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Abstract.  

Knowledge about muon tomography has spread in recent years in the geoscientific community and several collaborations 

between geologists and physicists have been founded. As the data analysis is still mostly done by particle physicists, we 15 

address the needmuch of the geoscientific community to participateknow-how is concentrated in the data analysis, while not 

having to worry too much about the particle physics equations in the background. The result hereof isand specialised 

geophysics institutes. SMAUG, a toolbox consisting of several modules that cover the various aspects of data analysis in a 

muon tomographic experiment., aims at providing access to a structured data analysis framework. The goal of this 

contribution is to make muon tomography more accessible to a broader geoscientific audience. In this study we show how a 20 

comprehensive geophysical model can be built from basic physics equations. The emerging uncertainties are dealt with by a 

probabilistic formulation of the inverse problem, which is finally solved by a Monte Carlo Markov Chain algorithm. Finally, 

we benchmark the SMAUG results against those of a recent study, which however, have been established with an approach 

that is not easily accessible to the geoscientific community. We show that they reach identical results with the same level of 

accuracy and precision. 25 

1 Introduction 

Among the manifold geophysical imaging techniques, muon tomography has increasingly gained the interest of geoscientists 

during the course of the past years. Before its application in Earth sciences, it was initially used for archaeological purposes. 

Alvarez et al. (1970) used this method to search for hidden chambers in the pyramids of Giza, in Egypt; an experiment which 

was recently repeated by Morishima et al. (2017), as better technologies have continuously been developed. Other civil 30 

engineering applications include the monitoring of nuclear power plant operations (Takamatsu et al., 2015) and the search 
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for nuclear waste repositories (Jonkmans et al., 2013) as well as the investigation of underground tunnels (e.g. Thompson et 

al., 2020; Guardincerri et al., 2017). A serious deployment of muon tomography in Earth sciences has only begun in the past 

decades. These undertakings mainly encompass the study of the interior of volcanoes in France (Ambrosino et al., 2015; 

Jourde et al., 2016; Noli et al., 2017; Rosas-Carbajal et al., 2017), Italy (Ambrosino et al., 2014; Lo Presti et al., 2018; 35 

Tioukov et al., 2017), and Japan (Kusagaya and Tanaka, 2015; Nishiyama et al., 2014; Oláh et al., 2018; Tanaka, 2016). 

Other experiments have been performed in order to explore the geometry of karst cavities in Hungary (Barnaföldi et al., 

2012) and Italy (Saracino et al., 2017). Further studies (see also review article by Lechmann et al., 2021a) have been 

conducted by our group to recover the ice-bedrock interface of Alpine glaciers in central Switzerland (Nishiyama et al., 

2017; 2019). 40 

The core component of every geophysical exploration experiment is formed by the inversion, which might be better known 

to other communities as fitting or modelling. This is where the model parameters are found, which best fit the observed data. 

Up until now, this central part has mostly been built specifically to meet the needs of the experimental campaign at hand. On 

the one hand this approach has the advantage of allowing the consideration of the peculiarities of particle detectors, their data 

processing chain, and other models involved (e.g. the cosmic ray flux model). On the other hand, when every group develops 45 

a separate inversion algorithm, the reconstruction of the precise calculations performed in the data analysis procedure 

becomes a challenge. For a researcher who is not familiar with the intricacies of inversion, this might even be tougher. We 

thus see the need for a lightweight programme that incorporates a structured and modular approach to inversion, that also 

allows users with little inversion experience to familiarise themselves with this rather involved topic. This programme can be 

used to directly analyse experimental data in a stand-alone working environment, and the modules and theoretical 50 

foundations can be adapted, customised, and integrated into new programmes. For this reason, the code is built in the 

programming language Python as to facilitate the exchange between researchers and to enhance modifiability. Moreover, the 

source code is freely available online (Lechmann et al., 2021b). 

To facilitate the further reading of our code, we introduce the reader at this point to our benchmark experiment, to which we 

will refer on multiple occasions throughout this work. The experimental campaign is explained in detail in Nishiyama et al. 55 

(2017) and thus we will resort to a description of the experimental design at this point. In the Nishiyama et al. (2017) study 

we aimed at we aimed at recovering the ice-bedrock interface of an Alpine glacier in central Switzerland. Figure 1 shows 

that we had access to the railway tunnel of the Jungfraubahnen railway company, where we installed three detectors. In our 

measurement we recorded muons from directions that consisted purely of rock and others where we knew that the muons 

must have crossed rock and ice (see the two cones in Fig. 1). From the former it was possible, together with laboratory 60 

measurements, to determine the physical parameters of the rock more precisely. ConverselySubsequently, we utilised the 

measurementdirectional measurements of the latter to infer the 3D structure of the interface between rock and ice underneath 

the glacier. Finally, we will also use the results of that experiment (Nishiyama et al., 2017) to verify our new algorithm in the 

present study. 

 65 
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Figure 1: Left:a) Schematic side view of the experiment from Nishiyama et al. (2017). A muon detector (red) is placed in a tunnel 

or cavity and records muons from the cosmic ray flux that penetrate the material (ice & rock) from different directions. Muons 70 
that are detected along cones yield information on the amount and density of matter between the topographic surface and the 

detector. Based on this the interface between ice and rock (dashed green line) can be reconstructed. Right:b) Modified Fig. 1 from 

Nishiyama et al. (2017); Overview of the study region in the central Swiss Alps. a) shows an outline of Detectors are indicated by 

yellow pentagrams (D1, D2, D3; including their viewfield) within the railway tunnel (black line). The imaged glacierarea is 

outlined in blue and its localisation in Switzerland and b) indicates where the region that we know from the digital elevation model 75 
to contain only rock is marked in brown. We verified (see Sect. 4) the reconstruction in this study with the one from Nishiyama et 

al. (2017) along three detectors have been positioned in the Jungfraubahnen railway tunnelcross-sections (East, Central, West; red 

lines). Basemap: Orthophotomosaic Swissimage, © Federal Office of Topography swisstopo. 

1.1 Inversion – a modular view 

The goal of every muon tomography study is essentially to extract information on the physical parameters (usually density 80 

and/or the thickness of a part of the material) of the radiographed object through a measurement of the cosmic ray muon flux 

and an assessment of its absorption as the muons cross that object. In geological applications these objects are almost always 

lithological underground structures such as magma chambers, cavities, or other interfaces with a high-density contrast. The 

reconstruction of the geometry of such structures can only be achieved if the measured muon data is compared to the results 

of a muon flux simulation. As stated earlier, this is the basic principle of the inversion procedure. However, the 85 

aforementioned “muon flux simulation” is not just a simple programme, but it consists of several physically independent 

models that act together. Taking a modular view, we will call these models “modules” from here on, as they will inevitably 

be part of a larger inversion code. We have visualised the components that are necessary to build an inversion and how they 

interact with each other in Fig. 2.  



 

5 

 

The first of the modules is the input module for the experiment results, which also considers the detectors that were used in 90 

the experiment. Typical detector setups include nuclear emulsion films (e.g. Ariga et al., (2018), cathode chambers (e.g. 

Oláh et al., 2013), scintillators (e.g. Anghel et al., 2015) or other hardware solutions. Although the detailed data processing 

chain may be comprehensive, the related output almost always comes in the form of a measured directional (i.e. from various 

incident angles) muon flux or equivalently the measured directional number of muons, which will be the input to the 

inversion scheme. Here, we primarily work with the premise that the muon flux data and the associated errors are given. The 95 

corresponding errors can then be furnished to the code by means of an interface.  

The simulation module on the other hand, consists of four autonomous componentstwo parts each containing two modules 

(see Fig. 2). First, a cosmic ray muon fluxThe model parametrisation is necessary, which describesneeded in order to abstract 

the muon abundance in the atmosphere (geo)physical reality as a mathematical model. Subsequently, the forward model uses 

the model parametrisation and which is generally dependentsimulates an artificial dataset based on the muon energy, chosen 100 

parameter values. 

As we want to draw inferences on the physical parameters of the involved materials, we need a “rock model” first. The latter 

term is used in an earlier publication (Lechmann et al., 2018) where we split a rock into its incidence angle,mineral 

constituents and the altitude of the detector location. Lesparre et al. (2010) listcompute a mean composition and compare 

various muon flux a mean density needed for further calculations. Even though this is called a “rock model” (Fig. 2) the 105 

approach can be used for other materials (e.g. ice) as well. It is also possible to infuse laboratory measurements of 

compositions and density into this family of models that may be incorporated into an extensive simulation. Second.  

Once the materials have been described, it is necessary to model the spatial distribution of the detectors as well as the initial 

distribution of the lithologies. Relatedexperimental situation spatially. This means that materials as well as detectors have to 

be attributed a location in space. The central choice in the “model parametrisation” is usually to select how the material 110 

parameters are discretised spatially (this is hinted in Fig. 2 with the term “binning”). We refer the reader to Sect. 2.1 for 

further information on that topic. In order to conduct this parametrisation we may employ pre-existing software solutions 

that mainly comprisecompromise GIS- and geological 3D-modelling applications, that excel at capturing and compiling 

geological information from various sources (, e.g. digital elevation models (DEMs), and that also allow to compile field,  

observations (maps, etc.) into a spatially organised database. Third,Once the lithologies consistingstructure of different 115 

minerals have to be translatedthe spatial model is determined, we need a physical model, that allows us to a calculate a 

synthetic dataset, based on the parameter values that we set of parameters, which are a necessary inputup. We note that the 

parametrisation structure remains fixed for the subsequent physical time of the calculations, and that changes are only 

performed on the parameter values. 

Incident muons, on their way from the atmosphere to the detector, lose energy while traversing matter. The first step in the 120 

muon simulation. This can be done by a rock model (e.g. Lechmann et al., 2018), which considers the effects is then to 

determine how much the initial energy of the mass density as well as the average atomic mass and charge of the rock as a 

function of its mineralogical composition. Lastly, the muon fluxes atmuon has to be, in order to be able to penetrate all the 
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material up to the detector sites have to be simulated. This is done by means of a muon transportation model, which 

calculates all physical processes by which a muon loses kinetic energy while travellingtraveling through matter. The particle 125 

physics community has a great variety of particle simulators, the most prominent being GEANT4 (Agostinelli et al., 2003), a 

Monte Carlo based simulator. These have the advantage that stochastic processes resulting in energy loss are simulated 

according to their probabilistic occurrence - an upside that has to be traded off for longer computation times. In contrast to 

obtaining the full energy loss distribution, lightweight alternatives often resort to the calculation of only the mean energy 

loss. The solution of the resulting differential equation can even be tabulated, as has been done by Groom et al. (2001). The 130 

interplay of these four submodules allows for the simulation of muon fluxes at the detector sites that are mostly located in an 

underground environment.  

 

Lastly, based on that minimum energy, one may calculate the portion of the atmospheric muon flux that is fast enough to 

reach the detector. For this part a cosmic ray muon flux model is needed, which describes the muon abundance in the 135 

atmosphere, and which is generally dependent on the muon energy, its incidence angle, and the altitude of the detector 

location. Lesparre et al. (2010) list and compare various muon flux models that may be incorporated into an extensive 

simulation. 

The interplay of these four modules (schematically shown in Fig. 2) allows then to simulate a dataset. It is then possible to 

compare the measured data with a synthetic dataset and to quantify this difference using a specific metric (usually the 140 

squared sum of residuals, which is also termed the misfit in Fig. 2). The process of changing the model parameters (here 

density of the materials and thicknesses of the segments in each cone), comparing the synthetic dataset with the measured 

dataset, and of iteratively tweaking the parameters in such a way that misfit is minimised is called “Inversion” in Fig. 2. The 
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solution of the inversion depends on the inversion method used, and is either the full statistical distribution of the model 

parameters or an estimate thereof (e.g. the Maximum Likelihood estimate). 145 

Figure 2: A schematic flowchart showing the different involved models in a muon tomographic experiment. The muon simulation 

consists of a model for rocks, detectors, the cosmic ray flux and a particle physical model on how muons lose energy upon 

travelling through rocks. These models allow for a synthetic data set to be computed, which will be compared to the actual 

measured data from the experiment. An optimisation problem then solves for the best set of parameters. 

1.2 The need for a consistent inversion environment 150 

The sole combinationreconstruction of material parameters from muon flux data has already been performed in a variety of 

ways and different methods and codes have already been published. Bonecchi et al. (2015), for example, used a back-

projection method such that size and location of underground objects can be determined. Jourde et al. (2015), on the 

aforementioned four submodules does not fully justifyother hand, describe the need for a new software, as cosmic ray flux 

models as well as rock models can also be programmed within existing Monte Carlo simulators such asresolving kernel 155 

approach, where they show how muon flux data and gravimetric data can be combined to improve the resolution on the 

finally imaged 3D density structure. This is a useful approach especially in the planning stages of an experiment. Barnoud et 

al. (2019) provide a perspective on how such a joint inversion between muon flux data and gravimetric data can be combined 

in a Bayesian framework, whereas Lelièvre et al. (2019) investigate different methods of joining these datasets, using 

unstructured grids.  160 

Existing frameworks that are especially used in physics communities are GEANT4 (Agostinelli et al., 2003) or MUSIC 

(Kudryavtsev, 2009). These are Monte Carlo simulators that excel at modelling how a particle (e.g. a muon) interacts with 

matter and propagates in space and time. The Monte Carlo aspect describes the fact that many particles are simulated to get a 

statistically viable distribution of different particle trajectories. This might be a very time-consuming process, as for each 

material distribution such a Monte Carlo simulation has to be performed, and only a fraction of all simulated muons actually 165 

hit the detector. In order to speed this calculation up Niess et al. (2018) devised a backward Monte-Carlo, which only 

simulates that portion of the muons that are actually observed. 

In their area of use the above-mentioned sources prove very valuable. Unfortunately, the application of such a Monte Carlo 

approach requiresthese tools and approaches have in common, that a rather good understanding of programming and either 

inversion, nuclear physics processes. Thus, it might prove time-consuming to , or programming is required. Even more so if 170 

one wants to tackle our problem of interface detection, coupled with density inversion, then various parts of the above codes 

need to be linked together. The construction of a specialised programme a specific code. Moreover, these codes are oftenis 

then a time-consuming process, as a) programmes might not be freely available, b) different codes might be written in 

adifferent and specialised programming language languages (such as C++. Third,++), c) the compatibility between different 

modules (e.g. cosmic ray flux and energy loss) may be severely hampered, if the programme interfaces are not taken into 175 

consideration. It might be even worse if the two modules are written in two different programming languages. In 
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additionTherefore, one has to carefully evaluate the benefit of such an undertaking, especially if the resulting code will most 

likely be tailored only to a specific problem.  

We thus see the need for a versatile, user-friendly simulator, which allows users not only to quickly perform the necessary 

calculations without the need of additional coding, but also tailor the individual models to custom needs. A new simulator 180 

can be more useful if an inversion functionality is already included. As can be seen in Fig. 2, the inversion compares the 

simulated flux data with the measured ones. It also attempts to reduceThis problem is solved by finding the discrepancy 

between measurements and simulations by optimising the set of parameters in the simulation, namely (material density and 

the thickness distributionthicknesses of the overlying materials), that adhere to the constraints of the available a priori 

information and minimise the aforementioned discrepancy between measurement and simulation. This results in a density- or 185 

structural rock model, which best reproduces the measured data. As the energy loss equation in general is nonlinear, also the 

mathematical optimizationoptimisation in muon tomography generally is nonlinear, one has to employis nonlinear. This is 

classically solved by either a linearisation of the physical equations or by employing nonlinear solvers or even. A further 

difficulty is introduced when working in 3D. Monte Carlo techniques are, however, enough versatile to tackle these 

challenges, which is our main motivation for working with them. This circumstance encourages us to work with a 190 

lightweight version of a muon transport simulator, because a nonlinear inversion of Monte Carlo simulations, although 

mathematically preferable, is computationally prohibitive. This allows us to make use of methods from the Bayesian realm, 

that thrive when measurements from different sources (i.e. muon flux measurement, laboratory, geological field 

measurements, maps, etc.) have to be combined into a single comprehensive model. With the code presented in this paper, 

we aspire to make muon tomography accessible to a broader geoscientific community, as the know-how in this field is 195 

mainly concentrated in particle physics laboratories. We want to provide the tools for Earth scientists, or users that are 

mainly focused on the application of the method, so that they can perform their own analyses. 

In this contribution we present our new code, SMAUG (Simulation for Muons and their Applications UnderGround), that 

allows a broader scientific community to plan and analyse muon tomographic experiments more easily, by providing them 

with data analysis and inversion tools. Specifically, we describe the governing equations of the physical models, and the 200 

mathematical techniques that were used. ChapterSection 2 depicts how the muon flux simulation is conducted by its 

submodules and how a muon flux simulation is performed. ChapterSection 3 then dives into the inversion module and 

explains how the parameters of the inferred density/rock-model can be estimated based on measured data. This 

chaptersection includes a description of the model and data errors and an explanation on how a subsurface material boundary 

can be constructed. Chapter 4 provides a short overview of the program, explaining which functionality can be found in 205 

which source code. Chapter 5Section 4 discusses the model’s performance based on the data that we collected in the 

framework of an earlier experimental campaign (see supplement of Nishiyama et al., 2017). Chapter 6Section 5 then 

concludes this study by outlining a way of how this code can be developed further to fit the needs of the muon tomography 

and geology community. 
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2 The forward model: Muon fluxIn order to provide the reader with quick access to information about the vast number of 210 

variables that are used in this work, we refer to the Table 1, where all the parameters are listed and explained. 
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Figure 2: A schematic flowchart showing the different involved models in a muon tomographic experiment. The muon simulation 

consists of a model for rocks, detectors, the cosmic ray flux and a particle physical model on how muons lose energy upon 215 
travelling through rocks. These models allow for a synthetic data set to be computed. The systematic comparison between 

synthetic data and actual measured data and the subsequent change of the model parameters to find the set of parameters that 

reproduce the measured data best is an (often iterative) optimisation problem. This procedure is termed “inversion” (usually) by 

geophysicists. 

Table 1: List of variables used in this work. Parameters are grouped into sections where they are introduced first. Parameters that 220 
are sought for muon tomography (in our case and also in general) are highlighted with an olive colour. 

