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Abstract.

Knowledge about muon tomography has spread in recent years in the geoscientific community and several collaborations
between geologists and physicists have been founded. As the data analysis is still mostly done by particle physicists, we
address-the-needmuch of the geescientific-community-to-participateknow-how is concentrated in the-data-analysis-while-not
having—to—werry-too-much—abeut-theparticle physics egquations—in-the-background—Fheresult-hereof-isand specialised

geophysics institutes. SMAUG, a toolbox consisting of several modules that cover the various aspects of data analysis in a

muon tomographic experiment:, aims at providing access to a structured data analysis framework. The goal of this

contribution is to make muon tomography more accessible to a broader geoscientific audience. In this study we show how a

comprehensive geophysical model can be built from basic physics equations. The emerging uncertainties are dealt with by a
probabilistic formulation of the inverse problem, which is finally solved by a Monte Carlo Markov Chain algorithm. Finally,
we benchmark the SMAUG results against those of a recent study, which however, have been established with an approach
that is not easily accessible to the geoscientific community. We show that they reach identical results with the same level of

accuracy and precision.

1 Introduction

Among the manifold geophysical imaging techniques, muon tomography has increasingly gained the interest of geoscientists
during the course of the past years. Before its application in Earth sciences, it was initially used for archaeological purposes.
Alvarez et al. (1970) used this method to search for hidden chambers in the pyramids of Giza, in Egypt; an experiment which
was recently repeated by Morishima et al. (2017), as better technologies have continuously been developed. Other civil

engineering applications include the monitoring of nuclear power plant operations (Takamatsu et al., 2015) and the search
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for nuclear waste repositories (Jonkmans et al., 2013) as well as the investigation of underground tunnels (e.g. Thompson et
al., 2020; Guardincerri et al., 2017). A serious deployment of muon tomography in Earth sciences has only begun in the past
decades. These undertakings mainly encompass the study of the interior of volcanoes in France (Ambrosino et al., 2015;
Jourde et al., 2016; Noli et al., 2017; Rosas-Carbajal et al., 2017), Italy (Ambrosino et al., 2014; Lo Presti et al., 2018;
Tioukov et al., 2017), and Japan (Kusagaya and Tanaka, 2015; Nishiyama et al., 2014; Olah et al., 2018; Tanaka, 2016).
Other experiments have been performed in order to explore the geometry of karst cavities in Hungary (Barnaféldi et al.,
2012) and Italy (Saracino et al., 2017). Further studies (see also review article by Lechmann et al., 2021a) have been
conducted by our group to recover the ice-bedrock interface of Alpine glaciers in central Switzerland (Nishiyama et al.,
2017; 2019).

The core component of every geophysical exploration experiment is formed by the inversion, which might be better known
to other communities as fitting or modelling. This is where the model parameters are found, which best fit the observed data.
Up until now, this central part has mostly been built specifically to meet the needs of the experimental campaign at hand. On
the one hand this approach has the advantage of allowing the consideration of the peculiarities of particle detectors, their data
processing chain, and other models involved (e.g. the cosmic ray flux model). On the other hand, when every group develops
a separate inversion algorithm, the reconstruction of the precise calculations performed in the data analysis procedure
becomes a challenge. For a researcher who is not familiar with the intricacies of inversion, this might even be tougher. We
thus see the need for a lightweight programme that incorporates a structured and modular approach to inversion, that also
allows users with little inversion experience to familiarise themselves with this rather involved topic. This programme can be
used to directly analyse experimental data in a stand-alone working environment, and the modules and theoretical
foundations can be adapted, customised, and integrated into new programmes. For this reason, the code is built in the
programming language Python as to facilitate the exchange between researchers and to enhance modifiability. Moreover, the
source code is freely available online (Lechmann et al., 2021b).

To facilitate the further reading of our code, we introduce the reader at this point to our benchmark experiment, to which we
will refer on multiple occasions throughout this work. The experimental campaign is explained in detail in Nishiyama et al.
(2017) and thus we will resort to a description of the experimental design at this point. In the Nishiyama et al. (2017) study
we-atmed-at we aimed at recovering the ice-bedrock interface of an Alpine glacier in central Switzerland. Figure 1 shows

that we had access to the railway tunnel of the Jungfraubahnen _railway company, where we installed three detectors. In our

measurement we recorded muons from directions that consisted purely of rock and others where we knew that the muons
must have crossed rock and ice (see the two cones in Fig. 1). From the former it was possible, together with laboratory
measurements, to determine the physical parameters of the rock more precisely. ConverselySubsequently, we utilised the
measurementdirectional measurements of the latter to infer the 3D structure of the interface between rock and ice underneath

the glacier. Finally, we will also use the results of that experiment (Nishiyama et al., 2017) to verify our new algorithm in the

present study.
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Figure 1: Left:a) Schematic side view of the experiment from Nishiyama et al. (2017). A muon detector (red) is placed in a tunnel
or cavity and records muons from the cosmic ray flux that penetrate the material (ice & rock) from different directions. Muons
that are detected along cones yield information on the amount and density of matter between the topographic surface and the
detector. Based on this the interface between ice and rock (dashed green line) can be reconstructed. Right:b) Modified Fig. 1 from
Nishiyama et al. (2017); Overview of the study region in the central Swiss Alps. a)-shews-an-outhne-of Detectors are indicated by
yellow pentagrams (D1, D2, D3; including their viewfield) within the railway tunnel (black line). The imaged glacierarea is
outlined in blue and its-localisation-in-Switzerland-and-b)-indicates-where-the region that we know from the digital elevation model
to contain only rock is marked in brown. We verified (see Sect. 4) the reconstruction in this study with the one from Nishiyama et
al. (2017) along three detectors-have-been-positioned-in-the-Jungfraubahnenratway-tunnelcross-sections (East, Central, West; red
lines). Basemap: Orthophotomosaic Swissimage, © Federal Office of Topography swisstopo.

1.1 Inversion — a modular view

The goal of every muon tomography study is essentially to extract information on the physical parameters (usually density

and/or the thickness of a part of the material) of the radiographed object through a measurement of the cosmic ray muon flux

and an assessment of its absorption as the muons cross that object. In geological applications these objects are almost always
lithological underground structures such as magma chambers, cavities, or other interfaces with a high-density contrast. The
reconstruction of the geometry of such structures can only be achieved if the measured muon data is compared to the results
of a muon flux simulation. As stated earlier, this is the basic principle of the inversion procedure. However, the
aforementioned “muon flux simulation” is not just a simple programme, but it consists of several physically independent
models that act together. Taking a modular view, we will call these models “modules” from here on, as they will inevitably
be part of a larger inversion code. We have visualised the components that are necessary to build an inversion and how they

interact with each other in Fig. 2.
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The first of the modules is the input module for the experiment results, which also considers the detectors that were used in
the experiment. Typical detector setups include nuclear emulsion films (e.g. Ariga et al., {2018), cathode chambers (e.g.
Olah et al., 2013), scintillators (e.g. Anghel et al., 2015) or other hardware solutions. Although the detailed data processing
chain may be comprehensive, the related output almost always comes in the form of a measured directional (i.e. from various

incident angles) muon flux_or equivalently the measured directional number of muons, which will be the input to the

inversion scheme. Here, we primarily work with the premise that the muon flux data and the associated errors are given. The
corresponding errors can then be furnished to the code by means of an interface.

The simulation module on the other hand, consists of fourautonemeus-compenentstwo parts each containing two modules
(see Fig. 2). Firsta-cosmicray-muen-fluxThe model parametrisation is recessary-which-deseribesneeded in order to abstract
the muen-abundance-in-the-atmesphere-(geo)physical reality as a mathematical model. Subsequently, the forward model uses
the model parametrisation and which-is-generally-dependentsimulates an artificial dataset based on the muen-energy;-chosen
parameter values.

As we want to draw inferences on the physical parameters of the involved materials, we need a “rock model” first. The latter

term is used in an earlier publication (Lechmann et al., 2018) where we split a rock into its incidence—angle;mineral
constituents and the-altitude-of-the-detector-location—esparre-et-al—(2010)-listcompute a mean composition and compare
various-muen-flux-a mean density needed for further calculations. Even though this is called a “rock model” (Fig. 2) the
approach can be used for other materials (e.g. ice) as well. It is also possible to infuse laboratory measurements of
compositions and density into this family of models-that-may-be-incorporated-into-an-extensivesimulation—Second.

Once the materials have been described, it is necessary to model the spatial-distribution-of the-detectors-as-wel-as-the-initial
distribution-of-the lithologies—Relatedexperimental situation spatially. This means that materials as well as detectors have to

be attributed a location in space. The central choice in the “model parametrisation” is usually to select how the material

arameters are discretised spatially (this is hinted in Fig. 2 with the term ‘“binning”). We refer the reader to Sect. 2.1 for

further information on that topic. In order to conduct this parametrisation we may employ pre-existing software solutions
that mainly eemprisecompromise GIS- and geological 3D-modelling applications; that excel at capturing and-cempiting
geological information from various sources—{, e.g. digital elevation models (DEMSs), and that also allow to compile field;
observations (maps, etc.) into a spatially organised database. Fhird;Once the lithelegies—censistingstructure of different
minerals-have-to-be-translatedthe spatial model is determined, we need a physical model, that allows us to a-calculate a

synthetic dataset, based on the parameter values that we set ef-parameters-which-are-a-necessary-putup. We note that the
parametrisation structure remains fixed for the subseguentphysical-time of the calculations, and that changes are only

performed on the parameter values.

Incident muons, on their way from the atmosphere to the detector, lose energy while traversing matter. The first step in the

muon simulation: is then to

function-of-Hs-mineralogical-composition—Lasthythe-muen-fhuxes-atmuon has to be, in order to be able to penetrate all the
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material up to the detector-sies—have-to-be-simulated. This is done by means of a muon transportation model, which
calculates all physical processes by which a muon loses kinetic energy while traveltingtraveling through matter. The particle
physics community has a great variety of particle simulators, the most prominent being GEANT4 (Agostinelli et al., 2003), a
Monte Carlo based simulator. These have the advantage that stochastic processes resulting in energy loss are simulated
according to their probabilistic occurrence - an upside that has to be traded off for longer computation times. In contrast to

obtaining the full energy loss distribution, lightweight alternatives often resort to the calculation of only the mean energy

loss. The solution of the resulting differential equation can even be tabulated, as has been done by Groom et al. (2001).-Fhe

Muon simulation

Spatial medel of Muon fiux model
detectors & materials
Muon transportation
Rock medel model

Simulated data Measured data

Experiment

Muen Mux
measurement

Final spatial distridution of
materials

Lastly, based on that minimum energy, one may calculate the portion of the atmospheric muon flux that is fast enough to

reach the detector. For this part a cosmic ray muon flux model is needed, which describes the muon abundance in the

atmosphere, and which is generally dependent on the muon energy, its incidence angle, and the altitude of the detector

location. Lesparre et al. (2010) list and compare various muon flux models that may be incorporated into an extensive

simulation.

The interplay of these four modules (schematically shown in Fig. 2) allows then to simulate a dataset. It is then possible to

compare the measured data with a synthetic dataset and to quantify this difference using a specific metric (usually the

squared sum of residuals, which is also termed the misfit in Fig. 2). The process of changing the model parameters (here

density of the materials and thicknesses of the segments in each cone), comparing the synthetic dataset with the measured

dataset, and of iteratively tweaking the parameters in such a way that misfit is minimised is called “Inversion” in Fig. 2. The
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solution of the inversion depends on the inversion method used, and is either the full statistical distribution of the model

parameters or an estimate thereof (e.g. the Maximum Likelihood estimate).

