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Abstract. We describe the formulation of a simple method of water source tracing for computational models of flood inundation

and demonstrate its implementation within CAESAR-Lisflood. Water source tracing can provide additional insight into flood

dynamics by accounting for flow pathways. The method developed is independent of the hydraulic formulation used, allowing

it to be implemented in other model codes without affecting flow routing. In addition, we developed a method which allows up

to three water sources to be visualised in RGB colour-space, while continuing to allow depth to be resolved. The number of5

water sources that may be traced is limited only by computational resources. We show the application of the methods developed

for example applications of a major flood event, a shallow estuary, and Amazonian wetland inundation. A key advantage is that

the method is independent of the hydraulic formulation, meaning that it is relatively straightforward to add to existing finite

volume codes including those based on or developed around the LISFLOOD-FP method. This method enables water tracing

with a minimal computational overhead, allowing users of the LISFLOOD-FP method to address environmental issues relating10

to water sources and mixing, such as water quality and contamination problems.

1 Introduction

Flood inundation models relate upstream river inflow and other dynamic boundary conditions (e.g. downstream stage) to inun-

dation extent, depth and velocity, and have become invaluable tools for the assessment and understanding of flood dynamics

and risk. Recently a series of fast and effective two dimensional hydrodynamic models have been developed (Hunter et al.,15

2007; Neal et al., 2018). These model codes have enabled assessment of flood inundation at high spatial resolutions (e.g. Yu and

Coulthard, 2015) and large spatial scales including applications on the Amazon (Wilson et al., 2007) and Congo (O’Loughlin

et al., 2020), at continental scales (Dottori et al., 2021; Wing et al., 2017) and global (Dottori et al., 2016; Sampson et al.,

2015). The LISFLOOD-FP model (Bates and De Roo, 2000; Bates et al., 2010) uses a fixed raster grid structure and includes

several flow formulations of different physical complexity (Shaw et al., 2021), which have been widely used for flood hazard20

assessment in fluvial (Horritt et al., 2010) and coastal (Vousdoukas et al., 2018) applications, as well as within models of
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landscape evolution (Adams et al., 2017; Coulthard et al., 2013). However, the ability to trace the sources of water in the model

domain is presently missing from reduced-complexity 2D flood models such as LISFLOOD-FP.

Understanding the contribution of different water sources to flooding and river flows is important when managing river

basins, for example determining the relative contribution of tributaries or where water borne contamination is an issue. This25

is a function found in more complex two- and three-dimensional models based on the full shallow water equations, such as

TELEMAC (Galland et al., 1991) and Ansys Fluent, and has been used for a variety of applications including water quality

modeling in a lake (Kopmann and Markofsky, 2000) and solute and viral dispersal in estuaries (Robins et al., 2014, 2019).

For example in TELEMAC, non-buoyant tracers can be added and their course and concentration followed (Ch. 9, Ata et al.,

2014). Similarly in PCSWMM, Qi et al. (2021) and Qi et al. (2022) developed a module to assess the relative contributions30

to downstream flood waters from upstream source catchments, with tracer sources generated by the PCSWMM water quality

routing module. In their approach, each upstream source is assigned a constant tracer concentration, which is then routed

downstream using PCSWMM methods for transportation of pollutants. Source proportion for a downstream catchment is then

determined from the relative mass of the total tracer amount which is in that catchment, multiplied by the total flood volume.

However, approaches using such 2 and 3D codes have a considerable computational overhead compared to simpler schemes35

such as LISFLOOD-FP.

In this paper, we build on the work of Wilson and Coulthard (2019) to propose a simple and efficient method which can be

added to finite volume codes to track the contribution of multiple water sources to predicted flood depths without the addition

of tracers, and demonstrate it within the CAESAR-Lisflood model (Coulthard et al., 2013) for several example flooding case

studies which each represent the mixing of water from multiple sources. CAESAR-Lisflood1 is a development of the CAESAR40

model (Coulthard et al., 2002; Van De Wiel et al., 2007) and the LISFLOOD-FP 2D hydrodynamic model (Bates et al., 2010)

that simulates landscape evolution by coupling a hydrological model, a surface water flow model, fluvial erosion and deposition

and slope processes.

In earlier work with CAESAR, Coulthard and Macklin (2003) demonstrated how sediment eroded from mining waste de-

posits could be traced downstream. The model worked by including different types of sediments which were used to represent45

contaminated and uncontaminated sediments as separate arrays for each sediment diameter included; during erosion and de-

position of different sediment sizes, equal proportions of contaminated and uncontaminated sediment were transported. This

enabled the prediction of patterns and levels of floodplain contamination, over a period of ∼400 years. However, the approach

was limited to sediment tracing only and did not account for different sources of water, which may carry contaminants with

it. As noted by Coulthard et al. (2013), the inclusion of an unsteady flow formula within CAESAR-Lisflood has enabled the50

possibility, for example, to simulate water balances and solute fluxes using the model code. Here, we present the formulation

of a simple methodology to enable this functionality by accounting for the source of water within model cells throughout the

simulation.

We use only the hydraulic and hydrological functionality of CAESAR-Lisflood to demonstrate the tracing method and visu-

alisation of water sources, independently of sediment routing. We have used CAESAR-Lisflood for this purpose as the software55

1Available from https://sourceforge.net/projects/caesar-lisflood/
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is fully open source integrating a GUI as well as the hydraulic methods from LISFLOOD-FP. This enables our visualisation

methods to be incorporated, but does not limit our tracing method to CAESAR-Lisflood. The equations and pseudo-code ex-

amples provided make it a straightforward task for users and researchers to add this functionality to LISFLOOD-FP (and other

variants using similar methods).