Variable Unit Description 

   

Section 1   

𝑚 1 Index that runs through all different materials, here 𝑚 ∈ {𝑟𝑜𝑐𝑘, 𝑖𝑐𝑒} 

𝜌𝑚 kg m−3 Material density of the m-th material 

𝑐𝑚 1 Composition of the m-th material, given as a weight fraction of major rock forming oxides 

𝑖 1 Index that runs through all different cones/bins, here 𝑖 ∈ {1, … , 𝑁𝑐𝑜𝑛𝑒𝑠} 

𝑁𝑐𝑜𝑛𝑒𝑠 1 Total number of cones/bins 

𝐿𝑚𝑖 m Thickness of the m-th material in the i-th bin 

   

Section 2.1   

𝑁𝜇,𝑖 1 Number of simulated muons in the i-th bin 

𝐸𝑐𝑢𝑡,𝑖 eV Cutoff energy in the i-th bin 

𝑑Φ

𝑑𝐸
 eV−1 s−1 m−2 sr−1 Differential muon flux in the i-th bin 

Δ𝑇 s Exposure time of the detector 

ΔΩ𝑖 sr Solid angle of the i-th bin 

𝜑̂𝑖 rad Mean azimuth angle of the i-th bin 

𝜃𝑖̂ rad Mean zenith angle of the i-th bin 

Δ𝐴𝑒𝑓𝑓,𝑖(𝜑̂𝑖 ,  𝜃𝑖̂) m2 Effective area of the detector when seen from an angle given by 𝜑̂𝑖 ,  𝜃𝑖̂ 

Δ𝐴 m2 Area of the detector 

Φ𝑖(𝐸𝑐𝑢𝑡,𝑖) s−1 m−2 sr−1 Calculated muon flux in the i-th bin according to Eq. (5) 

Δℰ𝑖 s m2 sr Exposure in the i-th bin 

𝑟𝑑 1 Normal vector to the detector surface 

𝑟𝜇,𝑖𝑛(𝜑̂𝑖 ,  𝜃𝑖̂) 1 
Direction of mean muon incidence, i.e. unit vector in direction of (𝜑̂𝑖,  𝜃𝑖̂). Direction vector of 

the i-th bin 

𝜑𝑑 rad Azimuth angle of the detector facing direction 

𝜃𝑑 rad Zenith angle of the detector facing direction 

   

Section 2.2   

𝑥 m Position of a muon along a trajectory 

𝐸(𝑥) eV Energy of the muon at position 𝑥 

−
𝑑𝐸

𝑑𝑥
 eV m−1 Energy loss of a muon traversing some matter 
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𝜌(𝑥) kg m−3 Density at position 𝑥 

𝑎(𝑥, 𝐸) eV m2 kg−1 Ionisation losses 

𝑘̃ 1 
Index that runs through all three different radiative processes by which a muon can lose energy, 

here k̃ ∈ {bremsstrahlung, pair − production, photonuclear} 

𝑏𝑘̃(𝑥, 𝐸) m2 kg−1 
Radiation losses of the  

𝑘̃-th radiative process 

𝑁𝐴 mol−1 Avogadro constant 

𝐴 kg mol−1 
Molar mass of the traversed material; written as “A” as it is numerically equivalent to the 

atomic mass 

𝜈 1 Fractional energy transfer 

𝑑𝜎𝑘̃
𝑑𝜈

 m2 kg−1 Differential cross-section of the k-th radiative process 

𝐸0 eV Energy of the muon when it reaches the detector 

𝐿⃗⃗𝑖 m 
Vector of the thicknesses of all 𝑚 materials in the  

𝑖-th bin 

𝜌⃗ kg m−3 Vector of the material densities of all 𝑚 materials 

𝑐 1 Vector of the compositions of all 𝑚 materials 

𝑟𝑘(𝐿⃗⃗𝑖, 𝜌⃗, 𝑐) eV Numerical solution of the energy loss equation, using a Runge-Kutta integration scheme 

   

Section 3.1   

𝑑𝑖 1 Measured number of muons in the i-th bin 

𝑓𝑖 s−1 m−2 sr−1 Muon flux as a random variable in the i-th bin 

𝜇𝑓𝑖 s−1 m−2 sr−1 Mean of the flux random variable in the i-th bin 

𝜎𝑓𝑖
2  s−2 m−4 sr−4 Variance of the flux random variable in the i-th bin 

𝑝𝑘 
𝑘 = ion: eV m2 kg−1 

else:m2 kg−1 
Energy loss processes 

𝜀𝑘 1 Relative error of the energy loss process 

𝑘 1 
Index that runs through all energy loss processes, here k ∈ {ionisation,

bremsstrahlung, pair − production, photonuclear} 

𝑀(𝑝𝑒𝑙 , 𝜌⃗, 𝑐, 𝐿⃗⃗𝑖) s−1 m−2 sr−1 
The forward model, encompassing an energy loss calculation and a flux calculation. Results in 

a simulated flux. 

   

Section 3.2   

𝑑 1 Vector of observed number of muons in all bins 

𝑚⃗⃗⃗ different Vector of model parameters 

𝑚⃗⃗⃗0 different Vector of initial model parameters 

𝑚⃗⃗⃗𝑛𝑒𝑤 different Vector of new model parameters 

𝐽 different Model proposal distribution 

𝑐 1 Scaling factor for model proposal variance 

𝑆 different Prior model proposal variances 

𝐷 1 Number of model parameters 
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𝑂 1 Odds ratio 

𝑝𝐴 1 Acceptance probability 

   

Section 3.3   

𝑃 1 
Matrix of digital elevation model of the reconstructed interface, also called surface matrix; 

elements are denoted 𝑃𝑟𝑞 

𝑟 1 Number of rows in 𝑃 

𝑐 1 Number of columns in 𝑃 

𝐻𝑖 m Height of the interface in the 𝑖-th cone 

Δ𝑥𝑖 m Horizontal distance from interface point to the grid point 𝑃𝑟𝑞 

Δ𝑦𝑖 m Vertical distance from interface point to the grid point 𝑃𝑟𝑞 

Δ𝑐𝑠 m Cell size of 𝑃 

𝑤𝑖 1 Weights of the bilinear interpolation 

𝐾 1 Smoothing matrix/kernel 

2 The muon simulation 

In geophysical communities this part is generally known as the forward model, i.e. a mathematical model which calculates 

synthetic data for given “model” parameters. In muon tomography experiments, this forward model consists of different 

physical models which are serially connected. 225 

2.12.1 A note on the parametrisation 

In geophysical problems, there are many ways to parametrise a given problem. One frequently used approach is to partition 

the space into voxels (i.e. volume pixels of the same size) and describe them by the material parameters only. This has the 

advantage of imposing a fixed geometry (i.e. “Thickness” does not enter as a parameter). Unfortunately, the vast number of 

parameters to be determined requires a very good data coverage of the voxelised region. Another drawback might be the use 230 

of smoothing techniques (such that neighbouring voxels are forced to yield similar material parameters), that might blur any 

sharp interface. Because of these reasons we employed in our code another parametrisation that mimics the actual 

measurement process. We refer the reader again to Fig. 1 a), where two different cones (𝑖 and 𝑗) are shown. These represent 

two (among many) directions in which a certain number of incoming muons have been measured and (over a certain solid 

angle) binned together. It is now possible (as shown in cone 𝑖) to parametrise the sharp discontinuity explicitly by adding 235 

two segments (ice and rock) within that cone. As such, the thicknesses of each material within each cone 𝐿𝑚𝑖  and their 

material densities 𝜌𝑚 are explicit parameters in the model. 
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2.2 Cosmic ray flux model 

The nature of the data used in muon tomography generally consists of several counts within a directional bin, defined by two 

polar and two azimuthal angles. Additionally, the measurement is taken over a defined period of time, as well as over a given 240 

extent within the detector area. The simulated number of muons, in the i-th bin, 𝑁𝜇,𝑖, can be calculated by this integral, 

𝑁𝜇,𝑖
𝑠𝑖𝑚 = ∫ ∬ ∬ ∫

𝑑𝐼

𝑑𝐸𝐸
𝑑𝐸 𝑑𝐴 𝑑Ω 𝑑𝑇

AΩT
 . (1) 

𝑁𝜇,𝑖 = ∫ ∬ ∬ ∫
𝑑𝛷

𝑑𝐸𝐸
𝑑𝐸 𝑑𝐴 𝑑Ω 𝑑𝑇

AΩT
 . (1) 

Here, Tthe subscript 𝜇 indicates that muons are counted, the index 𝑖 ∈ {1, … , 𝑁𝑐𝑜𝑛𝑒𝑠} addresses the bin/cone, 𝑇 denotes the 

exposure time interval, A𝐴 the detector area, ΩΩ the solid angle of the bin and E𝐸 the energy range of the muons that were 245 

able to be registered by the detector. There are various differential muon flux models, also referred to as the integrand, 

𝑑𝛷 𝑑𝐸⁄ , in Eq. (1), that can be employed at this stage. Lesparre et al. (2010) provide a good overview on the different flux 

models, which can broadly be divided in two classes. On the one hand there are theoretical models, which capture the 

manifold production paths of muons and condense them in an analytical equation, e.g. the Tang et al., (2006) model. They 

contrast, on the other hand, with empirical models that were generated by fitting formulae to the results of muon flux 250 

measurements. The model of Bugaev et al. (1998) falls into this category, with later adjustments for different zenith angles 

(Reyna, 2006) and altitude (Nishiyama et al., 2017), which are also utilised in this study. The details of the formula are 

explained in Appendix A. The evaluation of Eq. (1) is rather cumbersome as strictly speaking several of the integration 

variables depend on each other. We may facilitate the calculation by considering that the differential muon flux model is 

only dependent on energy, E𝐸 , and zenith angle, 𝜃  whereas the effective area, Δ𝐴𝑒𝑓𝑓,𝑖 , is solelyusually (as long as the 255 

detector records muons on flat surfaces) dependent on the orientation of the bin. This is the case because muons do not 

necessarily hit the detector perpendicularly, such that the effective target area is usually smaller. By averaging over the 

zenith angle and keeping the bin size reasonably small, we may approximate Eq. (1) by 

𝑁𝜇,𝑖
𝑠𝑖𝑚(Ecut,i) = ∫

𝑑𝐼

𝑑𝐸
(𝐸, 𝜃𝑖̂) 𝑑𝐸

∞

𝐸𝑐𝑢𝑡,𝑖
𝑁𝜇,𝑖(𝐸𝑐𝑢𝑡,𝑖) = ∫

𝑑𝛷

𝑑𝐸
(𝐸, 𝜃𝑖̂) 𝑑𝐸

∞

𝐸𝑐𝑢𝑡,𝑖
∗ Δ𝑇 ∗  Δ𝛥𝑇 ∗  𝛥𝐴𝑒𝑓𝑓,𝑖(𝜑𝑖̂, 𝜃𝑖̂) ∗  ΔΩ𝑖𝛥𝛺𝑖  , (2) 

where Δ𝑇 is the exposure time and Δ𝛥𝐴𝑒𝑓𝑓,𝑖 is the effective detector area. Δ𝛥Ω𝑖 is the solid angle, 𝜑𝑖̂ and 𝜃𝑖̂ are the mean 260 

azimuth and zenith angle of the i-th bin, respectively. 𝐸𝑐𝑢𝑡,𝑖, called the cutoff-energy, describes the energy needed for a muon 

to traverse the geological object and to enter the detector. Δ𝛥𝐴𝑒𝑓𝑓,𝑖  has to be scaled by the cosine of the angle between the 

bin direction and the detector facing direction, which can be calculated using the formula for a scalar product, 

Δ𝐴𝑒𝑓𝑓,𝑖 = Δ𝐴 ∗
𝑛⃗⃗ ⋅𝑑⃗𝜇(𝜑̂𝑖,𝜃̂𝑖)

‖𝑛⃗⃗‖‖𝑑⃗𝜇(𝜑̂𝑖,𝜃̂𝑖)‖

𝑟d ⋅𝑟𝜇,𝑖𝑛(𝜑̂𝑖,𝜃̂𝑖)

‖𝑟𝑑‖‖𝑟𝜇,𝑖𝑛(𝜑̂𝑖,𝜃̂𝑖)‖
, (3) 
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where 𝑛⃗⃗𝑟𝑑  is the normal vector to the detector surface and 𝑑𝜇𝑟𝜇,𝑖𝑛(𝜑𝑖̂, 𝜃̂𝑖) is the mean vector of muon incidence within the i-265 

th bin, both of which can be chosen to feature unit length. Evaluating the scalar product in spherical coordinates, Eq. (3) 

yields 

Δ𝛥𝐴𝑒𝑓𝑓,𝑖 = Δ𝐴𝛥𝐴 ∗ [sin(𝜃𝑑) sin(𝜃̂𝑖) cos(𝜑𝑑 − 𝜑̂𝑖) + cos(𝜃𝑑) cos(𝜃̂𝑖)]. (4) 

Here, 𝜃𝑑 and 𝜑𝑑 are the zenith and azimuth angles of the detector facing direction. It is important to note that except for 

𝐸𝑐𝑢𝑡,𝑖 all variables in Eq. (2) are predetermined by the experimental setup (Δ𝑇, ΔA𝛥𝑇, 𝛥𝐴) as well as by the data processing 270 

(𝜑̂𝑖, 𝜃̂𝑖), such that the number of muons 𝑁𝜇,𝑖
𝑠𝑖𝑚𝑁

𝜇,𝑖𝑁𝜇,𝑖
𝑠𝑖𝑚  can be interpreted as a function of one variable, 𝐸𝑐𝑢𝑡,𝑖 only. 

2.2One final tweak can be made to render Eq. (2) more accessible for future uses. We may rewrite the right-hand side of Eq. 

(2) in terms of a flux,  

𝛷𝑖(𝐸𝑐𝑢𝑡,𝑖) =  ∫
𝑑𝛷

𝑑𝐸
(𝐸, 𝜃̂𝑙) 𝑑𝐸

∞

𝐸𝑐𝑢𝑡
,  (5) 

and an exposure  275 

𝛥ℰ𝑖 = 𝛥𝑇 ∗ 𝛥𝐴𝑒𝑓𝑓,𝑖(𝜑𝑖̂, 𝜃𝑖̂) ∗  𝛥𝛺𝑖  . (6) 

In this case, the number of number of muons in the i-th bin may be expressed by 

𝑁𝜇,𝑖(𝐸𝑐𝑢𝑡,𝑖) = 𝛷𝑖(𝐸𝑐𝑢𝑡,𝑖) ∗ 𝛥ℰ𝑖  . (7) 

2.3 Muon transportation model 

Since muons permanently lose energy when travelling through matter, they also need a certain amount of energy to enter the 280 

detector. This energy, 𝐸𝑐𝑢𝑡,𝑖, was introduced in Eq. (2) and is called the cutoff energy. If the detector is now positioned 

underground, the muons have to traverse more matter to reach the detector and consequently need a higher initial energy to 

reach the target. For this purpose, we introduce the new variable 𝐸0, which refers to the energy needed to penetrate the 

detector, and we reinterpret 𝐸𝑐𝑢𝑡,𝑖 as the minimum energy that is required to traverse the matter and to be registered at the 

detector. For the goal of studying the interactions between particles and matter, physicists regularly use energy loss models. 285 

We base our calculations in large parts on the equations of Groom et al. (2001), where the energy loss of a muon along its 

path is described by an ordinary differential equation of 1st order, 

−
𝑑𝐸

𝑑𝑥
= 𝜌(𝑥) ∗ [𝑎(𝑥, 𝐸) + 𝐸 ∗ 𝑏(𝑥, 𝐸)] . (58) 

In Eq. (58), 𝜌 denotes the density of the traversed material, and 𝑎 and 𝑏 are the ionisation loss and radiation loss parameters 

respectively, and 𝑥  is the position along the trajectory. The radiation loss parameter groups the effects related to the 290 

bremsstrahlung, 𝑏𝑏𝑟𝑒𝑚𝑠, the pair-production, 𝑏𝑝𝑎𝑖𝑟 , and the photonuclear interactions, 𝑏𝑝ℎ𝑜𝑡𝑜, where 
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𝑏(𝑥, 𝐸) = 𝑏𝑏𝑟𝑒𝑚𝑠(𝑥, 𝐸) + 𝑏𝑝𝑎𝑖𝑟(𝑥, 𝐸) + 𝑏𝑝ℎ𝑜𝑡𝑜(𝑥, 𝐸). (69) 

Each of the radiative process is, in turn, calculated through 

𝑏𝑘 =
𝑁𝐴

𝐴
∫ 𝜈

𝑑𝜎𝑘

𝑑𝜈

1

0
𝑏𝑘̃ =

𝑁𝐴

𝐴
∫ 𝜈

𝑑𝜎𝑘̃

𝑑𝜈

1

0
𝑑𝜈 , (710) 

where 𝑘 ∈ 𝐾𝑘̃ ∈ 𝐾 = {bremsstrahlung, pair-production, photonuclear} is the set of radiative processes, 𝑁𝐴 is Avogadro’s 295 

number, 𝐴  is the atomic weight of the traversed material, 𝜈  is the fractional energy transfer, and 𝑑𝜎𝑘 𝑑𝜈⁄ 𝑑σ𝑘̃ 𝑑𝜈⁄  the 

differential cross-section of the process. Eq. (710) becomes important when modelling errors have to be included (see 

ChSect. 3). For a detailed discussion of the equations for 𝑎 and 𝑏 we refer to Groom et al. (2001). The only exception in Eq. 

(69) is 𝑏𝑝𝑎𝑖𝑟 , which is calculated after GEANT4 (Agostinelli et al., 2003). We selected the solution of these latter authors 

because it is computationally less time consuming. As the two results agree within 1 %, we deem it acceptable to exchange 300 

the two differential cross-sections.  

Because Eq. (58) describes the energy loss in response to the interaction with a single-element material, certain 

modifications have to be made to make it also valid for rocks, which in this context represent a mixture of minerals and 

elements. In this case, the modified equation takes an equivalent form to Eq. (58) when replacing 𝜌, 𝑎, 𝑏 with their mixture 

counterparts {𝜌}𝑟𝑜𝑐𝑘 , {𝑎}𝑟𝑜𝑐𝑘 , {𝑏}𝑟𝑜𝑐𝑘  (Lechmann et al., 2018), thus yielding 305 

−
𝑑𝐸

𝑑𝑥
= {𝜌(𝑥)}𝑟𝑜𝑐𝑘 ∗ [{𝑎(𝑥, 𝐸)}rock + 𝐸 ∗ {𝑏(𝑥, 𝐸)}rock] . (811) 

We show in Appendix B3 how the rock model (explained in ChSect. 2.34) can be used to determine these quantities. 

By applying a change of variables to Eq. (811), i.e. 𝑥′ = −𝑥, the energy loss equation can be transformed to an energy gain 

equation. This has the advantage of being much easier to solve than the “final value problem” in Eq. (811). We can 

reorganise Eq. (811) into an initial value problem by setting the initial energy to 𝐸0, 310 

𝑑𝐸

𝑑𝑥
= {𝜌(𝑥)}𝑟𝑜𝑐𝑘 ∗ [{𝑎(𝑥, 𝐸)}rock + 𝐸 ∗ {𝑏(𝑥, 𝐸)}rock]  (912) 

𝐸(0) = 𝐸0 .  

In this context 𝐸0 is the minimal energy needed for a muon to penetrate the detector, which can be influenced by the detector 

design. Equation (912) is a well-investigated problem that can be solved by numerous methods. In our work we employ a 

standard Runge-Kutta integration scheme (see for example Stoer and Bulirsch, 2013), with a step size of 10 cmcm. As a 315 

result, it is now possible to write the cut-off energy in a functional form, where 

𝐸𝑐𝑢𝑡,𝑖 = 𝑟𝑘(𝑥⃗𝑖 𝐿⃗⃗𝑖 , 𝜌⃗, 𝑐) . (1013) 

Here 𝑟𝑘(⋅) is the function that returns the Runge-Kutta solution of Eq. (912) for defined thicknesses of materials, 𝑥⃗𝑖 𝐿⃗⃗𝑖 , with 

densities 𝜌⃗ and compositional parameters 𝑐. Thickness and density are allowed to be vectors, as there may be more than just 

one material. In this case, the final energy, after the muon has passed through the first segment of materials, is the initial 320 
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energy for the second segment, etc. In order to speed up the computations – especially the calculation of the pair production 

cross-section, which includes two nested integrations. – we utilise customised energy loss tables. In particular, a log-log 

table of muon energy vs. radiation loss parameters is produced, from which the b-values, see Eq. (710), can be interpolated. 

We justify this approach because the radiative losses are almost linear in a log-log plot, as can be seen in Fig. 33.1 of 

Tanabashi et al. (2018, p.447) for the example of copper. The general shape of the energy loss function remains the same for 325 

various materials even if the absolute values differ. 

2.34 Rock model 

Equation (1013) shows that for the calculation of the cut-off energy two types of material parameters are required, which are 

the material density 𝜌⃗ and its average composition 𝑐. The pre-tabulated values from Groom et al. (2001), however, include 

only pure elements as well as certain compounds. To extract the relevant parameters in a geological setting, a realistic rock 330 

model is needed. In an earlier work (Lechmann et al., 2018) we have shown how an integrated rock model can be 

constructed and how the physical parameters for a realistic rock can be retrieved. In the present work we generally use the 

same approach, apart from a few aspects. First, we measured the average material density directly in the laboratory, using 

various techniques which are explained in detail in Appendix B1. Second, in order to be able to compare the results of this 

study with the ones in the Nishiyama et al. (2017) publication, we consider a rock composition that corresponds to a density-335 

modified standard rock. This is applicable, as the rock in the study of Nishiyama et al. (2017) is mostly of granitic/gneissic 

origin, with thicknesses rarely larger than 200 m, with the consequence that the differences are negligible. However, as the 

inclusion of compositional data is a planned feature for a future version of our code, we decided to include the theoretical 

treatment in this work. Hence, all equations are tailored to include the statistical description of such data. Compositional data 

for whole rock samples, which can be scaled to outcrop scale, are usually presented in one of two forms, the first being the 340 

measurement results of X-Ray Diffraction (XRD). This kind of data yields the mineral phases within a rock. Unfortunately, 

XRD is a rather time-consuming method. This is the reason why in muon tomographic experiments researchers often resort 

to a bulk chemical analysis of the rock, which is the second form of compositional data. This type of data is usually the 

output of dedicated X-Ray Fluorescence (XRF) measurements, describing the bulk rock composition by major oxide 

fractions. We note here that by the absence of information on the spatial distribution of mineral phases within a rock, we 345 

implicitly infer a homogeneous mixture of elements within the rock itself, which is thus different from our previous work 

(Lechmann et al., 2018). From a particle physics perspective this does not pose a real problem as the difference to a mixture 

of minerals is rather small. Nevertheless, we lose the power to obtain meaningful inferences that could be drawn if 

compositional information is being considered. As the present work aims to infer positions and uses material parameters as 

constraints, we can accept this drawback. Details on how compositional parameters are derived from XRF measurements, 350 

including an example, can be found in Appendix B2, and an explanation of the related influence on the energy loss equation 

in Appendix B3. Additionally, we assume that the density of the rock (and also the ice) is homogeneous throughout the 

imaged geological body. This is, of course, a simplification as there might be weathering processes that change the density of 
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the rock at various locations. The same is true for the ice body, which might contain crevasses. As we used this 

approximation already in Nishiyama et al. (2017) and since we intend to compare the calculations in this study with the 355 

earlier one, we will retain the assumption of homogeneity for the densities and compositions. 