1.2 The need for a consistent inversion environment

The selecombinationreconstruction of material parameters from muon flux data has already been performed in a variety of

ways and different methods and codes have already been published. Bonecchi et al. (2015), for example, used a back-

projection_method such that size and location of underground objects can be determined. Jourde et al. (2015), on the

aieremenﬂened—few—%@med&es@ee&net—fuﬂy—wsﬂ#other hand, describe the need#%&ne&%e#ware—as%esmray—ﬂax

asresolving kernel
approach, where they show how muon flux data and gravimetric data can be combined to improve the resolution on the

finally imaged 3D density structure. This is a useful approach especially in the planning stages of an experiment. Barnoud et

al. (2019) provide a perspective on how such a joint inversion between muon flux data and gravimetric data can be combined

in_a Bayesian framework, whereas Leliévre et al. (2019) investigate different methods of joining these datasets, using

unstructured grids.

Existing frameworks that are especially used in physics communities are GEANT4 (Agostinelli et al., 2003) or MUSIC

(Kudryavtsev, 2009). These are Monte Carlo simulators that excel at modelling how a particle (e.g. a muon) interacts with

matter and propagates in space and time. The Monte Carlo aspect describes the fact that many particles are simulated to get a

statistically viable distribution of different particle trajectories. This might be a very time-consuming process, as for each

material distribution such a Monte Carlo simulation has to be performed, and only a fraction of all simulated muons actually

hit the detector. In order to speed this calculation up Niess et al. (2018) devised a backward Monte-Carlo, which only

simulates that portion of the muons that are actually observed.

In their area of use the above-mentioned sources prove very valuable. Unfortunately, the-apphecation-of-such-a-Monte-Carlo
approach-reguiresthese tools and approaches have in common, that a rather good understanding of pregramming-and-either
inversion, nuclear physics processes—Fhus,-it-might-prove-time-consuming-te-, or programming is required. Even more so if
one wants to tackle our problem of interface detection, coupled with density inversion, then various parts of the above codes
need to be linked together. The construction of a specialised programme a-specific-code—Meoreover-these-codes-are-oftenis
then a time-consuming process, as a) programmes might not be freely available, b) different codes might be written in
adifferent and specialised programming language-languages (such as C++-TFhird;++), c) the compatibility between different

modules (&g—e@sm%ray—ﬂ%%and—ene#gy—less}—may be severely hampered if the programme interfaces are not taken into
consideration.
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additionTherefore, one has to carefully evaluate the benefit of such an undertaking, especially if the resulting code will most
likely be tailored only to a specific problem.

We thus see the need for a versatile, user-friendly simulator, which allows users not only to quickly perform the necessary
calculations without the need of additional coding, but also tailor the individual models to custom needs. A new simulator
can be more useful if an inversion functionality is already included. As can be seen in Fig. 2, the inversion compares the
simulated flux data with the measured ones. lt-also-attempts-to-reduceThis problem is solved by finding the discrepaney

between-measurements-and-simulations-by-optimising-the-set of parameters in-the-simulation,-namely-(material density and
the thickness—distributionthicknesses of the overlying materials), that adhere to the constraints of the available a priori

information and minimise the aforementioned discrepancy between measurement and simulation. This results in a density- or

structural rock model, which best reproduces the measured data. As the energy loss equation in general is nonlinear, also the

mathematical eptimizationoptimisation in muon tomography generatly-is-nonhinear—one-has-to-empleyis nonlinear. This is

classically solved by either a linearisation of the physical equations or by employing nonlinear solvers-or-even. A further

difficulty is introduced when working in 3D. Monte Carlo techniques_are, however, enough versatile to tackle these

challenges, which is our main motivation for working with them. This circumstance encourages us to work with a

lightweight version of a muon transport simulator, because a nonlinear inversion of Monte Carlo simulations, although
mathematically preferable, is computationally prohibitive. This allows us to make use of methods from the Bayesian realm,

that thrive when measurements from different sources (i.e. muon flux measurement, laboratory, geological field

measurements, maps, etc.) have to be combined into a single comprehensive model. With the code presented in this paper,

we aspire to make muon tomography accessible to a broader geoscientific community, as the know-how in this field is
mainly concentrated in particle physics laboratories. We want to provide the tools for Earth scientists, or users that are
mainly focused on the application of the method, so that they can perform their own analyses.

In this contribution we present our new code, SMAUG (Simulation for Muons and their Applications UnderGround), that
allows a broader scientific community to plan and analyse muon tomographic experiments more easily, by providing them
with data analysis and inversion tools. Specifically, we describe the governing equations of the physical models, and the
mathematical techniques that were used. ChapterSection 2 depicts how the muon flux simulation is conducted by its
submodules and how a muon flux simulation is performed. ChapterSection 3 then dives into the inversion module and
explains how the parameters of the inferred density/rock-model can be estimated based on measured data. This
chaptersection includes a description of the model and data errors and an explanation on how a subsurface material boundary
can be constructed.
which-source—code—Chapter-5Section 4 discusses the model’s performance based on the data that we collected in the
framework of an earlier experimental campaign (see supplement of Nishiyama et al., 2017). Chapter—6Section 5 then

concludes this study by outlining a way of how this code can be developed further to fit the needs of the muon tomography

and geology community.



210 2 The-forward-model—-Muon-fluxIn order to provide the reader with quick access to information about the vast number of

variables that are used in this work, we refer to the Table 1, where all the parameters are listed and explained.

Muon Simulation Experiment
e rd model * Measurement of a
Meodel parametrisation Forward model number of muons
Bin model of material .
Spatial model of detectors and materials distribution - Muon transportation model * Binning of muons to
(Parametrisation as detector bins) + Thicknesses estimate uncertainty
*  Density
Detectors N Energy loss equation
Coordinates | *  Calculate cutoff energy
Detector ares | Fixed
Exposure time ( acwr‘ding to
Facing direction experiment
Binning (size & number) |
i Cutoff energy
Materials for each bin
+  Thicknesses
* Attribution to bins (i.e. which materials are in
which bins)
— '\\\ Muon flux model
— ™ :
! Calculate integrated muon flux
Rock model i
Materials
Laboratory *  Density
+  Composition Integrated muon
flux for each bin

Simulated number of

Inversion muons far each bin

Measured number of
muons for each bin

Repeat until stop criterion

R

Change bin model:
*  Density
* Thicknesses

Measured
data

Simulated
data

Determine misfit

Solution of the inversion:
* Distribution

*  Maximum Likelihood estimate
of material parameters (density,
thicknesses)
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travelling through rocks. These models allow for a synthetlc data set to_be computed The systematlc comparison betwee

synthetic data and actual measured data and the subsequent change of the model parameters to find the set of parameters that

reproduce the measured data best is an (often iterative) optimisation problem. This procedure is termed “inversion” (usually) by
geophysicists.

Table 1: List of variables used in this work. Parameters are grouped into sections where they are introduced first. Parameters that

are sought for muon tomography (in our case and also in general) are highlighted with an olive colour.

Variable Unit Description
Section 1
m 1 Index that runs through all different materials, here m € {rock, ice}
Pm kg m™3 Material density of the m-th material
Cm 1 Composition of the m-th material, given as a weight fraction of major rock forming oxides
i 1 Index that runs through all different cones/bins, here i € {1, ..., Nepnes}
Neones 1 Total number of cones/bins
Lo m Thickness of the m-th material in the i-th bin
Section 2.1
N, 1 Number of simulated muons in the i-th bin
Ecyri eV Cutoff energy in the i-th bin
do -1 =1 =2 o1 f i B B :
E eV s m?sr Differential muon flux in the i-th bin
AT s Exposure time of the detector
AQ; sr Solid angle of the i-th bin
@; rad Mean azimuth angle of the i-th bin
8, rad Mean zenith angle of the i-th bin
Mesri(91 6,) m? Effective area of the detector when seen from an angle given by @;, 8,
AA m? Area of the detector
D (Ecyei) sTtm2srt Calculated muon flux in the i-th bin according to Eq. (5)
AE; sm? sr Exposure in the i-th bin
7y 1 Normal vector to the detector surface
L Direction of mean muon incidence, i.e. unit vector in direction of (q‘)i, 8,). Direction vector of
Tu,in((pit 91) 1 i i
the i-th bin
Pa rad Azimuth angle of the detector facing direction
6,4 rad Zenith angle of the detector facing direction
Section 2.2
x m Position of a muon along a trajectory
E(x) eV Energy of the muon at position x
- Z_i eVm™! Energy loss of a muon traversing some matter

10



p(x) kg m™3 Density at position x

a(x, E) eV m? kg™? lonisation losses
B Index that runs through all three different radiative processes by which a muon can lose energy,
k 1 ~
here k € {bremsstrahlung, pair — production, photonuclear}
Radiation losses of the
br(x,E) m? kg™! ~ o
k-th radiative process
N, mol ™! Avogadro constant
Molar mass of the traversed material; written as “A” as it is numerically equivalent to the
A kg mol™! ]
atomic mass
v 1 Fractional energy transfer
dory, . . . .
% m? kg™! Differential cross-section of the k-th radiative process
v
E, eV Energy of the muon when it reaches the detector
. Vector of the thicknesses of all m materials in the
L; m
' i-th bin
p kg m™3 Vector of the material densities of all m_materials
¢ 1 Vector of the compositions of all m materials
rk(L, B,¢) eV Numerical solution of the energy loss equation, using a Runge-Kutta integration scheme
Section 3.1
d; 1 Measured number of muons in the i-th bin
fi sTim2gr? Muon flux as a random variable in the i-th bin
Uy, sTIm™2srt Mean of the flux random variable in the i-th bin
of, s2m™*srt Variance of the flux random variable in the i-th bin

k = ion:eVm? kg™!

Pk Energy loss processes
else:m? kg™?

& 1 Relative error of the energy loss process
Index that runs through all energy loss processes, here k € {ionisation,
. ! bremsstrahlung, pair — production, photonuclear}
N The forward model, encompassing an energy loss calculation and a flux calculation. Results in
M(Be1, B, ¢ L sTIm2sr?t )
a simulated flux.
Section 3.2
d 1 Vector of observed number of muons in all bins
m different Vector of model parameters
m, different Vector of initial model parameters
Mpew different Vector of new model parameters
] different Model proposal distribution
c 1 Scaling factor for model proposal variance
S different Prior model proposal variances
1 Number of model parameters

11
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0 1 Odds ratio

Da 1 Acceptance probability
Section 3.3
Matrix of digital elevation model of the reconstructed interface, also called surface matrix;

! ! elements are denoted P,

r 1 Number of rows in P

c 1 Number of columns in P

H; m Height of the interface in the i-th cone
Ax; m Horizontal distance from interface point to the grid point P,,
Ay; m Vertical distance from interface point to the grid point P,
A m Cell size of P

w; 1 Weights of the bilinear interpolation

K 1 Smoothing matrix/kernel

2 The muon simulation

In geophysical communities this part is generally known as the forward model, i.e. a mathematical model which calculates
synthetic data for given “model” parameters. In muon tomography experiments, this forward model consists of different
physical models which are serially connected.

2-12.1 A note on the parametrisation

In geophysical problems, there are many ways to parametrise a given problem. One frequently used approach is to partition

the space into voxels (i.e. volume pixels of the same size) and describe them by the material parameters only. This has the

advantage of imposing a fixed geometry (i.e. “Thickness” does not enter as a parameter). Unfortunately, the vast number of

parameters to be determined requires a very good data coverage of the voxelised region. Another drawback might be the use

of smoothing techniques (such that neighbouring voxels are forced to vield similar material parameters), that might blur any

sharp interface. Because of these reasons we employed in our code another parametrisation that mimics the actual

measurement process. We refer the reader again to Fig. 1 a), where two different cones (i and j) are shown. These represent

two (among many) directions in which a certain number of incoming muons have been measured and (over a certain solid

angle) binned together. It is now possible (as shown in cone i) to parametrise the sharp discontinuity explicitly by adding

two segments (ice and rock) within that cone. As such, the thicknesses of each material within each cone L,,; and their

material densities p,,, are explicit parameters in the model.

