging uncertainties are dealt with by a probabilistic 

formulation of the inverse problem, which is finally solved by a Monte Carlo Markov Chain algorithm. Finally, we 20 

benchmark the SMAUG results against those of a recent study, which however, have been established with an approach that 

is not easily accessible to the geoscientific community. We show that they reach identical results with the same level of 

accuracy and precision. 

1 Introduction 

Among the manifold geophysical imaging techniques, muon tomography has increasingly gained the interest of geoscientists 25 

during the course of the past years. Before its application in Earth sciences, it was initially used for archaeological purposes. 

Alvarez et al. (1970) used this method to search for hidden chambers in the pyramids of Giza, in Egypt; an experiment which 

was recently repeated by Morishima et al. (2017), as better technologies have continuously been developed. Other civil 

engineering applications include the monitoring of nuclear power plant operations (Takamatsu et al., 2015) and the search 

for nuclear waste repositories (Jonkmans et al., 2013) as well as the investigation of underground tunnels (e.g. Thompson et 30 

al., 2020; Guardincerri et al., 2017). A serious deployment of muon tomography in Earth sciences has only begun in the past 
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decades. These undertakings mainly encompass the study of the interior of volcanoes in France (Ambrosino et al., 2015; 

Jourde et al., 2016; Noli et al., 2017; Rosas-Carbajal et al., 2017), Italy (Ambrosino et al., 2014; Lo Presti et al., 2018; 

Tioukov et al., 2017), and Japan (Kusagaya and Tanaka, 2015; Nishiyama et al., 2014; Oláh et al., 2018; Tanaka, 2016). 

Other experiments have been performed in order to explore the geometry of karst cavities in Hungary (Barnaföldi et al., 35 

2012) and Italy (Saracino et al., 2017). Further studies (see also review article by Lechmann et al., 2021a) have been 

conducted by our group to recover the ice-bedrock interface of Alpine glaciers in central Switzerland (Nishiyama et al., 

2017; 2019). 

The core component of every geophysical exploration experiment is formed by the inversion, which might be better known 

to other communities as fitting or modelling. This is where the model parameters are found, which best fit the observed data. 40 

Up until now, this central part has mostly been built specifically to meet the needs of the experimental campaign at hand. On 

the one hand this approach has the advantage of allowing the consideration of the peculiarities of particle detectors, their data 

processing chain, and other models involved (e.g. the cosmic ray flux model). On the other hand, when every group develops 

a separate inversion algorithm, the reconstruction of the precise calculations performed in the data analysis procedure 

becomes a challenge. For a researcher who is not familiar with the intricacies of inversion, this might even be tougher. We 45 

thus see the need for a lightweight programme that incorporates a structured and modular approach to inversion, that also 

allows users with little inversion experience to familiarise themselves with this rather involved topic. This programme can be 

used to directly analyse experimental data in a stand-alone working environment, and the modules and theoretical 

foundations can be adapted, customised, and integrated into new programmes. For this reason, the code is built in the 

programming language Python as to facilitate the exchange between researchers and to enhance modifiability. Moreover, the 50 

source code is freely available online (see code availability section below). 

To facilitate the further reading of our code, we introduce the reader at this point to our benchmark experiment, to which we 

will refer on multiple occasions throughout this work. The experimental campaign is explained in detail in Nishiyama et al. 

(2017) and thus we will resort to a description of the experimental design at this point. In the Nishiyama et al. (2017) study 

we aimed at we aimed at recovering the ice-bedrock interface of an Alpine glacier in central Switzerland. Figure 1 shows 55 

that we had access to the railway tunnel of the Jungfraubahnen, where we installed three detectors. In our measurement we 

recorded muons from directions that consisted purely of rock and others where we knew that the muons must have crossed 

rock and ice (see the two cones in Fig. 1). From the former it was possible, together with laboratory measurements, to 

determine the physical parameters of the rock more precisely. Conversely, we utilised the measurement of the latter to infer 

the interface between rock and ice underneath the glacier. Finally, we will also use the results of that experiment (Nishiyama 60 

et al., 2017) to verify our new algorithm in the present study. 
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Figure 1: Left: Schematic side view of the experiment from Nishiyama et al. (2017). A muon detector (red) is placed in a tunnel or 

cavity and records muons from the cosmic ray flux that penetrate the material (ice & rock) from different directions. Muons that 65 
are detected along cones yield information on the amount and density of matter between the topographic surface and the detector. 

Based on this the interface between ice and rock (dashed green line) can be reconstructed. Right: Fig. 1 from Nishiyama et al. 

(2017); Overview of the study region in the central Swiss Alps. a) shows an outline of the imaged glacier and its localisation in 

Switzerland and b) indicates where the three detectors have been positioned in the Jungfraubahnen railway tunnel. 

1.1 Inversion – a modular view 70 

The goal of every muon tomography study is essentially to extract information on the physical parameters of the 

radiographed object through a measurement of the cosmic ray muon flux and an assessment of its absorption as the muons 

cross that object. In geological applications these objects are almost always lithological underground structures such as 

magma chambers, cavities, or other interfaces with a high-density contrast. The reconstruction of the geometry of such 

structures can only be achieved if the measured muon data is compared to the results of a muon flux simulation. As stated 75 

earlier, this is the basic principle of the inversion procedure. However, the aforementioned “muon flux simulation” is not just 

a simple programme, but it consists of several physically independent models that act together. Taking a modular view, we 

will call these models “modules” from here on, as they will inevitably be part of a larger inversion code. We have visualised 

the components that are necessary to build an inversion in Fig. 2.  

The first of the modules is the input module for the experiment results, which also considers the detectors that were used in 80 

the experiment. Typical detector setups include nuclear emulsion films (e.g. Ariga et al., (2018), cathode chambers (e.g. 

Oláh et al., 2013), scintillators (e.g. Anghel et al., 2015) or other hardware solutions. Although the detailed data processing 

chain may be comprehensive, the related output almost always comes in the form of a measured directional (i.e. from various 

incident angles) muon flux, which will be the input to the inversion scheme. Here, we primarily work with the premise that 

the muon flux data and the associated errors are given. The corresponding errors can then be furnished to the code by means 85 

of an interface. The simulation module on the other hand, consists of four autonomous components (see Fig. 2). First, a 

cosmic ray muon flux model is necessary, which describes the muon abundance in the atmosphere and which is generally 

dependent on the muon energy, its incidence angle, and the altitude of the detector location. Lesparre et al. (2010) list and 
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compare various muon flux models that may be incorporated into an extensive simulation. Second, it is necessary to model 

the spatial distribution of the detectors as well as the initial distribution of the lithologies. Related pre-existing software 90 

solutions mainly comprise GIS- and geological 3D-modelling applications, that excel at capturing and compiling geological 

information from various sources (e.g. field, maps, etc.) into a spatially organised database. Third, the lithologies consisting 

of different minerals have to be translated to a set of parameters, which are a necessary input for the subsequent physical 

simulation. This can be done by a rock model (e.g. Lechmann et al., 2018), which considers the effects of the mass density as 

well as the average atomic mass and charge of the rock as a function of its mineralogical composition. Lastly, the muon 95 

fluxes at the detector sites have to be simulated by means of a muon transportation model, which calculates all physical 

processes by which a muon loses kinetic energy while travelling through matter. The particle physics community has a great 

variety of particle simulators, the most prominent being GEANT4 (Agostinelli et al., 2003), a Monte Carlo based simulator. 

These have the advantage that stochastic processes resulting in energy loss are simulated according to their probabilistic 

occurrence - an upside that has to be traded off for longer computation times. In contrast to obtaining the full energy loss 100 

distribution, lightweight alternatives often resort to the calculation of only the mean energy loss. The solution of the resulting 

differential equation can even be tabulated, as has been done by Groom et al. (2001). The interplay of these four submodules 

allows for the simulation of muon fluxes at the detector sites that are mostly located in an underground environment.  

 

Figure 2: A schematic flowchart showing the different involved models in a muon tomographic experiment. The muon simulation 105 
consists of a model for rocks, detectors, the cosmic ray flux and a particle physical model on how muons lose energy upon 

travelling through rocks. These models allow for a synthetic data set to be computed, which will be compared to the actual 

measured data from the experiment. An optimisation problem then solves for the best set of parameters. 
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1.2 The need for a consistent inversion environment 

The sole combination of the aforementioned four submodules does not fully justify the need for a new software, as cosmic 110 

ray flux models as well as rock models can also be programmed within existing Monte Carlo simulators such as GEANT4 

(Agostinelli et al., 2003) or MUSIC (Kudryavtsev, 2009). Unfortunately, the application of such a Monte Carlo approach 

requires a rather good understanding of programming and nuclear physics processes. Thus, it might prove time-consuming to 

programme a specific code. Moreover, these codes are often written in a specialised programming language such as C++. 

Third, the compatibility between different modules (e.g. cosmic ray flux and energy loss) may be severely hampered, if the 115 

programme interfaces are not taken into consideration. It might be even worse if the two modules are written in two different 

programming languages. In addition, one has to carefully evaluate the benefit of such an undertaking, especially if the 

resulting code will most likely be tailored only to a specific problem. We thus see the need for a versatile, user-friendly 

simulator, which allows users not only to quickly perform the necessary calculations without the need of additional coding, 

but also tailor the individual models to custom needs. A new simulator can be more useful if an inversion functionality is 120 

already included. As can be seen in Fig. 2, the inversion compares the simulated flux data with the measured ones. It also 

attempts to reduce the discrepancy between measurements and simulations by optimising the parameters in the simulation, 

namely material density and the thickness distribution of the overlying materials. This results in a density- or structural rock 

model, which best reproduces the measured data. As the mathematical optimization in muon tomography generally is 

nonlinear, one has to employ nonlinear solvers or even Monte Carlo techniques. This circumstance encourages us to work 125 

with a lightweight version of a muon transport simulator, because a nonlinear inversion of Monte Carlo simulations, 

although mathematically preferable, is computationally prohibitive. This allows us to make use of methods from the 

Bayesian realm, that thrive when measurements from different sources have to be combined into a single comprehensive 

model. With the code presented in this paper, we aspire to make muon tomography accessible to a broader geoscientific 

community, as the know-how in this field is mainly concentrated in particle physics laboratories. We want to provide the 130 

tools for Earth scientists, or users that are mainly focused on the application of the method, so that they can perform their 

own analyses. 

In this contribution we present our new code, SMAUG (Simulation for Muons and their Applications UnderGround), that 

allows a broader scientific community to plan and analyse muon tomographic experiments more easily, by providing them 

with data analysis and inversion tools. Specifically, we describe the governing equations of the physical models, and the 135 

mathematical techniques that were used. Chapter 2 depicts how the muon flux simulation is conducted by its submodules 

and how a muon flux simulation is performed. Chapter 3 then dives into the inversion module and explains how the 

parameters of the inferred density/rock-model can be estimated based on measured data. This chapter includes a description 

of the model and data errors and an explanation on how a subsurface material boundary can be constructed. Chapter 4 

provides a short overview of the program, explaining which functionality can be found in which source code. Chapter 5 140 

discusses the model’s performance based on the data that we collected in the framework of an earlier experimental campaign 
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(see supplement of Nishiyama et al., 2017). Chapter 6 then concludes this study by outlining a way of how this code can be 

developed further to fit the needs of the muon tomography and geology community. 

2 The forward model: Muon flux simulation 

In geophysical communities this part is generally known as the forward model, i.e. a mathematical model which calculates 145 

synthetic data for given “model” parameters. In muon tomography experiments this forward model consists of different 

physical models which are serially connected. 