2.45 Spatial models of detectors and materials 

In addition to the above explained physical models, we may also utilise available spatial data for our purposes. In this 

context, the use of a digital elevation model (DEM) of the surface allows the visualisation of the position of the detectors 

relative to the surface, as well as the spatial extent of the bins. Additionally, it allows us to determine the location where 360 

these bins intersect with the topographic surface. As a first deliverable, we can draw conclusions on which bins consist of 

how many parameters. For example, if we know that the detector is located underground and that there is ice at the surface, 

we can already infer the existence of at least 2 materials (rock and ice). For this purpose, we wrote the script 

“modelbuilder.py”, which allows the user to attach geographic and physical information to the selected bins. This process of 

building a coherent geophysical model is needed for the subsequent employment of the inversion algorithm to process all the 365 

data. 

3 The inverse model: A Bayesian perspective 

As stated in the Introduction, we solve the inversion by using Bayesian methods. This needs an explanation as to why we 

chose this way and not another. First, the equations in ChSect. 2 enable us to calculate a synthetic dataset for fixed parameter 

values. There, one can see that the governing equations constitute a nonlinear relationship between parameter values and 370 

measured data. Despite this being of no particular interest in the forward model, the estimation of the parameters from 

measured data is rendered more complicated. Among muon tomographers, linearised versions have been extensively used 

with deterministic approaches (e.g. Nishiyama et al., 2014; Rosas-Carbajal et al., 2017), which are successfully applicable 

when the density or the intersection boundaries are the only variables. When deterministic approaches are viable, they 

efficiently produce good results. Descent algorithms or, generally speaking, locally optimising algorithms, offer a valid 375 

alternative, as they could cope with the nonlinearity of the forward model, while including all desired parameters. Even 

though theseOne difficulty of such algorithms suffer from possibleis that in the case of non-uniquenessunique solutions (i.e. 

the which occur when there are local minima that might be a solution depends heavily onto the starting model, possibly 

yielding multiple solutions),optimisation) the mainuser has no constraints to infer if a local or the desired global minimum 

has been reached. A further problem of descent methods is the calculation of the derivatives of the forward model with 380 

respect to the parameter values. The analytical calculation of the derivatives is enormously tedious because the cut-off 

energy results from a numerical solver of a differential equation, as can be seen in Eq. (9) & (1012) & (13). Unfortunately, 

numerical derivatives do not produce better results, because they might easily produce artefacts, which are hard to track 

down. This is especially true if the derivative has to be taken from a numerical result, which is always slightly noisy. In that 
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case the differentiation amplifies the “noise”, resulting in unreliable gradient estimates. A good overview over deterministic 385 

inversion methods can be found in Tarantola (2005).  

The reasons stated above and our goal to include as much information on the parameters as possible nudges us towards 

employing probabilistic methods. Those approaches are also known as Bayesian methods. The main feature that 

distinguishes them from the deterministic methods described above is the consistent formulation of the equations and 

additional information in a probabilistic way, i.e. as probability density functions (pdf). This allows us to (i) incorporate, for 390 

example, density values that were measured in the lab (including its error), (ii) set bounds on the location of the material 

interface, or (iii) define a plausible range for the composition of the rock. All these changes act on the pdf of the respective 

parameter and naturally integrate into the Bayesian inversion. We have to add that Bayesian methods do not solve the non-

uniqueness problem, but they provide the user with enough information to spot these local solutions of the optimisation. 

Readers may find the book of Tarantola (2005) very resourceful for the explanation and illustration of probabilistic 395 

inversion. Several studies in the muon tomography community have already employed such methods with success (e.g. 

Lesparre et al., 2012; Barnoud et al., 2019).  

The flexibility of being able to include as much information on the parameters as we consider useful comes at the price of 

having to solve the inversion in a probabilistic way. This can either be done using Bayes’ Theorem and solving for the pdfs 

of the parameters of interest, or if the analytical way is not possible by employing Monte Carlo techniques. As the presence 400 

of a numerical solver renders the analytical solution impossible, we resort to the Monte Carlo approaches. In the following 

sections we guide the reader through the various stages of how such a probabilistic model can be set up, how probabilities 

may be assigned, and how the inversion can finally be solved. 

3.1 Probabilistic formulation of the forward model 

The starting point for a probabilistic formulation is denoted by the equations that were elaborated in ChSect. 2. These 405 

deterministic equations need to be upgraded into a probabilistic framework, where their attributed model and/or parameter 

uncertainties are inherently described. In the following paragraphs we describe how each model component can be expressed 

by a pdf before the entire model is composed at the end of this subchaptersection. The model is best visualised by a directed 

acyclic graph (DAG), i.e. see Kjaerulff and Madsen (2008), that depicts which variables enter the calculation at what point. 

For our muon tomography experiment this is visualised in Fig. 3. In the following the pdfs are denoted with the bold Greek 410 

letter 𝝅 to differentiate them from normal parameters. 
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Figure 3: Directed acyclic graph (DAG) for the problem of muon tomography. Variables in a square (□) denote fixed, i.e. known 

values and variables in a circle/ellipse (○) are generally unknown and have to be represented by a pdf. Solid arrows (→) denote a 415 
deterministic relation, i.e. within a physical model, whereas dashed arrows (⇢) indicate a probabilistic relationship, i.e. a 

parameter within the statistical description of the variable. 𝝆⃗⃗⃗, 𝒄⃗⃗ are the density and composition for different materials, whereas 

𝝈⃗⃗⃗𝒄𝒔 𝒑⃗⃗⃗𝒆𝒍 contains the errors on the physical cross-sectionsdifferent processes in the energy-loss equation. 𝝈𝒇 describes the error on 

the cosmic-ray flux model. Within each cone, 𝒙𝒊 𝑳⃗⃗⃗𝒊  isdenote the positionthicknesses of the bedrock-rock and ice 

interfacerespectively, 𝑴(𝒙𝒊 𝑳⃗⃗⃗𝒊, 𝝆⃗⃗⃗, 𝒄⃗⃗, 𝝈⃗⃗⃗𝒄𝒔) is the calculated flux (i.e. energy-loss model and flux model combined), 𝒇𝒊 the actual muon 420 
flux and 𝒅𝒊 the observed number of muon tracks. 

3.1.1 Muon data 

The data in muon tomography experiments are usually count data, i.e. a certain number of measured tracks within a 

directional bin, which has been collected over a certain exposure time and detector area. As the measured number of muons 

is always an integer, we may model such data by a Poisson distribution, 425 

𝝅(𝑑𝑖|𝑁𝑖) =
𝑁
𝑖

𝑑𝑖𝑒−𝑁𝑖

𝑑𝑖!
 , (11 (𝑑𝑖|𝑁𝜇,𝑖) =

(𝑁𝜇,𝑖)
𝑑𝑖𝑒

−𝑁𝜇,𝑖

𝑑𝑖!
 , 

 (14) 

where 𝑑𝑖 denotes the measured number of muons in the i-th bin and 𝑁𝑖𝑁𝜇,𝑖 is the poisson parameter in the same bin, which 

can be interpreted as mean and variance of this distribution. Equation (11)According to Eq. (7) we may be rewrittenrewrite 

Eq. (14) in terms of a flux, 𝑓𝑖 by𝑓,  430 

𝝅(𝑑𝑖|𝑓𝑖) =
(𝑓𝑖Δ𝐸𝑥𝑖)

𝑑𝑖𝑒−(𝑓𝑖Δ𝐸𝑥𝑖)

𝑑𝑖!

(𝑓𝑖Δℰi)
𝑑𝑖𝑒−(𝑓𝑖Δℰi)

𝑑𝑖!
 ,  (12.

 (15) 

where 𝑓𝑖 is the muon flux in the i-th bin and 

Δ𝐸𝑥𝑖 = Δ𝐴𝑒𝑓𝑓,𝑖 ∗ Δ𝑇 ∗ ΔΩi  (13) 

is the exposure, in which Δ𝐴𝑒𝑓𝑓,𝑖  is the effective total detector area from Eq. (4), Δ𝑇 is the exposure time and ΔΩ𝑖  is the solid 435 

angle. 

The variable here is explicitly denoted 𝑓𝑖 to emphasise that it is not the exact calculated flux, 𝛷, from before but a separate 

variable subject to uncertainties. These two variables will be linked with each other in the next subsection. 

3.1.2 Flux model 

The next step is to set up a probabilistic model for the muon flux. First, we observe that “flux” is a purely positive parameter, 440 

i.e. 𝑓𝑖 ∈ [0,∞). Thus, it is natural to model it by a lognormal probability distribution if estimates of mean and variance are 

readily available. The uncertainty on the muon flux is generally taken around 15% (e.g. Lechmann et al., 2021a) of the mean 

value. As it is possible, by Eq. (25), to calculate a flux for a given cut-off energy, which we interpret as the mean of the non-

logarithmic values, the parameters of the lognormal distribution (i.e. 𝜇𝑓𝑖  , 𝜎𝑓𝑖
2 ) may be expressed by 
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𝜎𝑓𝑖
2 = ln(1 + (

𝐹𝑖(𝐸𝑐𝑢𝑡,𝑖)∗0.15

𝐹𝑖(𝐸𝑐𝑢𝑡,𝑖)
)
2

) ln (1 + (
𝛷𝑖(𝐸𝑐𝑢𝑡,𝑖)∗0.15

𝛷𝑖(𝐸𝑐𝑢𝑡,𝑖)
)
2

) = ln(1.0225)  (1416) 445 

and 

𝜇𝑓𝑖 = ln(𝐹𝑖(𝐸𝑐𝑢𝑡,𝑖)) − 
𝜎𝑓𝑖
2

2
ln(𝛷𝑖(𝐸𝑐𝑢𝑡,𝑖)) − 

𝜎𝑓𝑖
2

2
 , (1517) 

which yield the probability density function for the flux, conditional on the cut-off energy 

𝝅(𝑓𝑖|𝜇𝑓𝑖 , 𝜎𝑓𝑖
2) = 𝝅(𝑓𝑖|𝐸𝑐𝑢𝑡,𝑖) =

1

√2𝜋 ∗ 𝑓𝑖 ∗ 𝜎𝑓𝑖

exp (−
1

2
(
ln(𝑓𝑖)−𝜇𝑓𝑖

𝜎𝑓𝑖

)
2

) .(16 (−
1

2
(
𝑙𝑛(𝑓𝑖)−𝜇𝑓𝑖

(𝐸𝑐𝑢𝑡,𝑖)

𝜎𝑓𝑖

)
2

)  .

 (18) 450 

3.1.3 Energy loss model 

The energy loss model has multiple sources of errors that have to be taken into account. Most notably, the relative errors on 

the different physical cross-sectionsenergy loss processes are given by Groom et al. (2001) as 𝜀𝑖𝑜𝑛 = 6 %, 𝜀𝑏𝑟𝑒𝑚𝑠 =

1 %, 𝜀𝑝𝑎𝑖𝑟 = 5 %, 𝜀𝑝ℎ𝑜𝑡𝑜𝑛𝑢𝑐𝑙 = 30 % . As it is not clearly stated as to what this error relates to, i.e. one or more standard 

deviations, we interpret an error like 𝜀𝑖𝑜𝑛 = 6 % as: “within a factor of 1.06”, which can be written as 455 

𝜎𝑘

(1+𝜀𝑘)

𝑝𝑘

(1+𝜀𝑘)
 ≤ 𝜎𝑘𝑝𝑘 ≤ 𝜎𝑘𝑝𝑘(1 + 𝜀𝑘) , (1719) 

where 𝑘 ∈ 𝐾 =  {ionisation, bremsstrahlung, pair-production, photonuclear}.} runs through all energy loss processes, 

including ionisation losses and 𝑝𝑖𝑜𝑛 = 𝑎, 𝑝𝑏𝑟𝑒𝑚𝑠 = 𝑏𝑏𝑟𝑒𝑚𝑠 , 𝑝𝑝𝑎𝑖𝑟 = 𝑏𝑝𝑎𝑖𝑟 , 𝑝𝑝ℎ𝑜𝑡𝑜 = 𝑏𝑝ℎ𝑜𝑡𝑜 denote the respective energy loss 

terms from Eq. (12). Dividing this inequality by 𝜎𝑘 and taking the logarithm yields 

− ln(1 + 𝜀𝑘)  ≤ 0 ≤ ln(1 + 𝜀𝑘).  (1820) 460 

Thus, we may attribute a Gaussian pdf in the log-space for a “log-correction factor, 𝑙𝜎𝑘𝑝𝑘” by setting its mean to zero and its 

standard deviation to ln(1 + 𝜀𝑘), i.e. 

𝝅(lσk)(𝑙𝑝𝑘) =  
1

√2𝜋 ∗ln(1+𝜀𝑘)
exp (−

1

2
(

𝑙𝜎𝑘

ln(1+𝜀𝑘)
)
2

) (−
1

2
(

𝑙𝑝𝑘

ln(1+𝜀𝑘)
)
2

) .  (1921) 

With a change of variables, using the Jacobian rule as explained in Tarantola (2005), we get 

𝝅(σk) =  
1

√2𝜋 ∗σk∗ln(1+𝜀𝑘)
exp (−

1

2
(
ln(𝜎𝑘)

ln(1+𝜀𝑘)
)
2

),  (20) 465 

𝝅(𝑝𝑘) =  
1

√2𝜋 ∗𝑝𝑘∗ln(1+𝜀𝑘)
exp (−

1

2
(
ln(𝑝𝑘)

ln(1+𝜀𝑘)
)
2

),  (22) 
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the lognormal pdf for the correction factor. The pdf for the cross-sectionenergy loss uncertainty 𝝅(𝜎⃗𝑐𝑠)(𝑝𝑒𝑙) can now be 

written as a product of the four different pdfs described by Eq. (2022) 

𝝅(𝜎⃗𝑐𝑠)(𝑝𝑒𝑙) =  ∏ 𝝅(𝜎𝑘)𝑘∈𝐾 ∏ 𝝅(𝑝𝑘)𝑘∈𝐾 ,  (2123) 

as the errors of the physical cross-sectionsindividual energy loss processes are stochastically independent from each other. 470 

The calculated energy loss depends also on the material parameters and subsequently on their uncertainties. However, these 

will be explained in detail in ChSect. 3.1.4. A last erroruncertainty enters by the numerical solution of the ordinary 

differential equation, Eq. (912). We decided not to model this error, as its magnitude is directly controlled by the user (by 

setting a small enough step length in the Runge-Kutta algorithm) and thus can be made arbitrarily small. Lastly, we assume 

that all the errors in the energy loss model are explained by uncertainties in the cross sectionsenergy loss terms as well as in 475 

the material parameters. Although this assumption is rather strong, since it excludes the possibility of a wrong model, we 

argue that this approach works as long as the variation in these parameters can explain the variation in the calculated cut-off 

energy. If this requirement is met, we may model the pdf for the energy loss model as a delta function, 

𝝅(𝐸𝑐𝑢𝑡,𝑖|𝜎⃗𝑐𝑠, 𝜌⃗, 𝑐, 𝑥𝑖) = 𝜹(𝐸𝑐𝑢𝑡,𝑖 − 𝑟𝑘(𝜎⃗𝑐𝑠 , 𝜌⃗, 𝑐, 𝑥𝑖)),(22 (𝐸𝑐𝑢𝑡,𝑖|𝑝𝑒𝑙 , 𝜌⃗, 𝑐, 𝐿⃗⃗𝑖) = 𝜹(𝐸𝑐𝑢𝑡,𝑖 − 𝑟𝑘(𝑝𝑒𝑙 , 𝜌⃗, 𝑐, 𝐿⃗⃗𝑖)) ,

 (24) 480 

where 𝜎⃗𝑐𝑠 = (𝜎𝑘)𝑝𝑒𝑙 = (𝑝𝑘), 𝜌⃗ is the vector of all material densities, 𝑐 is the vector of all compositions and 𝑥𝑖 𝐿⃗⃗𝑖 is the vector 

of thicknesses of segments used in this cone. It is now already possible to eliminate 𝐸𝑐𝑢𝑡,𝑖 as a parameter by first multiplying 

Eqs. (16) & (2218) & (24), which yields 

𝝅(𝑓𝑖, 𝐸𝑐𝑢𝑡,𝑖|𝜎⃗𝑐𝑠, 𝜌⃗, 𝑐, 𝑥𝑖 𝐿⃗⃗𝑖) = 𝝅(𝑓𝑖|𝐸𝑐𝑢𝑡,𝑖) ∗  𝝅(𝐸𝑐𝑢𝑡,𝑖|𝜎⃗𝑐𝑠, 𝜌⃗, 𝑐, 𝑥𝑖)(𝐸𝑐𝑢𝑡,𝑖|𝑝𝑒𝑙 , 𝜌⃗, 𝑐, 𝐿⃗⃗𝑖). (2325) 

From this expression it is possible toone can then marginalise the parameter 𝐸𝑐𝑢𝑡,𝑖, by simply integrating over it, i.e. 485 

𝝅(𝑓𝑖|𝜎⃗𝑐𝑠, 𝜌⃗, 𝑐, 𝑥𝑖)(𝑓𝑖|𝑝𝑒𝑙 , 𝜌⃗, 𝑐, 𝐿⃗⃗𝑖) = ∫𝝅(𝑓𝑖, 𝐸𝑐𝑢𝑡,𝑖|𝜎⃗𝑐𝑠, 𝜌⃗, 𝑐, 𝑥𝑖) ∫𝝅(𝑓𝑖, 𝐸𝑐𝑢𝑡,𝑖|𝑝𝑒𝑙 , 𝜌⃗, 𝑐, 𝐿⃗⃗𝑖) 𝑑𝐸𝑐𝑢𝑡,𝑖  . (2426) 

Due to the presence of the delta function in Eq. (2224), this integral is solved analytically resulting in  

𝝅(𝑓𝑖|𝜎⃗𝑐𝑠, 𝜌⃗𝑖 , 𝑐𝑖 , 𝑥𝑖) = (𝑓𝑖|𝑝𝑒𝑙 , 𝜌⃗, 𝑐, 𝐿⃗⃗𝑖) =  
1

√2𝜋 ∗ fi ∗ 𝜎𝑓𝑖

exp (−
1

2
(
ln(𝑓𝑖)−𝜇𝑓𝑖

𝜎𝑓𝑖

)
2

) (−
1

2
(
ln(𝑓𝑖)−𝜇𝑓𝑖

(𝑟𝑘(𝑝⃗𝑒𝑙,𝜌⃗⃗⃗,𝑐,𝐿⃗⃗𝑖))

𝜎𝑓𝑖

)
2

),  (2527) 

where the parameters are given by 

𝜎𝑓𝑖
2 = ln (1 + (

𝑀(𝜎⃗⃗⃗𝑐𝑠,𝜌⃗⃗⃗,𝑐,𝑥𝑖)∗0.15

M(𝜎⃗⃗⃗𝑐𝑠,𝜌⃗⃗⃗,𝑐,𝑥𝑖)
)
2

) ln (1 + (
𝑀(𝑝⃗𝑒𝑙,𝜌⃗⃗⃗,𝑐,𝐿⃗⃗𝑖)∗0.15

M(𝑝⃗𝑒𝑙,𝜌⃗⃗⃗,𝑐,𝐿⃗⃗𝑖)
)
2

) = ln(1.0225)  (2628) 490 

and 

𝜇𝑓𝑖 = ln(M(𝜎⃗𝑐𝑠 , 𝜌⃗, 𝑐, 𝑥𝑖)) − 
𝜎𝑓𝑖
2

2
ln(𝑀(𝑝𝑒𝑙𝜌⃗, 𝑐, 𝐿⃗⃗𝑖)) − 

𝜎𝑓𝑖
2

2
 . (2729) 
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Please note that M(𝜎⃗𝑐𝑠, 𝜌⃗, 𝑐, 𝑥𝑖)𝑀(𝑝𝑒𝑙 , 𝜌⃗, 𝑐, 𝐿⃗⃗𝑖) =  𝐹𝑖𝛷𝑖(𝑟𝑘(𝜎⃗𝑐𝑠𝑝𝑒𝑙 , 𝜌⃗, 𝑐, 𝑥𝑖 𝐿⃗⃗𝑖)) describes the combined parts of the forward 

model that include the energy loss and the integrated flux calculation, which is basically a composition of functions. 