2 Methods60

2.1 Flow formulation

CAESAR-Lisflood implements the LISFLOOD-FP inertial formulation (Bates et al., 2010) to estimate depths across the do-

main. This is a reduced physical complexity mass-conservative hydraulic model structured on a Cartesian grid, in which the

updated water depth h, at time t, for cell i, j is determined using (Bates and De Roo, 2000):

ht
i,j = ht−∆t

i,j +∆t
Qt

x,i−1,j −Qt
x,i,j +Qt

y,i,j−1 −Qt
y,i,j

∆x2
(1)65

where ht−∆t
i,j is the cell depth at the end of the previous timestep (∆t), Q represents the flows into or out of the cell in the

x or y directions, and ∆x is the cell size. Flows are decoupled in each direction; flow in the x direction is determined using

(de Almeida et al., 2012; Bates et al., 2010):

Qt
x =

qt−∆t
x − ght

[flow]∆t∆(ht+z)
∆x

(1+ ght
[flow]∆tn2|qt−∆t

x |/(ht
[flow])

10/3)
∆y (2)

with flow in the y direction obtained analogously. In Eqn. (2), qt−∆t
x represents the flux between the cells from the previous70

timestep (Qt−∆t
x /∆y), g is acceleration from gravity, h[flow] is the maximum depth of flow between two cells, n is Manning’s

roughness and z is the cell bed elevation. The LISFLOOD-FP inertial formulation has been benchmarked against other formu-

lations and industry standard codes and showed that, in appropriate flow conditions (i.e. gradually varied flow, Froude number

< ∼1), the model performed favourably and with high efficiency (de Almeida and Bates, 2013; Neal et al., 2012).

2.2 Water source tracing75

Given that the sum of depths in a cell from each source, w, make up its total flood depth, h:

W∑
w=1

hw = h, (3)

the volume fraction of each source, ϕw, may be obtained from:

ϕw =
hw

h
, (4)
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ensuring:80

W∑
w=1

ϕw = 1. (5)

Thus, the fraction of each water source in each cell is defined as the depth of water from that source in the cell, divided by

the total cell depth.

Following this, once flows between cells are calculated and depths updated, water tracing proceeds as follows: (1) for each

cell, the remaining depth following removal of water from any outflows is found; (2) the amount of the depth belonging to each85

water source is obtained by scaling the depths according to water source fractions from the previous timestep; (3) contributing

inflow depths from each source for all neighbours is added to each source depth; and (4) updated water source fractions are

calculated as per Eqn. 4 by dividing the fractions from each source by the updated total cell depth. More formally, for each

cell, for each water source, w, at time, t, the volume fraction ϕ is:

ϕt
w =

ht
Q[out]

ϕt−∆t
w +

∑
D(Qt,D

[in] ϕ
t−∆t,D
w ) ∆t

∆x2

ht
(6)90

where ht
Q[out]

represents the depth remaining in the cell after the removal of outflows at the current time, Qt
[out] (and before

the addition of any inflows), which is scaled according to the fraction from this source from the previous timestep, ϕt−∆t
w .

To this depth is added the total amount of water from this source which is contributed from neighbouring cells, given by∑
D(Qt,D

[in] ϕ
t−∆t,D
w ), where Qt,D

[in] is the inflow from a particular direction, D, and ϕt−∆t,D
w is the fraction of flow for source w

from that direction. The updated source volume fraction is obtained by dividing by the updated cell depth, ht. Finally, ht
Q[out]

is95

given by:

ht
Q[out]

= ht−∆t −
∑
D

Qt,D
[out]

∆t

∆x2
(7)

where Qt,D
[out] are the outflows in each direction. To improve computational efficiency, the method only requires knowledge of

the source volume fractions for the previous timestep in each neighbouring, upstream cell; the actual depths or volumes from

each source in each cell are not saved. The calculation cell depth after removal of outflows, ht
Q[out]

, enables each source fraction100

to be updated based on the flows in (Qt,D
[in] ), the fraction from each source in direction, D (ϕt−∆t,D

w ), and the updated depth, ht.

Using this approach, calculation of water source fractions flowing out of the cell is not necessary. For completeness, using the

notation of (1) and expanding D into cell indices, i, j, the updated depth from each source can be obtained using:

ϕt
w,i,jh

t
i,j = ϕt−∆t

w,i,j h
t−∆t
i,j +∆t

ϕt−∆t
w,i−1,jQ

t
x,i−1,j −ϕt−∆t

w,i+1,jQ
t
x,i,j +ϕt−∆t

w,i,j−1Q
t
y,i,j−1 −ϕt−∆t

w,i,j+1Q
t
y,i,j

∆x2
. (8)

Boundary condition inputs are added prior to the routing of surface water. Adjusting the water volume fractions for the cells105

in which water is added is straightforward. The boundary modified water volume fractions, ϕ′
w, are obtained using:
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ϕ′
w =

hϕw +Qw
∆t
∆x2

h+
∑

wQw
∆t
∆x2

(9)

for input sources, or:

ϕ′
w =

hϕw

h+
∑

wQw
∆t
∆x2

(10)

for other sources, where Qw is the inflow added to the cell from source w at the start of timestep. Thus, fractions from sources110

where water is added to the cell are adjusted upwards, while fractions for non-source volumes are adjusted downwards. This

means that additional inflow from a certain source results in an increase in the fraction of that source in that cell, which is

reflected in a higher value of the water source fraction variable, ϕ′
w; the opposite occurs for fractions of water from other

sources as they are diluted.

It should be noted that, similar to the approach of Qi et al. (2021), for simplicity, this method treats cell water volumes as115

fully mixed. Consequently, it may be possible for small fractions to propagate quickly in a downstream direction, since fluxes

into a cell would be included in the fractions assigned as inflow to a downstream neighbouring cell in the next timestep, via

ϕt−∆t,D
w . As a result, caution should be given to the interpretation of very small water source fractions.

2.3 Water tracing implementation

Importantly, within the model code, the additional equations required for the water source tracing presented in Section 2.2120

can be piggybacked on top of existing finite volume model code, requiring minimal modification of the original schemes.

The water source tracing method was implemented in C#, within CAESAR-Lisflood version 1.9j (Coulthard, 2019). However,

the method is readily transferable to other programming languages where different versions of LISFLOOD-FP (Bates et al.,

2010) are implemented, or to other similar flow models. The additional C# code added to CAESAR-Lisflood is included in

Appendix A. Here, we summarise the algorithms developed.125

Our method allows water from different sources to be tracked according to point sources (e.g. a reach input) or from spatial

areas that can be user-defined (e.g. to represent different rain zones or subcatchments). CAESAR-Lisflood allows the addition

of water as point sources, or via rainfall through a hydrological model based on a spatially distributed version of TOPMODEL

(Beven and Kirkby, 1979), for implementation see Coulthard and Skinner (2016) and Coulthard and Van De Wiel (2017). The

zonal input also allows tidal sources to be traced, although note that the model is depth-averaged and does not account for the130

higher density of saltwater. Water tracers are saved as two 3D or stacked arrays of size W * X * Y grid cells, for the current

and previous timestep, which are initialised as zeros. Additionally, two arrays for δhδt in the x and y directions are used to

save the volumes of water moving between cells in units of change in depth in the timestep.