2.1 Cosmic ray flux model 

The nature of the data used in muon tomography generally consists of several counts within a directional bin, defined by two 

polar and two azimuthal angles. Additionally, the measurement is taken over a defined period of time, as well as over a given 150 

extent within the detector area. The simulated number of muons, in the i-th bin, can be calculated by this integral, 

𝑁𝜇,𝑖
𝑠𝑖𝑚 = ∫ ∬ ∬ ∫

𝑑𝐼

𝑑𝐸𝐸
𝑑𝐸 𝑑𝐴 𝑑Ω 𝑑𝑇

AΩT
 . (1) 

Here, T denotes the exposure time interval, A the detector area, Ω the solid angle of the bin and E the energy range of the 

muons that were able to be registered by the detector. There are various differential muon flux models, also referred to as the 

integrand in Eq. (1), that can be employed at this stage. Lesparre et al. (2010) provide a good overview on the different flux 155 

models, which can broadly be divided in two classes. On the one hand there are theoretical models, which capture the 

manifold production paths of muons and condense them in an analytical equation, e.g. the Tang et al., (2006) model. They 

contrast, on the other hand, with empirical models that were generated by fitting formulae to the results of muon flux 

measurements. The model of Bugaev et al. (1998) falls into this category, with later adjustments for different zenith angles 

(Reyna, 2006) and altitude (Nishiyama et al., 2017), which are also utilised in this study. The details of the formula are 160 

explained in Appendix A. The evaluation of Eq. (1) is rather cumbersome as strictly speaking several of the integration 

variables depend on each other. We may facilitate the calculation by considering that the differential muon flux model is 

only dependent on energy, E, and zenith angle, 𝜃 whereas the effective area, Δ𝐴𝑒𝑓𝑓,𝑖, is solely dependent on the orientation 

of the bin. This is the case because muons do not necessarily hit the detector perpendicularly, such that the effective target 

area is usually smaller. By averaging over the zenith angle and keeping the bin size reasonably small, we may approximate 165 

Eq. (1) by 

𝑁𝜇,𝑖
𝑠𝑖𝑚(Ecut,i) = ∫

𝑑𝐼

𝑑𝐸
(𝐸, 𝜃�̂�) 𝑑𝐸

∞

𝐸𝑐𝑢𝑡,𝑖
∗ Δ𝑇 ∗  Δ𝐴𝑒𝑓𝑓,𝑖(𝜑�̂�, 𝜃�̂�) ∗  ΔΩ𝑖  , (2) 

where Δ𝑇 is the exposure time and Δ𝐴𝑒𝑓𝑓,𝑖  is the effective detector area. ΔΩ𝑖  is the solid angle, 𝜑�̂�  and 𝜃�̂�  are the mean 

azimuth and zenith angle of the i-th bin, respectively. 𝐸𝑐𝑢𝑡,𝑖  describes the energy needed for a muon to enter the 
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detector. Δ𝐴𝑒𝑓𝑓,𝑖  has to be scaled by the cosine of the angle between the bin direction and the detector facing direction, 170 

which can be calculated using the formula for a scalar product, 

Δ𝐴𝑒𝑓𝑓,𝑖 = Δ𝐴 ∗
�⃗�  ⋅𝑑 𝜇(�̂�𝑖,�̂�𝑖)

‖�⃗� ‖‖𝑑 𝜇(�̂�𝑖,�̂�𝑖)‖
, (3) 

where �⃗�   is the normal vector to the detector surface and 𝑑 𝜇(𝜑�̂�, �̂�𝑖) is the mean vector of muon incidence within the i-th bin, 

both of which can be chosen to feature unit length. Evaluating the scalar product in spherical coordinates, Eq. (3) yields 

Δ𝐴𝑒𝑓𝑓,𝑖 = Δ𝐴 ∗ [sin(𝜃𝑑) sin(�̂�𝑖) cos(𝜑𝑑 − �̂�𝑖) + cos(𝜃𝑑) cos(�̂�𝑖)]. (4) 175 

Here, 𝜃𝑑 and 𝜑𝑑 are the zenith and azimuth angles of the detector facing direction. It is important to note that except for 

𝐸𝑐𝑢𝑡,𝑖 all variables in Eq. (2) are predetermined by the experimental setup (Δ𝑇, ΔA) as well as by the data processing (�̂�𝑖, �̂�𝑖), 

such that the number of muons 𝑁𝜇,𝑖
𝑠𝑖𝑚 can be interpreted as a function of one variable, 𝐸𝑐𝑢𝑡,𝑖 only. 

2.2 Muon transportation model 

Since muons permanently lose energy when travelling through matter, they also need a certain amount of energy to enter the 180 

detector. This energy, 𝐸𝑐𝑢𝑡,𝑖, was introduced in Eq. (2) and is called the cutoff energy. If the detector is now positioned 

underground, the muons have to traverse more matter to reach the detector and consequently need a higher initial energy to 

reach the target. For this purpose, we introduce the new variable 𝐸0, which refers to the energy needed to penetrate the 

detector, and we reinterpret 𝐸𝑐𝑢𝑡,𝑖 as the minimum energy that is required to traverse the matter and to be registered at the 

detector. For the goal of studying the interactions between particles and matter, physicists regularly use energy loss models. 185 

We base our calculations in large parts on the equations of Groom et al. (2001), where the energy loss of a muon along its 

path is described by an ordinary differential equation of 1st order, 

−
𝑑𝐸

𝑑𝑥
= 𝜌(𝑥) ∗ [𝑎(𝑥, 𝐸) + 𝐸 ∗ 𝑏(𝑥, 𝐸)] . (5) 

In Eq. (5), 𝜌 denotes the density of the traversed material, and 𝑎 and 𝑏 are the ionisation loss and radiation loss parameters 

respectively. The radiation loss parameter groups the effects related to the bremsstrahlung, 𝑏𝑏𝑟𝑒𝑚𝑠 , the pair-production, 190 

𝑏𝑝𝑎𝑖𝑟 , and the photonuclear interactions, 𝑏𝑝ℎ𝑜𝑡𝑜, where 

𝑏(𝑥, 𝐸) = 𝑏𝑏𝑟𝑒𝑚𝑠(𝑥, 𝐸) + 𝑏𝑝𝑎𝑖𝑟(𝑥, 𝐸) + 𝑏𝑝ℎ𝑜𝑡𝑜(𝑥, 𝐸). (6) 

Each of the radiative process is, in turn, calculated through 

𝑏𝑘 =
𝑁𝐴

𝐴
∫ 𝜈

𝑑𝜎𝑘

𝑑𝜈

1

0
𝑑𝜈 , (7) 

where 𝑘 ∈ 𝐾 = {bremsstrahlung, pair-production, photonuclear} is the set of radiative processes, 𝑁𝐴 is Avogadro’s number, 195 

𝐴 is the atomic weight of the traversed material, 𝜈 is the fractional energy transfer, and 𝑑𝜎𝑘 𝑑𝜈⁄  the differential cross-section 
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of the process. Eq. (7) becomes important when modelling errors have to be included (see Ch. 3). For a detailed discussion 

of the equations for 𝑎 and 𝑏 we refer to Groom et al. (2001). The only exception in Eq. (6) is 𝑏𝑝𝑎𝑖𝑟 , which is calculated after 

GEANT4 (Agostinelli et al., 2003). We selected the solution of these latter authors because it is computationally less time 

consuming. As the two results agree within 1 %, we deem it acceptable to exchange the two differential cross-sections.  200 

Because Eq. (5) describes the energy loss in response to the interaction with a single-element material, certain modifications 

have to be made to make it also valid for rocks, which in this context represent a mixture of minerals and elements. In this 

case, the modified equation takes an equivalent form to Eq. (5) when replacing 𝜌, 𝑎, 𝑏  with their mixture counterparts 

{𝜌}𝑟𝑜𝑐𝑘 , {𝑎}𝑟𝑜𝑐𝑘 , {𝑏}𝑟𝑜𝑐𝑘 (Lechmann et al., 2018), thus yielding 

−
𝑑𝐸

𝑑𝑥
= {𝜌(𝑥)}𝑟𝑜𝑐𝑘 ∗ [{𝑎(𝑥, 𝐸)}rock + 𝐸 ∗ {𝑏(𝑥, 𝐸)}rock] . (8) 205 

We show in Appendix B3 how the rock model (explained in Ch. 2.3) can be used to determine these quantities. 

By applying a change of variables to Eq. (8), i.e. 𝑥′ = −𝑥, the energy loss equation can be transformed to an energy gain 

equation. This has the advantage of being much easier to solve than the “final value problem” in Eq. (8). We can reorganise 

Eq. (8) into an initial value problem by setting the initial energy to 𝐸0, 

𝑑𝐸

𝑑𝑥
= {𝜌(𝑥)}𝑟𝑜𝑐𝑘 ∗ [{𝑎(𝑥, 𝐸)}rock + 𝐸 ∗ {𝑏(𝑥, 𝐸)}rock]  (9) 210 

𝐸(0) = 𝐸0 .  

In this context 𝐸0 is the minimal energy needed for a muon to penetrate the detector, which can be influenced by the detector 

design. Equation (9) is a well-investigated problem that can be solved by numerous methods. In our work we employ a 

standard Runge-Kutta integration scheme (see for example Stoer and Bulirsch, 2013), with a step size of 10 cm. As a result, 

it is now possible to write the cut-off energy in a functional form, where 215 

𝐸𝑐𝑢𝑡,𝑖 = 𝑟𝑘(𝑥 𝑖 , 𝜌 , 𝑐 ) . (10) 

Here 𝑟𝑘(⋅) is the function that returns the Runge-Kutta solution of Eq. (9) for defined thicknesses of materials, 𝑥 𝑖 , with 

densities 𝜌  and compositional parameters 𝑐 . Thickness and density are allowed to be vectors, as there may be more than just 

one material. In this case, the final energy, after the muon has passed through the first segment of materials, is the initial 

energy for the second segment, etc. In order to speed up the computations – especially the calculation of the pair production 220 

cross-section, which includes two nested integrations. In particular, a log-log table of muon energy vs. radiation loss 

parameters is produced, from which the b-values, see Eq. (7), can be interpolated. We justify this approach because the 

radiative losses are almost linear in a log-log plot, as can be seen in Fig. 33.1 of Tanabashi et al. (2018, p.447) for the 

example of copper. The general shape of the energy loss function remains the same for various materials even if the absolute 

values differ. 225 
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2.3 Rock model 

Equation (10) shows that for the calculation of the cut-off energy two types of material parameters are required, which are 

the material density 𝜌  and its average composition 𝑐 . The pre-tabulated values from Groom et al. (2001), however, include 

only pure elements as well as certain compounds. To extract the relevant parameters in a geological setting, a realistic rock 

model is needed. In an earlier work (Lechmann et al., 2018) we have shown how an integrated rock model can be 230 

constructed and how the physical parameters for a realistic rock can be retrieved. In the present work we generally use the 

same approach, apart from a few aspects. First, we measured the average material density directly in the laboratory, using 

various techniques which are explained in detail in Appendix B1. Second, in order to be able to compare the results of this 

study with the ones in the Nishiyama et al. (2017) publication, we consider a rock composition that corresponds to a density-

modified standard rock. This is applicable, as the rock in the study of Nishiyama et al. (2017) is mostly of granitic/gneissic 235 

origin, with thicknesses rarely larger than 200 m, with the consequence that the differences are negligible. However, as the 

inclusion of compositional data is a planned feature for a future version of our code, we decided to include the theoretical 

treatment in this work. Hence, all equations are tailored to include the statistical description of such data. Compositional data 

for whole rock samples, which can be scaled to outcrop scale, are usually presented in one of two forms, the first being the 

measurement results of X-Ray Diffraction (XRD). This kind of data yields the mineral phases within a rock. Unfortunately, 240 

XRD is a rather time-consuming method. This is the reason why in muon tomographic experiments researchers often resort 

to a bulk chemical analysis of the rock, which is the second form of compositional data. This type of data is usually the 

output of dedicated X-Ray Fluorescence (XRF) measurements, describing the bulk rock composition by major oxide 

fractions. We note here that by the absence of information on the spatial distribution of mineral phases within a rock, we 

implicitly infer a homogeneous mixture of elements within the rock itself, which is thus different from our previous work 245 

(Lechmann et al., 2018). From a particle physics perspective this does not pose a real problem as the difference to a mixture 

of minerals is rather small. Nevertheless, we lose the power to obtain meaningful inferences that could be drawn if 

compositional information is being considered. As the present work aims to infer positions and uses material parameters as 

constraints, we can accept this drawback. Details on how compositional parameters are derived from XRF measurements, 

including an example, can be found in Appendix B2, and an explanation of the related influence on the energy loss equation 250 

in Appendix B3. 

2.4 Spatial models of detectors and materials 

In addition to the above explained physical models, we may also utilise available spatial data for our purposes. In this 

context, the use of a digital elevation model (DEM) of the surface allows the visualisation of the position of the detectors 

relative to the surface, as well as the spatial extent of the bins. Additionally, it allows us to determine the location where 255 

these bins intersect with the topographic surface. As a first deliverable, we can draw conclusions on which bins consist of 

how many parameters. For example, if we know that the detector is located underground and that there is ice at the surface, 
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we can already infer the existence of at least 2 materials (rock and ice). For this purpose, we wrote the script 

“modelbuilder.py”, which allows the user to attach geographic and physical information to the selected bins. This process of 

building a coherent geophysical model is needed for the subsequent employment of the inversion algorithm to process all the 260 

data. 