3.1.4 Rock model 495 

The density model can take different forms of probability densities (see Appendix B1), such as normal, lognormal, uniform, 

etc. For either form, it is possible to describe it by a generic function 𝝅(𝜌⃗), which is a short version for a multidimensional 

pdf, i.e. 𝝅(𝜌𝑖𝑐𝑒 , 𝜌𝑟𝑜𝑐𝑘) if the i-th cone is known to consist of two segments with two specific densities. Equivalently, the pdf 

for the composition (see Appendix B2) is either fixed or a multidimensional Gaussian distribution in the space of log-ratios. 

Thus 𝝅(𝑐) can be split up to 𝝅(𝑐𝑖𝑐𝑒 , 𝑐𝑟𝑜𝑐𝑘), like in the example above. Generally, we may assume that in our problem j 500 

different materials exist. We note here that the description of the composition is already probabilistic. However, the 

inversion in that case is not functional and works only with the mean values of the multidimensional Gaussian. The support 

for composition inversion is planned for a future version of the code.  

The situation for the thicknesses of the segments, 𝝅(𝑥𝑖)(𝐿⃗⃗𝑖), within the i-th cone presents itself in a similar way as for the 

compositions (e.g., Fig. 1). AsWe know the total material thickness is known (, due to our information on the detector 505 

position and the surface position from digital elevation models are given), the sub-space containing the thickness parameter 

is endowed with the same. Thus we have, equal to the compositions’ weight fractions (that add up to 1), a sum constraint 

(i.e. the sum of lengths of all segments must equal the total distance from the detector to the surface). The mathematical 

structure asof the one containing the composition parameter (i.e. one sum constraint), ifsub-space is consequently the also 

the cone consists of more than just one segmentsame. One can therefore safely assume that the thickness parameters livecan 510 

be presented in a log-ratio space, within which we a-priori possess no additional information about the parameters. Thus, we 

attribute the thickness parameters a multidimensional uniform distribution within the log-ratio space. 

3.1.5 The Joint probability density function 

With the help of the DAG, introduced in Fig. 3, it is now straightforward to factorise the joint probability distribution for the 

whole problem, as their structure is equal. This results in 515 

𝝅(𝑑, 𝑓, 𝜎⃗𝑐𝑠, 𝜌⃗, 𝑐, x⃗⃗) = ∏ 𝝅(𝑑𝑖|𝑓𝑖)𝝅(𝑓𝑖|𝜎⃗𝑐𝑠, 𝜌⃗, 𝑐, 𝑥𝑖)𝝅(𝑥𝑖) ∗ ∏ 𝝅(𝜌𝑗)𝝅(𝑐𝑗)
𝑁𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠
𝑗=1 ∗ ∏ 𝝅(𝜎𝑘)𝑘∈𝐾

𝑁𝑐𝑜𝑛𝑒𝑠
𝑖=1 ,

(28 (𝑑, 𝑓, 𝑝𝑒𝑙 , 𝜌⃗, 𝑐, 𝐿⃗⃗) = [∏ 𝝅(𝑑𝑖|𝑓𝑖)𝝅(𝑓𝑖|𝜎⃗𝑐𝑠, 𝜌⃗, 𝑐, 𝐿⃗⃗𝑖)𝝅(𝐿⃗⃗𝑖)
𝑁𝑐𝑜𝑛𝑒𝑠
𝑖=1 ] ∗ [∏ 𝝅(𝜌𝑚)𝝅(𝑐𝑚)

𝑁𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠
𝑚=1 ] ∗ [∏ 𝝅(𝑝𝑘)𝑘∈𝐾 ] ,

 (30) 

or equivalently (and this will also be of a much better use later on) the log joint pdf 
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𝒍𝝅(𝑑, 𝑓, 𝜎⃗𝑐𝑠, 𝜌⃗, 𝑐, x⃗⃗) = ∑ 𝒍𝝅(𝑑𝑖|𝑓𝑖) + 𝒍𝝅(𝑓𝑖|𝜎⃗𝑐𝑠, 𝜌⃗, 𝑐, 𝑥𝑖) + 𝒍𝝅(𝑥𝑖)
𝑁𝑐𝑜𝑛𝑒𝑠
𝑖=1 +∑ 𝒍𝝅(𝜌𝑗) + 𝒍𝝅(𝑐𝑗)

𝑁𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠
𝑗=1 + ∑ 𝒍𝝅(𝜎𝑘)𝑘∈𝐾 , 520 

(29 (𝑑, 𝑓, 𝑝𝑒𝑙 , 𝜌⃗, 𝑐, 𝐿⃗⃗) = [∑ 𝒍𝝅(𝑑𝑖|𝑓𝑖) + 𝒍𝝅(𝑓𝑖|𝑝𝑒𝑙 , 𝜌⃗, 𝑐, 𝐿⃗⃗𝑖) + 𝒍𝝅(𝐿⃗⃗𝑖)
𝑁𝑐𝑜𝑛𝑒𝑠
𝑖=1 ] + [∑ 𝒍𝝅(𝜌𝑚) + 𝒍𝝅(𝑐𝑚)

𝑁𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠
𝑚=1 ] +

 [∑ 𝒍𝝅(𝑝𝑘)𝑘∈𝐾 ],  (31) 

where the prefix "𝒍" denotes the logarithm of the pdf. This has the benefit of reducing the size of numbers that the code has 

to cope with. Moreover, many computational statistics packages already have this feature included, which renders it easy to 

use. 525 

Equation (2830) depicts the full joint pdf. However, the relations between the parameters, as shown by the DAG (see Fig. 3), 

classify this model as a hierarchical model (Betancourt and Girolami, 2013). The key characteristic of such models is their 

tree-like parameter structure, i.e. the measured number of muons is related to the thickness or the density of the material by 

the flux parameter only, which “relays” the information. A central problem of such models is the presence of a hierarchical 

“funnel” (see Fig. 2 & 3 of Betancourt and Girolami, 2013), which renders it very difficult for standard MCMCMonte Carlo 530 

methods to adequately sample the model space. In high-dimensional parameter spaces this problem exacerbates even more. 

Our aim to provide a simple and easy-to-use program somewhat contradicts this necessity of a sophisticated method (which 

inevitably requires the user to possess a strong statistical background). As the main problem is the rising number of 

parameters, it should be possible to mend the joint pdf by imposing thought-out simplifications. 

We first get rid of the flux parameter, as for our problem it merely is a nuisance parameter. This is an official term for a 535 

parameter in the inversion which is of no particular interest but still has to be accounted for. Here specificallySpecifically, 

we mean that even though the calculation of the muon flux is important, we do not want to treat it as an explicit parameter 

that is simulated by the code. To achieve this, we integrate over all possible values of the muon flux, 𝑓 within its uncertainty, 

so that and we can relate the results of the energy loss calculation (encoded in 𝜇𝑓𝑖; see Eq. 2729) directly to the measured 

number of muons, 𝑑𝑖. This effectively reduces the number of parameters and thus the number of dimensions of the model 540 

space. This can be achieved by marginalising the flux parameter out of the joint pdf, 

𝝅(𝑑, 𝜎⃗𝑐𝑠 , 𝜌⃗, 𝑐, x⃗⃗) = ∫ 𝝅(𝑑, 𝑓, 𝜎⃗𝑐𝑠, 𝜌⃗, 𝑐, x⃗⃗) 𝑑𝑓 .(30 (𝑑, 𝑝𝑒𝑙 , 𝜌⃗, 𝑐, 𝐿⃗⃗) = ∫ 𝝅(𝑑, 𝑓, 𝑝𝑒𝑙 , 𝜌⃗, 𝑐, 𝐿⃗⃗𝑖) 𝑑𝑓  .

 (32) 

This effectively reduces to a problem where the new likelihoods have to be calculated (as 𝑑𝑖 is given) 

𝝅(𝑑𝑖|𝜎⃗𝑐𝑠 , 𝜌⃗, 𝑐, 𝑥𝑖)(𝑑𝑖|𝑝𝑒𝑙 , 𝜌⃗, 𝑐, 𝐿⃗⃗𝑖) = ∫ 𝝅(𝑑𝑖|𝑓𝑖)𝝅(𝑓𝑖|𝜎⃗𝑐𝑠 , 𝜌⃗, 𝑐, 𝑥𝑖)(𝑓𝑖|𝑝𝑒𝑙 , 𝜌⃗, 𝑐, 𝐿⃗⃗𝑖) 𝑑𝑓𝑖, (3133) 545 

or fully, 

𝝅(𝑑𝑖|𝜎⃗𝑐𝑠 , 𝜌⃗, 𝑐, 𝑥𝑖) =  ∫
(𝑓𝑖Δ𝐸𝑥𝑖)

𝑑𝑖𝑒−(𝑓𝑖Δ𝐸𝑥𝑖)

𝑑𝑖!

∞

0

1

√2𝜋 ∗ fi ∗ 𝜎𝑓𝑖

𝝅(𝑑𝑖|𝑝𝑒𝑙 , 𝜌⃗, 𝑐, 𝐿⃗⃗𝑖) =

 ∫
(𝑓𝑖Δℰ𝑖)

𝑑𝑖𝑒−(𝑓𝑖Δℰ𝑖)

𝑑𝑖!

∞

0

1

√2𝜋 ∗ fi ∗ 𝜎𝑓𝑖

exp (−
1

2
(
ln(𝑓𝑖)−𝜇𝑓𝑖

𝜎𝑓𝑖

)
2

)𝑑𝑓𝑖  , (3234) 
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wherewhich is a multiplication of Eqs. (15) and (27). In Eq. (34), 𝜇𝑓𝑖  and 𝜎𝑓𝑖  are given by Eqs. (2628) and (2729), 

respectively. This integral is not solvable analytically but can be evaluated by numerical integration schemes. The likelihood 550 

has a maximum when the Poisson and the log-normal pdfs fully overlap. Interestingly, this directly shows the trade-off 

between the flux model uncertainty and the data uncertainty. Usually, we want to measure enough muons so that the 

statistical counting error is smaller than the systematic uncertainty of the flux model (i.e. the width of the Poisson pdf is 

smaller than the width of the log-normal pdf). This can be controlled directly by the exposure of the experiment, via a larger 

detector area, a coarser binning, or a longer exposure time. A guide how such a calculation may be done (especially when 555 

planning a measurement campaign) can be found e.g. in Lechmann et al. (2021a). 

This marginalisation roughly halves the number of parameters, but there is still another simplification, which we may use. 

Many muon tomography applications deal with a two-material problem, while there may also be measurement directions 

where only one material is present. If we conceptually split those two problems and solve them independently, it is possible 

to further reduce the number of simultaneously modelled parameters. In the study of Nishyiama et al. (2017), the results of 560 

which we will use later, these two cases encompass bins where we measured only rock and others where we know there is 

ice and rock. The joint pdf for rock bins subsequently is 

𝝅(𝑑, 𝜎⃗𝑐𝑠 , 𝜌𝑟𝑜𝑐𝑘 , 𝑐rock) = ∏ 𝝅(𝑑𝑖|𝜎⃗𝑐𝑠 , 𝜌𝑟𝑜𝑐𝑘 , 𝑐rock) ∗ 𝝅(𝜌𝑟𝑜𝑐𝑘)𝝅(𝑐𝑟𝑜𝑐𝑘) ∗ ∏ 𝝅(𝜎𝑘)𝑘∈𝐾
𝑁𝑐𝑜𝑛𝑒𝑠
𝑟𝑜𝑐𝑘

𝑖=1 , (33 (𝑑, 𝑝𝑒𝑙 , 𝜌𝑟𝑜𝑐𝑘 , 𝑐rock) =

[∏ 𝝅(𝑑𝑖|𝑝𝑒𝑙 , 𝜌𝑟𝑜𝑐𝑘 , 𝑐rock)
𝑁𝑐𝑜𝑛𝑒𝑠
𝑟𝑜𝑐𝑘

𝑖=1 ] ∗ 𝝅(𝜌𝑟𝑜𝑐𝑘)𝝅(𝑐𝑟𝑜𝑐𝑘) ∗ [∏ 𝝅(𝑝𝑘)𝑘∈𝐾 ],  (35) 

which leaves the problem effectively with only a handful of parameters. Solving Eq. (3335), for the rock density we retrieve  565 

𝝅̃(𝜌𝑟𝑜𝑐𝑘), the posterior marginal pdf for the rock density. We refer the reader to ChSect. 3.2 for the details of how to solve 

this inverse problem. Theoretically we could also retrieve 𝝅̃(𝜌𝑖𝑐𝑒), but this would require the detector to be positioned within 

the glacier (see chapter 5.2 and Fig. 1 for a description of the experimental design of the Nishyiama et al. (2017) study), 

which poses more of a practical difficulty than a mathematical one.  

For the second problem, we can interpret 𝝅̃(𝜌𝑟𝑜𝑐𝑘) as the new prior pdf for the rock density. At this point we employ one last 570 

simplification by assuming that the parameters between different cones are independent form each other. This is a rather 

strong presumption, which must be justified. The main mathematical problem lies in consideration of the hierarchical nature 

of the density parameter, which is the same for each cone and therefore not independent in different cones. We, however, 

argue that in cones with two materials, there are more parameters than in bins with only rock, such that we may expect the 

posterior pdf of the rock density of these second kind of models to be less informative than the posterior rock density pdf of 575 

Eq. (3335). This, in turn, means that the posterior rock density pdf of the two-material model largely equals the prior one if 

we select the posterior of the first kind of models as the prior of the second kind of models. The same is valid for the 

composition 𝑐𝑖  and the cross-sectionenergy loss error parameters 𝜎⃗𝑐𝑠𝑝𝑒𝑙 . As long as this assumption is valid, we may 

decompose the joint pdf into independent joint pdfs for each cone 
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𝝅(𝑑𝑖 , 𝜎⃗𝑐𝑠,𝑖 , 𝜌⃗𝑖 , 𝑐𝑖 , 𝑥𝑖  ) = 𝝅(𝑑𝑖|𝜎⃗𝑐𝑠,𝑖 , 𝜌⃗𝑖 , 𝑐𝑖 , 𝑥𝑖)𝝅(𝑥𝑖)∏ 𝝅̃(𝜌𝑖𝑗)𝝅̃(𝑐𝑖𝑗)
𝑁𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠
𝑗=1 ∗ ∏ 𝝅̃(𝜎𝑖𝑘)𝑘∈𝐾 .(34 (𝑑𝑖 , 𝑝𝑒𝑙,𝑖 , 𝜌⃗𝑖 , 𝑐𝑖 , 𝐿⃗⃗𝑖  ) =580 

𝝅(𝑑𝑖|𝑝𝑒𝑙,𝑖 , 𝜌⃗𝑖 , 𝑐𝑖 , 𝐿⃗⃗𝑖) ∗ 𝝅(𝐿⃗⃗𝑖) ∗ [∏ 𝝅̃(𝜌𝑖𝑚)𝝅̃(𝑐𝑖𝑚)
𝑁𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠
𝑚=1 ] ∗ [∏ 𝝅̃(𝑝𝑖𝑘)𝑘∈𝐾 ]. (36) 

Our inversion program enables the user to choose the type of model parametrisation, which is either the full hierarchical 

model given by Eqs. (28) & (2930) & (31), or the simplified single-cone-bin inversion model (“Sicobi”-model) given by 

Eqs. (33) & (3435) & (36). 

3.2 Solution to the inverse problem 585 

Usually in Bayesian inference, the goal is to calculate the posterior pdf, given the measured data, i.e. the quantity 

𝝅(𝜎⃗𝑐𝑠 , 𝜌⃗, 𝑐, x⃗⃗|𝑑) =
𝝅(𝑑⃗,𝜎⃗⃗⃗𝑐𝑠,𝜌⃗⃗⃗,𝑐,x⃗⃗)

𝝅(𝑑⃗)
. (35 (𝑝𝑒𝑙 , 𝜌⃗, 𝑐, 𝐿⃗⃗|𝑑) =

𝝅(𝑑⃗,𝑝⃗𝑒𝑙,𝜌⃗⃗⃗,𝑐,𝐿⃗⃗)

𝝅(𝑑⃗)
. 

 (37) 

This can be interpreted as the inferences one may draw on the parameters in a model given measured data. The denominator 

on the right-hand side of Eq. (3537), also called the “evidence”, can be rewritten as the data marginal of the posterior, i.e. 590 

𝝅(𝑑) = ∫ ∫ ∫ ∫ 𝝅(𝑑, 𝜎⃗𝑐𝑠, 𝜌⃗, 𝑐, x⃗⃗)(𝑑, 𝑝𝑒𝑙 , 𝜌⃗, 𝑐, 𝐿⃗⃗) 𝑑𝜎⃗𝑐𝑠𝑝𝑒𝑙  𝑑𝜌⃗ 𝑑𝑐 𝑑𝑥⃗ .(36 𝐿⃗⃗  .

 (38) 

As Eq. (36) basically describes an integration over the whole model parameter space, this may become such an extensive 

computation (especially when the number of model parameters is large), that it cannot be solved in a meaningful time. 

However, as the evidence usually is a fixed value, the left- and right-hand side of Eq. (3537) are merely scaled by a scalar 595 

and are thus proportional to each other, i.e. 

𝝅(𝑝𝑒𝑙 , 𝜌⃗, 𝑐, 𝐿⃗⃗|𝑑) ∝ 𝝅(𝑑, 𝑝𝑒𝑙 , 𝜌⃗, 𝑐, 𝐿⃗⃗).  (39) 

𝝅(𝜎⃗𝑐𝑠 , 𝜌⃗, 𝑐, x⃗⃗|𝑑) ∝ 𝝅(𝑑, 𝜎⃗𝑐𝑠 , 𝜌⃗, 𝑐, x⃗⃗).  (37) 

This is the starting point of Monte Carlo Markov Chain (MCMC) methods.  

3.2.1 The Metropolis-Hastings algorithm 600 

The basic MCMC algorithm, which we also use in this study, is the Metropolis-Hastings (MH) algorithm (Hastings, 1970; 

Metropolis et al., 1953), which allows for the sampling of the joint pdf to obtain a quantitative sample. We note, however, 

that many different MCMC algorithms exist for various purposes and that the MH has no special status except for being 

comparatively simple to use and implement. An example of another MCMC algorithm in muon tomography can be found in 

Lesparre et al. (2017). The authors used a simulated annealing technique on the posterior pdf in order to extract the 605 

maximum a posteriori (MAP) model. As every simulated annealing algorithm has some type of MH-algorithm at its core, we 
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directly use the MH-algorithm in its original form such that we not only retrieve a point estimate but a pdf for the posterior 

parameter distribution. The algorithm is explained in detail by Gelman (2014), such that we only provide a short pseudo-

code description. 