12
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2.2 Cosmic ray flux model

The nature of the data used in muon tomography generally consists of several counts within a directional bin, defined by two
polar and two azimuthal angles. Additionally, the measurement is taken over a defined period of time, as well as over a given

extent within the detector area. The simulated number of muons, in the i-th bin, N, ;, can be calculated by this integral,

psim [ ([ [ # gp g4 a0 g7 (1)
i TR QI Tg g o et )
i = o o Iy Sy 5 AE dA dQ dT . 1)

Here, TFthe subscript u_indicates that muons are counted, the index i € {1, ..., N ones }.2ddresses the bin/cone, T denotes the

exposure time interval, AA the detector area, Q) the solid angle of the bin and EE the energy range of the muons that were
able to be registered by the detector. There are various differential muon flux models, also referred to as the integrand,
d® /dE, in Eq. (1), that can be employed at this stage. Lesparre et al. (2010) provide a good overview on the different flux
models, which can broadly be divided in two classes. On the one hand there are theoretical models, which capture the
manifold production paths of muons and condense them in an analytical equation, e.g. the Tang et al., (2006) model. They
contrast, on the other hand, with empirical models that were generated by fitting formulae to the results of muon flux
measurements. The model of Bugaev et al. (1998) falls into this category, with later adjustments for different zenith angles
(Reyna, 2006) and altitude (Nishiyama et al., 2017), which are also utilised in this study. The details of the formula are
explained in Appendix A. The evaluation of Eq. (1) is rather cumbersome as strictly speaking several of the integration
variables depend on each other. We may facilitate the calculation by considering that the differential muon flux model is

only dependent on energy, EE, and zenith angle, & whereas the effective area, AA.sf;, is selelyusually (as long as the

detector records muons on flat surfaces) dependent on the orientation of the bin. This is the case because muons do not

necessarily hit the detector perpendicularly, such that the effective target area is usually smaller. By averaging over the

zenith angle and keeping the bin size reasonably small, we may approximate Eq. (1) by

BYAEN, ;(Ecyuri) = fE°° s 2 (E,,) dE % AT+-AAT + AAgsri(, 8) * AQAL;, )

where AT is the exposure time and A4A,; is the effective detector area. A4Q; is the solid angle, @, and g, are the mean

azimuth and zenith angle of the i-th bin, respectively. E.,; ;, called the cutoff-energy, describes the energy needed for a muon

to traverse the geological object and to enter the detector. A4A,;;; has to be scaled by the cosine of the angle between the

bin direction and the detector facing direction, which can be calculated using the formula for a scalar product,

%é@—@i—} 7q T;un((ﬂl i)
AAgpri = AA * Wt @ 0ot 17all| 7 in (080 ®
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where #7,; is the normal vector to the detector surface and %ﬁl,m(@, 91') is the mean vector of muon incidence within the i-

th bin, both of which can be chosen to feature unit length. Evaluating the scalar product in spherical coordinates, Eq. (3)

yields
AlAgpp; = AANA * [sin(8,) sin(8;) cos(pq — @) + cos(8,) cos(B;)]. 4)

Here, 6, and ¢, are the zenith and azimuth angles of the detector facing direction. It is important to note that except for
E.,.; all variables in Eq. (2) are predetermined by the experimental setup (AF-AAAT, AA) as well as by the data processing

(@;, B;), such that the number of muons Nﬂ—ﬁﬁN sim Can be interpreted as a function of one variable, E,.; only.

ﬂ:l%

2-20ne final tweak can be made to render Eg. (2) more accessible for future uses. We may rewrite the right-hand side of Eq.

(2) in terms of a flux,

© do

®i(Ecur) = [, 5 (E.0)) dE, (5)

and an exposure

AE; = AT * A5 (§,,6,) * AQ,.. (6)

In this case, the number of number of muons in the i-th bin may be expressed by

Ny,i(Ecut,i) = q)i(Ecut,i) * Agi - (7)

2.3 Muon transportation model

Since muons permanently lose energy when travelling through matter, they also need a certain amount of energy to enter the

detector.

—If the detector is now positioned
underground, the muons have to traverse more matter to reach the detector and consequently need a higher initial energy to

reach the target.

detector—For the goal of studying the interactions between particles and matter, physicists regularly use energy loss models.

We base our calculations in large parts on the equations of Groom et al. (2001), where the energy loss of a muon along its

path is described by an ordinary differential equation of 1 order,
—%=p(x)*[a(x,E)+E*b(x,E)]. (58)

In Eq. (58), p denotes the density of the traversed material, and-a and b are the ionisation loss and radiation loss parameters

respectively, and x _is the position along the trajectory. The radiation loss parameter groups the effects related to the

bremsstrahlung, by,ems, the pair-production, by, and the photonuclear interactions, bypo,, Where
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b(xr E) = bbrems(xt E) + bpair (x, E) + bphoto (x' E) (69)

Each of the radiative process is, in turn, calculated through
Nt dek, _ Nal dog
b= vt = S [ v v, 710

where k<K € K = {bremsstrahlung, pair-production, photonuclear} is the set of radiative processes, N, is Avogadro’s
number, A is the atomic weight of the traversed material, v is the fractional energy transfer, and der/dwdoy/dv the
differential cross-section of the process. Eq. (#10) becomes important when modelling errors have to be included (see
ChsSect. 3). For a detailed discussion of the equations for a and b we refer to Groom et al. (2001). The only exception in Eq.
(69) is bpq;r, Which is calculated after GEANT4 (Agostinelli et al., 2003). We selected the solution of these latter authors
because it is computationally less time consuming. As the two results agree within 1-%, we deem it acceptable to exchange
the two differential cross-sections.

Because Eq. (58) describes the energy loss in response to the interaction with a single-element material, certain
modifications have to be made to make it also valid for rocks, which in this context represent a mixture of minerals and
elements. In this case, the modified equation takes an equivalent form to Eq. (58) when replacing p, a, b with their mixture

counterparts {p},ock, {a}rockr {b}rock (LEChmMann et al., 2018), thus yielding

_Z_i = {p(x)}rock * [{a(x’ E)}rock +E * {b(x, E)}rock] . (8&)

We show in Appendix B3 how the rock model (explained in ShSect. 2.34) can be used to determine these quantities.
By applying a change of variables to Eq. (811), i.e. x' = —x, the energy loss equation can be transformed to an energy gain
equation. This has the advantage of being much easier to solve than the “final value problem” in Eq. (811). We can

reorganise Eg. (811) into an initial value problem by setting the initial energy to Ej,

Z_i = {p(x)}rock * [{a(x’ E)}rock +E* {b(x: E)}rock] (Qﬁ)
E(0) =E,.

In this context E, is the minimal energy needed for a muon to penetrate the detector, which can be influenced by the detector
design. Equation (912) is a well-investigated problem that can be solved by numerous methods. In our work we employ a
standard Runge-Kutta integration scheme (see for example Stoer and Bulirsch, 2013), with a step size of 10 emcm. As a

result, it is now possible to write the cut-off energy in a functional form, where
Eeuti = Tk(¥:Ly, B, 0) - (1013)

Here rk(-) is the function that returns the Runge-Kutta solution of Eq. (912) for defined thicknesses of materials, #L;, with
densities p and compositional parameters ¢. Thickness and density are allowed to be vectors, as there may be more than just
one material. In this case, the final energy, after the muon has passed through the first segment of materials, is the initial
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energy for the second segment, etc. In order to speed up the computations — especially the calculation of the pair production

cross-section, which includes two nested integrations. — we utilise customised energy loss tables. In particular, a log-log

table of muon energy vs. radiation loss parameters is produced, from which the b-values, see Eq. (#10), can be interpolated.
We justify this approach because the radiative losses are almost linear in a log-log plot, as can be seen in Fig. 33.1 of
Tanabashi et al. (2018, p.447) for the example of copper. The general shape of the energy loss function remains the same for

various materials even if the absolute values differ.

2.34 Rock model

Equation (2013) shows that for the calculation of the cut-off energy two types of material parameters are required, which are
the material density g and its average composition ¢. The pre-tabulated values from Groom et al. (2001), however, include
only pure elements as well as certain compounds. To extract the relevant parameters in a geological setting, a realistic rock
model is needed. In an earlier work (Lechmann et al., 2018) we have shown how an integrated rock model can be
constructed and how the physical parameters for a realistic rock can be retrieved. In the present work we generally use the
same approach, apart from a few aspects. First, we measured the average material density directly in the laboratory, using
various techniques which are explained in detail in Appendix B1. Second, in order to be able to compare the results of this
study with the ones in the Nishiyama et al. (2017) publication, we consider a rock composition that corresponds to a density-
modified standard rock. This is applicable, as the rock in the study of Nishiyama et al. (2017) is mostly of granitic/gneissic
origin, with thicknesses rarely larger than 200 m, with the consequence that the differences are negligible. However, as the
inclusion of compositional data is a planned feature for a future version of our code, we decided to include the theoretical
treatment in this work. Hence, all equations are tailored to include the statistical description of such data. Compositional data
for whole rock samples, which can be scaled to outcrop scale, are usually presented in one of two forms, the first being the
measurement results of X-Ray Diffraction (XRD). This kind of data yields the mineral phases within a rock. Unfortunately,
XRD is a rather time-consuming method. This is the reason why in muon tomographic experiments researchers often resort
to a bulk chemical analysis of the rock, which is the second form of compositional data. This type of data is usually the
output of dedicated X-Ray Fluorescence (XRF) measurements, describing the bulk rock composition by major oxide
fractions. We note here that by the absence of information on the spatial distribution of mineral phases within a rock, we
implicitly infer a homogeneous mixture of elements within the rock itself, which is thus different from our previous work
(Lechmann et al., 2018). From a particle physics perspective this does not pose a real problem as the difference to a mixture
of minerals is rather small. Nevertheless, we lose the power to obtain meaningful inferences that could be drawn if
compositional information is being considered. As the present work aims to infer positions and uses material parameters as
constraints, we can accept this drawback. Details on how compositional parameters are derived from XRF measurements,
including an example, can be found in Appendix B2, and an explanation of the related influence on the energy loss equation

in Appendix B3._Additionally, we assume that the density of the rock (and also the ice) is homogeneous throughout the

imaged geological body. This is, of course, a simplification as there might be weathering processes that change the density of
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the rock at various locations. The same is true for the ice body, which might contain crevasses. As we used this

approximation already in Nishiyama et al. (2017) and since we intend to compare the calculations in this study with the

earlier one, we will retain the assumption of homogeneity for the densities and compositions.

2.45 Spatial models of detectors and materials

In addition to the above explained physical models, we may also utilise available spatial data for our purposes. In this
context, the use of a digital elevation model (DEM) of the surface allows the visualisation of the position of the detectors
relative to the surface, as well as the spatial extent of the bins. Additionally, it allows us to determine the location where
these bins intersect with the topographic surface. As a first deliverable, we can draw conclusions on which bins consist of
how many parameters. For example, if we know that the detector is located underground and that there is ice at the surface,
we can already infer the existence of at least 2 materials (rock and ice). For this purpose, we wrote the script
“modelbuilder.py”, which allows the user to attach geographic and physical information to the selected bins. This process of
building a coherent geophysical model is needed for the subsequent employment of the inversion algorithm to process all the
data.