3 The inverse model: A Bayesian perspective 

As stated in the Introduction, we solve the inversion by using Bayesian methods. This needs an explanation as to why we 

chose this way and not another. First, the equations in Ch. 2 enable us to calculate a synthetic dataset for fixed parameter 

values. There, one can see that the governing equations constitute a nonlinear relationship between parameter values and 265 

measured data. Despite this being of no particular interest in the forward model, the estimation of the parameters from 

measured data is rendered more complicated. Among muon tomographers, linearised versions have been extensively used 

with deterministic approaches (e.g. Nishiyama et al., 2014; Rosas-Carbajal et al., 2017), which are successfully applicable 

when the density or the intersection boundaries are the only variables. When deterministic approaches are viable, they 

efficiently produce good results. Descent algorithms or, generally speaking, locally optimising algorithms, offer a valid 270 

alternative, as they could cope with the nonlinearity of the forward model, while including all desired parameters. Even 

though these algorithms suffer from possible non-uniqueness solutions (i.e. the solution depends heavily on the starting 

model, possibly yielding multiple solutions), the main problem is the calculation of the derivatives of the forward model with 

respect to the parameter values. The analytical calculation of the derivatives is enormously tedious because the cut-off 

energy results from a numerical solver of a differential equation, as can be seen in Eq. (9) & (10). Unfortunately, numerical 275 

derivatives do not produce better results, because they might easily produce artefacts, which are hard to track down. This is 

especially true if the derivative has to be taken from a numerical result, which is always slightly noisy. In that case the 

differentiation amplifies the “noise”, resulting in unreliable gradient estimates. A good overview over deterministic inversion 

methods can be found in Tarantola (2005).  

The reasons stated above and our goal to include as much information on the parameters as possible nudges us towards 280 

employing probabilistic methods. Those approaches are also known as Bayesian methods. The main feature that 

distinguishes them from the deterministic methods described above is the consistent formulation of the equations and 

additional information in a probabilistic way, i.e. as probability density functions (pdf). This allows us to (i) incorporate, for 

example, density values that were measured in the lab (including its error), (ii) set bounds on the location of the material 

interface, or (iii) define a plausible range for the composition of the rock. All these changes act on the pdf of the respective 285 

parameter and naturally integrate into the Bayesian inversion. Readers may find the book of Tarantola (2005) very 

resourceful for the explanation and illustration of probabilistic inversion. Several studies in the muon tomography 

community have already employed such methods with success (e.g. Lesparre et al., 2012; Barnoud et al., 2019).  
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The flexibility of being able to include as much information on the parameters as we consider useful comes at the price of 

having to solve the inversion in a probabilistic way. This can either be done using Bayes’ Theorem and solving for the pdfs 290 

of the parameters of interest, or if the analytical way is not possible by employing Monte Carlo techniques. As the presence 

of a numerical solver renders the analytical solution impossible, we resort to the Monte Carlo approaches. In the following 

sections we guide the reader through the various stages of how such a probabilistic model can be set up, how probabilities 

may be assigned, and how the inversion can finally be solved. 

3.1 Probabilistic formulation of the forward model 295 

The starting point for a probabilistic formulation is denoted by the equations that were elaborated in Ch. 2. These 

deterministic equations need to be upgraded into a probabilistic framework, where their attributed model and/or parameter 

uncertainties are inherently described. In the following paragraphs we describe how each model component can be expressed 

by a pdf before the entire model is composed at the end of this subchapter. The model is best visualised by a directed acyclic 

graph (DAG), i.e. see Kjaerulff and Madsen (2008), that depicts which variables enter the calculation at what point. For our 300 

muon tomography experiment this is visualised in Fig. 3. In the following the pdfs are denoted with the bold Greek letter 𝝅 

to differentiate them from normal parameters. 

 

Figure 3: Directed acyclic graph (DAG) for the problem of muon tomography. Variables in a square (□) denote fixed, i.e. known 

values and variables in a circle/ellipse (○) are generally unknown and have to be represented by a pdf. Solid arrows (→) denote a 305 
deterministic relation, i.e. within a physical model, whereas dashed arrows (⇢) indicate a probabilistic relationship, i.e. a 
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parameter within the statistical description of the variable. �⃗⃗� , �⃗�  are the density and composition for different materials, whereas 

�⃗⃗� 𝒄𝒔 contains the errors on the physical cross-sections in the energy-loss equation. 𝝈𝒇 describes the error on the cosmic-ray flux 

model. Within each cone, 𝒙𝒊 is the position of the bedrock-ice interface, 𝑴(𝒙𝒊, �⃗⃗� , �⃗� , �⃗⃗� 𝒄𝒔) is the calculated flux (i.e. energy-loss model 

and flux model combined), 𝒇𝒊 the actual muon flux and 𝒅𝒊 the observed number of muon tracks. 310 

3.1.1 Muon data 

The data in muon tomography experiments are usually count data, i.e. a certain number of measured tracks within a 

directional bin, which has been collected over a certain exposure time and detector area. As the measured number of muons 

is always an integer, we may model such data by a Poisson distribution, 

𝝅(𝑑𝑖|𝑁𝑖) =
𝑁
𝑖

𝑑𝑖𝑒−𝑁𝑖

𝑑𝑖!
 ,  (11) 315 

where 𝑑𝑖 denotes the measured number of muons in the i-th bin and 𝑁𝑖 is the poisson parameter in the same bin, which can 

be interpreted as mean and variance of this distribution. Equation (11) may be rewritten in terms of a flux, 𝑓𝑖 by 

𝝅(𝑑𝑖|𝑓𝑖) =
(𝑓𝑖Δ𝐸𝑥𝑖)

𝑑𝑖𝑒−(𝑓𝑖Δ𝐸𝑥𝑖)

𝑑𝑖!
 ,  (12) 

where 𝑓𝑖 is the muon flux in the i-th bin and 

Δ𝐸𝑥𝑖 = Δ𝐴𝑒𝑓𝑓,𝑖 ∗ Δ𝑇 ∗ ΔΩi  (13) 320 

is the exposure, in which Δ𝐴𝑒𝑓𝑓,𝑖  is the effective total detector area from Eq. (4), Δ𝑇 is the exposure time and ΔΩ𝑖  is the solid 

angle. 

3.1.2 Flux model 

The next step is to set up a probabilistic model for the muon flux. First, we observe that “flux” is a purely positive parameter, 

i.e. 𝑓𝑖 ∈ [0,∞). Thus, it is natural to model it by a lognormal probability distribution if estimates of mean and variance are 325 

readily available. The uncertainty on the muon flux is generally taken around 15% of the mean value. As it is possible, by 

Eq. (2), to calculate a flux for a given cut-off energy, which we interpret as the mean of the non-logarithmic values, the 

parameters of the lognormal distribution (i.e. 𝜇𝑓𝑖 , 𝜎𝑓𝑖
2 ) may be expressed by 

𝜎𝑓𝑖
2 = ln(1 + (

𝐹𝑖(𝐸𝑐𝑢𝑡,𝑖)∗0.15

𝐹𝑖(𝐸𝑐𝑢𝑡,𝑖)
)
2

) = ln(1.0225)  (14) 

and 330 

𝜇𝑓𝑖 = ln(𝐹𝑖(𝐸𝑐𝑢𝑡,𝑖)) − 
𝜎𝑓𝑖
2

2
 , (15) 

which yield the probability density function for the flux, conditional on the cut-off energy 
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𝝅(𝑓𝑖|𝜇𝑓𝑖 , 𝜎𝑓𝑖
2) = 𝝅(𝑓𝑖|𝐸𝑐𝑢𝑡,𝑖) =

1

√2𝜋 ∗ 𝑓𝑖 ∗ 𝜎𝑓𝑖

exp (−
1

2
(
ln(𝑓𝑖)−𝜇𝑓𝑖

𝜎𝑓𝑖

)
2

) . (16) 

3.1.3 Energy loss model 

The energy loss model has multiple sources of errors that have to be taken into account. Most notably, the relative errors on 335 

the different physical cross-sections are given by Groom et al. (2001) as 𝜀𝑖𝑜𝑛 = 6 %, 𝜀𝑏𝑟𝑒𝑚𝑠 = 1 %, 𝜀𝑝𝑎𝑖𝑟 =

5 %, 𝜀𝑝ℎ𝑜𝑡𝑜𝑛𝑢𝑐𝑙 = 30 % . As it is not clearly stated as to what this error relates to, i.e. one or more standard deviations, we 

interpret an error like 𝜀𝑖𝑜𝑛 = 6 % as: “within a factor of 1.06”, which can be written as 

𝜎𝑘

(1+𝜀𝑘)
 ≤ 𝜎𝑘 ≤ 𝜎𝑘(1 + 𝜀𝑘) , (17) 

where 𝑘 ∈ 𝐾 = {ionisation, bremsstrahlung, pair-production, photonuclear}. Dividing this inequality by 𝜎𝑘 and taking the 340 

logarithm yields 

− ln(1 + 𝜀𝑘)  ≤ 0 ≤ ln(1 + 𝜀𝑘).  (18) 

Thus, we may attribute a Gaussian pdf in the log-space for a “log-correction factor, 𝑙𝜎𝑘” by setting its mean to zero and its 

standard deviation to ln(1 + 𝜀𝑘), i.e. 

𝝅(lσk) =  
1

√2𝜋 ∗ln(1+𝜀𝑘)
exp (−

1

2
(

𝑙𝜎𝑘

ln(1+𝜀𝑘)
)
2

) .  (19) 345 

With a change of variables, using the Jacobian rule as explained in Tarantola (2005), we get 

𝝅(σk) =  
1

√2𝜋 ∗σk∗ln(1+𝜀𝑘)
exp (−

1

2
(
ln(𝜎𝑘)

ln(1+𝜀𝑘)
)
2

),  (20) 

the lognormal pdf for the correction factor. The pdf for the cross-section uncertainty 𝝅(𝜎 𝑐𝑠) can now be written as a product 

of the four different pdfs described by Eq. (20) 

𝝅(𝜎 𝑐𝑠) =  ∏ 𝝅(𝜎𝑘)𝑘∈𝐾 ,  (21) 350 

as the errors of the physical cross-sections are stochastically independent from each other. 

The calculated energy loss depends also on the material parameters and subsequently on their uncertainties. However, these 

will be explained in detail in Ch. 3.1.4. A last error enters by the numerical solution of the ordinary differential equation, Eq. 

(9). We decided not to model this error, as its magnitude is directly controlled by the user (by setting a small enough step 

length in the Runge-Kutta algorithm) and thus can be made arbitrarily small. Lastly, we assume that all the errors in the 355 

energy loss model are explained by uncertainties in the cross sections as well as in the material parameters. Although this 

assumption is rather strong, since it excludes the possibility of a wrong model, we argue that this approach works as long as 
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the variation in these parameters can explain the variation in the calculated cut-off energy. If this requirement is met, we may 

model the pdf for the energy loss model as a delta function, 

𝝅(𝐸𝑐𝑢𝑡,𝑖|𝜎 𝑐𝑠, 𝜌 , 𝑐 , 𝑥𝑖) = 𝜹(𝐸𝑐𝑢𝑡,𝑖 − 𝑟𝑘(𝜎 𝑐𝑠 , 𝜌 , 𝑐 , 𝑥𝑖)), (22) 360 

where 𝜎 𝑐𝑠 = (𝜎𝑘) , 𝜌  is the vector of all material densities, 𝑐  is the vector of all compositions and 𝑥𝑖  is the vector of 

thicknesses of segments used in this cone. It is now already possible to eliminate 𝐸𝑐𝑢𝑡,𝑖 as a parameter by first multiplying 

Eqs. (16) & (22), which yields 

𝝅(𝑓𝑖, 𝐸𝑐𝑢𝑡,𝑖|𝜎 𝑐𝑠, 𝜌 , 𝑐 , 𝑥𝑖) = 𝝅(𝑓𝑖|𝐸𝑐𝑢𝑡,𝑖) ∗  𝝅(𝐸𝑐𝑢𝑡,𝑖|𝜎 𝑐𝑠 , 𝜌 , 𝑐 , 𝑥𝑖). (23) 

From this expression it is possible to marginalise the parameter 𝐸𝑐𝑢𝑡,𝑖, by simply integrating over it, i.e. 365 

𝝅(𝑓𝑖|𝜎 𝑐𝑠, 𝜌 , 𝑐 , 𝑥𝑖) = ∫𝝅(𝑓𝑖 , 𝐸𝑐𝑢𝑡,𝑖|𝜎 𝑐𝑠 , 𝜌 , 𝑐 , 𝑥𝑖) 𝑑𝐸𝑐𝑢𝑡,𝑖 . (24) 

Due to the presence of the delta function in Eq. (22), this integral is solved analytically resulting in  

𝝅(𝑓𝑖|𝜎 𝑐𝑠, 𝜌 𝑖 , 𝑐 𝑖 , 𝑥𝑖) =  
1

√2𝜋 ∗ fi ∗ 𝜎𝑓𝑖

exp (−
1

2
(
ln(𝑓𝑖)−𝜇𝑓𝑖

𝜎𝑓𝑖

)
2

),  (25) 

where the parameters are given by 

𝜎𝑓𝑖
2 = ln (1 + (

𝑀(�⃗⃗� 𝑐𝑠,�⃗⃗� ,𝑐 ,𝑥𝑖)∗0.15

M(�⃗⃗� 𝑐𝑠,�⃗⃗� ,𝑐 ,𝑥𝑖)
)
2

) = ln(1.0225)  (26) 370 

and 

𝜇𝑓𝑖 = ln(M(𝜎 𝑐𝑠 , 𝜌 , 𝑐 , 𝑥𝑖)) − 
𝜎𝑓𝑖
2

2
 . (27) 

Please note that M(𝜎 𝑐𝑠, 𝜌 , 𝑐 , 𝑥𝑖) =  𝐹𝑖(𝑟𝑘(𝜎 𝑐𝑠, 𝜌 , 𝑐 , 𝑥𝑖)) describes the combined parts of the forward model that include the 

energy loss and the integrated flux calculation, which is basically a composition of functions. 