Algorithm 1 (Metropolis-Hastings): 610 

(1) Draw a starting model, 𝑚⃗⃗⃗0 = (𝜎⃗𝑐𝑠,0𝑝𝑒𝑙,0, 𝜌⃗0, 𝑐0, x⃗⃗0𝐿⃗⃗0), by drawing 𝜎⃗𝑐𝑠,0𝑝𝑒𝑙,0, 𝜌⃗0, 𝑐0, x⃗⃗0𝐿⃗⃗0 from their respective prior 

pdfs and determine the log-pdf value of this model 

(2) Until convergence: 

a. Propose a new model according to 𝑚⃗⃗⃗𝑛𝑒𝑤 = 𝑚⃗⃗⃗0 + 𝑐
2𝐽(0, 𝑐2Σ0⃗⃗, S), where Σ is the matrix of prior variances 

and 𝑐 =  2.4 √𝐷⁄  andin which 𝐷 is the number of parameters., and 𝑐2𝐽(0⃗⃗, 𝑆) is a model change drawn 615 

from a multidimensional Gaussian distribution with mean vector of 0⃗⃗ and covariance matrix of 𝑆 (i.e. 

matrix of prior variances of the model parameters) 

b. Evaluate log-pdf value of 𝑚⃗⃗⃗𝑛𝑒𝑤 and calculate the odds ratio: 

𝑟𝑂 = exp(𝑙𝑝(𝑚⃗⃗⃗𝑛𝑒𝑤) − 𝑙𝑝(𝑚⃗⃗⃗0)) 

c. Evaluate the acceptance probability, 𝑝𝐴 = min (1, 𝑟𝑂) and draw a number q from the uniform distribution 620 

U(0,1). 

d. If 𝑞 < 𝑝𝐴: sample 𝑚⃗⃗⃗𝑛𝑒𝑤 & set  𝑚⃗⃗⃗𝑛𝑒𝑤 → 𝑚⃗⃗⃗0, 

Else: sample 𝑚⃗⃗⃗0 

 

The advantage of this algorithm, compared to a “normal” sampling, lies in its efficiency. It is often not possible, or even 625 

reasonable, to probe the whole model space, as the largest part of the model space is “empty”, where the pdf-value of the 

posterior is uninterestingly small. The fact that regions of high probability are scarce, and this becomes worse in high 

dimensional model spaces, is known as the “curse of dimensionality” (Bellman, 2016). MCMC algorithms (including the 

here presented MH-algorithm) allows one to focus on regions of high probability, and therefore we are able to construct a 

reliable and representative sample of the posterior pdf. We again refer to Gelman (2014) for a discussion of why the MH-630 

algorithm converges to the correct distribution and why we may use samples that were gained this way to estimate the 

posterior probability density. 

3.2.2 Assessing convergence, mixing, and retrieving the samples 

The above stated advantages, however, come at a price. First and foremost, we must ensure that the algorithm advances fast 

enough, but not too fast, through the model space. This is mainly controlled by the proposal distribution 𝐽(0, 𝑐2ΣS), which is 635 

taken to be a multivariate Gaussian distribution. Ideally, the covariance matrix of the proposal distribution Σ𝑆 is equal to the 

covariance structure of the posterior pdf. We acknowledge that at the start of the algorithm one generally has no idea what 

this looks like, but we assume that a combination of the prior variances is a reasonable starting point. After a certain number 



 

28 

 

of steps, it is possible to approximate the covariance matrix of the proposal distribution with the samples taken up to at this 

point. 640 

A second crucial point is the presence of a warm-up period. The starting point, which usually lies in a region of high prior 

probability, does not necessarily lie in a region of high posterior probability. The time it takes to move from the latter to the 

former is exactly this warm-up. This can usually be visualised by a trace plot, e.g. Fig. 4, in which the value of a parameter is 

plotted against the number of iterations. After this warm-up phase, the algorithm can be run in operational mode and “true” 

samples can be collected. 645 
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Figure 4: Example of a trace plot (2 independent chains; blue and orange) of a MH run with 500 draws. This plot shows the 

parameter value (y-axis; here material density in 𝒈 𝒄𝒎−𝟑)) vs. # of steps (x-axis) of a collection of cones in which we (Nishyiama et 

al., 2017) knew that only rock is present. This is a calculation that is included in the code base. The warm-up phase of this MH 650 
algorithm takes roughly 150 simulations indicated by the subsequent oscillation around a parameter value of ~𝟐. 𝟕 −
𝟐. 𝟖 𝒈 𝒄𝒎−𝟑𝐠 𝐜𝐦−𝟑. 

As in a Markov Chain the actual sample is dependent on the last one, we need a criterion to argue that the samples created in 

that way really represent “independent” samples. Qualitatively, we may say that if the Markov Chain forgets the past 

samples fast enough, then we may sooner treat them as independent from each other. Gelman (2014) suggests that in order to 655 
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assess this quantitatively, multiple MH-chains could be run in parallel and statistical quantities within and between each 

chain are analysed. For a detailed discussion thereof, we refer the reader to Appendix C.  

Once a satisfying number of samples has been drawn from the posterior pdf, a marginalisation of the nuisance parameters 

can be done by looking at the parameters of interest only. These samples may then be treated like counts in a histogram, i.e. 

distributional estimates, or simply the interesting statistical moments, such as mean and variance, can be obtained. 660 

3.3 Construction of the bedrock-ice interface 

The main analysis programme allows us to export all parameters either as a full chain dataset, where every single draw is 

recorded, or as a statistical summary (i.e. mean and variance). Both are then converted to point data, i.e. (x, y, z) – data. For 

the subsequent construction of the interface between rock and ice (see section 5.2Sect. 4 and Fig. 1 for the presentation of the 

test experiment) we only need the full-chain point-data. In the present study we restrict ourselves to a probabilistic 665 

description until the bedrock positions within a cone. It would also be possible to treat the bedrock construction within a 

Bayesian framework, however this would go beyond the scope of this study and is therefore left for a future adaption of the 

code. Nonetheless, in order to construct a surface, we rely on deterministic methods, which are explained in detail in what 

follows. 

3.3.1 Interpolation to a grid 670 

The “modelviewer.py” routine is able to read datasets from different detectors (which are saved as JSON-files) and computes 

for each cone the statistic, which the user is interested in (see “sigma” entry in program). Thus, it is possible to use the mean 

or, for example, the +1 𝜎 position of each cone. From here onwards this point cloud is named 𝐻 and contains one interface 

position (x, y & z coordinates) per cone. These are shown as triangles (▲) in Fig. 5. 

As a second step, the programme interpolates this point cloud in a bilinear way to a rectangular grid with a user specified cell 675 

size, Δ𝑐𝑠. This grid can be described by a matrix 𝑃 ∈ ℝ𝑟×𝑐,ℝ𝑁𝑟𝑜𝑤×𝑁𝑐𝑜𝑙, where 𝑟𝑁𝑟𝑜𝑤 and 𝑐𝑁𝑐𝑜𝑙  are the number of rows and 

columns (i.e. the number of y- and x-cells, needed to cover the whole grid). The procedure is similar to the bilinear 

interpolation of Lagrangian markers (that carry a physical property) to a (fixed) Eulerian grid in geodynamical modelling 

(see Gerya, 2010, p. 116), with the difference that our physical property is the height of the ice-bedrock interface (Fig. 1). 

We could also have fitted a surface through the resulting point cloud. However, by formulating this surface as a matrix we 680 

gain access to the whole machinery of linear algebra. Moreover, 𝑃 can directly be interpreted as a rasterised DEM, which 

can be easily loaded and visualised in any GIS software. Thus, from a modular design perspective we think that the matrix 

formulation has more advantages than drawbacks. The bilinear interpolation is shown in more detail in Fig. 5. 
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 685 

Figure 5: Two-dimensional stencil, used to summarise the bilinear interpolation of interface positions within cones (𝑯𝒌𝑯𝒊, ▲) to a 

fixed grid (𝑷𝒊𝒋𝑷𝒓𝒒, ■) with a user-defined cell size 𝚫𝒄𝒔. Every interface position within a ±𝚫𝒄𝒔 interval contributes to the grid 

height 𝑷𝒊𝒋𝒓𝒒. 

In order to calculate the height at a grid point, 𝑃𝑖𝑗𝑃𝑟𝑞, one has to form a weighted sum over the entire cone interface positions 

within a ±Δ𝑐𝑠 interval, i.e. 690 
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𝑃𝑖𝑗 =  
∑ 𝑤𝑘𝐻𝑘𝑘

∑ 𝑤𝑙𝑙
 ,  (38) 

𝑃𝑟𝑞 = 
∑ 𝑤𝑖𝐻𝑖𝑖

∑ 𝑤𝑖𝑖
 ,  (40) 

where 𝐻𝑖  is the height of the bedrock-ice interface in the i-th cone and the weights, 𝑤𝑘𝑤𝑖 , are given by 

𝑤𝑖 = (1 −
Δ𝑥𝑖

Δ𝑐𝑠
) ∗ (1 −

Δ𝑦𝑖

Δ𝑐𝑠
) .  (41) 

𝑤𝑘 = (1 −
Δ𝑥𝑘

Δ𝑐𝑠
) ∗ (1 −

Δ𝑦𝑘

Δ𝑐𝑠
) .In Eq. (41), Δ𝑥𝑖  and Δ𝑦𝑖  are the horizontal and vertical distances from the interpolated grid 695 

point 𝑃𝑟𝑞. 

  (39) 

3.3.2 Damping & Smoothing 

The concept of damping usually revolves around the idea to force parameters to a certain value (e.g. in deterministic 

inversion by introducing a penalty term in the misfit function for deviations from that value). From a Bayesian viewpoint this 700 

would be accomplished by setting the prior mean to a specific value. In our code we implemented this idea by allowing the 

user to read a DEM and a “damping weight” to the code (see “fixed length group” in code). The programme effectively 

computes a weighted average between the bedrock positions within the cones and a user defined DEM. The higher the 

chosen damping weight, the more the resulting interface will match the DEM, when pixels overlap. 

The matrix formulation also enables us to use a further data processing technique without much tinkering. As geophysical 705 

data are often quite noisy, a standard procedure in nearly every geophysical inversion is a smoothing constraint. This 

effectively introduces a correlation between the parameters and forces them to be similar to each other. From a Bayesian 

perspective, we could have achieved this correlation by defining a prior covariance matrix of the thickness parameters, such 

that neighbouring cones should have similar thicknesses (which makes sense as we do expect the bedrock-ice interface to be 

relatively continuous; Fig. 1). As we work with independent cones in this study, we leave the exploration of this aspect open 710 

for a future study. Nevertheless, we offer the possibility in our code to use a smoothing on the final interpolated grid. This is 

achieved by a convolution of a smoothing kernel, 𝐾 (see Appendix D for details), with the surface matrix 𝑃, which results in 

a smoothed surface matrix 

𝑃𝑆 = 𝐾 ∗⊛ 𝑃.  (4042) 

Please note that the ∗⊛ operator in Eq. (4042) denotes a convolution. In index notation the advantage of the linear algebra 715 

formalism becomes clear, as 𝑃𝑆 can be expressed by 

𝑃𝑖𝑗
𝑆 = ∑ ∑ 𝐾𝑘+𝑠+1,𝑙+𝑠+1𝑃𝑖+𝑘,𝑗+𝑙

𝑠
𝑙=−𝑠

𝑠
𝑘=−𝑠 𝑃𝑟𝑞

𝑆 = ∑ ∑ 𝐾𝑘+𝑠+1,𝑙+𝑠+1𝑃r+𝑘,q+𝑙
𝑠
𝑙=−𝑠

𝑠
𝑘=−𝑠  .  (43) 
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 .  (41) 

The user is free to choose the number of neighbouring pixels, 𝑠, across which the programme performs a smoothing. As a 

related matrix we use an approximation to a Gaussian kernel, which corresponds to a Gaussian blur in image processing. 720 

Whereas “smoothing” is a general term used in the geophysical community where such a process is used with an aim to 

force a correlation of parameters, in our case where the parameters describe a surface (Fig. 1), the convolution effectively 

smooths the surface, i.e. removes small-scale variations. 

Finally, we added a checkbox to our code to allow it to change the order of the damping and smoothing operations. 

Sometimes when a strong damping is necessary, this may result in rather unsmooth features at DEM boundaries, such that it 725 

makes sense to perform a smoothing only afterwards. 

4 Main modules of SMAUG 

Our toolbox, SMAUG, contains several subprograms, which are executed separately. This allows the user to inspect 

intermediate results without any difficulty. We also tried to keep the intermediate results as portable as possible, by using 

JSON-files, as often as possible. Here we explain, in logical order, the rational of the submodules (a detailed user manual is 730 

separately available): 

 

MATERIALIZER.py 

This subroutine allows the user to create their own material that will be used in the subsequent model builder. The user may 

choose a density (either from data or directly insert mean and standard deviations) and a composition (also either from data 735 

or from the list of Groom et al., 2001). 

 

DATA_BINNING.py 

As the name suggests, this subroutine is used to spatially bin the recorded track data. The bin data (i.e. the output hereof) is 

then fed to the model builder. 740 

 

MODEL_BUILDER.py 

The model builder takes the bin data and the materials as inputs and allows the user, with help of DEMs, to allocate data and 

materials to certain cones. This is basically the spatial setup of the model. The resulting model file is then provided to the 

inversion code. 745 

 

INVERSION.py 

This is the main module in SMAUG, providing the functionality to perform a MCMC algorithm on the probabilistic model 

created with MODEL_BUILDER.py. It also includes several analysis tools to assess MCMC performance. 
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 750 

MODEL_VIEWER.py 

The model viewer allows us to visualise the interface results, obtained and exported by INVERSION.py. It also has the 

functionality to dampen and smooth the resulting surfaces. 

 

  755 
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5 Model Verification 

In this section we present examples of how the model can be employed, what it calculates and how the output is structured. 

We proceed by verifying, in a first step, that the physical models employed in this work yield results which are numerically 

consistent with the results of calculations from other studies. We will compare our results with reported values from 

literature in Ch. 5.1. We do this because we do not change the parameters of the flux model (except the height scaling, which 760 

has been verified by Nishiyama et al. (2017), and since the energy loss calculations is based on equations that stem from 

different frameworks. 

In a second step, we will benchmark the results obtained by this code from real data against previously published results. For 

this purpose, we will re-analyse the raw data from Nishiyama et al. (2017). This is a study (see also Fig. 1) that was 

conducted in the Central Swiss Alps in a railway tunnel that featured a glacier (part of the Great Aletsch glacier) above. Our 765 

goal there was to estimate the thickness of the overlying glacier and thus the subsurface structure of the ice-bedrock 

interface. The respective calculation and discussion thereof are presented in Ch. 5.2. 

5.1 Verification of energy loss calculations 

The energy loss model that we use in our code generally reproduces the literature values well (below 1%) across the different 

energy loss processes and relevant energies. In Fig. 6 we present the energy loss calculations for each energy loss process 770 

(i.e. ionisation, bremsstrahlung, pair-production and photonuclear interactions) across energies from 10 MeV to 100 TeV for 

silicon. 

 

Figure 6: Log-log plot of the stopping power of the different energy loss processes for silicon. At ~ 10 GeV the radiative processes 

(i.e. bremsstrahlung, pair-production and photonuclear interactions) reach around 1 % of the total stopping power. At a few 775 
hundred GeV (at the so called “critical energy”) the radiative processes start to become dominant over the ionisation losses. 
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The overall characteristics between the different elements are the same with minor differences regarding the position of the 

critical energy and the 1 % - radiative point. In Fig. 7 we show the relative error of our calculations to the tabulated values 

from Groom et al. (2001) for the whole energy range. 

 780 

Figure 7: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for silicon. 

Ionisation losses agree very well with the literature values (within 0.025 %). At low energies the relative errors of the radiative 

processes are large and converge to a value close to 0 towards higher energies, resulting in a relative error on the total energy loss 

of around 0.5 % compared to literature.  

We note that the energy losses by ionisation are reproduced very well over the entire energy range. We also note that the 785 

relative error on the radiative energy losses is rather large below 10 GeV. This does, however, not introduce a major bias, 

because below this energy, radiative energy losses are negligible compared to ionisation losses, as can be seen in Fig. 6. 

Furthermore, the related errors are in an acceptable range at the energy level at which radiative losses begin to become 

noticeable (i.e. around 100 GeV). This can be seen in Fig. 7, in the sense that the total relative error remains well bounded 

within 0.5 %. In the ionisation domain (i.e. below 100 GeV) the total relative error is dominated by the ionisation relative 790 

error, whereas above this energy level the relative errors on radiative losses start to prevail. A close-up of this energy range 

is given in Fig. 8. 

There are different sources and circumstances that contribute to the error in the different energy losses processes. The scatter 

of the relative ionisation-loss error around 0 with a rather small deviation can be viewed as simple rounding errors. The 

errors on the radiative processes, however, seem to be of a more systematic nature. We explain this behaviour through a 795 
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different numerical integration scheme in Eq. (7), which tends to systematically under-/overestimate the true value, 

especially when the integrand comprises exponential functions. Whereas we used a Double Exponential Integration scheme 

(see Takahasi & Mori, 1974), the integration scheme from Groom et al. (2001) is not discernible. However, as the relative 

errors on the processes of energy loss remain well within the theoretical uncertainties, (see Ch. 3.1.3), we consider, that our 

calculation accurately reproduces the literature values for elements. 800 

 

Figure 8: Relative error of our energy loss calculations for silicon compared to the tabulated values from Groom et al. (2001) at 

higher energies (100 GeV – 100 TeV). The relative errors remain bounded within their theoretical uncertainties (see Ch. 3.1.3). 

The above calculations were performed for pure silicon. The respective figures for other four important elements in the 

Earth’s crust (Al, Fe, Ca & O) can be found in Appendix E. Those elements are, however, not representative for any real 805 

material encountered in geological applications. For this reason, we compiled the same computations for four selected, 

geologically important compounds (SiO2, CaCO3, Standard Rock, ice) that are also shown in Appendix E. We summarise, 

that with the exception of Standard Rock, all calculations yield results that are similar to the silicon calculation above. The 

discrepancy for Standard Rock stems from its inconsistent definition, with respect to the different parameters. In particular, 

the “Standard Rock” according to Lohmann et al. (1985) has an atomic number Z of 11 (i.e. sodium) and an atomic weight A 810 

of 22, which yield the characteristic parameter values of 〈𝑍 𝐴⁄ 〉 = 0.5 and 〈𝑍2 𝐴⁄ 〉 = 5.5 respectively. Note that Groom et al. 

(2001) list sodium as the only constituent of a standard rock. However, this material cannot be modelled by any mixture of 

pure elements, as common sodium consists of one neutron more and thus has a higher atomic weight (i.e. 𝐴𝑁𝑎 = 23). 
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Consequently, the use of standard sodium would lead to different characteristic parameter values, i.e. 〈𝑍 𝐴⁄ 〉 = 0.478 and 

〈𝑍2 𝐴⁄ 〉 = 5.263, thus leading to an inconsistency. This is often conveyed by the phrase that standard rock “is not-quite-815 

sodium” (Groom et al. 2001, p.203). In order to circumvent this problem, we advocate the exchange of 𝑁𝑎11
23  with its 𝑁𝑎11

22  

isotope, that would lead to the characteristic parameter values 〈𝑍 𝐴⁄ 〉 = 0.500 and 〈𝑍2 𝐴⁄ 〉 = 5.501, which are much closer 

to the actual definition of standard rock. For this reason, we extended the element/compound-list, (which is available from 

http://pdg.lbl.gov/2019/AtomicNuclearProperties/expert.html) by the 𝑁𝑎11
22  isotope, assuming that all parameters are equal to 

the ones from 𝑁𝑎11
23 . Additionally, we redefined the standard rock (i.e. material number 281 in the list) to consist only of 820 

𝑁𝑎11
22 . With this change, standard rock does not need any more special treatment and can be calculated in a way that is 

consistent to all other compounds. Furthermore, the relative error between the tabulated values and our modified calculation 

falls in line with the calculations for the other compounds and elements (Figs. 9 and 10).  

 

Figure 9: Relative error of our energy loss calculations for a standard rock consisting of 𝐍𝐚𝟏𝟏
𝟐𝟑 , compared to the tabulated values 825 

from Groom et al. (2001) at higher energies (100 GeV – 100 TeV).  
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Figure 10: Relative error of our energy loss calculations for a standard rock consisting of 𝐍𝐚𝟏𝟏
𝟐𝟐 , compared to the tabulated values 

from Groom et al. (2001) at higher energies (100 GeV – 100 TeV).  830 

5.2 Verification of the bedrock-ice interface reconstruction 

In this part we test the presented reconstruction algorithm on previously published data. For this purpose, we compare our 

calculations to the ones already published in the study by Nishiyama et al.,. (2017), where the goal was to measure the 

interface between the glacier and the rock, in order to determine the spatial distribution of the rock surface (also below the 

glacier). We could access  This study was conducted in the Railway Tunnel to installCentral Swiss Alps in a railway tunnel 835 

that featured a glacier (part of the muon detectors beneath the ice.Great Aletsch glacier) above. A situation sketch is shown 

in Figs. 1 and 111. For a detailed verification of the energy loss calculations we refer to Appendix E. 