3 The inverse model: A Bayesian perspective

As stated in the Introduction, we solve the inversion by using Bayesian methods. This needs an explanation as to why we
chose this way and not another. First, the equations in ShSect. 2 enable us to calculate a synthetic dataset for fixed parameter
values. There, one can see that the governing equations constitute a nonlinear relationship between parameter values and
measured data. Despite this being of no particular interest in the forward model, the estimation of the parameters from
measured data is rendered more complicated. Among muon tomographers, linearised versions have been extensively used
with deterministic approaches (e.g. Nishiyama et al., 2014; Rosas-Carbajal et al., 2017), which are successfully applicable
when the density or the intersection boundaries are the only variables. When deterministic approaches are viable, they
efficiently produce good results. Descent algorithms or, generally speaking, locally optimising algorithms, offer a valid
alternative, as they could cope with the nonlinearity of the forward model, while including all desired parameters. Even
though-theseOne difficulty of such algorithms sufferfrem-possibleis that in the case of non-uriguenessunique solutions (i-e-
the-which occur when there are local minima that might be a solution depends-heavily-onto the starting-medel—possibly
yielding-multiple-solutions);optimisation) the mainuser has no constraints to infer if a local or the desired global minimum

has been reached. A further problem_of descent methods is the calculation of the derivatives of the forward model with

respect to the parameter values. The analytical calculation of the derivatives is enormously tedious because the cut-off
energy results from a numerical solver of a differential equation, as can be seen in Eq. (9)-&(10612) & (13). Unfortunately,
numerical derivatives do not produce better results, because they might easily produce artefacts, which are hard to track

down. This is especially true if the derivative has to be taken from a numerical result, which is always slightly noisy. In that
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case the differentiation amplifies the “noise”, resulting in unreliable gradient estimates. A good overview over deterministic
inversion methods can be found in Tarantola (2005).

The reasons stated above and our goal to include as much information on the parameters as possible nudges us towards
employing probabilistic methods. Those approaches are also known as Bayesian methods. The main feature that
distinguishes them from the deterministic methods described above is the consistent formulation of the equations and
additional information in a probabilistic way, i.e. as probability density functions (pdf). This allows us to (i) incorporate, for
example, density values that were measured in the lab (including its error), (ii) set bounds on the location of the material
interface, or (iii) define a plausible range for the composition of the rock. All these changes act on the pdf of the respective

parameter and naturally integrate into the Bayesian inversion. We have to add that Bayesian methods do not solve the non-

uniqueness problem, but they provide the user with enough information to spot these local solutions of the optimisation.

Readers may find the book of Tarantola (2005) very resourceful for the explanation and illustration of probabilistic
inversion. Several studies in the muon tomography community have already employed such methods with success (e.g.
Lesparre et al., 2012; Barnoud et al., 2019).

The flexibility of being able to include as much information on the parameters as we consider useful comes at the price of
having to solve the inversion in a probabilistic way. This can either be done using Bayes’ Theorem and solving for the pdfs
of the parameters of interest, or if the analytical way is not possible by employing Monte Carlo techniques. As the presence
of a numerical solver renders the analytical solution impossible, we resort to the Monte Carlo approaches. In the following
sections we guide the reader through the various stages of how such a probabilistic model can be set up, how probabilities

may be assigned, and how the inversion can finally be solved.

3.1 Probabilistic formulation of the forward model

The starting point for a probabilistic formulation is denoted by the equations that were elaborated in ©hSect. 2. These
deterministic equations need to be upgraded into a probabilistic framework, where their attributed model and/or parameter
uncertainties are inherently described. In the following paragraphs we describe how each model component can be expressed
by a pdf before the entire model is composed at the end of this subchaptersection. The model is best visualised by a directed
acyclic graph (DAG), i.e. see Kjaerulff and Madsen (2008), that depicts which variables enter the calculation at what point.
For our muon tomography experiment this is visualised in Fig. 3. In the following the pdfs are denoted with the bold Greek

letter 7 to differentiate them from normal parameters.
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Figure 3: Directed acyclic graph (DAG) for the problem of muon tomography. Variables in a square (o) denote fixed, i.e. known
values and variables in a circle/ellipse (o) are generally unknown and have to be represented by a pdf. Solid arrows (—) denote a
deterministic relation, i.e. within a physical model, whereas dashed arrows (-») indicate a probabilistic relationship, i.e. a
parameter within the statistical description of the variable. g, ¢ are the density and composition for different materials, whereas
F=sD ) CONtains the errors on the physical-cross-sectionsdifferent processes in the energy-loss equation. o describes the error on

the cosmic-ray flux model. Within each cone, #;L; isdenote the pesitienthicknesses of the—bedrock-rock and ice

- o —

interfacerespectively, M(x;L;, B, ¢, @.s) is the calculated flux (i.e. energy-loss model and flux model combined), f; the actual muon
flux and d; the observed number of muon tracks.

3.1.1 Muon data

The data in muon tomography experiments are usually count data, i.e. a certain number of measured tracks within a
directional bin, which has been collected over a certain exposure time and detector area. As the measured number of muons

is always an integer, we may model such data by a Poisson distribution,

&y

1 N N%i =Ny i
AN =T (14 (di|N ):M
1tV J i AN Mt d;! =2
dt !

(14)

where d; denotes the measured number of muons in the i-th bin and A; N, ; is the poisson parameter in the same bin, which
can be interpreted as mean and variance of this distribution. Equation(11)According to Eq. (7) we may be-rewrittenrewrite
Eq. (14) in terms of a flux, £byf,

4 1f) o FrbbrpHe=titEad (raz)die=Uite) (12
m(dilfy) = - —
(15)

- flusc i . )
AEyv. — AA + AT « AQ (120
Al = A A AL a3y

The variable here is explicitly denoted f; to emphasise that it is not the exact calculated flux, @, from before but a separate

variable subject to uncertainties. These two variables will be linked with each other in the next subsection.

3.1.2 Flux model

The next step is to set up a probabilistic model for the muon flux. First, we observe that “flux” is a purely positive parameter,
i.e. f; € [0,00). Thus, it is natural to model it by a lognormal probability distribution if estimates of mean and variance are

readily available. The uncertainty on the muon flux is generally taken around 15% (e.g. Lechmann et al., 2021a) of the mean

value. As it is possible, by Eq. (25), to calculate a flux for a given cut-off energy, which we interpret as the mean of the non-

logarithmic values, the parameters of the lognormal distribution (i.e. u, ,o-fzi) may be expressed by
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2 2
o =in (1 + (Ff‘g‘m’% et ) )m <1 + (%) >= In(1.0225) (1416)

and

m@%}—ln(@ (Ecutt)) - Tf' (+517)

which yield the probability density function for the flux, conditional on the cut-off energy

- - z L (fi)_ '(Ecu ,i) 2
(i) = ) = i o (322 a3 ()

(18)

3.1.3 Energy loss model

The energy loss model has multiple sources of errors that have to be taken into account. Most notably, the relative errors on

the different physical eress-sectionsenergy loss processes are given by Groom et al. (2001) as €;,, = 6-%, Eprems =

1-%, &pair = 5%, Epnotonuct = 30-% . As it is not clearly stated as to what this error relates to, i.e. one or more standard

deviations, we interpret an error like €;,,, = 6-% as: “within a factor of 1.06”, which can be written as

S& Dk
e (1ten) <P <-oxp(1+ &), (#719)

where k € K = {ionisation, bremsstrahlung, pair-production, photonuclear}-} runs through all energy loss processes,

including ionisation losses and p;,, = @, Dprems = Dorems: Ppair = Ppair» Pproto = bproto_denote the respective energy loss

terms from Eqg. (12). Dividing this inequality by o, and taking the logarithm yields

—In(1+¢&) <0<In(1+ g). (2820)

Thus, we may attribute a Gaussian pdf in the log-space for a “log-correction factor, lep,” by setting its mean to zero and its

standard deviation to In(1 + &), i.e.

1/ leg \?* 1/ 1 2
w100 = G o A~ (3 () ) (921)

With a change of variables, using the Jacobian rule as explained in Tarantola (2005), we get

)= : (_x( tnter \*

P T2 avn \ (200
Tt O 7 exp \ PR\ y) }, £

(0 = 1 ln(pk) 2 22)
TPk) = V2 *pg*In(1+eg) €xp 1n(1+£k)
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the lognormal pdf for the correction factor. The pdf for the cross-sectionenergy loss uncertainty méé=)(p,;) can now be
written as a product of the four different pdfs described by Eq. (2622)

(6} (Per) = Hrer o0 [lkex (i), (2423)

as the errors of the physical-eross-sectionsindividual energy loss processes are stochastically independent from each other.

The calculated energy loss depends also on the material parameters and subsequently on their uncertainties. However, these
will be explained in detail in CShSect. 3.1.4. A last erroruncertainty enters by the numerical solution of the ordinary
differential equation, Eq. (212). We decided not to model this error, as its magnitude is directly controlled by the user (by
setting a small enough step length in the Runge-Kutta algorithm) and thus can be made arbitrarily small. Lastly, we assume
that all the errors in the energy loss model are explained by uncertainties in the eross-sectionsenergy loss terms as well as in
the material parameters. Although this assumption is rather strong, since it excludes the possibility of a wrong model, we
argue that this approach works as long as the variation in these parameters can explain the variation in the calculated cut-off

energy. If this requirement is met, we may model the pdf for the energy loss model as a delta function,

n(Eeu-&eiées: ,5, :! x;) = 5(‘5@&{—,5 rk (595! I’j’ :r XJ),(ZZ (Ecut,i |ﬁel! ﬁ' 5' Li) = S(Ecut,i - rk(ﬁel' ,5! 5! Lz)) 1
(24)
where é—={(6:)0., = (px), p is the vector of all material densities, ¢ is the vector of all compositions and #;L; is the vector

of thicknesses of segments used in this cone. It is now already possible to eliminate E,, ; as a parameter by first multiplying

Egs. (16)-&12218) & (24), which yields
T(fy, Ecut il Ges) Br E%6:L) = T(fil Ecur) * T Ecertbeerfrérse)(Ecue i Per, .6, L1). (2325)

From this expression it-is-pessible-toone can then marginalise the parameter E,,, ;, by simply integrating over it, i.e.

mifderpre)(filPew, 5. €, L) = S lfBameetberPréred [ 0(fy EcutilBer . €, L) dEcu,i - (2426)
Due to the presence of the delta function in Eq. (2224), this integral is solved analytically resulting in
o Bty = (Flon 5,6 L) = — - [ 1o <_l<1n(fi)—ﬂfi(‘rk(ﬁel'ﬁ.f,zi))>2>’ 5
w0y, \ 2\ e / 2 o
where the parameters are given by
of =tn (1 + (W)z) In (1 + (%)2) = In(1.0225) (2628)
and
2. — 0'2.
ty, =GB —LIn(M (5.5, ¢, L)) — L. (2729)
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Please note that M{(&espr6-%3M (Do, , C, Zi) = E®;(rk(é=P., B, €,%:L;)) describes the combined parts of the forward

model that include the energy loss and the integrated flux calculation, which is basically a compaosition of functions.

3.1.4 Rock model

The density model can take different forms of probability densities (see Appendix B1), such as normal, lognormal, uniform,
etc. For either form, it is possible to describe it by a generic function (), which is a short version for a multidimensional
pdf, i.e. (pice, Prock) If the i-th cone is known to consist of two segments with two specific densities. Equivalently, the pdf
for the composition (see Appendix B2) is either fixed or a multidimensional Gaussian distribution in the space of log-ratios.
Thus 7r(¢) can be split up to (c;ce, Crock), like in the example above. Generally, we may assume that in our problem j
different materials exist. We note here that the description of the composition is already probabilistic. However, the
inversion in that case is not functional and works only with the mean values of the multidimensional Gaussian. The support

for composition inversion is planned for a future version of the code.
The situation for the thicknesses of the segments, n@@(zi), within the i-th cone presents itself in a similar way as for the
compositions (e.g., Fig. 1). AsWe know the total materiat-thickness-is—knewn—{, due to our information on the detector

position and the surface position from digital elevation models-are-given)—the-sub-space-containing-the-thickness-parameter
is-endowed-with-the-same. Thus we have, equal to the compositions’ weight fractions (that add up to 1), a sum constraint

(i.e. the sum of lengths of all segments must equal the total distance from the detector to the surface). The mathematical

structure asof the ene-containing-the-compesition-parameter {~e—one-sum-constrainty—sub-space is consequently the also

the cone-censists-of-mere-thanjust-one-segmentsame. One can therefore safely assume that the thickness parameters Hwecan
be presented in a log-ratio space, within which we a-priori possess no additional information-abeut-the-parameters. Thus, we

attribute the thickness parameters a multidimensional uniform distribution within the log-ratio space.