3.1.4 Rock model 375 

The density model can take different forms of probability densities (see Appendix B1), such as normal, lognormal, uniform, 

etc. For either form, it is possible to describe it by a generic function 𝝅(𝜌 ), which is a short version for a multidimensional 

pdf, i.e. 𝝅(𝜌𝑖𝑐𝑒 , 𝜌𝑟𝑜𝑐𝑘) if the i-th cone is known to consist of two segments with two specific densities. Equivalently, the pdf 

for the composition (see Appendix B2) is either fixed or a multidimensional Gaussian distribution in the space of log-ratios. 

Thus 𝝅(𝑐 ) can be split up to 𝝅(𝑐𝑖𝑐𝑒 , 𝑐𝑟𝑜𝑐𝑘), like in the example above. Generally, we may assume that in our problem j 380 

different materials exist. We note here that the description of the composition is already probabilistic. However, the 

inversion in that case is not functional and works only with the mean values of the multidimensional Gaussian. The support 

for composition inversion is planned for a future version of the code.  
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The situation for the thicknesses of the segments, 𝝅(𝑥𝑖), within the i-th cone presents itself in a similar way as for the 

compositions (e.g., Fig. 1). As the total material thickness is known (detector position and digital elevation models are 385 

given), the sub-space containing the thickness parameter is endowed with the same mathematical structure as the one 

containing the composition parameter (i.e. one sum constraint), if the cone consists of more than just one segment. One can 

therefore safely assume that the thickness parameters live in a log-ratio space, within which we a-priori possess no 

information about the parameters. Thus, we attribute the thickness parameters a multidimensional uniform distribution 

within the log-ratio space. 390 

3.1.5 The Joint probability density function 

With the help of the DAG, introduced in Fig. 3, it is now straightforward to factorise the joint probability distribution for the 

whole problem, as their structure is equal. This results in 

𝝅(𝑑 , 𝑓 , 𝜎 𝑐𝑠, 𝜌 , 𝑐 , x⃗ ) = ∏ 𝝅(𝑑𝑖|𝑓𝑖)𝝅(𝑓𝑖|𝜎 𝑐𝑠, 𝜌 , 𝑐 , 𝑥𝑖)𝝅(𝑥𝑖) ∗ ∏ 𝝅(𝜌𝑗)𝝅(𝑐𝑗)
𝑁𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠
𝑗=1 ∗ ∏ 𝝅(𝜎𝑘)𝑘∈𝐾

𝑁𝑐𝑜𝑛𝑒𝑠
𝑖=1 , (28) 

or equivalently (and this will also be of a much better use later on) the log joint pdf 395 

𝒍𝝅(𝑑 , 𝑓 , 𝜎 𝑐𝑠, 𝜌 , 𝑐 , x⃗ ) = ∑ 𝒍𝝅(𝑑𝑖|𝑓𝑖) + 𝒍𝝅(𝑓𝑖|𝜎 𝑐𝑠, 𝜌 , 𝑐 , 𝑥𝑖) + 𝒍𝝅(𝑥𝑖)
𝑁𝑐𝑜𝑛𝑒𝑠
𝑖=1 +∑ 𝒍𝝅(𝜌𝑗) + 𝒍𝝅(𝑐𝑗)

𝑁𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠
𝑗=1 + ∑ 𝒍𝝅(𝜎𝑘)𝑘∈𝐾 , (29) 

where the prefix "𝒍" denotes the logarithm of the pdf. This has the benefit of reducing the size of numbers that the code has 

to cope with. Moreover, many computational statistics packages already have this feature included, which renders it easy to 

use. 

Equation (28) depicts the full joint pdf. However, the relations between the parameters, as shown by the DAG (see Fig. 3), 400 

classify this model as a hierarchical model (Betancourt and Girolami, 2013). The key characteristic of such models is their 

tree-like parameter structure, i.e. the measured number of muons is related to the thickness or the density of the material by 

the flux parameter only, which “relays” the information. A central problem of such models is the presence of a hierarchical 

“funnel” (see Fig. 2 & 3 of Betancourt and Girolami, 2013), which renders it very difficult for standard MCMC methods to 

adequately sample the model space. In high-dimensional parameter spaces this problem exacerbates even more. 405 

Our aim to provide a simple and easy-to-use program somewhat contradicts this necessity of a sophisticated method (which 

inevitably requires the user to possess a strong statistical background). As the main problem is the rising number of 

parameters, it should be possible to mend the joint pdf by imposing thought-out simplifications. 

We first get rid of the flux parameter, as for our problem it merely is a nuisance parameter. This is an official term for a 

parameter in the inversion which is of no particular interest but still has to be accounted for. Here specifically, we integrate 410 

over all possible values of the muon flux, 𝑓  within its uncertainty, so that we can relate the results of the energy loss 

calculation (encoded in 𝜇𝑓𝑖; see Eq. 27) directly to the measured number of muons, 𝑑𝑖. This effectively reduces the number 
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of parameters and thus the number of dimensions of the model space. This can be achieved by marginalising the flux 

parameter out of the joint pdf, 

𝝅(𝑑 , 𝜎 𝑐𝑠 , 𝜌 , 𝑐 , x⃗ ) = ∫ 𝝅(𝑑 , 𝑓 , 𝜎 𝑐𝑠, 𝜌 , 𝑐 , x⃗ ) 𝑑𝑓  . (30) 415 

This effectively reduces to a problem where the new likelihoods have to be calculated (as 𝑑𝑖 is given) 

𝝅(𝑑𝑖|𝜎 𝑐𝑠 , 𝜌 , 𝑐 , 𝑥𝑖) = ∫ 𝝅(𝑑𝑖|𝑓𝑖)𝝅(𝑓𝑖|𝜎 𝑐𝑠 , 𝜌 , 𝑐 , 𝑥𝑖) 𝑑𝑓𝑖 , (31) 

or fully, 

𝝅(𝑑𝑖|𝜎 𝑐𝑠 , 𝜌 , 𝑐 , 𝑥𝑖) =  ∫
(𝑓𝑖Δ𝐸𝑥𝑖)

𝑑𝑖𝑒−(𝑓𝑖Δ𝐸𝑥𝑖)

𝑑𝑖!

∞

0

1

√2𝜋 ∗ fi ∗ 𝜎𝑓𝑖

exp (−
1

2
(
ln(𝑓𝑖)−𝜇𝑓𝑖

𝜎𝑓𝑖

)
2

)𝑑𝑓𝑖 , (32) 

where 𝜇𝑓𝑖 and 𝜎𝑓𝑖  are given by Eqs. (26) and (27), respectively. This integral is not solvable analytically but can be evaluated 420 

by numerical integration schemes. The likelihood has a maximum when the Poisson and the log-normal pdfs fully overlap. 

Interestingly, this directly shows the trade-off between the flux model and the data uncertainty. Usually, we want to measure 

enough muons so that the statistical counting error is smaller than the systematic uncertainty of the flux model (i.e. the width 

of the Poisson pdf is smaller than the width of the log-normal pdf). This can be controlled directly by the exposure of the 

experiment, via a larger detector area, a coarser binning, or a longer exposure time. 425 

This marginalisation roughly halves the number of parameters, but there is still another simplification, which we may use. 

Many muon tomography applications deal with a two-material problem, while there may also be measurement directions 

where only one material is present. If we conceptually split those two problems and solve them independently, it is possible 

to further reduce the number of simultaneously modelled parameters. In the study of Nishyiama et al. (2017), the results of 

which we will use later, these two cases encompass bins where we measured only rock and others where we know there is 430 

ice and rock. The joint pdf for rock bins subsequently is 

𝝅(𝑑 , 𝜎 𝑐𝑠 , 𝜌𝑟𝑜𝑐𝑘 , 𝑐rock) = ∏ 𝝅(𝑑𝑖|𝜎 𝑐𝑠 , 𝜌𝑟𝑜𝑐𝑘 , 𝑐rock) ∗ 𝝅(𝜌𝑟𝑜𝑐𝑘)𝝅(𝑐𝑟𝑜𝑐𝑘) ∗ ∏ 𝝅(𝜎𝑘)𝑘∈𝐾
𝑁𝑐𝑜𝑛𝑒𝑠
𝑟𝑜𝑐𝑘

𝑖=1 ,  (33) 

which leaves the problem effectively with only a handful of parameters. Solving Eq. (33), for the rock density we retrieve  

�̃�(𝜌𝑟𝑜𝑐𝑘), the posterior marginal pdf for the rock density. We refer the reader to Ch. 3.2 for the details of how to solve this 

inverse problem. Theoretically we could also retrieve �̃�(𝜌𝑖𝑐𝑒), but this would require the detector to be positioned within the 435 

glacier (see chapter 5.2 and Fig. 1 for a description of the experimental design of the Nishyiama et al. (2017) study), which 

poses more of a practical difficulty than a mathematical one. 

For the second problem, we can interpret �̃�(𝜌𝑟𝑜𝑐𝑘) as the new prior pdf for the rock density. At this point we employ one last 

simplification by assuming that the parameters between different cones are independent form each other. This is a rather 

strong presumption, which must be justified. The main mathematical problem lies in consideration of the hierarchical nature 440 

of the density parameter, which is the same for each cone and therefore not independent in different cones. We, however, 
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argue that in cones with two materials, there are more parameters than in bins with only rock, such that we may expect the 

posterior pdf of the rock density of these second kind of models to be less informative than the posterior rock density pdf of 

Eq. (33). This, in turn, means that the posterior rock density pdf of the two-material model largely equals the prior one if we 

select the posterior of the first kind of models as the prior of the second kind of models. The same is valid for the 445 

composition 𝑐 𝑖 and the cross-section error parameters 𝜎 𝑐𝑠. As long as this assumption is valid, we may decompose the joint 

pdf into independent joint pdfs for each cone 

𝝅(𝑑𝑖 , 𝜎 𝑐𝑠,𝑖 , 𝜌 𝑖 , 𝑐 𝑖 , 𝑥𝑖  ) = 𝝅(𝑑𝑖|𝜎 𝑐𝑠,𝑖 , 𝜌 𝑖 , 𝑐 𝑖 , 𝑥𝑖)𝝅(𝑥𝑖)∏ �̃�(𝜌𝑖𝑗)�̃�(𝑐𝑖𝑗)
𝑁𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠
𝑗=1 ∗ ∏ �̃�(𝜎𝑖𝑘)𝑘∈𝐾 . (34) 

Our inversion program enables the user to choose the type of model parametrisation, which is either the full hierarchical 

model given by Eqs. (28) & (29), or the simplified single-cone-bin inversion model (“Sicobi”-model) given by Eqs. (33) & 450 

(34). 

3.2 Solution to the inverse problem 

Usually in Bayesian inference, the goal is to calculate the posterior pdf, given the measured data, i.e. the quantity 

𝝅(𝜎 𝑐𝑠 , 𝜌 , 𝑐 , x⃗ |𝑑 ) =
𝝅(𝑑 ,�⃗⃗� 𝑐𝑠,�⃗⃗� ,𝑐 ,x⃗ )

𝝅(𝑑 )
.  (35) 

This can be interpreted as the inferences one may draw on the parameters in a model given measured data. The denominator 455 

on the right-hand side of Eq. (35), also called the “evidence”, can be rewritten as the data marginal of the posterior, i.e. 