The results shown below (Figs. 12 – 147 – 9) represent the bedrock-ice interface interpolated to an 8-metre grid, which was 

first damped (weight 8) and then smoothed (2 grid pixel)., i.e. 𝑠 = 2 in Eq. 43). We assess the goodness of fit according to 

the three cross-sections (East, Central, West), that are shown in Fig. 101. The crosscuts are nearly perpendicular to the train 840 

tunnel and roughly 40 𝑚m apart from each other. Figures 12 to 14 show the three cross-sections in detail. In every plot, we 

also indicate the solution from Nishiyama et al. (2017). Please note that we added a systematic error of 2 𝑚m to the 

uncertainty planes, as the DEM we are working with has itself an uncertainty of ± 2 𝑚m. The dash-dotted lines mark thus 
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the most conservative error estimate. Moreover, we highlighted the parts of the cross-section that had either been damped to 

the bedrock DEM or that have been solely resolved by the measurement (see “damping marker” in Fig. 11Figs. 6 – 8). 845 

 

 

Figure 11: Overview map of the study area at Jungfraujoch. The brown line separates the visible bedrock in the DEM from the 

glacier part (“Ice”). The three profiles (East, Central & West) are depicted with a red line, on which the damping marker is shown 

by a grey point. The extent of the reconstructed bedrock-ice interface is shown by the blue area. Additionally, the three detector 850 
positions (D1, D2 & D3) are shown by orange pentagons, including their viewfield. Basemap: Orthophotomosaic Swissimage, © 

Federal Office of Topography swisstopo.  
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Figure 12Figure 6 shows the western profile, where our bedrock-ice interface and the one from the previous study agree well 

and both lie within the given error margins. The lack of fit in areas where the steepness changes rapidly (i.e. around 40 𝑚m 

and 80 𝑚m) can be explained as a smoothing artefact. Towards the end of the profile, the decreasing data coverage becomes 855 

evident as the uncertainties rise. This effect can also be seen in the jagged behaviour of the interface curves around 100 𝑚m 

to 120 𝑚m, hinting at the effect where the interpolation has occurred with few data. 
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 860 
Figure 6: Western cross-section. The brown and dashed blue line indicate the ice-bedrock interface solutions of this study and the 

one from Nishiyama et al. (2017), respectively.  𝟏 𝝈-error margins are shown in yellow (upper) and red (lower). The dotted 

margins encompass only the statistical variation of the interface position, whereas the dash-dotted include a ±𝟐 𝒎𝐦 systematic 

error which stems from the inherent DEM-uncertainty. For completeness we also show the position of the railway tunnel as a 

black square. 865 

 

Figure 137 presents the central profile. Similar to the western profile (Fig. 126) the fits match quite well and are within the 

error margins. It may be possible that the point where the actual bedrock begins might be further down (i.e. ~80 𝑚m instead 

of 65 𝑚m). Here we used the same DEM and aerial photograph as in the previous study. This means that newer versions 

might be available that show more bedrock (due to the glacial retreat as a response to global warming).  870 
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Figure 7: Central cross-section. The brown and dashed blue line indicate the ice-bedrock interface solutions of this study and the 

one from Nishiyama et al. (2017), respectively.  𝟏 𝝈-error margins are shown in yellow (upper) and red (lower). The dotted 875 
margins encompass only the statistical variation of the interface position, whereas the dash-dotted include a ±𝟐 𝒎𝐦 systematic 

error, which stems from the inherent DEM-uncertainty. For completeness we also show the position of the railway tunnel as a 

black square. 

For completeness we also show the position of the railway tunnel as a black square. 

 880 

The eastern profile is shown in Fig. 148. One sees that the results from this study are internally consistent. The surface from 

the previous study plunges down earlier with respect to the surfaces calculated here. This may in fact be a damping effect, as 

the bedrock-ice interface from Nishiyama et al. (2017) has not been constrained to the bedrock (via damping) and thus 

plunges down before the damping mark at ~72 𝑚m. Still, the two surfaces agree within 5 𝑚m, which we consider as 

acceptable. 885 
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In all three results (Fig. 6, 7 & 8) it can be seen that the reconstructed surfaces in the bedrock region are following the DEM 

within 5 m – 10 m. The reason for this deviation may be explained by the smoothing. At the beginning of this section we 

explained that the reconstructed interface has been smoothed by 2 grid pixels, which corresponds on an 8-metre grid to a 

smoothing of 16 m to each side. This is also valid for the direction perpendicular to the cross-sections shown in Figs. (6 – 8). 890 

Thus the over-/underestimation can very well be a smoothing effect. The behaviour of the reconstruction in the Western 

cross-section (Fig. 6) further supports this explanation, as we see at 40 m an underestimation and at 80 m an overestimation 

of the height. This is a typical behaviour of smoothing around “sharper” edges.  
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Figure 8: Eastern cross-section. The brown and dashed blue line indicate the ice-bedrock interface solutions of this study and the 895 
one from Nishiyama et al. (2017), respectively.  𝟏 𝝈-error margins are shown in yellow (upper) and red (lower). The dotted 

margins encompass only the statistical variation of the interface position, whereas the dash-dotted include a ±𝟐 𝒎𝐦 systematic 

error which stems from the inherent DEM-uncertainty. For completeness we also show the position of the railway tunnel as a 

black square. 

 900 

All togetherIt might also be possible that the over-/underestimation might be due to heterogeneities of the rock density due to 

uneven fracturing and/or weathering. However, during our field-work (see Mair et al., 2018), when we also inspected the 

train tunnel from within, we did not see any signs of such a heterogeneous behaviour. These observations are still only 

superficial. For an in-depth study of this effect one would need, for example, a much longer muon flux exposure, such that 

the density of the rock could be better resolved. Alternatively a borehole, or another geophysical study could be performed. 905 

As we are not in possession of such information, we will not draw a definite conclusion here. Nevertheless, the performance 

of the whole workflow, which is shown in this study, produces results, which are similar to the ones published in the 

previous study (Nishiyama et al., 2017). We use the results of this comparison to validate the base of our code.  
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65 Conclusion 910 

In this study we have presented a modelan inversion scheme that allows us to integrate geological information into a muon 

tomography framework. The inherent problem of parameter estimation has been formulated in a probabilistic way and 

solved accordingly. The propagation of uncertainties thus occurs automatically within this formalism., providing uncertainty 

estimates on all parameters of interest. We also considered approaches including DAGs or the simplex subspace of 

compositions which could be helpful to the muon tomography community while tackling their own research. We condensed 915 

these approaches in a modular toolbox. This assortment of python programmes allows the user to address the subproblems 

during the data analysis of a muon tomography experiment. The programmes are modular in the sense that the user can 

always access the intermediate results, as the files are mostly in a portable format (JSON). Thus, it is perfectly possible to 

only use one submodule of the toolbox while working with an own codebase. As every “tool” is embedded in a GUI, the 

programme is made accessible without the need to first read and consider several thousand code lines. Furthermore, we have 920 

shown that the results we obtain with our code are largely in good agreement with an earlier, already published experiment. 

The small deviations may be attributed to data analysis subtleties.  

In its current state, SMAUG may be of help to researchers a) who plan to use muon tomography in their own research, such 

that the feasibility of the use of this technology can be evaluated in a virtual experiment, b) who want to use a submodule for 

the analysis of their own muon tomography, or c) plan to perform a subsurface interface reconstruction similar to our study. 925 

We would like to stress that this work is merely a foundation upon which many extensions can be built when it is used in 

other applications as well. Future content might, for example, include a realistic treatment of multiple scattering and the 

inclusion of compositional uncertainties in the inversion, for which we laid out the basis in this study. 
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Appendix A – Muon flux model 

As many empirical muon flux models, the one that we employed consists of an energy spectrum for vertically incident 

muons at sea level at its core. An accepted instance is the energy spectrum of Bugaev et al. (1998), that takes the form 

Φ𝐵
𝑑𝛷𝐵

𝑑𝐸
(𝑝) = 𝐴𝐵𝑝

−(𝛼3 log10
3 (𝑝)+𝛼2 log10

2 (𝑝)+𝛼1 log10(𝑝)+𝛼0), (A1) 

where 𝑝 denotes the momentum of the incident muon in 𝐺𝑒𝑉 ∗ 𝑐−1.GeV ∗ c−1. The values of the 𝛼𝑖 and 𝐴𝐵 are, for example, 935 

listed in Lesparre et al. (2010). This model is an extended version of Renya (2006), to account for different incident angles, 

Φ𝑅
𝑑𝛷𝑅

𝑑𝐸
(𝑝, 𝜃) = cos3(𝜃) Φ𝐵(𝑝 cos(𝜃))

𝑑𝛷𝐵

𝑑𝐸
(𝑝 ∗ cos(𝜃)), (A2) 

where 𝜃 is the zenith angle of the incident muon. It is important to note that the parameter values in Eq. (A1) are changed to 

𝛼0 = 0.2455, 𝛼1 = 1.288, 𝛼2 = −0.2555, 𝛼3 = 0.0209 and 𝐴𝐵 = 0.00253. In order to include height above sea level as 

an additional parameter, Hebbeker and Timmermans (2002) proposed to model the altitude dependency as an exponential 940 

decay, which modifies Eq. (A2) into 

Φ(𝑝, 𝜃, ℎ)
𝑑𝛷

𝑑𝐸
(𝑝, 𝜃, ℎ) = Φ𝑅

𝑑𝛷𝑅

𝑑𝐸
(𝑝, 𝜃) ∗  exp (−

ℎ

ℎ0
)  . (A3) 

The scaling height, ℎ0, is usually to be taken as ℎ0 = 4900𝑚4900 + 750 𝑚 𝑐 𝐺𝑒𝑉
−1 ∗∗  𝑝, where 𝑝, is the momentum of 

the incident muon in 𝐺𝑒𝑉 ∗ 𝑐−1GeV ∗ c−1. However, as this formula is only valid up to an altitude of 1000 m above sea 

level, Nishiyama et al. (2017) adapted it to ℎ0 = 3400 𝑚 + 1100 𝑚 ∗  𝑐 ∗  𝐺𝑒𝑉
−1 ∗∗ 𝑝 ∗ cos(𝜃). This was done in order to 945 

fit the energy spectrum up to 4000 m above sea level. This formula is now valid for momenta above 3 𝐺𝑒𝑉 ∗ 𝑐−1GeV ∗ c−1, 

zenith angles between 0° and 70° and an altitude below 4000 𝑚m above sea level. Please note that the muon momentum, 𝑝, 

is related to its energy by the relativistic formula 

𝑝2𝑐2 = 𝐸 −𝑚𝜇
2𝑐4 . (A4) 

Thus, it holds that 950 

𝑑𝛷

𝑑𝐸
(𝑝, 𝜃, ℎ) ≡

𝑑𝛷

𝑑𝐸
(𝑝(𝐸), 𝜃, ℎ) ≡

𝑑𝛷

𝑑𝐸
(𝐸, 𝜃, ℎ) . (A5) 
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Appendix B – Rock model 

B1 – Density model 

The density distribution of a lithology can be determined through various methods. In our work, we constructed aestimated 955 

the density modelof the lithology by analysing various rock samples from our study area in the laboratory. Two experimental 

setups were employed to gain insight into the grain, skeletal as well as the bulk density of the rocks. Grain and skeletal 

density were measured by means of the AccuPyc 1340 He-pycnometer, which is a standardised method that yields 

information on the volume. Bulk density values were then determined based on Archimedes’ principle, where paraffin 

coated samples were suspended into water (ASTM C914-09, 2015; Blake and Hartge, 1986).  960 

Every sample 𝑗 = 1,… , 𝑁 (usually the size of a normal hand sample) has been split up into smaller subsamples 𝑖 = 1,… , 𝑆𝑗, 

that were measured. The bulk density of the i-th subsample can be calculated by 

𝜌𝑏𝑢𝑙𝑘,𝑖𝑗 =
𝜌𝐻2𝑂∗𝑚𝑠,𝑖𝑗

(𝑚𝑠,𝑖𝑗+𝑚𝑝,𝑖𝑗+𝑚𝑡,𝑖𝑗−𝑚𝑠𝑢𝑠,𝑖𝑗)−(
𝑚𝑝,𝑖𝑗∗𝜌𝐻2𝑂

𝜌𝑝
)−(

𝑚𝑡,𝑖𝑗∗𝜌𝐻2𝑂

𝜌𝑇
)
 , (B1) 

where 𝜌𝐻2𝑂, 𝜌𝑝, 𝜌𝑇  denote the density of water, paraffin and the thread that was used to dip the sample into the liquid, 

respectively. 𝑚𝑠,𝑖𝑗 , 𝑚𝑝,𝑖𝑗 , 𝑚𝑡,𝑖𝑗 , 𝑚𝑠𝑢𝑠,𝑖𝑗 describe the mass of the sample, the paraffin coating, the thread and the apparent mass 965 

of all three components suspended in water. 𝑚𝑝,𝑖𝑗 , 𝑚𝑡,𝑖𝑗  can then be simply obtained through 

𝑚𝑝,𝑖𝑗 = 𝑚𝑠,𝑡,𝑝,𝑖𝑗 −𝑚𝑠,𝑡,𝑖𝑗  , (B2) 

as 𝑚𝑠,𝑡,𝑝,𝑖𝑗 denote the mass of the sample including thread and paraffin coating on one hand and 𝑚𝑠,𝑡,𝑖𝑗  only the mass of the 

sample and the thread on the other hand. Further, the mass of the thread is given by 

𝑚𝑡,𝑖𝑗 = 𝑚𝑠,𝑡,𝑖𝑗 −𝑚𝑠,𝑖𝑗 . (B3) 970 

The maximal precision of the reading is estimated at ±5 ∗ 10−5𝑔g, and the commonly ignored effects regarding buoyancy in 

air has been estimated to introduce an error on the order of ±2 ∗ 10−4𝑔g. This error has been attributed to all direct mass 

measurements. Moreover, because small pieces of material may detach from the sample upon attaching the thread to the 

sample and during the paraffin coating, we set an error of ±2 ∗ 10−2𝑔g to all measurement results. The variables in Eq. (B1) 

are strictly positive values. Following Tarantola (2005) we model these “Jeffreys parameters” by lognormal distributions, as 975 

they inherently satisfy the positivity constraint. Because Eq. (B1) does not simply allow a standard uncertainty propagation, 

the script “subsample_analysis.py” performs a Monte Carlo simulation for each subsample and attributes a final lognormal 

probability density function to the resulting histogram. Figure B1 illustrates such an example, where the calculation has been 

performed for subsample JT-20-1. 

We have found 10’000 draws per subsample to be sufficient to retrieve a solid final distribution. However, this parameter 980 

can easily be changed in the script, depending on the user’s preference of precision/speed. From this point onwards we may 
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work with a Gaussian distribution as Fig. B1 assures us that a normal pdf describes the results of the Monte Carlo simulation 

rather well. 

 

Figure B1: Example output of “subsample_analysis.py” for a bulk density measurement of subsample JT-27-1 (see supplementary 985 
information for data). Green bars represent the histogram of 10’000 Monte Carlo simulation draws. The orange curve indicates 

the fitted normal probability density function. 

The determination of the grain and skeletal densities is simpler than the bulk density measurements because the 

corresponding method consists of a mass and a volume measurement, respectively. The density formula reads then simply 

𝜌𝑠𝑘𝑒𝑙𝑒𝑡𝑎𝑙/𝑔𝑟𝑎𝑖𝑛,𝑖𝑗 =
𝑚𝑖𝑗

𝑉𝑖𝑗
 . (B4) 990 

The question remains as to how it is possible to construct a pdf that represents the knowledge about the whole lithology. 

There are two possible methods that can be readily employed at this point. The first, following largely Tarantola (2005), 

performs a so-called disjunction of the pdfs that corresponds to an averaging of all subsample pdfs. As Vermeesch (2012) 

points out, even though this might seem a “sensible strategy at first glance”, there might be some problems with this method. 

The main problem lies in the small error on the subsamples, such that the variation between different subsamples may be 995 

larger than their attributed errors. This would not be a problem if enough subsamples could be measured, such that the 

resulting lithology pdf might be sampled correctly. On the other hand when one is faced with a situation where data is rather 

scarce, then the approach of Tarantola (2005) would result in a rather spikey pdf that would be hard to handle. For this 
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reason we adopted the methodology of Vermeesch (2012) where the lithology pdf is estimated by a kernel density 

estimation. The main difference lies in the fixed “bandwidth” of the subsample distributions. We refer to Vermeesch (2012) 1000 

for more details and an in-depth discussion on this problem. 

The kernel density estimation has the advantage, that only the mean values of the subsamples have to be processed as the 

bandwidth is determined from the spread of the subsample means. Following the methodology of Vermeesch (2012) we end 

up with a pdf like the one visualised in Fig. B2. We could at this point use the kernel density estimated pdf for further 

calculations. However, for simplicity we approximate the kde with a normal distribution and intend to add support for the 1005 

kde in a later code version. 
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Figure B2: Example output of “materializer.py”. Here a set of subsample mean values (red crosses) are processed in a kernel 

density estimate (solid blue line). Finally a normal distribution is fitted to the kernel density estimate (dashed yellow line). 1010 
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One word of warning has to be made here. The measured densities of rock might be affected with a systematic error. 

Namely, the rock samples that are analysed were all gathered from surface near locations (in our case inside the tunnel or 

outside, i.e. where rocks are accessible). This means that they could have been subject to weathering processes that alter the 

density of the rock in such a way that the samples are not representative of the whole rock body anymore. Possible 

countermeasures would be to compare drilled samples from deeper within the rock body with the surface samples, etc. 1015 
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B2 – Composition model 

We have seen in Eq. (912) that the material density parameter enters the energy loss calculations rather directly. 

Contrariwise, the compositional model affects the energy loss equations much more subtly through the average {𝑍 𝐴⁄ }𝑟𝑜𝑐𝑘 

and {𝑍2 𝐴⁄ }𝑟𝑜𝑐𝑘 values and mean excitation energies that need to be calculated for the entire lithology. Likewise, information 1020 

on the weight percentages of the main elements within the rock is required for the quantification of the radiation loss term. 

Although a modal mineral analysis (e.g. the quantitative determination of mineral volumes) is preferable and can be treated 

according to Lechmann et al. (2018), its execution is a rather time-consuming effort. This is the reason why compositional 

data in muon tomography experiments predominantly consist of XRF-data, which show the abundance of major oxides 

within the rock. We describe here a method to incorporate such type of information in a probabilistic way thereby following 1025 

Aitchison (1986). Compositional data are usually available in the form of Table B1, which presents an excerpt of four 

samples for illustration purposes. We refer to the excel sheet in the supplementary material of the present work for the full 

data.  

 

Table B2: Excerpt of XRF data for four samples. Data in column denote weight percentages of major oxides within the rock 1030 
samples. 

Sample JT01 JT02 JT19 JT20 

Oxides     

SiO2 0.6131 0.5981 0.6997 0.6139 

TiO2 0.0123 0.0067 0.0076 0.0094 

Al2O3 0.1567 0.1873 0.1481 0.1921 

Fe2O3 0.087 0.0791 0.0496 0.0686 

MnO 0.001 0.0012 0.0009 0.0009 

MgO 0.0359 0.0285 0.0206 0.0288 

CaO 0.0202 0.0071 0.0201 0.0137 

Na2O 0.0228 0.0248 0.0404 0.0323 

K2O 0.0343 0.0465 0.0287 0.0469 

P2O5 0.0041 0.0029 0.0021 0.0027 

Sum 0.9874 0.9822 1.0178 1.0093 

 

There are several challenges to this kind of data. First, the parameters (i.e. the oxide percentages) can take a value between 0 

and 1. This means that normal as well as lognormal distributions are not suitable to describe these parameters. Second, the 

requirement that the sum of all parameters has to ideally equal 1 poses a constraint on this parameter space, which 1035 

effectively reduces the number of independent parameters by one. Third, due to measurement uncertainties, this sum is never 

exactly one.  
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Spaces, which have this unit sum condition can be viewed as a simplex, e.g. if we had three compositional parameters, the 

simplex would be a 2-dimensional surface (i.e. a subspace) in this 3-dimensional parameter space. The last issue, of not 

summing up exactly to 1, can be remedied by projecting each sample dataset back to the simplex (Aitchison, 1986, p. 257-1040 

261). This works only if the measurement imprecisions are not too large, which works well for the examples in Table B1. 