The main functional flow of CAESAR-Lisflood as related to water source tracing is shown in Figure 1. For each time

step, inflows from various sources are first added. The addition of traced water requires code to be modified such that, af-135

ter the addition of water from each source, the water source fractions are updated to account for the increase in volume
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from a source (Eqn. 9 and 10). In CAESAR-Lisflood, inflows to the modelled domain may reflect reach inputs, rainfall in-

puts and tidal or stage inputs, which are added in three separate functions (reach_water_and_sediment_input(),

catchment_water_input_and_hydrology() and stage_tidal_input(), respectively). Each of these are up-

dated in a similar way using Algorithm 1.140

Following the addition of inputs from sources, the implementation in CAESAR-Lisflood copies the water depths and water

tracers into arrays which represent the previous timestep, ht−1 and ϕt−1. For the water source tracing implementation, the

tracer states are saved via the function save_tracer_states() (Figure A3). Next, flows are updated in the function

qroute(), for which no modifications are required (meaning that the water source tracing does not affect flow). Depths are

then updated via depth_update() with no modifications except that volumes of water moving between cells are stored to145

the δhδt in x and y arrays, calculated using:

δhδtt,D =Qt,D ∆t

∆x
(11)

for a single direction (C# code in Figure A4). This is used as part of the solution to (6) and (7) to update the water source

tracers, enabling a simplified form to be implemented for the tracer update:

ϕt
w =

ht
Q[out]

ϕt−∆t
w +

∑
D(δhδtt,D[in] ϕ

t−∆t,D
w )

ht
(12)150

where:

ht
Q[out]

= ht−∆t −
∑
D

δhδtt,D[out]. (13)

Water source tracers are updated in the function update_tracer_states(), which is the main addition to the CAESAR-

Lisflood code. Algorithm 2 provides details of the procedure used. For every cell in the model which contains water (ht
i,j > 0.0),

the depth remaining in the cell after outflows (ht
Q[out]

) is first calculated by subtracting outflows from each of the four flow di-155

rections. We sum δhδt from each direction (previously calculated in depth_update()), which represent contributions to

depth from the right (x) or up (y): outflows will be negative for the right and up directions and positive in the left and down

directions.

The procedure then updates each source for the cell, by first calculating the sum of depths added from this source (i.e.∑
D(δhδtt,D[in] ϕ

t−∆t,D
w )), again by scanning the δhδt arrays in each direction. Finally, the fraction is then calculated by dividing160

the total new depth from the source by the depth from all sources, ht.

2.4 Water source visualisation

Visualisations of flood model outputs are often produced for depths in the form of animated maps. Here, we derived a simple

colour scaling which permits up to three water sources to be visualised in RGB colour-space. For each cell, the RGB colour

index in the range 0 to 255 is obtained for the desired water source, w, using:165
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Algorithm 1 Updating water source fractions after adding input sources. Inputs required are the depth in the cell for the

previous iteration (ht−1), a vector of all water sources for the cell for the previous iteration (ϕt−1), input from this source

(Qw), the index of this source (w), the number of sources (W ), the cell size (∆x) and the timestep (∆t). A C# implementation

is shown in Figure A2.

Input: ht−1, ϕt−1, Qw, w, W , ∆x, ∆t

Output: ϕt

δhδtw←Qw ∗∆t/∆x2 {get change in depth resulting from this source}

ht← ht−1 + δhδtw {get new depth after adding input from this source}

if ht > 0.0 then

if ht = δhδtw then

ϕt
w← 1.0 {if depth was zero, then all water in cell is from this source}

else if ϕt−1
w < 1.0 {if cell contains multiple sources} then

ht
w← ϕt−1

w ∗ht−1 {get depth after addition of this source}

ϕt
w← (ht

w + δhδtw)/h
t {update this water source fraction}

for src= 1 to W do

if src ̸= w then

ϕt
src← (ϕt−1

src ∗ht−1)/ht {update fraction of other water sources}

end if

end for

end if

end if

RGBi,j = 255 ·ϕβ
i,j,w (14)

The power term, β, enables visual enhancement of lower water fractions, in the range ∼0.1 to 1.0, where 1 would represent

no enhancement. In order to allow water depth to be resolved through the use of reduced lightness for deeper water, (14) may

be modified to:

RGBi,j = ((1−hi,j/h[range]) · 127)+128 ·ϕβ
i,j,w (15)170

where hi,j is the cell depth and h[range] is the range of depths to scale the visualisation to. Thus, the RGB value for a cell

which has only one source of water in it will range from 128 for deeper water where h= h[range], towards 255 for shallow

depths close to zero. Figure 2 provides a detailed illustration of RGB values obtained using (14) and (15) for different values

of ϕ, β and h, and the resulting colour scales obtained when visualising multiple sources. Mixing of water sources with red

and blue shading gives a pink colour scale; green and blue gives cyan; red and green give yellow; and shades towards white175
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Algorithm 2 Updating water source fractions after flow routing and depth update. Inputs required are the updated depth in the

cell (ht), water sources for the previous iteration (ϕt−1), depth contributions horizontally (δhδtx) and vertically (δhδty), the

number of sources (W ), and number of cells in the grid horizontally (X) and vertically (Y ). A C# implementation is shown in

Figure A5.