𝝅(𝑑 ) = ∫ ∫ ∫ ∫ 𝝅(𝑑 , 𝜎 𝑐𝑠, 𝜌 , 𝑐 , x⃗ ) 𝑑𝜎 𝑐𝑠  𝑑𝜌  𝑑𝑐  𝑑𝑥  . (36) 

As Eq. (36) basically describes an integration over the whole model parameter space, this may become such an extensive 

computation (especially when the number of model parameters is large), that it cannot be solved in a meaningful time. 

However, as the evidence usually is a fixed value, the left- and right-hand side of Eq. (35) are merely scaled by a scalar and 460 

are thus proportional to each other, i.e. 

𝝅(𝜎 𝑐𝑠 , 𝜌 , 𝑐 , x⃗ |𝑑 ) ∝ 𝝅(𝑑 , 𝜎 𝑐𝑠 , 𝜌 , 𝑐 , x⃗ ).  (37) 

This is the starting point of Monte Carlo Markov Chain (MCMC) methods.  

3.2.1 The Metropolis-Hastings algorithm 

The basic MCMC algorithm, which we also use in this study, is the Metropolis-Hastings (MH) algorithm (Hastings, 1970; 465 

Metropolis et al., 1953), which allows for the sampling of the joint pdf to obtain a quantitative sample. We note, however, 

that many different MCMC algorithms exist for various purposes and that the MH has no special status except for being 

comparatively simple to use and implement. An example of another MCMC algorithm in muon tomography can be found in 

Lesparre et al. (2017). The authors used a simulated annealing technique on the posterior pdf in order to extract the 
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maximum a posteriori (MAP) model. As every simulated annealing algorithm has some type of MH-algorithm at its core, we 470 

directly use the MH-algorithm in its original form such that we not only retrieve a point estimate but a pdf for the posterior 

parameter distribution. The algorithm is explained in detail by Gelman (2014), such that we only provide a short pseudo-

code description. 

Algorithm 1 (Metropolis-Hastings): 

(1) Draw a starting model, �⃗⃗� 0 = (𝜎 𝑐𝑠,0, 𝜌 0, 𝑐 0, x⃗ 0) , by drawing 𝜎 𝑐𝑠,0, 𝜌 0, 𝑐 0, x⃗ 0  from their respective prior pdfs and 475 

determine the log-pdf value of this model 

(2) Until convergence: 

a. Propose a new model according to �⃗⃗� 𝑛𝑒𝑤 = �⃗⃗� 0 + 𝐽(0, 𝑐
2Σ), where Σ is the matrix of prior variances and 

𝑐 =  2.4 √𝐷⁄  and 𝐷 is the number of parameters. 

b. Evaluate log-pdf value of �⃗⃗� 𝑛𝑒𝑤 and calculate: 480 

𝑟 = exp(𝑙𝑝(�⃗⃗� 𝑛𝑒𝑤) − 𝑙𝑝(�⃗⃗� 0)) 

c. Evaluate the acceptance probability, 𝑝𝐴 = min (1, 𝑟) and draw a number q from the uniform distribution 

U(0,1). 

d. If 𝑞 < 𝑝𝐴: sample �⃗⃗� 𝑛𝑒𝑤 & set  �⃗⃗� 𝑛𝑒𝑤 → �⃗⃗� 0, 

Else: sample �⃗⃗� 0 485 

 

The advantage of this algorithm, compared to a “normal” sampling, lies in its efficiency. It is often not possible, or even 

reasonable, to probe the whole model space, as the largest part of the model space is “empty”, where the pdf-value of the 

posterior is uninterestingly small. The fact that regions of high probability are scarce, and this becomes worse in high 

dimensional model spaces, is known as the “curse of dimensionality” (Bellman, 2016). MCMC algorithms (including the 490 

here presented MH-algorithm) allows one to focus on regions of high probability, and therefore we are able to construct a 

reliable and representative sample of the posterior pdf. We again refer to Gelman (2014) for a discussion of why the MH-

algorithm converges to the correct distribution and why we may use samples that were gained this way to estimate the 

posterior probability density. 

3.2.2 Assessing convergence, mixing, and retrieving the samples 495 

The above stated advantages, however, come at a price. First and foremost, we must ensure that the algorithm advances fast 

enough, but not too fast, through the model space. This is mainly controlled by the proposal distribution 𝐽(0, 𝑐2Σ), which is 

taken to be a multivariate Gaussian distribution. Ideally, the covariance matrix of the proposal distribution Σ is equal to the 

covariance structure of the posterior pdf. We acknowledge that at the start of the algorithm one generally has no idea what 

this looks like, but we assume that a combination of the prior variances is a reasonable starting point. After a certain number 500 
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of steps, it is possible to approximate the covariance matrix of the proposal distribution with the samples taken up to at this 

point. 

A second crucial point is the presence of a warm-up period. The starting point, which usually lies in a region of high prior 

probability, does not necessarily lie in a region of high posterior probability. The time it takes to move from the latter to the 

former is exactly this warm-up. This can usually be visualised by a trace plot, e.g. Fig. 4, in which the value of a parameter is 505 

plotted against the number of iterations. After this warm-up phase, the algorithm can be run in operational mode and “true” 

samples can be collected. 

 

Figure 4: Example of a trace plot (2 independent chains; blue and orange) of a MH run with 500 draws. This plot shows the 

parameter value (y-axis; here material density in 𝒈 𝒄𝒎−𝟑) vs. # of steps (x-axis) of a collection of cones in which we (Nishyiama et 510 
al., 2017) knew that only rock is present. This is a calculation that is included in the code base. The warm-up phase of this MH 

algorithm takes roughly 150 simulations indicated by the subsequent oscillation around a parameter value of ~𝟐. 𝟕 − 𝟐. 𝟖 𝒈 𝒄𝒎−𝟑. 

As in a Markov Chain the actual sample is dependent on the last one, we need a criterion to argue that the samples created in 

that way really represent “independent” samples. Qualitatively, we may say that if the Markov Chain forgets the past 

samples fast enough, then we may sooner treat them as independent from each other. Gelman (2014) suggests that in order to 515 

assess this quantitatively, multiple MH-chains could be run in parallel and statistical quantities within and between each 

chain are analysed. For a detailed discussion thereof, we refer the reader to Appendix C.  

Once a satisfying number of samples has been drawn from the posterior pdf, a marginalisation of the nuisance parameters 

can be done by looking at the parameters of interest only. These samples may then be treated like counts in a histogram, i.e. 

distributional estimates, or simply the interesting statistical moments, such as mean and variance, can be obtained. 520 
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3.3 Construction of the bedrock-ice interface 

The main analysis programme allows us to export all parameters either as a full chain dataset, where every single draw is 

recorded, or as a statistical summary (i.e. mean and variance). Both are then converted to point data, i.e. (x, y, z) – data. For 

the subsequent construction of the interface between rock and ice (see section 5.2 and Fig. 1 for the presentation of the test 

experiment) we only need the full-chain point-data. In the present study we restrict ourselves to a probabilistic description 525 

until the bedrock positions within a cone. It would also be possible to treat the bedrock construction within a Bayesian 

framework, however this would go beyond the scope of this study and is therefore left for a future adaption of the code. 

Nonetheless, in order to construct a surface, we rely on deterministic methods, which are explained in detail in what follows. 

3.3.1 Interpolation to a grid 

The “modelviewer.py” routine is able to read datasets from different detectors (which are saved as JSON-files) and computes 530 

for each cone the statistic, which the user is interested in (see “sigma” entry in program). Thus, it is possible to use the mean 

or, for example, the +1 𝜎 position of each cone. From here onwards this point cloud is named 𝐻 and contains one interface 

position (x, y & z coordinates) per cone. These are shown as triangles (▲) in Fig. 5. 

As a second step, the programme interpolates this point cloud in a bilinear way to a rectangular grid with a user specified cell 

size, Δ𝑐𝑠. This grid can be described by a matrix 𝑃 ∈ ℝ𝑟×𝑐, where 𝑟 and 𝑐 are the number of rows and columns (i.e. the 535 

number of y- and x-cells, needed to cover the whole grid). The procedure is similar to the bilinear interpolation of 

Lagrangian markers (that carry a physical property) to a (fixed) Eulerian grid in geodynamical modelling (see Gerya, 2010, 

p. 116), with the difference that our physical property is the height of the ice-bedrock interface (Fig. 1). 

We could also have fitted a surface through the resulting point cloud. However, by formulating this surface as a matrix we 

gain access to the whole machinery of linear algebra. Moreover, 𝑃 can directly be interpreted as a rasterised DEM, which 540 

can be easily loaded and visualised in any GIS software. Thus, from a modular design perspective we think that the matrix 

formulation has more advantages than drawbacks. The bilinear interpolation is shown in more detail in Fig. 5. 
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Figure 5: Two-dimensional stencil, used to summarise the bilinear interpolation of interface positions within cones (𝑯𝒌, ▲) to a 

fixed grid (𝑷𝒊𝒋, ■) with a user-defined cell size 𝚫𝒄𝒔. Every interface position within a ±𝚫𝒄𝒔 interval contributes to the grid height 545 

𝑷𝒊𝒋. 

In order to calculate the height at a grid point, 𝑃𝑖𝑗 , one has to form a weighted sum over the entire cone interface positions 

within a ±Δ𝑐𝑠 interval, i.e. 

𝑃𝑖𝑗 =  
∑ 𝑤𝑘𝐻𝑘𝑘

∑ 𝑤𝑙𝑙
 ,  (38) 

where the weights, 𝑤𝑘, are given by 550 

𝑤𝑘 = (1 −
Δ𝑥𝑘

Δ𝑐𝑠
) ∗ (1 −

Δ𝑦𝑘

Δ𝑐𝑠
) .  (39) 

3.3.2 Damping & Smoothing 

The concept of damping usually revolves around the idea to force parameters to a certain value (e.g. in deterministic 

inversion by introducing a penalty term in the misfit function for deviations from that value). From a Bayesian viewpoint this 

would be accomplished by setting the prior mean to a specific value. In our code we implemented this idea by allowing the 555 

user to read a DEM and a “damping weight” to the code (see “fixed length group” in code). The programme effectively 

computes a weighted average between the bedrock positions within the cones and a user defined DEM. The higher the 

chosen damping weight, the more the resulting interface will match the DEM, when pixels overlap. 
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The matrix formulation also enables us to use a further data processing technique without much tinkering. As geophysical 

data are often quite noisy, a standard procedure in nearly every geophysical inversion is a smoothing constraint. This 560 

effectively introduces a correlation between the parameters and forces them to be similar to each other. From a Bayesian 

perspective, we could have achieved this correlation by defining a prior covariance matrix of the thickness parameters, such 

that neighbouring cones should have similar thicknesses (which makes sense as we do expect the bedrock-ice interface to be 

relatively continuous; Fig. 1). As we work with independent cones in this study, we leave the exploration of this aspect open 

for a future study. Nevertheless, we offer the possibility in our code to use a smoothing on the final interpolated grid. This is 565 

achieved by a convolution of a smoothing kernel, 𝐾 (see Appendix D for details), with the surface matrix 𝑃, which results in 

a smoothed surface matrix 

𝑃𝑆 = 𝐾 ∗ 𝑃.  (40) 

Please note that the ∗ operator in Eq. (40) denotes a convolution. In index notation the advantage of the linear algebra 

formalism becomes clear, as 𝑃𝑆 can be expressed by 570 

𝑃𝑖𝑗
𝑆 = ∑ ∑ 𝐾𝑘+𝑠+1,𝑙+𝑠+1𝑃𝑖+𝑘,𝑗+𝑙

𝑠
𝑙=−𝑠

𝑠
𝑘=−𝑠  .  (41) 

The user is free to choose the number of neighbouring pixels, 𝑠, across which the programme performs a smoothing. As a 

related matrix we use an approximation to a Gaussian kernel, which corresponds to a Gaussian blur in image processing. 

Whereas “smoothing” is a general term used in the geophysical community where such a process is used with an aim to 

force a correlation of parameters, in our case where the parameters describe a surface (Fig. 1), the convolution effectively 575 

smooths the surface, i.e. removes small-scale variations. 

Finally, we added a checkbox to our code to allow it to change the order of the damping and smoothing operations. 

Sometimes when a strong damping is necessary, this may result in rather unsmooth features at DEM boundaries, such that it 

makes sense to perform a smoothing only afterwards. 