With respect to the energy loss calculation, it is preferable to decompose the oxides into elements, which can be done by the 

following formula 

𝑤𝑡𝑒𝑙𝑒,𝑖 = ∑ 𝑤𝑡𝑗 ∗
𝑛𝑖𝑗𝑚𝑖

𝑚𝑗
𝑗 ∈{𝑜𝑥𝑖𝑑𝑒𝑠}  , (B5) 

where 𝑚𝑖 and 𝑚𝑗 denote the molar mass mass of the i-th element and the j-th oxide, 𝑤𝑡𝑗 is the j-th datum in the column and 1045 

𝑛𝑖𝑗 is the number of atoms of the i-th element within the j-th oxide. The two transformations are visualised in Table B2. 
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Table B3: Element weight percent data. Transformed from oxide weight percent data with use of Eq. (B5). All data has 

additionally been scaled to satisfy the unit sum constraint. 1050 

Sample JT01 JT02 JT19 JT20 

Elements     

Si 0.2902 0.2846 0.3213 0.2843 

Ti 0.0075 0.0041 0.0045 0.0056 

Al 0.0840 0.1009 0.0770 0.1007 

Fe 0.0616 0.0563 0.0341 0.0475 

Mn 0.0008 0.0009 0.0007 0.0007 

Mg 0.0219 0.0175 0.0122 0.0172 

Ca 0.0146 0.0052 0.0141 0.0097 

Na 0.0171 0.0187 0.0294 0.0237 

K 0.0288 0.0393 0.0234 0.0386 

P 0.0018 0.0013 0.0009 0.0012 

O 0.4716 0.4711 0.4823 0.4707 

Sum 1 1 1 1 

 

In order for the data to be in a statistically convenient form, Aitchison (1986) suggests to further transform the data in Table 

B2 by first forming a ratio with an arbitrary element (in the list) and then taking the logarithm. For the exemplary dataset this 

is shown in Table B3. 

 1055 

 

Table B4: Log-ratio of element weight percentages, with respect to oxygen-wt%. 

Sample JT01 JT02 JT19 JT20 

Elements     

ln(Si/O) -0.48531565 -0.50379579 -0.40607778 -0.5042219 

ln(Ti/O) -4.14567399 -4.74687577 -4.68001075 -4.43477381 

ln(Al/O) -1.72531 -1.54064159 -1.83464118 -1.54183733 

ln(Fe/O) -2.03494223 -2.12384752 -2.64974526 -2.29276806 

ln(Mn/O) -6.39894857 -6.21033707 -6.55719484 -6.52451934 

ln(Mg/O) -3.06839321 -3.29293646 -3.67672517 -3.30896536 

ln(Ca/O) -3.47357746 -4.51287533 -3.53142599 -3.88207448 

ln(Na/O) -3.31519303 -3.22481996 -2.79600952 -2.98709658 

ln(K/O) -2.79436382 -2.48376691 -3.0254978 -2.50170175 

ln(P/O) -5.56150947 -5.90149576 -6.28344485 -5.99945492 
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ln(O/O) 0 0 0 0 

The rationale behind this transformation is as follows. The division by an arbitrarily present element effectively transforms 

the space into an N-1-dimensional open space, where the parameters (i.e. ratios) may have values between 0 and ∞. The 

subsequent application of the logarithm further changes the space, such that the new parameters can have values between 1060 

−∞ and ∞. This results in so-called log-ratios, which should ideally be following a multivariate normal distribution. As a 

consequence, we can calculatedescribe this distribution by the mean log-ratio vector across all samples as well as its 

corresponding covariance matrix, which completely describes the multivariate normal distribution. In addition to these 

statistical parameters, the script “compo_analysis.py” outputs a graph that plots for all samples an order statistic, 𝑧𝑟, (see 

Aitchison, 1986). This enables us to visualise how different the data is from a multivariate normal distribution. If equal, they 1065 

should fall on the red line, shown in Fig. B3. 

 
Figure B3: Visual test for multivariate normality of the log-ratio data from Table B3 (This plot shows the full dataset, of which 

Table B3 is only an excerpt). Each subplot checks for marginal normality. Oxygen is the denominator variable (arbitrarily chosen) 

and does thus not appear in the plot. 1070 
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With a graph like Fig. B3 it is possible to check if the multivariate normal distribution is an appropriate model to describe 1075 

the elemental composition data. For ourthe example that we showshown in Fig. B3 this looks acceptable, with only slight 

deviations for silicon, aluminium, manganese and sodium).. Once the normality has been verified it is possible to generate 

random samples from this distribution. For every drawn sample it is then possible to calculate the weight percentages of the 

single elements by using the inverse formula to the log-ratio transformations 

𝑤𝑡𝑒𝑙𝑒,𝑖 =
exp(𝑟𝑖)

1−∑ exp(𝑟𝑗)
𝑁𝑒𝑙𝑒−1

𝑗=1

 , (B6) 1080 

for all numerator elements and 

𝑤𝑡𝑒𝑙𝑒,𝑁𝑒𝑙𝑒 =
1

1−∑ exp(𝑟𝑗)
𝑁𝑒𝑙𝑒−1

𝑗=1

  (B7) 

for the denominator element (here oxygen). In Eqs. (B6) and (B7) the 𝑟𝑖 denote the log-ratios from Table B3 and, 𝑁𝑒𝑙𝑒 is the 

total number of elements (in Table B2).) and the index 𝑖 runs through all elements (e.g. in Table B5) and the index 𝑗 runs 

through all elements except the denominator variable.  1085 

B3 – Energy loss equation for rocks 

As stated in Eq. (711) the energy loss equation for rocks needs parameters that differ from the ones for pure elements. First, 

the expression for density can directly be exchanged according to the density model (see Appendix B1). Second, it is 

possible to generate an expression for the average ionisation loss within a rock by exchanging three parameters. Density 

values that also enter within {𝑎}𝑟𝑜𝑐𝑘  can again be directly changed. The average {𝑍 𝐴⁄ }𝑟𝑜𝑐𝑘  may be exchanged with the 1090 

elemental 𝑍 𝐴⁄  by using 

{𝑍 𝐴⁄ }𝑟𝑜𝑐𝑘 = ∑ 𝑤𝑡𝑒𝑙𝑒,𝑖 ∗
𝑍𝑖

𝐴𝑖

𝑁𝑒𝑙𝑒
𝑖=1  . (B8) 

𝑤𝑡𝑒𝑙𝑒,𝑖 are the weight fractions from Eqs. (B6) & (B7). Lastly, the mean excitation energy, {𝐼}𝑟𝑜𝑐𝑘 , for the rock can be 

computed by 

ln{𝐼}𝑟𝑜𝑐𝑘 =
∑ 𝑤𝑡𝑒𝑙𝑒,𝑖∗

𝑍𝑖
𝐴𝑖

𝑁𝑒𝑙𝑒
𝑖=1

∗ln 𝐼𝑖

{𝑍 𝐴⁄ }𝑟𝑜𝑐𝑘
 . (B9) 1095 

The radiation loss term, however,{𝑏}𝑟𝑜𝑐𝑘, must be calculated as a weighted radiation energy loss over all 𝑖 elements. This 

means that the average can be written in a rather concise form, 

{b}rock = ∑ 𝑤𝑡𝑒𝑙𝑒,𝑖 ∗ 𝑏𝑒𝑙𝑒,𝑖
𝑁𝑒𝑙𝑒
𝑖=1  . (B10) 
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Appendix C – Metropolis Hastings technicalities 1100 

This appendix chapter is a short summary of Gelman (2014, p. 284 – 287) and we refer to these pages for a detailed 

discussion of the calculations. This work presents a concept of how to assess the quality of a MCMC run. In particular, the 

aforementioned author proposes to analyse two quantities, the potential scale reduction factor 𝑅̂ and the effective number of 

simulation draws 𝑛̂𝑒𝑓𝑓 for every parameter of interest. For every chain of a parameter the variance between different chains 

and within one chain is calculated. The posterior variance of the parameter is then estimated as a weighted average of these 1105 

two types of variances. Finally, 𝑅̂ is the quadratic ratio between the posterior variance and the variance within one chain. 

This quantity shows if the various chains have mixed or not, i.e. if they have explored the same region of the model space. If 

the posterior variance is much larger than the variances of the single chains, then the chains have not sufficiently explored 

the same region. Gelman (2014) propose to employ a threshold of 1.1 as a rule of thumb, below which the value of 𝑅̂ would 

lie. 1110 

One problem that arises in MCMC algorithms is the inherent dependence of one simulation on the one before (this is the 

definition of a Markov chain). One considers that such a dependency does not introduce a bias if enough samples are drawn. 

However, this also means, that the effective, independent sample size is much smaller than the number of simulations. 

Therefore, Gelman (2014) proposes to calculate the effective number of simulation draws, 𝑛̂𝑒𝑓𝑓 in order to assess if one has 

enough independent samples The underlying idea here is to evaluate the correlations within the chains. An accepted 1115 

threshold value for this parameter is 5𝑚, where 𝑚 is the number of sub-chains. For the calculation of 𝑅̂ and 𝑛̂𝑒𝑓𝑓 the chains 

may be cut in half to generate more chains. Note, however, that 𝑛̂𝑒𝑓𝑓  can also be larger, which only means that the 

simulation standard error decreases. In our example we performed the calculations with two chains and a subdivision by 2, 

which means that our target quantity is around 20 (= 5 ∗ 4). Most of our thickness parameters (i.e. cones with bedrock and 

ice; see Figs. 1 & 106) have, in fact, a 𝑛̂𝑒𝑓𝑓 > 100, with only a few below. 1120 
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Appendix D – Construction of the smoothing kernel 

As stated in the main text, the user specifies the number of neighbouring pixels s to smooth over. The main idea is to 

construct a roughly Gaussian smoothing kernel by approximating it with a binomial distribution. With help of the binomial 

coefficient we can construct a vector of weights with 𝐿 = (2 ∗ 𝑠 + 1) entries. The weight vector is then given by 1125 

𝑤𝑖 =  
1

22∗𝑠
(
𝐿 − 1
𝑖
) , (D1) 

with 𝑖 ∈ {0, . . , 𝐿 − 1}. It is now possible to create a matrix by forming the dyadic product of 𝑤⃗⃗⃗ with itself, i.e. 

𝐾 = 𝑤⃗⃗⃗ ⊗ 𝑤⃗⃗⃗ , (D2) 

or in index notation, 

𝐾𝑖𝑗 = 𝑤𝑖 ∗ 𝑤𝑗  .  (D3) 1130 

As an example, we show how a smoothing kernel that smooths over two neighbouring pixels (i.e. 𝑠 = 2) is constructed. This 

is incidentally also the smoothing kernel we used to construct our ice-bedrock interface. The weight vector in this case is 

given by 

𝑤⃗⃗⃗ =
1

16
∗ (1 4 6 4 1) .  (D4) 

The weight vectors are, in fact, only the odd rows from Pascal’s triangle, interpreted as vectors and normalised by a L1 1135 

norm. The smoothing matrix then takes the form  

𝐾 =  
1

256

(

 
 

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1)

 
 

 .  (D5) 
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Appendix E – Energy loss calculations for various elements and compounds 1140 

 

 

Figure E1: Relative error – Verification of our energy loss calculations compared to 

The energy loss model that we use in our code generally reproduces the tabulatedliterature values well (the relative error is 

generally below 1%) across the different energy loss processes and relevant energies. In Fig. E1 we present the energy loss 1145 

calculations for each energy loss process (i.e. ionisation, bremsstrahlung, pair-production and photonuclear interactions) 

across energies from 10 MeV to 100 TeV for silicon. 
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Figure E1: Log-log plot of the stopping power of the different energy loss processes for silicon. At ~ 10 GeV the radiative processes 

(i.e. bremsstrahlung, pair-production and photonuclear interactions) reach around 1 % of the total stopping power. At a few 1150 
hundred GeV (at the so called “critical energy”) the radiative processes start to become dominant over the ionisation losses. 

The overall characteristics between the different elements are the same with minor differences regarding the position of the 

critical energy and the 1 % - radiative point. In Fig. E2 we show the relative error of our calculations to the tabulated values 

from Groom et al. (2001) for the whole energy range. 
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 1155 

from Groom et al. (2001) for aluminium in the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV. 

 

Figure E2: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for silicon. 

Ionisation losses agree very well with the literature values (within 0.025 %). At low energies the relative errors of the radiative 

processes are large and converge to a value close to 0 towards higher energies, resulting in a relative error on the total energy loss 1160 
of around 0.5 % compared to literature.  
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We note that the energy losses by ionisation are reproduced very well over the entire energy range. We also note that the 

relative error on the radiative energy losses is rather large below 10 GeV. This does, however, not introduce a major bias, 

because below this energy, radiative energy losses are negligible compared to ionisation losses, as can be seen in Fig. E1. 

Furthermore, the related errors are in an acceptable range at the energy level at which radiative losses begin to become 1165 

noticeable (i.e. around 100 GeV). This can be seen in Fig. E2, in the sense that the total relative error remains well bounded 

within 0.5 %. In the ionisation domain (i.e. below 100 GeV) the total relative error is dominated by the ionisation relative 

error, whereas above this energy level the relative errors on radiative losses start to prevail. A close-up of this energy range 

is given in Fig. E3. 

There are different sources and circumstances that contribute to the error in the different energy losses processes. The scatter 1170 

of the relative ionisation-loss error around 0 with a rather small deviation can be viewed as simple rounding errors. The 

errors on the radiative processes, however, seem to be of a more systematic nature. We explain this behaviour through a 

different numerical integration scheme in Eq. (10), which tends to systematically under-/overestimate the true value, 

especially when the integrand comprises exponential functions. Whereas we used a Double Exponential Integration scheme 

(see Takahasi & Mori, 1974), the integration scheme from Groom et al. (2001) is not discernible. However, as the relative 1175 

errors on the processes of energy loss remain well within the theoretical uncertainties, (see Sect. 3.1.3), we consider, that our 

calculation accurately reproduces the literature values for elements. 
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Figure E3: Relative error of our energy loss calculations for silicon compared to the tabulated values from Groom et al. (2001) at 

higher energies (100 GeV – 100 TeV). The relative errors remain bounded within their theoretical uncertainties (see Sect. 3.1.3). 1180 

The above calculations were performed for pure silicon. The respective figures for other four important elements in the Earth’s 

crust (Al, Fe, Ca & O) can be found in Appendix E2. Those elements are, however, not representative for any real material 

encountered in geological applications. For this reason, we compiled the same computations for four selected, geologically 

important compounds (SiO2, CaCO3, ice) that are also listed in Appendix E2. We summarise, that with the exception of Standard 

Rock, all calculations yield results that are similar to the silicon calculation above. The discrepancy for Standard Rock stems from 1185 
its inconsistent definition, with respect to the different parameters. In particular, the “Standard Rock” according to Lohmann et 

al. (1985) has an atomic number Z of 11 (i.e. sodium) and an atomic weight A of 22, which yield the characteristic parameter 

values of 〈𝒁 𝑨⁄ 〉 = 𝟎. 𝟓 and 〈𝒁𝟐 𝑨⁄ 〉 = 𝟓. 𝟓 respectively. Note that Groom et al. (2001) list sodium as the only constituent of a 

standard rock. However, this material cannot be modelled by any mixture of pure elements, as common sodium consists of one 

neutron more and thus has a higher atomic weight (i.e. 𝑨𝑵𝒂 = 𝟐𝟑). Consequently, the use of standard sodium would lead to 1190 
different characteristic parameter values, i.e. 〈𝒁 𝑨⁄ 〉 = 𝟎. 𝟒𝟕𝟖 and 〈𝒁𝟐 𝑨⁄ 〉 = 𝟓. 𝟐𝟔𝟑, thus leading to an inconsistency. This is often 

conveyed by the phrase that standard rock “is not-quite-sodium” (Groom et al. 2001, p.203). In order to circumvent this problem, 

we advocate the exchange of 𝑵𝒂𝟏𝟏
𝟐𝟑  with its 𝑵𝒂𝟏𝟏

𝟐𝟐  isotope. This would lead to the characteristic parameter values 〈𝒁 𝑨⁄ 〉 = 𝟎. 𝟓𝟎𝟎 

and 〈𝒁𝟐 𝑨⁄ 〉 = 𝟓. 𝟓𝟎𝟏 , which are much closer to the actual definition of standard rock. For this reason, we extended the 

element/compound-list, (which is available from http://pdg.lbl.gov/2019/AtomicNuclearProperties/expert.html) by the 𝑵𝒂𝟏𝟏
𝟐𝟐  1195 

isotope, assuming that all parameters are equal to the ones from 𝑵𝒂𝟏𝟏
𝟐𝟑 . Additionally, we redefined the standard rock (i.e. material 

number 281 in the list) to consist only of 𝑵𝒂𝟏𝟏
𝟐𝟐 . With this change, standard rock does not need any more special treatment and can 

be calculated in a way that is consistent to all other compounds. Furthermore, the relative error between the tabulated values and 

our modified calculation falls in line with the calculations for the other compounds and elements (Figs. (2001) for calcium in the 

energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV. 1200 
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Figure E3: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for iron in the 

energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV. 

 

E4 and E5).  1205 
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Figure E4: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for oxygen in 

the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV. 
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 1210 

Figure E6: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for calcium 

carbonate (calcite) in the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV. 
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 1215 

Figure E7: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for silicon 

dioxide (quartz) in the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV. 

 

Figure E8: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for ice in the 

energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV. 1220 
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Figure E9: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for standard 

rock ( 𝐍𝐚𝟏𝟏
𝟐𝟑 ) in the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV. 1225 

 

Figure E5: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. Figure E10: Relative 

error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for standard rock ( 𝐍𝐚𝟏𝟏
𝟐𝟐 ) in the 

energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV. 

E2 – Additional plots of energy loss calculations 1230 
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Figure E6: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for aluminium 

in the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV. 

 1235 

Figure E7: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for calcium in 

the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV. 
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Figure E8: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for iron in the 

energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV. 1240 

 

Figure E9: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for oxygen in 

the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV. 
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 1245 

Figure E10: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for calcium 

carbonate (calcite) in the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV. 

 

 

 1250 

Figure E11: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for silicon 

dioxide (quartz) in the energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV. 
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Figure E12: Relative error of our energy loss calculations compared to the tabulated values from Groom et al. (2001) for ice in the 

energy ranges: (left) 10 MeV – 100 TeV, (right) 100 GeV – 100 TeV. 1255 
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Appendix F – Main modules of SMAUG 

Our toolbox, SMAUG, contains several subprograms, which are executed separately. This allows the user to inspect 

intermediate results without any difficulty. We also tried to keep the intermediate results as portable as possible, by using 

JSON-files, as often as possible. Here we explain, in logical order, the rational of the submodules (a detailed user manual is 1260 

separately available): 

 

MATERIALIZER.py 

This subroutine allows the user to create their own material that will be used in the subsequent model builder. The user may 

choose a density (either from measurements or directly insert mean and standard deviations) and a composition (also either 1265 

from data or from the list of Groom et al., 2001). 

 

DATA_BINNING.py 

As the name suggests, this subroutine is used to spatially bin the recorded track data. The bin data (i.e. the output hereof) is 

then fed to the model builder. 1270 

 

MODEL_BUILDER.py 

The model builder takes the bin data and the materials as inputs and allows the user, with help of DEMs, to allocate data and 

materials to certain cones. This is basically the spatial setup of the model. The resulting model file is then provided to the 

inversion code. 1275 

 

INVERSION.py 

This is the main module in SMAUG, providing the functionality to perform a MCMC algorithm on the probabilistic model 

created with MODEL_BUILDER.py. It also includes several analysis tools to assess MCMC performance. 

 1280 

MODEL_VIEWER.py 

The model viewer allows us to visualise the interface results, obtained and exported by INVERSION.py. It also has the 

functionality to dampen and smooth the resulting surfaces. 
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Code availability 1285 

The source code of SMAUG 1.0 is publicly and freely available on https://doi.org/10.5281/zenodo.5547356 (Lechmann et 

al., 2021b). The python packages required to run SMAUG are listed in the “requirements.txt” file. 

Data availability 

The data of the density and XRF measurements are included (i) in the files that can be downloaded from 

https://doi.org/10.5281/zenodo.5547356 as well as (ii) in the supplementary material to this publication. The raw data from 1290 

the Nishiyama et al. (2017) paper is publicly and freely available from the publisher’s website. 