3.1.5 The Joint probability density function

With the help of the DAG, introduced in Fig. 3, it is now straightforward to factorise the joint probability distribution for the

whole problem, as their structure is equal. This results in

@8——(d, f,Bor, .6, L) = [T1rcem m(di| fOm(f| s, B, ¢, L) (L)] * [TImetma () (c)] * Tiex (011 ,
(30)

or equivalently (and this will also be of a much better use later on) the log joint pdf
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— (d.f,Per B, 6 L) = [Sicmes ta(dilf;) + U (filBer, 3,6, L) + be(Ly)] + [Zmarerie bw(py) + r(cn)] +
[Xkex t(pi)]. (31)

where the prefix "l" denotes the logarithm of the pdf. This has the benefit of reducing the size of numbers that the code has
to cope with. Moreover, many computational statistics packages already have this feature included, which renders it easy to
use.

Equation (2830) depicts the full joint pdf. However, the relations between the parameters, as shown by the DAG (see Fig. 3),
classify this model as a hierarchical model (Betancourt and Girolami, 2013). The key characteristic of such models is their
tree-like parameter structure, i.e. the measured number of muons is related to the thickness or the density of the material by
the flux parameter only, which “relays” the information. A central problem of such models is the presence of a hierarchical
“funnel” (see Fig. 2 & 3 of Betancourt and Girolami, 2013), which renders it very difficult for standard MCSMEMonte Carlo
methods to adequately sample the model space. In high-dimensional parameter spaces this problem exacerbates even more.
Our aim to provide a simple and easy-to-use program somewhat contradicts this necessity of a sophisticated method (which
inevitably requires the user to possess a strong statistical background). As the main problem is the rising number of
parameters, it should be possible to mend the joint pdf by imposing thought-out simplifications.

We first get rid of the flux parameter, as for our problem it merely is a nuisance parameter. This is an official term for a
parameter in the inversion which is of no particular interest but still has to be accounted for. Here-specificattySpecifically

we mean that even though the calculation of the muon flux is important, we do not want to treat it as an explicit parameter

that is simulated by the code. To achieve this, we integrate over all possible values of the muon flux, £ within its uncertainty;

se-that and we can relate the results of the energy loss calculation (encoded in pf,; see Eq. 2729) directly to the measured

number of muons, d;. This effectively reduces the number of parameters and thus the number of dimensions of the model

space. This can be achieved by marginalising the flux parameter out of the joint pdf,

Tl esr pr &)= A f s pré %) -f (30 (d, e, $,6,L) = [ 7(d, f,Per, B, ¢, L) df .
(32)

This effectively reduces to a problem where the new likelihoods have to be calculated (as d; is given)
néd'fl'%é’_%(dJﬁEl’ ﬁ! E! Ll.) = f n(dllﬁ)n%é)ﬁé'_%(fJﬁel’ ﬁ' a Ll.) dfl' (3_1'&)
or fully,

(412 2222 rwéﬁé%ﬂejfﬁ*ﬁ 1 (d|-> _>_>Z)
O Pre X — i nt(d;|Per, P, C, Li) =

Y% P T/ Ja g X . i|Fe i

o (f ;06 %ie~(FiAE) 1 IVLIDETAY
fO d;! V21 * fj * of; €xp 2 af; dﬁ ’ (3—2&)

24



550

555

560

565

570

575

wherewhich is a multiplication of Egs. (15) and (27). In Eq. (34), uy, and o7, are given by Eqs. (2628) and (2729),

respectively. This integral is not solvable analytically but can be evaluated by numerical integration schemes. The likelihood
has a maximum when the Poisson and the log-normal pdfs fully overlap. Interestingly, this directly shows the trade-off
between the flux model uncertainty and the data uncertainty. Usually, we want to measure enough muons so that the
statistical counting error is smaller than the systematic uncertainty of the flux model (i.e. the width of the Poisson pdf is
smaller than the width of the log-normal pdf). This can be controlled directly by the exposure of the experiment, via a larger

detector area, a coarser binning, or a longer exposure time. A guide how such a calculation may be done (especially when

planning a measurement campaign) can be found e.g. in Lechmann et al. (2021a).

This marginalisation roughly halves the number of parameters, but there is still another simplification, which we may use.
Many muon tomography applications deal with a two-material problem, while there may also be measurement directions
where only one material is present. If we conceptually split those two problems and solve them independently, it is possible
to further reduce the number of simultaneously modelled parameters. In the study of Nishyiama et al. (2017), the results of
which we will use later, these two cases encompass bins where we measured only rock and others where we know there is
ice and rock. The joint pdf for rock bins subsequently is

wld & o e V=T eomes g 12 4 e Nemlo Ngle Ve __mls) (33 (d Crock) =

O Procks troek) TIi=x 1t 519 Proek troek/ 1t Proek/ P\ ok TIReg 1t 0K /7 (OO \ @, Pel» Prock» Crock
NZSEKS 413 5

Hi:1 7(d;|Pers Procks Crock) | * T(Prock) T (Crock) * [Tkex T(Pi)]. (35)

which leaves the problem effectively with only a handful of parameters. Solving Eq. (3335), for the rock density we retrieve
T (Proci), the posterior marginal pdf for the rock density. We refer the reader to ChSect. 3.2 for the details of how to solve
this inverse problem. Theoretically we could also retrieve 7 (p;.. ), but this would require the detector to be positioned within

the glacier

which poses more of a practical difficulty than a mathematical one.

For the second problem, we can interpret 7 (o, ) as the new prior pdf for the rock density. At this point we employ one last
simplification by assuming that the parameters between different cones are independent form each other. This is a rather
strong presumption, which must be justified. The main mathematical problem lies in consideration of the hierarchical nature
of the density parameter, which is the same for each cone and therefore not independent in different cones. We, however,
argue that in cones with two materials, there are more parameters than in bins with only rock, such that we may expect the
posterior pdf of the rock density of these second kind of models to be less informative than the posterior rock density pdf of
Eq. (3335). This, in turn, means that the posterior rock density pdf of the two-material model largely equals the prior one if
we select the posterior of the first kind of models as the prior of the second kind of models. The same is valid for the
composition ¢; and the eross-sectionenergy loss error parameters ¢=p,;. As long as this assumption is valid, we may

decompose the joint pdf into independent joint pdfs for each cone
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Our inversion program enables the user to choose the type of model parametrisation, which is either the full hierarchical
model given by Egs. (28)-&-2930) & (31), or the simplified single-cone-bin inversion model (“Sicobi”’-model) given by
Egs. (33)-&3435) & (36).

3.2 Solution to the inverse problem

Usually in Bayesian inference, the goal is to calculate the posterior pdf, given the measured data, i.e. the quantity
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(37)

This can be interpreted as the inferences one may draw on the parameters in a model given measured data. The denominator

on the right-hand side of Eq. (3537), also called the “evidence”, can be rewritten as the data marginal of the posterior, i.e.

n(d) = [ [ [ [ nld6:5563(d, o, p,C, L) dé=sPo dP AT d#+36 L B}

(38)

As Eq. (36) basically describes an integration over the whole model parameter space, this may become such an extensive
computation (especially when the number of model parameters is large), that it cannot be solved in a meaningful time.
However, as the evidence usually is a fixed value, the left- and right-hand side of Eq. (3537) are merely scaled by a scalar
and are thus proportional to each other, i.e.

(P15, ¢, L|d) < 7t(d, Per, B, €, L). (39)
(3 323N ocmld g 3 2% (27
(G pre it o aa{di G prcr i) 37

This is the starting point of Monte Carlo Markov Chain (MCMC) methods.

3.2.1 The Metropolis-Hastings algorithm

The basic MCMC algorithm, which we also use in this study, is the Metropolis-Hastings (MH) algorithm (Hastings, 1970;
Metropolis et al., 1953), which allows for the sampling of the joint pdf to obtain a quantitative sample. We note, however,
that many different MCMC algorithms exist for various purposes and that the MH has no special status except for being
comparatively simple to use and implement. An example of another MCMC algorithm in muon tomography can be found in
Lesparre et al. (2017). The authors used a simulated annealing technique on the posterior pdf in order to extract the

maximum a posteriori (MAP) model. As every simulated annealing algorithm has some type of MH-algorithm at its core, we
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directly use the MH-algorithm in its original form such that we not only retrieve a point estimate but a pdf for the posterior
parameter distribution. The algorithm is explained in detail by Gelman (2014), such that we only provide a short pseudo-
code description.

Algorithm 1-(Metropolis-Hastings):

(1) Draw a starting model, i, = (5@;3@[,0,50,50,%20), by drawing émﬁel_o,ﬁo,c?o,igfo from their respective prior

pdfs and determine the log-pdf value of this model

(2) Until convergence:

a.  Propose a new model according to i, = 1, + c2J (8,250, S), where S-is-the-matrix-of priorvariances
and-c = 2.4/v/D andin which D is the number of parameters:, and c21(6, S)_is a model change drawn

from a multidimensional Gaussian distribution with mean vector of 0 and covariance matrix of S (i.e.

matrix of prior variances of the model parameters)

b. Evaluate log-pdf value of mi,,,, and calculate the odds ratio:
70 = exp(lp(Mpew) — Ip(My))

c. Evaluate the acceptance probability, p, = min (1,#0) and draw a number g from the uniform distribution
u(0,1).

d. Ifq < py:sample M, & Set My, — My,

Else: sample 7,

The advantage of this algorithm, compared to a “normal” sampling, lies in its efficiency. It is often not possible, or even
reasonable, to probe the whole model space, as the largest part of the model space is “empty”, where the pdf-value of the
posterior is uninterestingly small. The fact that regions of high probability are scarce, and this becomes worse in high
dimensional model spaces, is known as the “curse of dimensionality” (Bellman, 2016). MCMC algorithms (including the
here presented MH-algorithm) allows one to focus on regions of high probability, and therefore we are able to construct a
reliable and representative sample of the posterior pdf. We again refer to Gelman (2014) for a discussion of why the MH-
algorithm converges to the correct distribution and why we may use samples that were gained this way to estimate the

posterior probability density.

3.2.2 Assessing convergence, mixing, and retrieving the samples

The above stated advantages, however, come at a price. First and foremost, we must ensure that the algorithm advances fast
enough, but not too fast, through the model space. This is mainly controlled by the proposal distribution J(0,<2%S), which is
taken to be a multivariate Gaussian distribution. Ideally, the covariance matrix of the proposal distribution S is equal to the
covariance structure of the posterior pdf. We acknowledge that at the start of the algorithm one generally has no idea what

this looks like, but we assume that a combination of the prior variances is a reasonable starting point. After a certain number
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of steps, it is possible to approximate the covariance matrix of the proposal distribution with the samples taken up to at this
point.

A second crucial point is the presence of a warm-up period. The starting point, which usually lies in a region of high prior
probability, does not necessarily lie in a region of high posterior probability. The time it takes to move from the latter to the
former is exactly this warm-up. This can usually be visualised by a trace plot, e.g. Fig. 4, in which the value of a parameter is
plotted against the number of iterations. After this warm-up phase, the algorithm can be run in operational mode and “true”

samples can be collected.

28



Warm up

3.6 A

3.4

3.2 A

3.0 A

2.8 1

2.6 1

2.4 1

T T T T T T T T
0 50 100 150 200 250 300 350 400 450 500

Warm up

3.6

® Chain 1
@ Chain 2

Material density [g cm™]

T

0 50 100 150 200 250 300 350 400 450 500
# of steps

Figure 4: Example of a trace plot (2 independent chains; blue and orange) of a MH run with 500 draws. This plot shows the
parameter value (y-axis:-here material density-in-g-em=2)) vs. # of steps-(x-axis) of a collection of cones in which we (Nishyiama et
650 al., 2017) knew that only rock is present. This is a calculation that is included in the code base. The warm-up phase of this MH
algorithm takes roughly 150 simulations indicated by the subsequent oscillation around a parameter value of ~2.7 —

2.8 g-em—3g cm~3.
As in a Markov Chain the actual sample is dependent on the last one, we need a criterion to argue that the samples created in

that way really represent “independent” samples. Qualitatively, we may say that if the Markov Chain forgets the past
655 samples fast enough, then we may sooner treat them as independent from each other. Gelman (2014) suggests that in order to
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assess this quantitatively, multiple MH-chains could be run in parallel and statistical quantities within and between each
chain are analysed. For a detailed discussion thereof, we refer the reader to Appendix C.