Input: ht, ϕt−1, δhδtx, δhδty, W , X , Y

Output: ϕt

for all i, j cells in ranges 1≤ i≤X and 1≤ j ≤ Y do

if ht
i,j > 0.0 then

δhδtsumQ[out] ← 0.0 {obtain total change in depth after flows out (source not important}

if δhδtxi+1,j < 0.0, then δhδtsumQ[out] ← δhδtsumQ[out] + δhδtxi+1,j ; end if {right, -ve = outflow}

if δhδtxi,j > 0.0, then δhδtsumQ[out] ← δhδtsumQ[out] − δhδtxi,j ; end if {left, +ve = outflow}

if δhδtyi,j+1 < 0.0, then δhδtsumQ[out] ← δhδtsumQ[out] + δhδtyi,j+1; end if {up, -ve = outflow}

if δhδtyi,j > 0.0, then δhδtsumQ[out] ← δhδtsumQ[out] − δhδtyi,j ; end if {down, +ve = outflow}

ht
Q[out]

← ht−1 + δhδtsumQ[out] {get depth remaining in cell after removal of outflows}

for src= 1 to W do

δhδtsumQ[in] ← 0.0 {obtain total change in depth after for inflows of this source (ignoring outflows)}

if δhδtxi+1,j > 0.0, then δhδtsumQ[in] ← δhδtsumQ[in] + δhδtxi+1,j ∗ϕt−1
i+1,j,src; end if {right, +ve = inflow}

if δhδtxi,j < 0.0, then δhδtsumQ[in] ← δhδtsumQ[in] − δhδtxi,j ∗ϕt−1
i−1,j,src; end if {left, -ve = inflow}

if δhδtyi,j+1 > 0.0, then δhδtsumQ[in] ← δhδtsumQ[in] + δhδtyi,j+1 ∗ϕt−1
i,j+1,src; end if {up, +ve = inflow}

if δhδtyi,j < 0.0, then δhδtsumQ[in] ← δhδtsumQ[in] − δhδtyi,j ∗ϕt−1
i,j−1,src; end if {down, -ve = inflow}

if δhδtsumQ[in] = 0 and ϕt−1
src = 0 then

ϕt
i,j,src← 0.0 {if there is no contribution or existing water from this source}

else

ϕt
i,j,src← (ht

Q[out]
∗ϕt−1

i,j,src)+ δhδtsumQ[in]/h
t
i,j {([src depth in cell] + [src depth added]) / [updated depth]}

end if

end for

end if

end for
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Figure 1. The main CAESAR-Lisflood control showing additions for water source tracing. Additional functions related to erosion and

deposition are not shown.

would indicate mixing of all three sources. Note that, while it is possible to trace an arbitrary number of water sources using

the method described in Section 2.2, this visualisation method is limited to a maximum of three water sources. However, using

(15), if a cell only contains water from sources different to those selected for visualisation, depths can still be resolved in

greyscale in the RGB value range 0 to 127. This also means that it is possible to visualise only one water source at a time in a

selected primary colour.180

2.5 Evaluating performance overhead

In order to test computational performance of the water tracing code, a simple planar test case was developed, consisting of a

constant 0.001 m/m slope of length 2000 m and width 1000 m, on a grid with a spatial resolution of 5 m, giving a total of

80,000 cells (Figure 3a). Manning’s roughness, n, was set at 0.05. At 250 m intervals down slope, 1 m “walls” were added

across the slope, each with between 4 and 8 gaps of 5 m width added to allow water to flow through. This was done to185

ensure that water mixed as it flowed downslope. Simulations were conducted for a period of 24-hours with constant inflow of

10 m3/s to 8 locations at the top of the slope. Eight simulations were conducted in total: one with no tracing and seven with
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Figure 2. Illustration of RGB colour scaling used for visualisation of water source fractions: (a) RGB values for water fractions ϕ from

source w, obtained using (14) (upper plot, no depth visualisation) and (15) (lower plot, with depth visualisation, where h[range] = 10), and

visual enhancement of lower water fractions using β; (b) RGB values with changing depth, h, for different values of ϕw and β; (c) colour

rendering resulting from (14) for three water sources, R, G and B (note that ϕR +ϕG +ϕB = 1.0); (d) colour scales obtained for various

combinations of water sources using (15), with and without enhancement of lower water fractions, showing reduced lightness as water depth

approaches h[range]. Note that the bottom colour scale is used for rendering in the absence of any water from sources selected for visualisation

(i.e. where more than three sources are present in the simulation).

between 2 and 8 water sources being traced. To ensure that each of these simulations had identical total inflow, sources were

grouped for tracing purposes, allowing the variation in computation requirements to be assessed. The simulations conducted

are summarised in Table 1. Furthermore, to benchmark model performance in a real world scenario, the effect of the number190

of tracers on model performance was tested on the Carlisle example described below.

3 Results

Firstly, we demonstrate water source tracing and visualisation for three flood inundation case studies that are examples of

flooding at three different spatial scales in three contrasting contexts: (1) a major flood event in 2005 at Carlisle, United King-

dom, fluvial flooding in an urban area which is situated at the confluence of three rivers, (2) a shallow estuary in Christchurch,195

New Zealand, combining tides with inflow from two small rivers, and (3) flooding at the tributary junction of two large rivers

10



Figure 3. Planar test case setup and results: (a) the 2000 by 1000 m planar slope (0.001 m/m) elevation model (5 m grid spacing, 400 x 200

cells), with 1 m “walls” added across the slope at 250 m intervals (each wall had between 4 and 8 evenly-spaced gaps of 5 m, as indicated

by the numbering along the top of the grid); injection points for each of the 8 water sources are indicated by numbering on the left; (b) water

depth prediction at t = 8400 s (140 minutes), with a constant inflow of 10 m3/s and n = 0.05; (c) visualisation of water sources numbered 2

(red), 4 (green) and 6 (blue) at t = 8400 s, using (14) with β = 0.2; (d) water source fractions throughout the 24-hour simulation for each of

1-8 sources at locations A-H indicated in (a). For an animated version, please see: https://youtu.be/DTw8ysJtx8o.

on the Amazon floodplain, Brazil. Secondly, we present the computational performance of the method for the planar test case

and Carlisle example.

3.1 Carlisle, United Kingdom

The city of Carlisle in northern England experienced significant flooding in 2005 (estimated annual exceedance probability200

0.57% to 0.5%) that resulted from heavy rains in the headwater catchments of rivers running through the city and affecting

more than 2500 properties (Environment Agency, 2006). With the benefit of an extensive set of observational data obtained

from field collection, the 2005 flood event at Carlisle event has been used extensively as a test case for hydraulic model

development (Horritt et al., 2010; Neal et al., 2009). Here, the site is of particular interest as it is at the confluence of three

11
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Table 1. Planar slope test case simulations. In each of the eight simulations, the total volume of inflow was identical: each of the eight sources

was a constant 10 m3/s (where a source was used for multiple inflow points, its total volume was added to all). Inflow points are shown in

Figure 3a.