4 Main modules of SMAUG 580 

Our toolbox, SMAUG, contains several subprograms, which are executed separately. This allows the user to inspect 

intermediate results without any difficulty. We also tried to keep the intermediate results as portable as possible, by using 

JSON-files, as often as possible. Here we explain, in logical order, the rational of the submodules (a detailed user manual is 

separately available): 

 585 

MATERIALIZER.py 
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This subroutine allows the user to create their own material that will be used in the subsequent model builder. The user may 

choose a density (either from data or directly insert mean and standard deviations) and a composition (also either from data 

or from the list of Groom et al., 2001). 

 590 

DATA_BINNING.py 

As the name suggests, this subroutine is used to spatially bin the recorded track data. The bin data (i.e. the output hereof) is 

then fed to the model builder. 

 

MODEL_BUILDER.py 595 

The model builder takes the bin data and the materials as inputs and allows the user, with help of DEMs, to allocate data and 

materials to certain cones. This is basically the spatial setup of the model. The resulting model file is then provided to the 

inversion code. 

 

INVERSION.py 600 

This is the main module in SMAUG, providing the functionality to perform a MCMC algorithm on the probabilistic model 

created with MODEL_BUILDER.py. It also includes several analysis tools to assess MCMC performance. 

 

MODEL_VIEWER.py 

The model viewer allows us to visualise the interface results, obtained and exported by INVERSION.py. It also has the 605 

functionality to dampen and smooth the resulting surfaces. 
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5 Model Verification 

In this section we present examples of how the model can be employed, what it calculates and how the output is structured. 610 

We proceed by verifying, in a first step, that the physical models employed in this work yield results which are numerically 

consistent with the results of calculations from other studies. We will compare our results with reported values from 

literature in Ch. 5.1. We do this because we do not change the parameters of the flux model (except the height scaling, which 

has been verified by Nishiyama et al. (2017), and since the energy loss calculations is based on equations that stem from 

different frameworks. 615 

In a second step, we will benchmark the results obtained by this code from real data against previously published results. For 

this purpose, we will re-analyse the raw data from Nishiyama et al. (2017). This is a study (see also Fig. 1) that was 

conducted in the Central Swiss Alps in a railway tunnel that featured a glacier (part of the Great Aletsch glacier) above. Our 

goal there was to estimate the thickness of the overlying glacier and thus the subsurface structure of the ice-bedrock 

interface. The respective calculation and discussion thereof are presented in Ch. 5.2. 620 

5.1 Verification of energy loss calculations 

The energy loss model that we use in our code generally reproduces the literature values well (below 1%) across the different 

energy loss processes and relevant energies. In Fig. 6 we present the energy loss calculations for each energy loss process 

(i.e. ionisation, bremsstrahlung, pair-production and photonuclear interactions) across energies from 10 MeV to 100 TeV for 

silicon. 625 

 

Figure 6: Log-log plot of the stopping power of the different energy loss processes for silicon. At ~ 10 GeV the radiative processes 

(i.e. bremsstrahlung, pair-production and photonuclear interactions) reach around 1 % of the total stopping power. At a few 

hundred GeV (at the so called “critical energy”) the radiative processes start to become dominant over the ionisation losses. 
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The overall characteristics between the different elements are the same with minor differences regarding the position of the 630 

critical energy and the 1 % - radiative point. In Fig. 7 we show the relative error of our calculations to the tabulated values 

from Groom et al. (2001) for the whole energy range. 

 

Figure 7: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for silicon. 

Ionisation losses agree very well with the literature values (within 0.025 %). At low energies the relative errors of the radiative 635 
processes are large and converge to a value close to 0 towards higher energies, resulting in a relative error on the total energy loss 

of around 0.5 % compared to literature.  

We note that the energy losses by ionisation are reproduced very well over the entire energy range. We also note that the 

relative error on the radiative energy losses is rather large below 10 GeV. This does, however, not introduce a major bias, 

because below this energy, radiative energy losses are negligible compared to ionisation losses, as can be seen in Fig. 6. 640 

Furthermore, the related errors are in an acceptable range at the energy level at which radiative losses begin to become 

noticeable (i.e. around 100 GeV). This can be seen in Fig. 7, in the sense that the total relative error remains well bounded 

within 0.5 %. In the ionisation domain (i.e. below 100 GeV) the total relative error is dominated by the ionisation relative 

error, whereas above this energy level the relative errors on radiative losses start to prevail. A close-up of this energy range 

is given in Fig. 8. 645 

There are different sources and circumstances that contribute to the error in the different energy losses processes. The scatter 

of the relative ionisation-loss error around 0 with a rather small deviation can be viewed as simple rounding errors. The 

errors on the radiative processes, however, seem to be of a more systematic nature. We explain this behaviour through a 
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different numerical integration scheme in Eq. (7), which tends to systematically under-/overestimate the true value, 

especially when the integrand comprises exponential functions. Whereas we used a Double Exponential Integration scheme 650 

(see Takahasi & Mori, 1974), the integration scheme from Groom et al. (2001) is not discernible. However, as the relative 

errors on the processes of energy loss remain well within the theoretical uncertainties, (see Ch. 3.1.3), we consider, that our 

calculation accurately reproduces the literature values for elements. 

 

Figure 8: Relative error of our energy loss calculations for silicon compared to the tabulated values from Groom et al. (2001) at 655 
higher energies (100 GeV – 100 TeV). The relative errors remain bounded within their theoretical uncertainties (see Ch. 3.1.3). 

The above calculations were performed for pure silicon. The respective figures for other four important elements in the 

Earth’s crust (Al, Fe, Ca & O) can be found in Appendix E. Those elements are, however, not representative for any real 

material encountered in geological applications. For this reason, we compiled the same computations for four selected, 

geologically important compounds (SiO2, CaCO3, Standard Rock, ice) that are also shown in Appendix E. We summarise, 660 

that with the exception of Standard Rock, all calculations yield results that are similar to the silicon calculation above. The 

discrepancy for Standard Rock stems from its inconsistent definition, with respect to the different parameters. In particular, 

the “Standard Rock” according to Lohmann et al. (1985) has an atomic number Z of 11 (i.e. sodium) and an atomic weight A 

of 22, which yield the characteristic parameter values of 〈𝑍 𝐴⁄ 〉 = 0.5 and 〈𝑍2 𝐴⁄ 〉 = 5.5 respectively. Note that Groom et al. 

(2001) list sodium as the only constituent of a standard rock. However, this material cannot be modelled by any mixture of 665 

pure elements, as common sodium consists of one neutron more and thus has a higher atomic weight (i.e. 𝐴𝑁𝑎 = 23). 
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Consequently, the use of standard sodium would lead to different characteristic parameter values, i.e. 〈𝑍 𝐴⁄ 〉 = 0.478 and 

〈𝑍2 𝐴⁄ 〉 = 5.263, thus leading to an inconsistency. This is often conveyed by the phrase that standard rock “is not-quite-

sodium” (Groom et al. 2001, p.203). In order to circumvent this problem, we advocate the exchange of 𝑁𝑎11
23  with its 𝑁𝑎11

22  

isotope, that would lead to the characteristic parameter values 〈𝑍 𝐴⁄ 〉 = 0.500 and 〈𝑍2 𝐴⁄ 〉 = 5.501, which are much closer 670 

to the actual definition of standard rock. For this reason, we extended the element/compound-list, (which is available from 

http://pdg.lbl.gov/2019/AtomicNuclearProperties/expert.html) by the 𝑁𝑎11
22  isotope, assuming that all parameters are equal to 

the ones from 𝑁𝑎11
23 . Additionally, we redefined the standard rock (i.e. material number 281 in the list) to consist only of 

𝑁𝑎11
22 . With this change, standard rock does not need any more special treatment and can be calculated in a way that is 

consistent to all other compounds. Furthermore, the relative error between the tabulated values and our modified calculation 675 

falls in line with the calculations for the other compounds and elements (Figs. 9 and 10).  

 

Figure 9: Relative error of our energy loss calculations for a standard rock consisting of 𝐍𝐚𝟏𝟏
𝟐𝟑 , compared to the tabulated values 

from Groom et al. (2001) at higher energies (100 GeV – 100 TeV).  

 680 
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Figure 10: Relative error of our energy loss calculations for a standard rock consisting of 𝐍𝐚𝟏𝟏
𝟐𝟐 , compared to the tabulated values 

from Groom et al. (2001) at higher energies (100 GeV – 100 TeV).  

5.2 Verification of the bedrock-ice interface reconstruction 

In this part we test the presented reconstruction algorithm on previously published data. For this purpose, we compare our 685 

calculations to the ones already published in the study by Nishiyama et al., (2017), where the goal was to measure the 

interface between the glacier and the rock, in order to determine the spatial distribution of the rock surface (also below the 

glacier). We could access the Railway Tunnel to install the muon detectors beneath the ice. A situation sketch is shown in 

Figs. 1 and 11. 

The results shown below (Figs. 12 – 14) represent the bedrock-ice interface interpolated to an 8-metre grid, which was first 690 

damped (weight 8) and then smoothed (2 grid pixel). We assess the goodness of fit according to the three cross-sections 

(East, Central, West), that are shown in Fig. 10. The crosscuts are nearly perpendicular to the train tunnel and roughly 40 𝑚 

apart from each other. Figures 12 to 14 show the three cross-sections in detail. In every plot, we also indicate the solution 

from Nishiyama et al. (2017). Please note that we added a systematic error of 2 𝑚 to the uncertainty planes, as the DEM we 

are working with has itself an uncertainty of ± 2 𝑚. The dash-dotted lines mark thus the most conservative error estimate. 695 

Moreover, we highlighted the parts of the cross-section that had either been damped to the bedrock DEM or that have been 

solely resolved by the measurement (see “damping marker” in Fig. 11). 
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Figure 11: Overview map of the study area at Jungfraujoch. The brown line separates the visible bedrock in the DEM from the 700 
glacier part (“Ice”). The three profiles (East, Central & West) are depicted with a red line, on which the damping marker is shown 

by a grey point. The extent of the reconstructed bedrock-ice interface is shown by the blue area. Additionally, the three detector 

positions (D1, D2 & D3) are shown by orange pentagons, including their viewfield. Basemap: Orthophotomosaic Swissimage, © 

Federal Office of Topography swisstopo.  

Figure 12 shows the western profile, where our bedrock-ice interface and the one from the previous study agree well and 705 

both lie within the given error margins. The lack of fit in areas where the steepness changes rapidly (i.e. around 40 𝑚 and 
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80 𝑚) can be explained as a smoothing artefact. Towards the end of the profile, the decreasing data coverage becomes 

evident as the uncertainties rise. This effect can also be seen in the jagged behaviour of the interface curves around 100 𝑚 to 

120 𝑚, hinting at the effect where the interpolation has occurred with few data. 

 710 

 
Figure 12: Western cross-section. The brown and dashed blue line indicate the ice-bedrock interface solutions of this study and the 

one from Nishiyama et al. (2017), respectively.  𝟏 𝝈-error margins are shown in yellow (upper) and red (lower). The dotted 

margins encompass only the statistical variation of the interface position, whereas the dash-dotted include a ±𝟐 𝒎 systematic 

error which stems from the inherent DEM-uncertainty. For completeness we also show the position of the railway tunnel as a 715 
black square. 

 

Figure 13 presents the central profile. Similar to the western profile (Fig. 12) the fits match quite well and are within the 

error margins. It may be possible that the point where the actual bedrock begins might be further down (i.e. ~80 𝑚 instead 
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of 65 𝑚). Here we used the same DEM and aerial photograph as in the previous study. This means that newer versions might 720 

be available that show more bedrock (due to the glacial retreat as a response to global warming).  

 

 

Figure 13: Central cross-section. The brown and dashed blue line indicate the ice-bedrock interface solutions of this study and the 

one from Nishiyama et al. (2017), respectively.  𝟏 𝝈-error margins are shown in yellow (upper) and red (lower). The dotted 725 
margins encompass only the statistical variation of the interface position, whereas the dash-dotted include a ±𝟐 𝒎 systematic 

error, which stems from the inherent DEM-uncertainty. For completeness we also show the position of the railway tunnel as a 

black square. 

 

The eastern profile is shown in Fig. 14. One sees that the results from this study are internally consistent. The surface from 730 

the previous study plunges down earlier with respect to the surfaces calculated here. This may in fact be a damping effect, as 

the bedrock-ice interface from Nishiyama et al. (2017) has not been constrained to the bedrock (via damping) and thus 

plunges down before the damping mark at ~72 𝑚. Still, the two surfaces agree within 5 𝑚, which we consider as acceptable. 
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Figure 14: Eastern cross-section. The brown and dashed blue line indicate the ice-bedrock interface solutions of this study and the 735 
one from Nishiyama et al. (2017), respectively.  𝟏 𝝈-error margins are shown in yellow (upper) and red (lower). The dotted 

margins encompass only the statistical variation of the interface position, whereas the dash-dotted include a ±𝟐 𝒎 systematic 

error which stems from the inherent DEM-uncertainty. For completeness we also show the position of the railway tunnel as a 

black square. 