Once a satisfying number of samples has been drawn from the posterior pdf, a marginalisation of the nuisance parameters
can be done by looking at the parameters of interest only. These samples may then be treated like counts in a histogram, i.e.

distributional estimates, or simply the interesting statistical moments, such as mean and variance, can be obtained.

3.3 Construction of the bedrock-ice interface

The main analysis programme allows us to export all parameters either as a full chain dataset, where every single draw is
recorded, or as a statistical summary (i.e. mean and variance). Both are then converted to point data, i.e. (X, y, z) — data. For
the subsequent construction of the interface between rock and ice (see seetion-5-2Sect. 4 and Fig. 1 for the presentation of the
test experiment) we only need the full-chain point-data. In the present study we restrict ourselves to a probabilistic
description until the bedrock positions within a cone. It would also be possible to treat the bedrock construction within a
Bayesian framework, however this would go beyond the scope of this study and is therefore left for a future adaption of the
code. Nonetheless, in order to construct a surface, we rely on deterministic methods, which are explained in detail in what

follows.

3.3.1 Interpolation to a grid

The “modelviewer.py” routine is able to read datasets from different detectors (which are saved as JSON-files) and computes
for each cone the statistic, which the user is interested in (see “sigma” entry in program). Thus, it is possible to use the mean
or, for example, the +1 o position of each cone. From here onwards this point cloud is named H and contains one interface
position (X, y & z coordinates) per cone. These are shown as triangles (A ) in Fig. 5.

As a second step, the programme interpolates this point cloud in a bilinear way to a rectangular grid with a user specified cell
size, A.. This grid can be described by a matrix P € R=€ RNrow*Ncol where £N,.,,, and €N, are the number of rows and
columns (i.e. the number of y- and x-cells, needed to cover the whole grid). The procedure is similar to the bilinear
interpolation of Lagrangian markers (that carry a physical property) to a (fixed) Eulerian grid in geodynamical modelling
(see Gerya, 2010, p. 116), with the difference that our physical property is the height of the ice-bedrock interface (Fig. 1).
We could also have fitted a surface through the resulting point cloud. However, by formulating this surface as a matrix we
gain access to the whole machinery of linear algebra. Moreover, P can directly be interpreted as a rasterised DEM, which
can be easily loaded and visualised in any GIS software. Thus, from a modular design perspective we think that the matrix

formulation has more advantages than drawbacks. The bilinear interpolation is shown in more detail in Fig. 5.
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Figure 5: Two-dimensional stencil, used to summarise the bilinear interpolation of interface positions within cones (H;H;, A) to a
fixed grid (P;P,,, m) with a user-defined cell size A,. Every interface position within a £A, interval contributes to the grid

height P,.,.
In order to calculate the height at a grid point, 2P, ,, one has to form a weighted sum over the entire cone interface positions
690 withina +A_ interval, i.e.
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where H; is the height of the bedrock-ice interface in the i-th cone and the weights, ww;, are given by
Ax; Ay;
(1-29)+(1-2). (L)

695 wy = (1 f:) = (1 ‘iy;) -In Eq. (41), Ax; and Ay, are the horizontal and vertical distances from the interpolated grid
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3.3.2 Damping & Smoothing

The concept of damping usually revolves around the idea to force parameters to a certain value (e.g. in deterministic

700 inversion by introducing a penalty term in the misfit function for deviations from that value). From a Bayesian viewpoint this
would be accomplished by setting the prior mean to a specific value. In our code we implemented this idea by allowing the
user to read a DEM and a “damping weight” to the code (see “fixed length group” in code). The programme effectively
computes a weighted average between the bedrock positions within the cones and a user defined DEM. The higher the
chosen damping weight, the more the resulting interface will match the DEM, when pixels overlap.

705 The matrix formulation also enables us to use a further data processing technique without much tinkering. As geophysical
data are often quite noisy, a standard procedure in nearly every geophysical inversion is a smoothing constraint. This
effectively introduces a correlation between the parameters and forces them to be similar to each other. From a Bayesian
perspective, we could have achieved this correlation by defining a prior covariance matrix of the thickness parameters, such
that neighbouring cones should have similar thicknesses (which makes sense as we do expect the bedrock-ice interface to be

710 relatively continuous; Fig. 1). As we work with independent cones in this study, we leave the exploration of this aspect open
for a future study. Nevertheless, we offer the possibility in our code to use a smoothing on the final interpolated grid. This is
achieved by a convolution of a smoothing kernel, K (see Appendix D for details), with the surface matrix P, which results in

a smoothed surface matrix

715 Please note that the < operator in Eq. (4642) denotes a convolution. In index notation the advantage of the linear algebra

formalism becomes clear, as PS can be expressed by

S _ S —§'S s
Ty vk——s vl——s V#H—SA-—I—HSA—-} TG+ P Zk:—sz =-S5 Kk+s+1,l+5+1Pr+k,q+l : (43)
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The user is free to choose the number of neighbouring pixels, s, across which the programme performs a smoothing. As a
720 related matrix we use an approximation to a Gaussian kernel, which corresponds to a Gaussian blur in image processing.

Whereas “smoothing” is a general term used in the geophysical community where such a process is used with an aim to

force a correlation of parameters, in our case where the parameters describe a surface (Fig. 1), the convolution effectively

smooths the surface, i.e. removes small-scale variations.

Finally, we added a checkbox to our code to allow it to change the order of the damping and smoothing operations.

725 Sometimes when a strong damping is necessary, this may result in rather unsmooth features at DEM boundaries, such that it

makes sense to perform a smoothing only afterwards.
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In this part we test the presented reconstruction algorithm on previously published data. For this purpose, we compare our

calculations to the ones already published in the study by Nishiyama et al-. (2017), where the goal was to measure the
interface between the glacier and the rock, in order to determine the spatial distribution of the rock surface (also below the
glacier). We-could-aceess- This study was conducted in the RaiwayTFunnel-to-instalCentral Swiss Alps in a railway tunnel
that featured a glacier (part of the muon-detectors-beneath-the-ice-Great Aletsch glacier) above. A situation sketch is shown

in Figs. 2and-211. For a detailed verification of the energy loss calculations we refer to Appendix E.

The results shown below (Figs. 12—2147 — 9) represent the bedrock-ice interface interpolated to an 8-metre grid, which was

first damped (weight 8) and then smoothed (2 grid pixel-, i.e. s = 2_in Eq. 43). We assess the goodness of fit according to

the three cross-sections (East, Central, West), that are shown in Fig. £61. The crosscuts are nearly perpendicular to the train

tunnel and roughly 40 #=m apart from each other.-Figures-12-to-14-show-the-three-cross-sections-in-detail: In every plot, we

also indicate the solution from Nishiyama et al. (2017). Please note that we added a systematic error of 2 #m to the

uncertainty planes, as the DEM we are working with has itself an uncertainty of + 2 mam. The dash-dotted lines mark thus
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the most conservative error estimate. Moreover, we highlighted the parts of the cross-section that had either been damped to

the bedrock DEM or that have been solely resolved by the measurement (see “damping marker” in Fig—21Figs. 6 — 8).
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Figure-12Figure 6 shows the western profile, where our bedrock-ice interface and the one from the previous study agree well
and both lie within the given error margins. The lack of fit in areas where the steepness changes rapidly (i.e. around 40 #2m
and 80 #m) can be explained as a smoothing artefact. Towards the end of the profile, the decreasing data coverage becomes
evident as the uncertainties rise. This effect can also be seen in the jagged behaviour of the interface curves around 100 #m
to 120 #»m, hinting at the effect where the interpolation has occurred with few data.
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Figure 6: Western cross-section. The brown and dashed blue line indicate the ice-bedrock interface solutions of this study and the
one from Nishiyama et al. (2017), respectively. 1 g-error margins are shown in yellow (upper) and red (lower). The dotted
margins encompass only the statistical variation of the interface position, whereas the dash-dotted include a +2 #m systematic
error which stems from the inherent DEM-uncertainty. For completeness we also show the position of the railway tunnel as a

black square.

Figure 137 presents the central profile. Similar to the western profile (Fig. £26) the fits match quite well and are within the

error margins. It may be possible that the point where the actual bedrock begins might be further down (i.e. ~80 #m instead

of 65 mm). Here we used the same DEM and aerial photograph as in the previous study. This means that newer versions

might be available that show more bedrock (due to the glacial retreat as a response to global warming).
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Figure 7: Central cross-section. The brown and dashed blue line indicate the ice-bedrock interface solutions of this study and the
875 one from Nishiyama et al. (2017), respectively. 1 o-error margins are shown in yellow (upper) and red (lower). The dotted
margins encompass only the statistical variation of the interface position, whereas the dash-dotted include a +2 #m systematic
error, which stems from the inherent DEM-uncertainty. For completeness we also show the position of the railway tunnel as a

880

The eastern profile is shown in Fig. 148. One sees that the results from this study are internally consistent. The surface from
the previous study plunges down earlier with respect to the surfaces calculated here. This may in fact be a damping effect, as
the bedrock-ice interface from Nishiyama et al. (2017) has not been constrained to the bedrock (via damping) and thus
plunges down before the damping mark at ~72 #m. Still, the two surfaces agree within 5#m, which we consider as
885 acceptable.
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In all three results (Fig. 6, 7 & 8) it can be seen that the reconstructed surfaces in the bedrock region are following the DEM

within 5 m — 10 m. The reason for this deviation may be explained by the smoothing. At the beginning of this section we

explained that the reconstructed interface has been smoothed by 2 grid pixels, which corresponds on an 8-metre grid to a

890 smoothing of 16 m to each side. This is also valid for the direction perpendicular to the cross-sections shown in Figs. (6 — 8).

Thus the over-/underestimation can very well be a smoothing effect. The behaviour of the reconstruction in the Western

cross-section (Fig. 6) further supports this explanation, as we see at 40 m an underestimation and at 80 m an overestimation

of the height. This is a typical behaviour of smoothing around “sharper” edges.
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895 Figure 8: Eastern cross-section. The brown and dashed blue line indicate the ice-bedrock interface solutions of this study and the

900
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one from Nishiyama et al. (2017), respectively. 1 g-error margins are shown in yellow (upper) and red (lower). The dotted
margins encompass only the statistical variation of the interface position, whereas the dash-dotted include a +2 #m systematic
error which stems from the inherent DEM-uncertainty. For completeness we also show the position of the railway tunnel as a
black square.

Al-tegetherlt might also be possible that the over-/underestimation might be due to heterogeneities of the rock density due to
uneven fracturing and/or weathering. However, during our field-work (see Mair et al., 2018), when we also inspected the

train tunnel from within, we did not see any signs of such a heterogeneous behaviour. These observations are still only

superficial. For an in-depth study of this effect one would need, for example, a much longer muon flux exposure, such that

the density of the rock could be better resolved. Alternatively a borehole, or another geophysical study could be performed.