Number

of tracers

Inflow point/ source number Computation cost (s/s) Total

computation time (s)

Difference to

no tracing (s)

Ratio to

no tracing
1 2 3 4 5 6 7 8 Mean Std. dev.

No tracing 1 9.27E-03 2.51E-03 800.63 - -

2 1 2 15.8E-03 4.38E-03 1362.46 561.83 1.70

3 1 2 3 16.8E-03 4.70E-03 1452.47 651.84 1.81

4 1 2 3 4 18.0E-03 5.04E-03 1558.91 758.28 1.95

5 1 2 3 4 5 19.2E-03 5.48E-03 1659.41 858.78 2.07

6 1 2 3 4 5 6 20.3E-03 5.90E-03 1750.80 950.17 2.19

7 1 2 3 4 5 6 7 20.8E-03 6.13E-03 1799.12 998.49 2.25

8 1 2 3 4 5 6 7 8 22.3E-03 6.58E-03 1925.20 1124.57 2.40

separate rivers: the main River Eden, which runs from east to west through the city, is joined by the Rivers Petteril and Caldew205

which flow into the city from the south (Figure 4).

A simulation was run using a model grid of 5 m (domain size: 951 x 612 cells, 14.6 km2), topography from LiDAR

and inflows from gauging station records. The simulation began on 08 January 2005, 00:00 AM, for 120 hours (5 days).

Visualisations of the model output are shown in Figure 5. Flood water mixing is shown in RGB colour space, using (15) to

enable darker shades to indicate deeper water. The mixing of Eden (blue) and Petteril (red) gives pink shades, which as it210

moves downstream transitions towards purple due to the larger volume of flow on the Eden; water from the Caldew is shaded

in green and contributes to the greyer shades in the floodplains close to the main channel as the three waters are mixed.

The ability to trace inputs from discrete tributaries allows us to determine how different sourced flood waters contributed to

the flooding. This is especially pertinent to the Carlisle 2005 flood events, where most flood damage was considered to have

come from the two tributary inputs, the Caldew and Petteril (Environment Agency, 2006). For example, the time-series plots215

in Figure 5 illustrate locations where water is mixed from multiple sources. The larger volume of water from the River Eden

dominates, but at point A, a railway embankment prevents flooding from the Eden but the area is flooded by the Caldew. Points

B and D are initially flooded by the Caldew and Petteril, respectively, until flooding from the Eden arrives. This is likely due

to the timing of the flood peaks (∼11.5 hours earlier on the Petteril than the Eden; ∼17 hours earlier on the Caldew).
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Figure 4. (a) Study site 1 at Carlisle, UK, at the confluence of the Rivers Caldew, Petteril and Eden, showing elevation from LiDAR. The

plots in (b) show river flows for the January 2005 flood event simulated. The plot in (c) shows the relative level of the three rivers (calculated

as a proportion of the difference between the flow on 8 January and the flood peak), indicates that the River Caldew reached flood peak∼5.5

hours ahead of the River Petteril, and ∼17 hours ahead of the River Eden. Contains OS data © Crown copyright and database right (2020).

3.2 Avon-Heathcote estuary, Christchurch, New Zealand220

On the eastern edge of the city of Christchurch, New Zealand, the estuary of the Avon and Heathcote Rivers (Figure 6) is a

large (∼8 km2), shallow (mean depth ∼1.4 m at spring high tide and a tidal range of ∼1.7-2.2 m) and intertidal area, with

about 85% of its elevation above the spring low tide level (Findlay and Kirk, 1988). The estuary is semi-enclosed and separated

from the Pacific Ocean by a ∼4.5 km long spit (Christchurch suburbs of New Brighton/ Southshore), has been designated

as a site of ecological significance in the Christchurch District Plan (Christchurch City Council, 2016) and is internationally225

recognised for its importance as a habitat for migratory bird species (Woodley, 2018). The estuary acts as a sediment trap for

inflows from the Avon and Heathcote Rivers, the catchments of which cover a combined area of 188 km2 which is largely

urbanised, meaning that urban pollution is a considerable issue (Vopel et al., 2012).

Here, we demonstrate water source tracing and visualisation for the Avon-Heathcote estuary for the month of July, 2017,

using a model grid of 10 m (domain size: 483 x 675 cells, 32.6 km2). The sources of water included were the two rivers,230

with inflow from the Avon River from the north and inflow from the Heathcote from the south-west, and a downstream tide
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Figure 5. Model results for Carlisle, showing flood extent on 10 January 2005, 06:00 AM, close to the flood peak. Map colours indicate

mixing of water from different sources, with darker shades indicating increased depth. Colour scales show depths with selected source

combinations (left to right): ϕ [Eden] = 1.0 (blues); ϕ [Eden] = 0.8, ϕ [Petteril] = 0.2 (pinks/purples); ϕ [Petteril] = 1.0 (reds); and ϕ [Caldew] = 1.0

(greens). β = 0.2 is used to emphasise lower water fractions from the Caldew and Petteril Rivers. Depths and fractions for four selected

locations, marked A-D, are shown. Contains OS data © Crown copyright and database right (2020). For an animated version, please see:

https://youtu.be/xOtOi06cXvA.
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boundary condition at the estuary outlet at the south-east (Figure 6b). The simulated period of July 2017 included both neap

and spring tides and a high flow event on 22 July on both rivers, where the Avon River peaked at 13:00 with 14.7 m3/s of

flow, close to the mean annual flood level (LAWA), and Heathcote River peaked at 14:00 with 28.1 m3/s of flow, an Annual

Exceedance Probability of less than 0.1 (LAWA).235

As noted in Section 2.3, as a depth-averaged model, CAESAR-Lisflood does not account for the higher density of the saline

tidal water compared to fresh riverine water, meaning that any variations in the vertical salinity profile of estuarine water is

not accounted for. However, given that the Avon-Heathcote estuary receives only small volumes of riverine inflow, with mean

inflow from the Avon and Heathcote rivers 1.87 and 1.04 m3/s, respectively (LAWA), compared with tidal inflow rates of up

to 500-800 m3/s during an incoming tide (van der Peet and Measures, 2015), it is likely that it is well-mixed with little vertical240

salinity difference (Hansen and Rattray, 1966).