 740 

All together the performance of the whole workflow, which is shown in this study, produces results, which are similar to the 

ones published in the previous study (Nishiyama et al., 2017). We use the results of this comparison to validate the base of 

our code.  
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6 Conclusion 745 

In this study we have presented a model that allows us to integrate geological information into a muon tomography 

framework. The inherent problem of parameter estimation has been formulated in a probabilistic way and solved 

accordingly. The propagation of uncertainties thus occurs automatically within this formalism. We also considered 

approaches including DAGs or the simplex subspace of compositions which could be helpful to the muon tomography 

community while tackling their own research. We condensed these approaches in a modular toolbox. This assortment of 750 

python programmes allows the user to address the subproblems during the data analysis of a muon tomography experiment. 

The programmes are modular in the sense that the user can always access the intermediate results, as the files are mostly in a 

portable format (JSON). Thus, it is perfectly possible to only use one submodule of the toolbox while working with an own 

codebase. As every “tool” is embedded in a GUI, the programme is made accessible without the need to first read and 

consider several thousand code lines. Furthermore, we have shown that the results we obtain with our code are largely in 755 

good agreement with an earlier, already published experiment. The small deviations may be attributed to data analysis 

subtleties.  

We would like to stress that this work is merely a foundation upon which many extensions can be built when it is used in 

other applications as well. Future content might, for example, include a realistic treatment of multiple scattering and the 

inclusion of compositional uncertainties in the inversion, for which we laid out the basis in this study. 760 
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Appendix A – Muon flux model 

As many empirical muon flux models, the one that we employed consists of an energy spectrum for vertically incident 

muons at sea level at its core. An accepted instance is the energy spectrum of Bugaev et al. (1998), that takes the form 

Φ𝐵(𝑝) = 𝐴𝐵𝑝
−(𝛼3 log10

3 (𝑝)+𝛼2 log10
2 (𝑝)+𝛼1 log10(𝑝)+𝛼0), (A1) 765 

where 𝑝 denotes the momentum of the incident muon in 𝐺𝑒𝑉 ∗ 𝑐−1. The values of the 𝛼𝑖 and 𝐴𝐵 are, for example, listed in 

Lesparre et al. (2010). This model is an extended version of Renya (2006), to account for different incident angles, 

Φ𝑅(𝑝, 𝜃) = cos
3(𝜃) Φ𝐵(𝑝 cos(𝜃)), (A2) 

where 𝜃 is the zenith angle of the incident muon. It is important to note that the parameter values in Eq. (A1) are changed to 

𝛼0 = 0.2455, 𝛼1 = 1.288, 𝛼2 = −0.2555, 𝛼3 = 0.0209 and 𝐴𝐵 = 0.00253. In order to include height above sea level as 770 

an additional parameter, Hebbeker and Timmermans (2002) proposed to model the altitude dependency as an exponential 

decay, which modifies Eq. (A2) into 

Φ(𝑝, 𝜃, ℎ) = Φ𝑅(𝑝, 𝜃) ∗  exp (−
ℎ

ℎ0
)  . (A3) 

The scaling height, ℎ0, is usually to be taken as ℎ0 = 4900𝑚 + 750 𝑚 𝑐 𝐺𝑒𝑉
−1 ∗  𝑝, where 𝑝, is the momentum of the 

incident muon in 𝐺𝑒𝑉 ∗ 𝑐−1. However, as this formula is only valid up to an altitude of 1000 m above sea level, Nishiyama 775 

et al. (2017) adapted it to ℎ0 = 3400 𝑚 + 1100 𝑚 ∗  𝑐 ∗  𝐺𝑒𝑉
−1 ∗ 𝑝 ∗ cos(𝜃). This was done in order to fit the energy 

spectrum up to 4000 m above sea level. This formula is now valid for momenta above 3 𝐺𝑒𝑉 ∗ 𝑐−1, zenith angles between 0° 

and 70° and an altitude below 4000 𝑚 above sea level. 

Appendix B – Rock model 

B1 – Density model 780 

The density distribution of a lithology can be determined through various methods. In our work, we constructed a density 

model by analysing various rock samples from our study area in the laboratory. Two experimental setups were employed to 

gain insight into the grain, skeletal as well as the bulk density of the rocks. Grain and skeletal density were measured by 

means of the AccuPyc 1340 He-pycnometer, which is a standardised method that yields information on the volume. Bulk 

density values were then determined based on Archimedes’ principle, where paraffin coated samples were suspended into 785 

water (ASTM C914-09, 2015; Blake and Hartge, 1986).  

Every sample 𝑗 = 1,… , 𝑁 (usually the size of a normal hand sample) has been split up into smaller subsamples 𝑖 = 1,… , 𝑆𝑗, 

that were measured. The bulk density of the i-th subsample can be calculated by 
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𝜌𝑏𝑢𝑙𝑘,𝑖𝑗 =
𝜌𝐻2𝑂∗𝑚𝑠,𝑖𝑗

(𝑚𝑠,𝑖𝑗+𝑚𝑝,𝑖𝑗+𝑚𝑡,𝑖𝑗−𝑚𝑠𝑢𝑠,𝑖𝑗)−(
𝑚𝑝,𝑖𝑗∗𝜌𝐻2𝑂

𝜌𝑝
)−(

𝑚𝑡,𝑖𝑗∗𝜌𝐻2𝑂

𝜌𝑇
)
 , (B1) 

where 𝜌𝐻2𝑂, 𝜌𝑝, 𝜌𝑇  denote the density of water, paraffin and the thread that was used to dip the sample into the liquid, 790 

respectively. 𝑚𝑠,𝑖𝑗 , 𝑚𝑝,𝑖𝑗 , 𝑚𝑡,𝑖𝑗 , 𝑚𝑠𝑢𝑠,𝑖𝑗 describe the mass of the sample, the paraffin coating, the thread and the apparent mass 

of all three components suspended in water. 𝑚𝑝,𝑖𝑗 , 𝑚𝑡,𝑖𝑗  can then be simply obtained through 

𝑚𝑝,𝑖𝑗 = 𝑚𝑠,𝑡,𝑝,𝑖𝑗 −𝑚𝑠,𝑡,𝑖𝑗  , (B2) 

as 𝑚𝑠,𝑡,𝑝,𝑖𝑗 denote the mass of the sample including thread and paraffin coating on one hand and 𝑚𝑠,𝑡,𝑖𝑗  only the mass of the 

sample and the thread on the other hand. Further, the mass of the thread is given by 795 

𝑚𝑡,𝑖𝑗 = 𝑚𝑠,𝑡,𝑖𝑗 −𝑚𝑠,𝑖𝑗 . (B3) 

The maximal precision of the reading is estimated at ±5 ∗ 10−5𝑔, and the commonly ignored effects regarding buoyancy in 

air has been estimated to introduce an error on the order of ±2 ∗ 10−4𝑔. This error has been attributed to all direct mass 

measurements. Moreover, because small pieces of material may detach from the sample upon attaching the thread to the 

sample and during the paraffin coating, we set an error of ±2 ∗ 10−2𝑔 to all measurement results. The variables in Eq. (B1) 800 

are strictly positive values. Following Tarantola (2005) we model these “Jeffreys parameters” by lognormal distributions, as 

they inherently satisfy the positivity constraint. Because Eq. (B1) does not simply allow a standard uncertainty propagation, 

the script “subsample_analysis.py” performs a Monte Carlo simulation for each subsample and attributes a final lognormal 

probability density function to the resulting histogram. Figure B1 illustrates such an example, where the calculation has been 

performed for subsample JT-20-1. 805 

We have found 10’000 draws per subsample to be sufficient to retrieve a solid final distribution. However, this parameter 

can easily be changed in the script, depending on the user’s preference of precision/speed. From this point onwards we may 

work with a Gaussian distribution as Fig. B1 assures us that a normal pdf describes the results of the Monte Carlo simulation 

rather well. 
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 810 

Figure B1: Example output of “subsample_analysis.py” for a bulk density measurement of subsample JT-27-1 (see supplementary 

information for data). Green bars represent the histogram of 10’000 Monte Carlo simulation draws. The orange curve indicates 

the fitted normal probability density function. 

The determination of the grain and skeletal densities is simpler than the bulk density measurements because the 

corresponding method consists of a mass and a volume measurement, respectively. The density formula reads then simply 815 

𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙/𝑔𝑟𝑎𝑖𝑛,𝑖𝑗 =
𝑚𝑖𝑗

𝑉𝑖𝑗
 . (B4) 

The question remains as to how it is possible to construct a pdf that represents the knowledge about the whole lithology. 

There are two possible methods that can be readily employed at this point. The first, following largely Tarantola (2005), 

performs a so-called disjunction of the pdfs that corresponds to an averaging of all subsample pdfs. As Vermeesch (2012) 

points out, even though this might seem a “sensible strategy at first glance”, there might be some problems with this method. 820 

The main problem lies in the small error on the subsamples, such that the variation between different subsamples may be 

larger than their attributed errors. This would not be a problem if enough subsamples could be measured, such that the 

resulting lithology pdf might be sampled correctly. On the other hand when one is faced with a situation where data is rather 

scarce, then the approach of Tarantola (2005) would result in a rather spikey pdf that would be hard to handle. For this 

reason we adopted the methodology of Vermeesch (2012) where the lithology pdf is estimated by a kernel density 825 
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estimation. The main difference lies in the fixed “bandwidth” of the subsample distributions. We refer to Vermeesch (2012) 

for more details and an in-depth discussion on this problem. 

The kernel density estimation has the advantage, that only the mean values of the subsamples have to be processed as the 

bandwidth is determined from the spread of the subsample means. Following the methodology of Vermeesch (2012) we end 

up with a pdf like the one visualised in Fig. B2. We could at this point use the kernel density estimated pdf for further 830 

calculations. However, for simplicity we approximate the kde with a normal distribution and intend to add support for the 

kde in a later code version. 

 

Figure B2: Example output of “materializer.py”. Here a set of subsample mean values (red crosses) are processed in a kernel 

density estimate (solid blue line). Finally a normal distribution is fitted to the kernel density estimate (dashed yellow line). 835 
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B2 – Composition model 

We have seen in Eq. (9) that the material density parameter enters the energy loss calculations rather directly. Contrariwise, 

the compositional model affects the energy loss equations much more subtly through the average {𝑍 𝐴⁄ }𝑟𝑜𝑐𝑘  and {𝑍2 𝐴⁄ }𝑟𝑜𝑐𝑘 

values and mean excitation energies that need to be calculated for the entire lithology. Likewise, information on the weight 840 

percentages of the main elements within the rock is required for the quantification of the radiation loss term. 

Although a modal mineral analysis (e.g. the quantitative determination of mineral volumes) is preferable and can be treated 

according to Lechmann et al. (2018), its execution is a rather time-consuming effort. This is the reason why compositional 

data in muon tomography experiments predominantly consist of XRF-data, which show the abundance of major oxides 

within the rock. We describe here a method to incorporate such type of information in a probabilistic way thereby following 845 

Aitchison (1986). Compositional data are usually available in the form of Table B1, which presents an excerpt of four 

samples for illustration purposes. We refer to the excel sheet in the supplementary material of the present work for the full 

data.  

 

Table B1: Excerpt of XRF data for four samples. Data in column denote weight percentages of major oxides within the rock 850 
samples. 

Sample JT01 JT02 JT19 JT20 

Oxides     

SiO2 0.6131 0.5981 0.6997 0.6139 

TiO2 0.0123 0.0067 0.0076 0.0094 

Al2O3 0.1567 0.1873 0.1481 0.1921 

Fe2O3 0.087 0.0791 0.0496 0.0686 

MnO 0.001 0.0012 0.0009 0.0009 

MgO 0.0359 0.0285 0.0206 0.0288 

CaO 0.0202 0.0071 0.0201 0.0137 

Na2O 0.0228 0.0248 0.0404 0.0323 

K2O 0.0343 0.0465 0.0287 0.0469 
P2O5 0.0041 0.0029 0.0021 0.0027 

Sum 0.9874 0.9822 1.0178 1.0093 
 

There are several challenges to this kind of data. First, the parameters (i.e. the oxide percentages) can take a value between 0 

and 1. This means that normal as well as lognormal distributions are not suitable to describe these parameters. Second, the 

requirement that the sum of all parameters has to ideally equal 1 poses a constraint on this parameter space, which 855 

effectively reduces the number of independent parameters by one. Third, due to measurement uncertainties, this sum is never 

exactly one.  
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Spaces, which have this unit sum condition can be viewed as a simplex, e.g. if we had three compositional parameters, the 

simplex would be a 2-dimensional surface (i.e. a subspace) in this 3-dimensional parameter space. The last issue, of not 

summing up exactly to 1, can be remedied by projecting each sample dataset back to the simplex (Aitchison, 1986, p. 257-860 

261). This works only if the measurement imprecisions are not too large, which works well for the examples in Table B1. 