As we are not in possession of such information, we will not draw a definite conclusion here. Nevertheless, the performance

of the whole workflow, which is shown in this study, produces results, which are similar to the ones published in the

previous study (Nishiyama et al., 2017). We use the results of this comparison to validate the base of our code.
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65 Conclusion

In this study we have presented a-medelan inversion scheme that allows us to integrate geological information into a muon

tomography framework. The inherent problem of parameter estimation has been formulated in a probabilistic way and

solved accordingly. The propagation of uncertainties thus occurs automatically within this formalism-, providing uncertainty

estimates on all parameters of interest. We also considered approaches including DAGs or the simplex subspace of

compositions which could be helpful to the muon tomography community while tackling their own research. We condensed
these approaches in a modular toolbox. This assortment of python programmes allows the user to address the subproblems
during the data analysis of a muon tomography experiment. The programmes are modular in the sense that the user can
always access the intermediate results, as the files are mostly in a portable format (JSON). Thus, it is perfectly possible to
only use one submodule of the toolbox while working with an own codebase. As every “tool” is embedded in a GUI, the
programme is made accessible without the need to first read and consider several thousand code lines. Furthermore, we have
shown that the results we obtain with our code are largely in good agreement with an earlier, already published experiment.
The small deviations may be attributed to data analysis subtleties.

In its current state, SMAUG may be of help to researchers a) who plan to use muon tomography in their own research, such

that the feasibility of the use of this technology can be evaluated in a virtual experiment, b) who want to use a submodule for

the analysis of their own muon tomography, or c) plan to perform a subsurface interface reconstruction similar to our study.

We would like to stress that this work is merely a foundation upon which many extensions can be built when it is used in
other applications as well. Future content might, for example, include a realistic treatment of multiple scattering and the

inclusion of compositional uncertainties in the inversion, for which we laid out the basis in this study.
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Appendix A — Muon flux model

As many empirical muon flux models, the one that we employed consists of an energy spectrum for vertically incident

muons at sea level at its core. An accepted instance is the energy spectrum of Bugaev et al. (1998), that takes the form

dop

~2(p) = App~(aslogio(@)+az10gio(p)+ailogio(p)+ao), (A1)

Py

where p denotes the momentum of the incident muon in GelZ«e=%.GeV * ¢, The values of the a; and A are, for example,

listed in Lesparre et al. (2010). This model is an extended version of Renya (2006), to account for different incident angles,
Pz (p, 6) = cos® () Pybp-eostd)) =2 (p * cos(9)), (A2)

where 6 is the zenith angle of the incident muon. It is important to note that the parameter values in Eq. (Al) are changed to
a, = 0.2455, a; = 1.288, a, = —0.2555, a3 = 0.0209 and Az = 0.00253. In order to include height above sea level as
an additional parameter, Hebbeker and Timmermans (2002) proposed to model the altitude dependency as an exponential
decay, which modifies Eq. (A2) into

Dp-0-h) 57 (p,0,h) = P8 (9, 0) « exp (—1) - (A3)

The scaling height, hy, is usually to be taken as h, = 49004900 + 750-m-eGel =L+ p, where p, is the momentum of
the incident muon in Gell+e=*GeV x c~*. However, as this formula is only valid up to an altitude of 1000 m above sea
level, Nishiyama et al. (2017) adapted it to hy = 34005 + 1100-m+—c—+Gel/~2+x p x cos(8). This was done in order to
fit the energy spectrum up to 4000 m above sea level. This formula is now valid for momenta above 3 Gel/«e=%GeV = c 1,

zenith angles between 0° and 70° and an altitude below 4000 »m above sea level. Please note that the muon momentum, p,

is related to its energy by the relativistic formula

p?c* = E —mjc*. (A4)

Thus, it holds that

do _do _do
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Appendix B — Rock model
B1 — Density model

The density distribution of a lithology can be determined through various methods. In our work, we censtructed-aestimated
the density medelof the lithology by analysing various rock samples from our study area in the laboratory. Two experimental
setups were employed to gain insight into the grain, skeletal as well as the bulk density of the rocks. Grain and skeletal
density were measured by means of the AccuPyc 1340 He-pycnometer, which is a standardised method that yields
information on the volume. Bulk density values were then determined based on Archimedes’ principle, where paraffin
coated samples were suspended into water (ASTM C914-09, 2015; Blake and Hartge, 1986).

Every sample j = 1, ..., N (usually the size of a normal hand sample) has been split up into smaller subsamples i = 1, ..., S;,

that were measured. The bulk density of the i-th subsample can be calculated by
PH,0*Ms ij

mp,ij*PHZO)_(mt,ij*pHZO) ’
Pp PT

Pbuik,ij = (B1)

(ms,ij"'mp,ij+mt,ij_msus,ij)_(

where py, 0, pp, pr denote the density of water, paraffin and the thread that was used to dip the sample into the liquid,
respectively. mg;;, my,;;, me i, Mgy, describe the mass of the sample, the paraffin coating, the thread and the apparent mass

of all three components suspended in water. m,, ;;, m. ;; can then be simply obtained through

Mp,ij = Msipij — Mstij (B2)

as mg,.,,;; denote the mass of the sample including thread and paraffin coating on one hand and m,;; only the mass of the

sample and the thread on the other hand. Further, the mass of the thread is given by
My = Mgy — Mg ). (B3)

The maximal precision of the reading is estimated at +5 * 10~5gg, and the commonly ignored effects regarding buoyancy in
air has been estimated to introduce an error on the order of +£2 = 10™*gg. This error has been attributed to all direct mass
measurements. Moreover, because small pieces of material may detach from the sample upon attaching the thread to the
sample and during the paraffin coating, we set an error of +2 * 10~2gg to all measurement results. The variables in Eq. (B1)
are strictly positive values. Following Tarantola (2005) we model these “Jeffreys parameters” by lognormal distributions, as
they inherently satisfy the positivity constraint. Because Eq. (B1) does not simply allow a standard uncertainty propagation,
the script “subsample analysis.py” performs a Monte Carlo simulation for each subsample and attributes a final lognormal
probability density function to the resulting histogram. Figure B1 illustrates such an example, where the calculation has been
performed for subsample JT-20-1.

We have found 10’000 draws per subsample to be sufficient to retrieve a solid final distribution. However, this parameter

can easily be changed in the script, depending on the user’s preference of precision/speed. From this point onwards we may
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work with a Gaussian distribution as Fig. B1 assures us that a normal pdf describes the results of the Monte Carlo simulation

rather well.

Histogram & Norm-fit for JT-27-1

E MC simulation
Normal pdf fit

Probability density [g*cm~3]71

T
2.62 2.64 2.66 2.68 2.70 2.72 2.74
Material density [g*cm™3]

Figure B1: Example output of “subsample_analysis.py” for a bulk density measurement of subsample JT-27-1 (see supplementary
information for data). Green bars represent the histogram of 10°000 Monte Carlo simulation draws. The orange curve indicates
the fitted normal probability density function.

The determination of the grain and skeletal densities is simpler than the bulk density measurements because the

corresponding method consists of a mass and a volume measurement, respectively. The density formula reads then simply
i =—2. B4
pskeletal/gram,t] Vij ( )
The question remains as to how it is possible to construct a pdf that represents the knowledge about the whole lithology.
There are two possible methods that can be readily employed at this point. The first, following largely Tarantola (2005),
performs a so-called disjunction of the pdfs that corresponds to an averaging of all subsample pdfs. As Vermeesch (2012)
points out, even though this might seem a “sensible strategy at first glance”, there might be some problems with this method.
The main problem lies in the small error on the subsamples, such that the variation between different subsamples may be
larger than their attributed errors. This would not be a problem if enough subsamples could be measured, such that the
resulting lithology pdf might be sampled correctly. On the other hand when one is faced with a situation where data is rather

scarce, then the approach of Tarantola (2005) would result in a rather spikey pdf that would be hard to handle. For this
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reason we adopted the methodology of Vermeesch (2012) where the lithology pdf is estimated by a kernel density
estimation. The main difference lies in the fixed “bandwidth” of the subsample distributions. We refer to Vermeesch (2012)
for more details and an in-depth discussion on this problem.

The kernel density estimation has the advantage, that only the mean values of the subsamples have to be processed as the
bandwidth is determined from the spread of the subsample means. Following the methodology of Vermeesch (2012) we end
up with a pdf like the one visualised in Fig. B2. We could at this point use the kernel density estimated pdf for further
calculations. However, for simplicity we approximate the kde with a normal distribution and intend to add support for the

kde in a later code version.
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Figure B2: Example output of “materializer.py”. Here a set of subsample mean values (red crosses) are processed in a kernel
1010 density estimate (solid blue line). Finally a normal distribution is fitted to the kernel density estimate (dashed yellow line).
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One word of warning has to be made here. The measured densities of rock might be affected with a systematic_error.

Namely, the rock samples that are analysed were all gathered from surface near locations (in our case inside the tunnel or

outside, i.e. where rocks are accessible). This means that they could have been subject to weathering processes that alter the

density of the rock in such a way that the samples are not representative of the whole rock body anymore. Possible

countermeasures would be to compare drilled samples from deeper within the rock body with the surface samples, etc.
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B2 — Composition model

We have seen in Eq. (912) that the material density parameter enters the energy loss calculations rather directly.
Contrariwise, the compositional model affects the energy loss equations much more subtly through the average {Z/A},ock
and {Z? / A}, Values and mean excitation energies that need to be calculated for the entire lithology. Likewise, information
on the weight percentages of the main elements within the rock is required for the quantification of the radiation loss term.
Although a modal mineral analysis (e.g. the quantitative determination of mineral volumes) is preferable and can be treated
according to Lechmann et al. (2018), its execution is a rather time-consuming effort. This is the reason why compositional
data in muon tomography experiments predominantly consist of XRF-data, which show the abundance of major oxides
within the rock. We describe here a method to incorporate such type of information in a probabilistic way thereby following
Aitchison (1986). Compositional data are usually available in the form of Table B1, which presents an excerpt of four
samples for illustration purposes. We refer to the excel sheet in the supplementary material of the present work for the full
data.

Table B2: Excerpt of XRF data for four samples. Data in column denote weight percentages of major oxides within the rock
samples.

Sample JT01 JT02 JT19 JT20

Oxides
Sio2 0.6131 0.5981 0.6997 0.6139
TiO2 0.0123 0.0067 0.0076 0.0094
Al203 0.1567 0.1873 0.1481 0.1921
Fe203 0.087 0.0791 0.0496 0.0686
MnO 0.001 0.0012 0.0009 0.0009
MgO 0.0359 0.0285 0.0206 0.0288
Ca0 0.0202 0.0071 0.0201 0.0137
Na20 0.0228 0.0248 0.0404 0.0323
K20 0.0343 0.0465 0.0287 0.0469
P205 0.0041 0.0029 0.0021 0.0027

Sum 0.9874 0.9822 1.0178 1.0093

There are several challenges to this kind of data. First, the parameters (i.e. the oxide percentages) can take a value between 0
and 1. This means that normal as well as lognormal distributions are not suitable to describe these parameters. Second, the
requirement that the sum of all parameters has to ideally equal 1 poses a constraint on this parameter space, which
effectively reduces the number of independent parameters by one. Third, due to measurement uncertainties, this sum is never

exactly one.
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Spaces, which have this unit sum condition can be viewed as a simplex, e.g. if we had three compositional parameters, the
simplex would be a 2-dimensional surface (i.e. a subspace) in this 3-dimensional parameter space. The last issue, of not
summing up exactly to 1, can be remedied by projecting each sample dataset back to the simplex (Aitchison, 1986, p. 257-
261). This works only if the measurement imprecisions are not too large, which works well for the examples in Table B1.
With respect to the energy loss calculation, it is preferable to decompose the oxides into elements, which can be done by the

following formula

n:ms
Wtele,i = Zj €{oxides} Wtj * #}l ’ (BS)

where m; and m; denote the molar mass mass of the i-th element and the j-th oxide, wt; is the j-th datum in the column and

n;; is the number of atoms of the i-th element within the j-th oxide. The two transformations are visualised in Table B2.

57



1050

055

Table B3: Element weight percent data. Transformed from oxide weight percent data with use of Eq. (B5). All data has

additionally been scaled to satisfy the unit sum constraint.