Results of the model application are shown in Figure 7. During low flow conditions during at low-tide on 8 July 2017 (image

A), the estuary is mostly drained, with the water remaining in the estuary containing a greater proportion of water from the

Avon River as a result of its higher baseflow. Shortly after spring-high tide on 16 July (image B), it can be seen that water

from both the Avon and Heathcote is pushed back by the tide, particularly along the eastern shoreline. If accurate, this situation245

may play a significant role in determining where pollutants, such as those from stormwater runoff which are then discharged

from the Avon and Heathcote Rivers (e.g., see Vopel et al., 2012) are deposited. This would affect human health through

various activities in the estuary, such as the gathering of food sources such as fish and shellfish which accumulate heavy metals

contained in riverine discharge (e.g. McMurtrie, 2015).

During the high flow conditions on 22 July shortly after high tide and inflow peak (image C) and low tide (image D), results250

indicate substantially greater riverine contribution to the estuary, such that, after the fall of the tide, the estuary remained

substantially inundated but with water almost all from riverine sources. After high tide, Avon and Heathcote waters are largely

confined by the tide to the western shore, with a clear boundary between the two river sources visible. After low tide, this

boundary is sharper due to the absence of tidal mixing, and gradually dissipates as water mixes towards the estuary outlet.

3.3 Amazon River, Brazil255

The flow of the central Amazon River is characterized by a large annual flood wave of around 10 m amplitude, resulting

primarily from the distinctive wet and dry seasons (Trigg et al., 2009). Each year during the wet season, the Amazon rises and

inundates its low lying floodplain forests, creating an internationally significant wetland ecosystem which reaches its maximum

extent around June or July (Mitsch and Gosselink, 2015), with the extensive surface water flow recognised a key factor in the

functioning of the habitats created and exerting a strong control on biological and biogeochemical processes (Richey et al.,260

2002; Wittmann et al., 2004). Inter-annual variability in the flood level and flood wave timings creates spatial and temporal

complexities on the floodplain (Melack and Hess, 2011), with the source of water recognised as a key determinant for sediment

transport (Vauchel et al., 2017) and trace element concentration (Baronas et al., 2017) dynamics across the basin.

We applied the model of Wilson et al. (2007) to a ∼300 km reach of the Solimões River (mainstem Amazon River) at its

confluence with the Purus River (Figure 8), using a model grid of ∼278 m (domain size: 966 x 479 cells, ∼35,650 km2) for the265
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Figure 6. (a) Study site 2 at the Avon-Heathcote estuary in Christchurch, New Zealand showing elevation from LiDAR; (b) inflow and

downstream tide levels for the period simulated in July 2017, which includes a high-flow event on 22 July. The four vertical lines labelled

A-D represent the timing of the images shown in Figure 7. Tide data are from the NIWA Sumner Head gauge, around 1 km from the estuary

outlet; flow data are from the Environment Canterbury gauges at Gloucester St. (Avon) and Buxton Terrace (Heathcote). Contains data

sourced from the LINZ Data Service licensed for reuse under CC BY 4.0

period of October 2013 through December 2014. Operating at a far larger spatial scale to examples 1 and 2, here water source

tracing results show that, downstream (west) of the river confluence, the southern floodplain is primarily inundated with water

from the River Purus (indicated by green), while the floodplain to the north contains a mix of water from the Rivers Solimões

and the Purus (indicated by orange) (Figure 9). The shared floodplain upstream of the confluence displays a clear gradient

transition between the two water sources, passing from red (Solimões), through yellow (equally mixed) to green (Purus). The270

cross-section profile plots in Figure 9 show that, after flowing into the Solimões, water from the Purus remains largely on the

right (southern) bank, but mixes with the water from the Solimões as the river progresses downstream. As the Purus peaks

sooner than the Solimões, the proportion of water from the Purus close to the right bank decreases through the Solimões flood

peak (C) and mid-falling water (D). These demonstrate the ability of the LISFLOOD-FP and the new tracing functions to

simulate the convergence and mixing of water from these two major river systems. The proposed water source tracing method275

therefore provides the means to assess the complex dynamics of variable contributions in river-floodplain systems such as those

on the Amazon, enabling the estimation of important variables which are associated with each water source through time, such

as nutrient availability. Further, it may enable a rapid assessment of issues of importance for human health, such as identifying

areas which may be susceptible to mercury contamination from gold mining activities in the Amazon basin, for which the

dynamics of fluvial and pluvial waters are key factors (Maurice-Bourgoin et al., 2003; Maia et al., 2009). However, for a robust280

analysis, it is likely that additional tracing of sediment erosion, transportation and deposition is required (e.g. Haddadchi et al.,

2019).
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Figure 7. Model results for the Avon-Heathcote estuary: low flow conditions during (A) low-tide on 8 July 2017 and (B) after spring-high

tide on 16 July; high flow conditions on 22 July shortly after high tide (C) and low tide (D). The images were produced with β = 0.2; their

timing and flow/ tide levels are shown in Figure 6. Map colours indicate the mixing of water from different sources with darker shades

reflecting increased depth. Colour scales show depths for individual sources (left to right): ϕ [Tide] = 1.0 (blues); ϕ [Avon] = 1.0 (reds); and

ϕ [Heathcote] = 1.0 (greens). The background images contain the NationalMap Basemap (CC-BY-ND license) and LiDAR data shaded in grey.