Author contributions 

AL, FS and AE designed the study 

AL developed the code with contributions by MV, CP and RN 

AL performed the numerical experiments with support by RN 1295 

DM and AL compiled geological data 

AA, TA, PS, RN and CP verified the outcome of the numerical experiments 

AL wrote the text with contributions from all co-authors 

AL designed the figures with contributions by DM 

All co-authors contributed to the discussion and finally approved the manuscript 1300 

Competing interests 

The authors declare that they have no conflict of interest. 

Acknowledgements 

We thank the Swiss National Science Foundation (project No 159299 awarded to F. Schlunegger and A. Ereditato) for their 

financial support of this research project. Further, we want to thank the Jungfrau Railway Company for their continuing 1305 

logistic support during our fieldwork in the central Swiss Alps. Finally, we want also to thank the High-Altitude Research 

Stations Jungfraujoch & Gornergrat for providing us with access to their research facilities and accommodation. 

  



 

79 

 

References 

Agostinelli, S., et al.: Geant4—a simulation toolkit, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. 1310 

Assoc. Equip., 506, 250–303, https://doi.org/10.1016/S0168-9002(03)01368-8, 2003. 

Aitchison, J.: The Statistical Analysis of Compositional Data, Chapman and Hall Ltd, New York, 1986. 

Alvarez, L. W., Anderson, J. A., El Bedwei, F., Burkhard, J., Fakhry, A., Girgis, A., Goneid, A., Hassan, F., Iverson, D., 

Lynch, G., Miligy, Z., Moussa, A. H., Mohammed-Sharkawi, and Yazolino, L.: Search for Hidden Chambers in the 

Pyramids, Science, 167, 832–839, 1970. 1315 

Ambrosino, F., Anastasio, A., Basta, D., Bonechi, L., Brianzi, M., Bross, A., Callier, S., Caputo, A., Ciaranfi, R., Cimmino, 

L., D’Alessandro, R., D’Auria, L., Taille, C. de L., Energico, S., Garufi, F., Giudicepietro, F., Lauria, A., Macedonio, G., 

Martini, M., Masone, V., Mattone, C., Montesi, M. C., Noli, P., Orazi, M., Passeggio, G., Peluso, R., Pla-Dalmau, A., Raux, 

L., Rubinov, P., Saracino, G., Scarlini, E., Scarpato, G., Sekhniaidze, G., Starodubtsev, O., Strolin, P., Taketa, A., Tanaka, 

H. K. M., Vanzanella, A., and Viliani, L.: The MU-RAY project: detector technology and first data from Mt. Vesuvius, J. 1320 

Instrum., 9, C02029–C02029, https://doi.org/10.1088/1748-0221/9/02/C02029, 2014. 

Ambrosino, F., Anastasio, A., Bross, A., Béné, S., Boivin, P., Bonechi, L., Cârloganu, C., Ciaranfi, R., Cimmino, L., 

Combaret, C., D’Alessandro, R., Durand, S., Fehr, F., Français, V., Garufi, F., Gailler, L., Labazuy, P., Laktineh, I., Lénat, 

J.-F., Masone, V., Miallier, D., Mirabito, L., Morel, L., Mori, N., Niess, V., Noli, P., Pla‐Dalmau, A., Portal, A., Rubinov, P., 

Saracino, G., Scarlini, E., Strolin, P., and Vulpescu, B.: Joint measurement of the atmospheric muon flux through the Puy de 1325 

Dôme volcano with plastic scintillators and Resistive Plate Chambers detectors, J. Geophys. Res. Solid Earth, 120, 7290–

7307, https://doi.org/10.1002/2015JB011969, 2015. 

Anghel, V., Armitage, J., Baig, F., Boniface, K., Boudjemline, K., Bueno, J., Charles, E., Drouin, P.-L., Erlandson, A., 

Gallant, G., Gazit, R., Godin, D., Golovko, V. V., Howard, C., Hydomako, R., Jewett, C., Jonkmans, G., Liu, Z., Robichaud, 

A., Stocki, T. J., Thompson, M., and Waller, D.: A plastic scintillator-based muon tomography system with an integrated 1330 

muon spectrometer, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., 798, 12–23, 

https://doi.org/10.1016/j.nima.2015.06.054, 2015. 

Ariga, A., Ariga, T., Ereditato, A., Käser, S., Lechmann, A., Mair, D., Nishiyama, R., Pistillo, C., Scampoli, P., Schlunegger, 

F., and Vladymyrov, M.: A Nuclear Emulsion Detector for the Muon Radiography of a Glacier Structure, Instruments, 2, 7, 

https://doi.org/10.3390/instruments2020007, 2018. 1335 

ASTM C914-09: Standard test method for bulk density and volume of solid refractories by wax immersion, 

https://doi.org/10.1520/C0914-09R15, 2015. 

Barnaföldi, G. G., Hamar, G., Melegh, H. G., Oláh, L., Surányi, G., and Varga, D.: Portable cosmic muon telescope for 

environmental applications, Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., 689, 60–

69, https://doi.org/10.1016/j.nima.2012.06.015, 2012. 1340 

Barnoud, A., Cayol, V., Niess, V., Cârloganu, C., Lelièvre, P., Labazuy, P., and Le Ménédeu, E.: Bayesian joint muographic 

and gravimetric inversion applied to volcanoes, Geophys. J. Int., 218, 2179–2194, https://doi.org/10.1093/gji/ggz300, 2019. 

Bellman, R. E.: Adaptive Control Processes A Guided Tour, Princeton University Press, Princeton, 2016. 

Betancourt, M. J. and Girolami, M.: Hamiltonian Monte Carlo for Hierarchical Models, ArXiv13120906 Stat, 2013. 



 

80 

 

Blake, G. R. and Hartge, K. H.: Bulk Density, in: Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods, 1345 

vol. 9, edited by: Klute, A., American Society of Agronomy and Soil Science Society of America, Madison, 363–375, 1986. 

Bonechi, L., D’Alessandro, R., Mori, N., and Viliani, L.: A projective reconstruction method of underground or hidden 

structures using atmospheric muon absorption data, JINST, 10, P02003, https://doi.org/10.1088/1748-0221/10/02/P02003, 

2015. 

Bugaev, E. V., Misaki, A., Naumov, V. A., Sinegovskaya, T. S., Sinegovsky, S. I., and Takahashi, N.: Atmospheric Muon 1350 

Flux at Sea Level, Underground, and Underwater, Phys. Rev. D, 58, 054001, https://doi.org/10.1103/PhysRevD.58.054001, 

1998. 

Gelman, A.: Bayesian data analysis, Third edition., CRC Press, Boca Raton, 2014. 

Gerya, T.: Introduction to numerical geodynamic modelling, Cambridge University Press, Cambridge, New York, 2010. 

Groom, D. E., Mokhov, N. V., and Striganov, S. I.: MUON STOPPING POWER AND RANGE TABLES 10 MeV–100 1355 

TeV, At. Data Nucl. Data Tables, 78, 183–356, https://doi.org/10.1006/adnd.2001.0861, 2001. 

Guardincerri, E., Rowe, C., Schultz-Fellenz, E., Roy, M., George, N., Morris, C., Bacon, J., Durham, M., Morley, D., Plaud-

Ramos, K., Poulson, D., Baker, D., Bonneville, A., and Kouzes, R.: 3D Cosmic Ray Muon Tomography from an 

Underground Tunnel, Pure Appl. Geophys., 174, 2133–2141, https://doi.org/10.1007/s00024-017-1526-x, 2017. 

Hastings, W. K.: Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57, 97–109, 1360 

https://doi.org/10.1093/biomet/57.1.97, 1970. 

Hebbeker, T. and Timmermans, C.: A Compilation of High Energy Atmospheric Muon Data at Sea Level, Astropart. Phys., 

18, 107–127, https://doi.org/10.1016/S0927-6505(01)00180-3, 2002. 

Jonkmans, G., Anghel, V. N. P., Jewett, C., and Thompson, M.: Nuclear waste imaging and spent fuel verification by muon 

tomography, Ann. Nucl. Energy, 53, 267–273, https://doi.org/10.1016/j.anucene.2012.09.011, 2013. 1365 

Jourde, K., Gibert, D., and Marteau, J.: Improvement of density models of geological structures by fusion of gravity data and 

cosmic muon radiographies, Geosci. Instrum. Method. Data Syst., 4, 177-188, https://doi.org/10.5194/gi-4-177-2015, 2015. 

Jourde, K., Gibert, D., Marteau, J., de Bremond d’Ars, J., and Komorowski, J.-C.: Muon dynamic radiography of density 

changes induced by hydrothermal activity at the La Soufrière of Guadeloupe volcano, Sci. Rep., 6, 33406, 

https://doi.org/10.1038/srep33406, 2016. 1370 

Kjaerulff, U. B. and Madsen, A. L.: Bayesian Networks and Influence Diagrams: A Guide to Construction and Analysis, 

Springer, New York, 2008. 

Kudryavtsev, V. A.: Muon simulation codes MUSIC and MUSUN for underground physics, Comput. Phys. Commun., 180, 

339–346, https://doi.org/10.1016/j.cpc.2008.10.013, 2009. 

Kusagaya, T. and Tanaka, H. K. M.: Development of the very long-range cosmic-ray muon radiographic imaging technique 1375 

to explore the internal structure of an erupting volcano, Shinmoe-dake, Japan, Geosci. Instrum. Methods Data Syst., 4, 215–

226, https://doi.org/10.5194/gi-4-215-2015, 2015. 

https://doi.org/10.1088/1748-0221/10/02/P02003


 

81 

 

Lechmann, A., Mair, D., Ariga, A., Ariga, T., Ereditato, A., Nishiyama, R., Pistillo, C., Scampoli, P., Schlunegger, F., and 

Vladymyrov, M.: The effect of rock composition on muon tomography measurements, Solid Earth, 9, 1517–1533, 

https://doi.org/10.5194/se-9-1517-2018, 2018. 1380 

Lechmann, A., Mair, D., Ariga, A., Ariga, T., Ereditato, A., Nishiyama, R., Pistillo, C., Scampoli, P., Schlunegger, F., and 

Vladymyrov, M.: Muon tomography in geoscientific research – a guide to best practice, Manuscript submitted for 

publication,Earth-Science Reviews, 222, 103842, https://doi.org/10.1016/j.earscirev.2021.103842, 2021a. 

Lechmann, A., Mair, D., Ariga, A., Ariga, T., Ereditato, A., Nishiyama, R., Pistillo, C., Scampoli, P., Schlunegger, F., and 

Vladymyrov, M.: SMAUG – A Simulator for Muon Applications Under Ground (Version 1.0), Zenodo, 1385 

https://doi.org/10.5281/zenodo.5547356, 2021b. 

Lelièvre, P. G., Barnoud, A., Niess, V., Cârloganu, C., Cayol, V., and Farquharson, C. G.: Joint inversion methods with 

relative density offset correction for muon tomography and gravity data, with application to volcano imaging, Geophys. J. 

Int., 218, 1685-1701, https://doi.org/10.1093/gji/ggz251, 2019. 

Lesparre, N., Gibert, D., Marteau, J., Déclais, Y., Carbone, D., and Galichet, E.: Geophysical muon imaging: feasibility and 1390 

limits, Geophys. J. Int., 183, 1348–1361, https://doi.org/10.1111/j.1365-246X.2010.04790.x, 2010. 

Lesparre, N., Gibert, D., and Marteau, J.: Bayesian dual inversion of experimental telescope acceptance and integrated flux 

for geophysical muon tomography, Geophys. J. Int., 188, 490–497, https://doi.org/10.1111/j.1365-246X.2011.05268.x, 2012. 

Lesparre, N., Cabrera, J., and Marteau, J.: 3-D density imaging with muon flux measurements from underground galleries, 

Geophys. J. Int., 208, 1579–1591, https://doi.org/10.1093/gji/ggw482, 2017. 1395 

Lo Presti, D., Gallo, G., Bonanno, D. L., Bonanno, G., Bongiovanni, D. G., Carbone, D., Ferlito, C., Immè, J., La Rocca, P., 

Longhitano, F., Messina, A., Reito, S., Riggi, F., Russo, G., and Zuccarello, L.: The MEV project: Design and testing of a 

new high-resolution telescope for muography of Etna Volcano, Nucl. Instrum. Methods Phys. Res. Sect. Accel. 

Spectrometers Detect. Assoc. Equip., 904, 195–201, https://doi.org/10.1016/j.nima.2018.07.048, 2018. 

Lohmann, W., Kopp, R., and Voss, R.: Energy Loss of Muons in the Energy Range 1-10000 GeV, CERN, Geneva, 1985. 1400 

Mair, D., Lechmann, A., Herwegh, M., Nibourel, L., and Schlunegger, F.: Linking Alpine deformation in the Aar Massif 

basement and its cover units – the case of the Jungfrau-Eiger mountains (Central Alps, Switzerland), Solid Earth, 9, 1099-

1122, https://doi.org/10.5194/se-9-1099-2018, 2018. 

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.: Equation of State Calculations by Fast 

Computing Machines, J. Chem. Phys., 21, 1087–1092, https://doi.org/10.1063/1.1699114, 1953. 1405 

Morishima, K., Kuno, M., Nishio, A., Kitagawa, N., Manabe, Y., Moto, M., Takasaki, F., Fujii, H., Satoh, K., Kodama, H., 

Hayashi, K., Odaka, S., Procureur, S., Attié, D., Bouteille, S., Calvet, D., Filosa, C., Magnier, P., Mandjavidze, I., Riallot, 

M., Marini, B., Gable, P., Date, Y., Sugiura, M., Elshayeb, Y., Elnady, T., Ezzy, M., Guerriero, E., Steiger, V., Serikoff, N., 

Mouret, J.-B., Charlès, B., Helal, H., and Tayoubi, M.: Discovery of a big void in Khufu’s Pyramid by observation of 

cosmic-ray muons, Nature, 552, 386–390, https://doi.org/10.1038/nature24647, 2017. 1410 

Niess, V., Barnoud, A., Cârloganu, C., and Le Ménédeu, E.: Backward Monte-Carlo applied to muon transport, Comput. 

Phys. Commun., 229, https://doi.org/10.1016/j.cpc.2018.04.001, 2018. 

Nishiyama, R., Tanaka, Y., Okubo, S., Oshima, H., Tanaka, H. K. M., and Maekawa, T.: Integrated processing of muon 

radiography and gravity anomaly data toward the realization of high-resolution 3-D density structural analysis of volcanoes: 

https://doi.org/10.1016/j.earscirev.2021.103842
https://doi.org/10.1093/gji/ggz251
https://doi.org/10.1016/j.cpc.2018.04.001


 

82 

 

Case study of Showa-Shinzan lava dome, Usu, Japan, J. Geophys. Res. Solid Earth, 119, 699–710, 1415 

https://doi.org/10.1002/2013JB010234, 2014. 

Nishiyama, R., Ariga, A., Ariga, T., Käser, S., Lechmann, A., Mair, D., Scampoli, P., Vladymyrov, M., Ereditato, A., and 

Schlunegger, F.: First measurement of ice-bedrock interface of alpine glaciers by cosmic muon radiography, Geophys. Res. 

Lett., 44, 6244–6251, https://doi.org/10.1002/2017GL073599, 2017. 

Nishiyama, R., Ariga, A., Ariga, T., Lechmann, A., Mair, D., Pistillo, C., Scampoli, P., Valla, P. G., Vladymyrov, M., 1420 

Ereditato, A., and Schlunegger, F.: Bedrock sculpting under an active alpine glacier revealed from cosmic-ray muon 

radiography, Sci. Rep., 9, 6970, https://doi.org/10.1038/s41598-019-43527-6, 2019. 

Noli, P., Ambrosino, F., Bonechi, L., Bross, A., Cimmino, L., D’Alessandro, R., Masone, V., Mori, N., Passeggio, G., Pla-

Dalmau, A., Saracino, G., Scarlini, E., and Strolin, P.: Muography of the Puy de Dôme, Ann. Geophys., 60, 

https://doi.org/10.4401/ag-7380, 2017. 1425 

Oláh, L., Barnaföldi, G. G., Hamar, G., Melegh, H. G., Surányi, G., and Varga, D.: Cosmic Muon Detection for Geophysical 

Applications, Advances in High Energy Physics, https://doi.org/10.1155/2013/560192, 2013. 

Oláh, L., Tanaka, H. K. M., Ohminato, T., and Varga, D.: High-definition and low-noise muography of the Sakurajima 

volcano with gaseous tracking detectors, Sci. Rep., 8, 3207, https://doi.org/10.1038/s41598-018-21423-9, 2018. 

Reyna, D.: A Simple Parameterization of the Cosmic-Ray Muon Momentum Spectra at the Surface as a Function of Zenith 1430 

Angle, arXiv Prepr. hep-ph/0604145 [online] Available from: http://arxiv.org/abs/hep-ph/0604145, 2006. 

Rosas-Carbajal, M., Jourde, K., Marteau, J., Deroussi, S., Komorowski, J.-C., and Gibert, D.: Three-dimensional density 

structure of La Soufrière de Guadeloupe lava dome from simultaneous muon radiographies and gravity data: 3-D MUON 

TOMOGRAPHY OF LA SOUFRIÈRE, Geophys. Res. Lett., 44, 6743–6751, https://doi.org/10.1002/2017GL074285, 2017. 

Saracino, G., Amato, L., Ambrosino, F., Antonucci, G., Bonechi, L., Cimmino, L., Consiglio, L., Alessandro, R. D. ’, Luzio, 1435 

E. D., Minin, G., Noli, P., Scognamiglio, L., Strolin, P., and Varriale, A.: Imaging of underground cavities with cosmic-ray 

muons from observations at Mt. Echia (Naples), Sci. Rep., 7, 1181, https://doi.org/10.1038/s41598-017-01277-3, 2017. 

Stoer, J. and Bulirsch, R.: Introduction to Numerical Analysis, Springer Science & Business Media, New York, 2013. 

Takahasi, H. and Mori, M.: Double Exponential Formulas for Numerical Integration, Publ. Res. Inst. Math. Sci., 9, 721–741, 

https://doi.org/10.2977/prims/1195192451, 1974. 1440 

Takamatsu, K., Takegami, H., Ito, C., Suzuki, K., Ohnuma, H., Hino, R., and Okumura, T.: Cosmic-ray muon radiography 

for reactor core observation, Ann. Nucl. Energy, 78, 166–175, https://doi.org/10.1016/j.anucene.2014.12.017, 2015. 

Tanabashi, M., et al. (Particle Data Group): Review of Particle Physics, Phys. Rev. D, 98, 030001, 

https://doi.org/10.1103/PhysRevD.98.030001, 2018. 

Tanaka, H. K. M.: Instant snapshot of the internal structure of Unzen lava dome, Japan with airborne muography, Sci. Rep., 1445 

6, 39741, https://doi.org/10.1038/srep39741, 2016. 

Tang, A., Horton-Smith, G., Kudryavtsev, V. A., and Tonazzo, A.: Muon Simulations for Super-Kamiokande, KamLAND 

and CHOOZ, Phys. Rev. D, 74, 053007, https://doi.org/10.1103/PhysRevD.74.053007, 2006. 

Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation, 1st ed., siam, Philadelphia, 2005. 



 

83 

 

Thompson, L. F., Stowell, J. P., Fargher, S. J., Steer, C. A., Loughney, K. L., O’Sullivan, E. M., Gluyas, J. G., Blaney, S. 1450 

W., and Pidcock, R. J.: Muon tomography for railway tunnel imaging, Phys. Rev. Res., 2, 023017, 

https://doi.org/10.1103/PhysRevResearch.2.023017, 2020. 

Tioukov, V., Lellis, G. D., Strolin, P., Consiglio, L., Sheshukov, A., Orazi, M., Peluso, R., Bozza, C., Sio, C. D., Stellacci, S. 

M., Sirignano, C., D’Ambrosio, N., Miyamoto, S., Nishiyama, R., and Tanaka, H. K. M.: Muography with nuclear emulsions 

- Stromboli and other projects, Ann. Geophys., 60, 0111, https://doi.org/10.4401/ag-7386, 2017. 1455 

Vermeesch, P.: On the visualisation of detrital age distributions, Chemical Geology, 312-313, 190-194, 

https://doi.org/10.1016/j.chemgeo.2012.04.021, 2012. 

 

https://doi.org/10.1016/j.chemgeo.2012.04.021