Sample JT01 JT02 JT19 JT20

Elements
Si 0.2902 0.2846 0.3213 0.2843
Ti 0.0075 0.0041 0.0045 0.0056
Al 0.0840 0.1009 0.0770 0.1007
Fe 0.0616 0.0563 0.0341 0.0475
Mn 0.0008 0.0009 0.0007 0.0007
Mg 0.0219 0.0175 0.0122 0.0172
Ca 0.0146 0.0052 0.0141 0.0097
Na 0.0171 0.0187 0.0294 0.0237
K 0.0288 0.0393 0.0234 0.0386
P 0.0018 0.0013 0.0009 0.0012
0] 0.4716 0.4711 0.4823 0.4707

Sum 1 1 1 1

In order for the data to be in a statistically convenient form, Aitchison (1986) suggests to further transform the data in Table

B2 by first forming a ratio with an arbitrary element (in the list) and then taking the logarithm. For the exemplary dataset this

is shown in Table B3.

Table B4: Log-ratio of element weight percentages, with respect to oxygen-wt%.

Sample JT01 JT02 JT19 JT20

Elements
In(Si/O) -0.48531565  -0.50379579  -0.40607778 -0.5042219
In(Ti/O) -4.14567399  -4.74687577  -4.68001075 -4.43477381
In(Al/O) -1.72531  -1.54064159  -1.83464118 -1.54183733
In(Fe/O)  -2.03494223  -2.12384752  -2.64974526 -2.29276806
In(Mn/O)  -6.39894857  -6.21033707  -6.55719484 -6.52451934
In(Mg/O) -3.06839321  -3.29293646  -3.67672517 -3.30896536
In(Ca/O)  -3.47357746  -4.51287533  -3.53142599 -3.88207448
In(Na/O)  -3.31519303  -3.22481996  -2.79600952 -2.98709658
In(K/O) -2.79436382  -2.48376691 -3.0254978 -2.50170175
In(P/O) -5.56150947  -5.90149576  -6.28344485 -5.99945492

58



In(0/0) 0 0 0 0

The rationale behind this transformation is as follows. The division by an arbitrarily present element effectively transforms
the space into an N-1-dimensional open space, where the parameters (i.e. ratios) may have values between 0 and c. The
1060 subsequent application of the logarithm further changes the space, such that the new parameters can have values between
—oo and oo. This results in so-called log-ratios, which should ideally be following a multivariate normal distribution. As a
consequence, we can caleulatedescribe this distribution by the mean log-ratio vector across all samples as well as its

corresponding covariance matrix—which-completely—desecribes-the-multivariate-nermal-distributien. In addition to these

statistical parameters, the script “compo_analysis.py” outputs a graph that plots for all samples an order statistic, z,, (see

1065 Aitchison, 1986). This enables us to visualise how different the data is from a multivariate normal distribution. If equal, they

should fall on the red line, shown in Fig. B3.

Plot of z- vs order statistics

Si Ti Al Fe
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Figure B3: Visual test for multivariate normality of the log-ratio data from Table B3 (This plot shows the full dataset, of which
Table B3 is only an excerpt). Each subplot checks for marginal normality. Oxygen is the denominator variable (arbitrarily chosen)
1070 and does thus not appear in the plot.

59



1075

1080

085

1090

1095

With a graph like Fig. B3 it is possible to check if the multivariate normal distribution is an appropriate model to describe
the elemental composition data. For eurthe example that-we-showshown in Fig. B3 this looks acceptable, with only slight
deviations for silicon, aluminium, manganese and sodiumy).. Once the normality has been verified it is possible to generate
random samples from this distribution. For every drawn sample it is then possible to calculate the weight percentages of the

single elements by using the inverse formula to the log-ratio transformations

exp(r;y)
Whelei = — N1 (B6)

1—2?’23119_1 exp(rj) ’

for all numerator elements and

1

1—2;}]:3115_1 exp (rj)

(B7)

Wtele,Nele =

for the denominator element (here oxygen). In Egs. (B6) and (B7) the r; denote the log-ratios from Table B3-and, N, is the

total number of elements (in Table B2}.) and the index i runs through all elements (e.g. in Table B5) and the index j runs

through all elements except the denominator variable.

B3 — Energy loss equation for rocks

As stated in Eq. (#11) the energy loss equation for rocks needs parameters that differ from the ones for pure elements. First,
the expression for density can directly be exchanged according to the density model (see Appendix B1). Second, it is
possible to generate an expression for the average ionisation loss within a rock by exchanging three parameters. Density
values that also enter within {a}, .. Ccan again be directly changed. The average {Z/A},,.x may be exchanged with the

elemental Z/A by using
ele Zi
{Z/A}rock = Z?:i Witepei * A_i (BB)

Wt are the weight fractions from Eqgs. (B6) & (B7). Lastly, the mean excitation energy, {I},,... for the rock can be

computed by

N Z;
¥l Weele,i*z*In I

In{l}o0k = {Z/A}rock

(B9)

The radiation loss term, hewever{b},,... must be calculated as a weighted radiation energy loss over all i elements. This

means that the average can be written in a rather concise form,

Ne e
{b}rock = Zi:i Witepe,i * bele,i . (B10)
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Appendix C — Metropolis Hastings technicalities

This appendix—chapter is a short summary of Gelman (2014, p. 284 — 287) and we refer to these pages for a detailed
discussion of the calculations. This work presents a concept of how to assess the quality of a MCMC run. In particular, the
aforementioned author proposes to analyse two quantities, the potential scale reduction factor R and the effective number of
simulation draws i, for every parameter of interest. For every chain of a parameter the variance between different chains
and within one chain is calculated. The posterior variance of the parameter is then estimated as a weighted average of these
two types of variances. Finally, R is the quadratic ratio between the posterior variance and the variance within one chain.
This quantity shows if the various chains have mixed or not, i.e. if they have explored the same region of the model space. If
the posterior variance is much larger than the variances of the single chains, then the chains have not sufficiently explored
the same region. Gelman (2014) propose to employ a threshold of 1.1 as a rule of thumb, below which the value of R would
lie.

One problem that arises in MCMC algorithms is the inherent dependence of one simulation on the one before (this is the
definition of a Markov chain). One considers that such a dependency does not introduce a bias if enough samples are drawn.
However, this also means, that the effective, independent sample size is much smaller than the number of simulations.
Therefore, Gelman (2014) proposes to calculate the effective number of simulation draws, 7. in order to assess if one has
enough independent samples The underlying idea here is to evaluate the correlations within the chains. An accepted
threshold value for this parameter is 5m, where m is the number of sub-chains. For the calculation of R and flery the chains
may be cut in half to generate more chains. Note, however, that 72, can also be larger, which only means that the
simulation standard error decreases. In our example we performed the calculations with two chains and a subdivision by 2,
which means that our target quantity is around 20 (= 5 * 4). Most of our thickness parameters (i.e. cones with bedrock and

ice; see Figs. 1 & 106) have, in fact, a i, > 100, with only a few below.
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Appendix D — Construction of the smoothing kernel

As stated in the main text, the user specifies the number of neighbouring pixels s to smooth over. The main idea is to
construct a roughly Gaussian smoothing kernel by approximating it with a binomial distribution. With help of the binomial
coefficient we can construct a vector of weights with L = (2 = s + 1) entries. The weight vector is then given by

wi=o=(" 7). (01)

with i € {0,..,L — 1}. It is now possible to create a matrix by forming the dyadic product of w with itself, i.e.
K=w@®w, (D2)
or in index notation,

Kij =w; xw;. (D3)

As an example, we show how a smoothing kernel that smooths over two neighbouring pixels (i.e. s = 2) is constructed. This
is incidentally also the smoothing kernel we used to construct our ice-bedrock interface. The weight vector in this case is
given by

Wzi*u 4 6 4 1). (D4)

The weight vectors are, in fact, only the odd rows from Pascal’s triangle, interpreted as vectors and normalised by a L1

norm. The smoothing matrix then takes the form

1 4 6 4 1

L[4 16 24 16 4

=-—|6 24 36 24 6 (D5)
4 16 24 16 4
1 4 6 4 1
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1140 Appendix E — Energy loss calculations for various elements and compounds
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Figure-E1:-Relative-error — Verification of eur-energy loss calculations-compared-to

The energy loss model that we use in our code generally reproduces the tabulatedliterature values well (the relative error is

1145 generally below 1%) across the different energy loss processes and relevant energies. In Fig. E1 we present the energy loss
calculations for each energy loss process (i.e. ionisation, bremsstrahlun air-production and photonuclear interactions

across energies from 10 MeV to 100 TeV for silicon.
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The overall characteristics between the different elements are the same with minor differences regarding the position of the

critical energy and the 1 % - radiative point. In Fig. E2 we show the relative error of our calculations to the tabulated values
from Groom et al. (2001) for the whole energy range.
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We note that the energy losses by ionisation are reproduced very well over the entire energy range. We also note that the
relative error on the radiative energy losses is rather large below 10 GeV. This does, however, not introduce a major bias,
because below this energy, radiative energy losses are negligible compared to ionisation losses, as can be seen in Fig. E1.
165 Furthermore, the related errors are in an acceptable range at the energy level at which radiative losses begin to become
noticeable (i.e. around 100 GeV). This can be seen in Fig. E2, in the sense that the total relative error remains well bounded

within 0.5 %. In the ionisation domain (i.e. below 100 GeV) the total relative error is dominated by the ionisation relative

error, whereas above this energy level the relative errors on radiative losses start to prevail. A close-up of this energy range
is given in Fig. E3.

170 There are different sources and circumstances that contribute to the error in the different energy losses processes. The scatter

of the relative ionisation-loss error around 0 with a rather small deviation can be viewed as simple rounding errors. The

errors on the radiative processes, however, seem to be of a more systematic nature. We explain this behaviour through a
different numerical integration scheme in Eq. (10), which tends to systematically under-/overestimate the true value,
especially when the integrand comprises exponential functions. Whereas we used a Double Exponential Integration scheme
175 (see Takahasi & Mori, 1974), the integration scheme from Groom et al. (2001) is not discernible. However, as the relative
errors on the processes of energy loss remain well within the theoretical uncertainties, (see Sect. 3.1.3), we consider, that our

calculation accurately reproduces the literature values for elements.
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Appendix F — Main modules of SMAUG

Our toolbox, SMAUG, contains several subprograms, which are executed separately. This allows the user to inspect
intermediate results without any difficulty. We also tried to keep the intermediate results as portable as possible, by using

JSON-files, as often as possible. Here we explain, in logical order, the rational of the submodules (a detailed user manual is

separately available):

MATERIALIZER.py

This subroutine allows the user to create their own material that will be used in the subsequent model builder. The user may
choose a density (either from measurements or directly insert mean and standard deviations) and a composition (also either

from data or from the list of Groom et al., 2001).

DATA_BINNING.py

As the name suggests, this subroutine is used to spatially bin the recorded track data. The bin data (i.e. the output hereof) is
then fed to the model builder.

MODEL BUILDER.py

The model builder takes the bin data and the materials as inputs and allows the user, with help of DEMs, to allocate data and

materials to certain cones. This is basically the spatial setup of the model. The resulting model file is then provided to the

inversion code.

INVERSION.py
This is the main module in SMAUG, providing the functionality to perform a MCMC algorithm on the probabilistic model
created with MODEL _BUILDER.py. It also includes several analysis tools to assess MCMC performance.

MODEL VIEWER.py

The model viewer allows us to visualise the interface results, obtained and exported by INVERSION.py. It also has the

functionality to dampen and smooth the resulting surfaces.
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Code availability

The source code of SMAUG 1.0 is publicly and freely available on https://doi.org/10.5281/zenod0.5547356 (Lechmann et
al., 2021b). The python packages required to run SMAUG are listed in the “requirements.txt” file.

Data availability

The data of the density and XRF measurements are included (i) in the files that can be downloaded from
https://doi.org/10.5281/zen0d0.5547356 as well as (ii) in the supplementary material to this publication. The raw data from
the Nishiyama et al. (2017) paper is publicly and freely available from the publisher’s website.
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