For an animated version, please see: https://youtu.be/Fczr5tczzXU.
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Figure 8. (a) Study site 3 at the confluence of the Solimões (mainstem Amazon) and Purus rivers in the central Amazon, Brazil, showing

elevation derived from SRTM (O’Loughlin et al., 2016) and bathymetry (Wilson et al., 2007). The plots in (b) and (c) show river flows for

the period simulated from October 2013 through December 2014. The lower plot of (b), which shows the relative level of Solimões and

Purus flow (calculated as a proportion of the difference between the flow on 1 November 2013 and the 2014 peak flow), indicates that the

Solimões rises more steadily and before the Purus, which has a later, steep rise from around mid-February onwards. Peak flow levels on the

Purus (indicated by letter B) occurred around one month earlier than peak flow on the Solimões. The dotted box in (a) and letters A-D in (b)

and (c) indicate the location and timing of the model results shown in Figure 9. Contains Natural Earth data in the public domain.
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Figure 9. Model results for the Amazon, with colours on the map at the Purus flood peak (top) indicating the mixing of the waters along

the channel and across the floodplain. Map colours indicate the mixing of water from each source with darker shades reflecting increased

depth. Colour scales show depths with selected source combinations (left to right): ϕ [Solimões] = 1.0 (reds); ϕ [Purus] = 1.0 (greens); and

ϕ [Solimões] = 0.75, ϕ [Purus] = 0.25 (yellows). Channel cross-section plots (bottom) at locations indicated by a-a′ and b-b′ show the water

source fractions (upper plots) for each channel (A = mid-rising; B = Purus flood peak; C = Solimões flood peak; D = mid-falling), and depth/

source profiles (lower plots) for image B (Purus flood peak). For an animated version, please see: https://youtu.be/PknAL_8fd1I.

3.4 Computational performance

Results of the planar test case are shown in Figure 3b-d. Flow depth at t = 8400 s is shown in Figure 3b, and a water source

visualisation at the same time for the simulation with all 8 sources is shown in Figure 3c. Here, flood water mixing is shown in285

RGB colour space, as per (14) i.e. the mixing of sources 2 (red) and 4 (green) gives yellow; mixing source 4 and 6 (blue) gives

cyan. Other water sources are shown in black. As the water flows down the slope, it becomes increasingly mixed within each

section, helped by water being forced to flow through the gaps left in the walls placed across the slope. Once water flow reaches

the bottom of the slope, a high proportion of the domain contains water (77,901 out of 80,000 cells). The flow is constrained to

flow out of the domain through eight gaps in the downstream boundary wall, marked A-H in Figure 3a. The fractions of water290

sources 1-8, at locations A-H, throughout the simulation are shown in Figure 3d. As the domain has mirror symmetry along

the west to east axis at y = 500 m, the fractions at each of the locations are also symmetrical with respect to water sources. For
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example, at location A, water from source 1 increases to a fraction of around 0.5 of the water flowing through this location at

steady-state, while water from source 8 does not reach it at all; the reverse is true for these water sources at location H. For the

two central locations, D and E, all water sources are present with steady-state fractions ranging from around 0.02 (for source 8295

at location D or source 1 at location E), to 0.2 (for sources 4 and 5).

Code profiling using diagnostic tools of Microsoft® Visual Studio 2019 compiler software (version 16.11.2), based on

this test application with 3 sources, indicates that update_tracer_states() uses around 17.9% of the CPU resources

allocated to CAESAR-Lisflood during a simulation, with 3.0% used for save_tracer_states(). This compares to 39.6%

for qroute() and 11.5% for depth_update(). This profiling was completed on a Microsoft® Windows® 10 (build300

18363) computer system with an Intel® Xeon® E-2278G CPU running at 3.4 GHz base (5.0 GHz max. turbo) frequency

with 8 cores/ 16 threads, 128 Gb of system memory (4 x 32 Gb Samsung M391A4G43MB1-CTD ECC UDIMM running at

2,666 Mbps), writing outputs to a Samsung NVMe Solid State Disk (MZVLB1T0). All simulations presented in this paper

were completed on this computer system.

The total time of each of the eight simulations is presented in Table 1, ranging from 1362.5 s with 2 tracers, up to 1925.2 s305

with 8 tracers, as compared to 800.6 s without water source tracing. The ratio of computation time for the full simulations

with tracing, against computation time without tracing, ranges from 1.7 for two sources to 2.4 for eight. Mean computational

requirements time ranged from 0.016 s/s for 2 tracers to 0.022 s/s with 8 tracers, compared to 0.009 s/s without water source

tracing. In addition, the variability in computational costs increases with the number of sources being traced, likely due to the

complexity of the mixing introduced by constraining flow through gaps within this test case.310

Table 2 summarises each of the domains and simulations completed for the Carlisle, Avon-Heathcote and Amazon study

sites. Although the computational cost for the Amazon simulation was highest (∼32 days of computation time), when normal-

ising for the larger number of flooded cells and the longer simulation period, it had the lowest computational cost. This higher

computational efficiency likely results from the longer model timestep used, due to the larger cell size (∆x = 277.6 m). For the

Avon-Heathcote domain (∆x = 10 m), the computational cost per flooded cell per day of period simulated was 2.4 times the315

cost for Amazon; for the Carlisle domain (∆x = 5 m), this ratio increased to 4.2.

Figure 10 illustrates the computational efficiency of our scheme for the Carlisle flood model, with and without water source

tracing. Computational requirements for the simulation with water source tracing were found to be between 1.2x and 1.5x the

simulation without tracing, which is less than the 1.8 ratio found for the planar test case with 3 water sources. As with the

planar test case, the computational requirements of water source tracing were found to increase with the area of inundation.320

Early in the simulation, when the flood area was around 1 km2 (40,000 cells), the computational overhead of water source

tracing was approximately 0.01 s/s. This increased nearly linearly to ∼0.05 s/s as the flood extent reached its peak extent of

around 5 km2 (200,000 cells).
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Table 2. Summary of the simulations completed for each of the three study sites presented, and their computational costs.

Domain
Area

(km2)

Period

simulated

(days)

Cell

size,

∆x (m)

Total

cells

Flooded

cells

Proportion

flooded

Computation

time

(hours)

Cost*
Cost per

flooded cell*

Carlisle 12.7 5 5.0 508,012 190,019 0.37 27.7 5.54 2.92E-05

Avon-Heathcote 32.6 31 10.0 326,024 76,088 0.23 40.2 1.30 1.70E-05

Amazon 35,657.6 457 277.6 462,714 240,200 0.52 768.5 1.68 7.00E-06

* Number of computation hours needed per day of period simulated

Figure 10. Computational efficiency of water source tracing for the Carlisle simulations with and without water source tracing: (a) compu-

tation time required per second of the 5-day (432,000 s) simulation, with colours indicating the area of inundation; the dashed line shows the

ratio between the two (secondary y-axis); (b) computation time difference (i.e. cost of tracing) against flood area, with a linear model fitted

for reference; colours indicate the simulation time.