With respect to the energy loss calculation, it is preferable to decompose the oxides into elements, which can be done by 

following formula 

𝑤𝑡𝑒𝑙𝑒,𝑖 = ∑ 𝑤𝑡𝑗 ∗
𝑛𝑖𝑗𝑚𝑖

𝑚𝑗
𝑗 ∈{𝑜𝑥𝑖𝑑𝑒𝑠}  , (B5) 

where 𝑚𝑖 and 𝑚𝑗 denote the molar mass mass of the i-th element and the j-th oxide, 𝑤𝑡𝑗 is the j-th datum in the column and 865 

𝑛𝑖𝑗 is the number of atoms of the i-th element within the j-th oxide. The two transformations are visualised in Table B2. 
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Table B2: Element weight percent data. Transformed from oxide weight percent data with use of Eq. (B5). All data has 

additionally been scaled to satisfy the unit sum constraint. 870 

Sample JT01 JT02 JT19 JT20 

Elements     

Si 0.2902 0.2846 0.3213 0.2843 

Ti 0.0075 0.0041 0.0045 0.0056 

Al 0.0840 0.1009 0.0770 0.1007 

Fe 0.0616 0.0563 0.0341 0.0475 

Mn 0.0008 0.0009 0.0007 0.0007 

Mg 0.0219 0.0175 0.0122 0.0172 

Ca 0.0146 0.0052 0.0141 0.0097 

Na 0.0171 0.0187 0.0294 0.0237 

K 0.0288 0.0393 0.0234 0.0386 

P 0.0018 0.0013 0.0009 0.0012 
O 0.4716 0.4711 0.4823 0.4707 

Sum 1 1 1 1 
 

In order for the data to be in a statistically convenient form, Aitchison (1986) suggests to further transform the data in Table 

B2 by first forming a ratio with an arbitrary element (in the list) and then taking the logarithm. For the exemplary dataset this 

is shown in Table B3. 

Table B3: Log-ratio of element weight percentages, with respect to oxygen-wt%. 875 

Sample JT01 JT02 JT19 JT20 

Elements     

ln(Si/O) -0.48531565 -0.50379579 -0.40607778 -0.5042219 

ln(Ti/O) -4.14567399 -4.74687577 -4.68001075 -4.43477381 

ln(Al/O) -1.72531 -1.54064159 -1.83464118 -1.54183733 

ln(Fe/O) -2.03494223 -2.12384752 -2.64974526 -2.29276806 

ln(Mn/O) -6.39894857 -6.21033707 -6.55719484 -6.52451934 

ln(Mg/O) -3.06839321 -3.29293646 -3.67672517 -3.30896536 

ln(Ca/O) -3.47357746 -4.51287533 -3.53142599 -3.88207448 

ln(Na/O) -3.31519303 -3.22481996 -2.79600952 -2.98709658 

ln(K/O) -2.79436382 -2.48376691 -3.0254978 -2.50170175 

ln(P/O) -5.56150947 -5.90149576 -6.28344485 -5.99945492 
ln(O/O) 0 0 0 0 
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The rationale behind this transformation is as follows. The division by an arbitrarily present element effectively transforms 

the space into an N-1-dimensional open space, where the parameters (i.e. ratios) may have values between 0 and ∞. The 

subsequent application of the logarithm further changes the space, such that the new parameters can have values between 

−∞ and ∞. This results in so-called log-ratios, which should ideally be following a multivariate normal distribution. As a 

consequence, we can calculate the mean log-ratio vector across all samples as well as its corresponding covariance matrix, 880 

which completely describes the multivariate normal distribution. In addition to these statistical parameters, the script 

“compo_analysis.py” outputs a graph that plots for all samples an order statistic, 𝑧𝑟, (see Aitchison, 1986). This enables us to 

visualise how different the data is from a multivariate normal distribution. If equal, they should fall on the red line, shown in 

Fig. B3. 

 885 
Figure B3: Visual test for multivariate normality of the log-ratio data from Table B3 (This plot shows the full dataset, of which 

Table B3 is only an excerpt). Each subplot checks for marginal normality. Oxygen is the denominator variable (arbitrarily chosen) 

and does thus not appear in the plot. 

 

 890 
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With a graph like Fig. B3 it is possible to check if the multivariate normal distribution is an appropriate model to describe 

the elemental composition data. For our example that we show in Fig. B3 this looks acceptable, with only slight deviations 

for silicon, aluminium, manganese and sodium). Once the normality has been verified it is possible to generate random 895 

samples from this distribution. For every drawn sample it is then possible to calculate the weight percentages of the single 

elements by using the inverse formula to the log-ratio transformations 

𝑤𝑡𝑒𝑙𝑒,𝑖 =
exp(𝑟𝑖)

1−∑ exp(𝑟𝑗)
𝑁𝑒𝑙𝑒−1

𝑗=1

 , (B6) 

for all numerator elements and 

𝑤𝑡𝑒𝑙𝑒,𝑁𝑒𝑙𝑒 =
1

1−∑ exp(𝑟𝑗)
𝑁𝑒𝑙𝑒−1

𝑗=1

  (B7) 900 

for the denominator element (here oxygen). In Eqs. (B6) and (B7) the 𝑟𝑖 denote the log-ratios from Table B3 and 𝑁𝑒𝑙𝑒 is the 

total number of elements (in Table B2). 

B3 – Energy loss equation for rocks 

As stated in Eq. (7) the energy loss equation for rocks needs parameters that differ from the ones for pure elements. First, the 

expression for density can directly be exchanged according to the density model (see Appendix B1). Second, it is possible to 905 

generate an expression for the average ionisation loss within a rock by exchanging three parameters. Density values that also 

enter within {𝑎}𝑟𝑜𝑐𝑘 can again be directly changed. The average {𝑍 𝐴⁄ }𝑟𝑜𝑐𝑘 may be exchanged with the elemental 𝑍 𝐴⁄  by 

using 

{𝑍 𝐴⁄ }𝑟𝑜𝑐𝑘 = ∑ 𝑤𝑡𝑒𝑙𝑒,𝑖 ∗
𝑍𝑖

𝐴𝑖

𝑁𝑒𝑙𝑒
𝑖=1  . (B8) 

𝑤𝑡𝑒𝑙𝑒,𝑖 are the weight fractions from Eqs. (B6) & (B7). Lastly, the mean excitation energy for the rock can be computed by 910 

ln{𝐼}𝑟𝑜𝑐𝑘 =
∑ 𝑤𝑡𝑒𝑙𝑒,𝑖∗

𝑍𝑖
𝐴𝑖

𝑁𝑒𝑙𝑒
𝑖=1

∗ln 𝐼𝑖

{𝑍 𝐴⁄ }𝑟𝑜𝑐𝑘
 . (B9) 

The radiation loss term, however, must be calculated as a weighted radiation energy loss over all elements. This means that 

the average can be written in a rather concise form, 

{b}rock = ∑ 𝑤𝑡𝑒𝑙𝑒,𝑖 ∗ 𝑏𝑒𝑙𝑒,𝑖
𝑁𝑒𝑙𝑒
𝑖=1  . (B10) 
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Appendix C – Metropolis Hastings technicalities 

This appendix chapter is a short summary of Gelman (2014, p. 284 – 287) and we refer to these pages for a detailed 

discussion of the calculations. This work presents a concept of how to assess the quality of a MCMC run. In particular, the 

aforementioned author proposes to analyse two quantities, the potential scale reduction factor �̂� and the effective number of 

simulation draws �̂�𝑒𝑓𝑓 for every parameter of interest. For every chain of a parameter the variance between different chains 920 

and within one chain is calculated. The posterior variance of the parameter is then estimated as a weighted average of these 

two types of variances. Finally, �̂� is the quadratic ratio between the posterior variance and the variance within one chain. 

This quantity shows if the various chains have mixed or not, i.e. if they have explored the same region of the model space. If 

the posterior variance is much larger than the variances of the single chains, then the chains have not sufficiently explored 

the same region. Gelman (2014) propose to employ a threshold of 1.1 as a rule of thumb, below which the value of �̂� would 925 

lie. 

One problem that arises in MCMC algorithms is the inherent dependence of one simulation on the one before (this is the 

definition of a Markov chain). One considers that such a dependency does not introduce a bias if enough samples are drawn. 

However, this also means, that the effective, independent sample size is much smaller than the number of simulations. 

Therefore, Gelman (2014) proposes to calculate the effective number of simulation draws, �̂�𝑒𝑓𝑓 in order to assess if one has 930 

enough independent samples The underlying idea here is to evaluate the correlations within the chains. An accepted 

threshold value for this parameter is 5𝑚, where 𝑚 is the number of sub-chains. For the calculation of �̂� and �̂�𝑒𝑓𝑓 the chains 

may be cut in half to generate more chains. Note, however, that �̂�𝑒𝑓𝑓  can also be larger, which only means that the 

simulation standard error decreases. In our example we performed the calculations with two chains and a subdivision by 2, 

which means that our target quantity is around 20 (= 5 ∗ 4). Most of our thickness parameters (i.e. cones with bedrock and 935 

ice; see Figs. 1 & 10) have, in fact, a �̂�𝑒𝑓𝑓 > 100, with only a few below. 
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Appendix D – Construction of the smoothing kernel 

As stated in the main text, the user specifies the number of neighbouring pixels s to smooth over. The main idea is to 

construct a roughly Gaussian smoothing kernel by approximating it with a binomial distribution. With help of the binomial 940 

coefficient we can construct a vector of weights with 𝐿 = (2 ∗ 𝑠 + 1) entries. The weight vector is then given by 

𝑤𝑖 =  
1

22∗𝑠
(
𝐿 − 1
𝑖
) , (D1) 

with 𝑖 ∈ {0, . . , 𝐿 − 1}. It is now possible to create a matrix by forming the dyadic product of �⃗⃗�  with itself, i.e. 

𝐾 = �⃗⃗� ⊗ �⃗⃗�  , (D2) 

or in index notation, 945 

𝐾𝑖𝑗 = 𝑤𝑖 ∗ 𝑤𝑗  .  (D3) 

As an example, we show how a smoothing kernel that smooths over two neighbouring pixels (i.e. 𝑠 = 2) is constructed. This 

is incidentally also the smoothing kernel we used to construct our ice-bedrock interface. The weight vector in this case is 

given by 

�⃗⃗� =
1

16
∗ (1 4 6 4 1) .  (D4) 950 

The weight vectors are, in fact, only the odd rows from Pascal’s triangle, interpreted as vectors and normalised by a L1 

norm. The smoothing matrix then takes the form  

𝐾 =  
1

256

(

 
 

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1)

 
 

 .  (D5) 

 

  955 

https://doi.org/10.5194/gmd-2021-342
Preprint. Discussion started: 2 November 2021
c© Author(s) 2021. CC BY 4.0 License.



45 

 

Appendix E – Energy loss calculations for various elements and compounds 

 

 

Figure E1: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for aluminium 

in the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV. 960 

 

Figure E2: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for calcium in 

the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV. 
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Figure E3: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for iron in the 965 
energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV. 

 

Figure E4: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for oxygen in 

the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV. 
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Figure E6: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for calcium 

carbonate (calcite) in the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV. 
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Figure E7: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for silicon 

dioxide (quartz) in the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV. 

 

Figure E8: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for ice in the 980 
energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV. 
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Figure E9: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for standard 985 

rock ( 𝐍𝐚𝟏𝟏
𝟐𝟑 ) in the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV. 

 

Figure E10: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for standard 

rock ( 𝐍𝐚𝟏𝟏
𝟐𝟐 ) in the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV. 
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Code availability 

The source code of SMAUG 1.0 is publicly and freely available on https://doi.org/10.5281/zenodo.5547356 (Lechmann et 

al., 2021b). The python packages required to run SMAUG are listed in the “requirements.txt” file. 

Data availability 

The data of the density and XRF measurements are included (i) in the files that can be downloaded from 995 

https://doi.org/10.5281/zenodo.5547356 as well as (ii) in the supplementary material to this publication. The raw data from 

the Nishiyama et al. (2017) paper is publicly and freely available from the publisher’s website. 
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