4 Discussion

Our method for water tracing is simple, effective and has a low additional computational overhead of 1.2-1.5 for our real world325

test cases. The three case studies above show that the approach is flexible, applicable in urban, coastal and fluvial environments

over a wide range of spatial scales. An important advantage of the method is that the number or water sources which may be

traced is limited only by computational constraints. Furthermore, as the formulation records the proportion of different tracers

or water sources per cell, it is fully independent of the hydraulic calculations, meaning it is straightforward to add to existing

finite volume codes and similar 2D flow models to LISFLOOD-FP. This also means that predicted water levels with or without330

the tracers are identical.

However, it is important to remember that the speed and simplicity of the method is at the expense of treating cell water

volumes as being fully mixed. This means that it is possible for small fractions of a tracer/water from different sources to
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propagate quickly downstream, since fluxes into a cell would be included for all the fractions assigned as an inflow to a

downstream neighbouring cell. In effect, this represents a tiny amount of numerical diffusion and the volumes moved are very335

small, but as a result caution should be applied to the interpretation of very small water source fractions. This is also an issue

for tracing functions in other codes such as TELEMAC (e.g. Ch. 9.5 Ata et al., 2014). Additionally, as each cell is fully mixed

we cannot yet incorporate the effects of different water densities, such as saline water.

These issues notwithstanding, this method provides excellent opportunities for simplified simulation of water, solute and wa-

ter borne fluxes across river catchments and in estuaries. In particular, with the CAESAR-Lisflood implementation combining340

a hydrological and hydraulic model, the contributing effects of sub basins on flooding can easily be simulated. Furthermore, the

ability to combine both point source (e.g. from combined sewer outflows) and diffuse source (e.g. fields) contaminant sources

within a computationally fast model opens up many opportunities to simulate water quality and pathogen/contaminant issues.

Assessments of water sources may be especially useful for other fluvial or estuarine sites with similar human health consider-

ations to the examples presented here. For example, Robins et al. (2019) assessed water quality risks from viral dispersal from345

the Conwy catchment, north Wales, and highlighted the importance of river flow contributions to exposure risk. Therefore, this

simple and efficient water tracing algorithm within the open source CAESAR-Lisflood model provides a powerful tool for the

studying water quality and contaminant issues on environmental and human health.

5 Conclusions

We developed a simple method for tracing water sources through a flood inundation model and demonstrated its application350

for a simple test case and three example case studies at different spatial and temporal scales. A key advantage of the approach

lies in its independence from the hydraulic methodology used, meaning that it is relatively straightforward to add to existing

in finite volume codes. The method enables effective and informative visualisation of flood inundation, providing additional

insight into flood dynamics. In addition, it may potentially provide the ability to simulate the movement of solute contaminants

and pathogens within a computationally efficient model, although additional testing is required to verify the reliability of the355

method, given the assumption of full mixing within cells.

Code and data availability. The CAESAR-Lisflood v1.9j-WS source code is freely available for download from Zenodo under the GNU

General Public License v3.0, along with the planar test case and a 15 m version of the Carlisle model at https://zenodo.org/record/7589023

(Wilson and Coulthard, 2023).

Video supplement. Animations for each of the case studies are available at the YouTube links provided in the manuscript, and from Zenodo360

at https://doi.org/10.5281/zenodo.5548535 (Wilson and Coulthard, 2021).
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Appendix A: Code description

The tracing component requires a series of additional variables representing the water state prior to the routing (Figure A1).

The variable water_depth_prev is an array of X * Y grid cells containing the depth from the previous time step; dhdt_x

and dhdt_y are arrays containing the change in cell depth in the last time step in for columns and rows, respectively. The365

fraction of each cell from each source (i.e. the water tracers) are recorded in a series of three-dimensional (W * X * Y

grid cells) or stacked arrays containing the tracer fractions per cell for present and previous iterations (watertracer,

watertracer_prev) the rain zonations (watertracerRainZone, watertracerRainZone_prev) and a series

of flags to enable or disable tracing. Note that the rainfall source as a whole (i.e. from any zone) is contained within the main

watertracer arrays, while the fraction of rainfall from each zone is recorded in the watertracerRainZone arrays.370

Figure A1. Additional variables required for water source tracing.

The addition to the reach inputs is shown in Figure A2, from the function reach_water_and_sediment_input()

(rainfall inputs and tidal or stage inputs are added similarly but code is omitted for brevity). In this function, the updated

water source fractions for the water source being added to the cell (Eqn. 9) and other sources already in the cell (Eqn. 10) are

implemented on lines 33 and 40, respectively.

After the addition of boundary condition inputs from each source, the new tracer states (prior to surface water routing) are375

saved within the function save_tracer_states(), in which the waterdepth, watertracer, and watertracerRainZone

arrays are copied into the waterdepth_prev, watertracer_prev and watertracerRainZone_prev arrays, re-

spectively (Figure A3).

Flow rates between all cells are then calculated as normal in the function qroute() (i.e. solving Eqn. 2 between all cells),

with no modifications needed to the code for water source tracing. Once flows are calculated, depths are updated according380

to (1) in the function depth_update(). Here, the only modification required for water source tracing is that the volumes

of water moving between cells is recorded in the dhdt_x and dhdt_y arrays (Figure A4). Here, the dhdt_x and dhdt_y

arrays are updated on lines 18-24, before the water_depth array is updated according to (1) on line 27. For brevity, the code

presented in Figure A4 omits some additional processing for updates to suspended sediment and error checking.

Finally, the main addition to the CAESAR Lisflood code for water source tracing is within the function update_tracer_states(),385

that deals with the mixing component and updates the different source tracer fractions as water is moved between cells during

each iteration (Figure A5). In the update_tracer_states() code, the cell depth after removal of outflows, ht
Q[out]

(7), is

first calculated (lines 31-43). Then, the updated volume fractions (6) obtained for each source are calculated (lines 45-81), with
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Figure A2. Updating cell water fractions according to (9) and (10), from the function reach_water_and_sediment_input().

Figure A3. save_tracer_states()
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Figure A4. Modified depth_update() function

the total volume contributed from each source first calculated (lines 47-58), then the updated cell volume fractions obtained

(lines 77-79). Finally, the function will update the volume fractions for each rainfall zone source in a similar way (code omitted390

for brevity).
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Figure A5. The main water source tracing calculations within the update_tracer_states() function
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