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Abstract. For enhanced public safety and water resource management, a three-dimensional operational lake 8 

hydrodynamic forecasting system COASTLINES (Canadian cOASTal and Lake forecastINg modEl System) was 9 

developed. The modelling system is built upon the Aquatic Ecosystem Model (AEM3D) model, with predictive 10 

simulation capabilities developed and tested for a large lake (i.e., Lake Erie). The open-access workflow derives 11 

model forcing, code execution, post-processing, and web-based visualization of the model outputs, including water 12 

level elevations and temperatures, in near real-time.  COASTLINES also generates 240-h predictions using 13 

atmospheric forcing from 15 km and 25 km horizontal-resolution operational meteorological products from the 14 

Environment Canada Global Deterministic Forecast System (GDPS). Simulated water levels were validated against 15 

observations from 6 gauge stations, with model error increasing with forecast horizon. Satellite images and lake 16 

buoys were used to validate forecast lake surface temperature and the water column thermal stratification. The 17 

forecast lake surface temperature is as accurate as hindcasts, with a root-mean-square-deviation <2℃. 18 

COASTLINES predicted storm-surges and up-/down-welling events that are important for coastal flooding and 19 

drinking water/fishery management, respectively. Model forecasts are available in real-time at 20 

https://coastlines.engineering.queensu.ca/. This study provides an example of the successful development of an 21 

operational forecasting workflow, entirely driven by open-access data, that may be easily adapted to simulate 22 

aquatic systems or to drive other computational models, as required for management and public safety.     23 

https://coastlines.engineering.queensu.ca/
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1 Introduction 24 

Lakes hold a large proportion of the global surface freshwater, which supports biodiversity and supplies water 25 

resources for drinking, transportation, and recreation.  However, anthropogenic stressors are causing significant 26 

changes in the properties of lakes, such as rapid warming of surface water (O'Reilly et al., 2015), large seasonal 27 

water level fluctuations (Gronewold and Rood, 2019), increased frequency of extreme events (Saber et al., 2020) 28 

and severe water quality issues such as oxygen depletion (Rowe et al., 2019; Scavia et al., 2014) harmful algal 29 

blooms (Brookes and Carey, 2011; Watson et al., 2016). Effort has focussed on investigating the long-term 30 

responses of physical processes in lakes to climate change (O'Reilly et al., 2015; Woolway and Merchant, 2019; 31 

Jabbari et al., 2021), but improving lake monitoring and developing short-term forecast models, to predict the 32 

occurrence of extreme events is also necessary (Woolway et al., 2020). The biogeochemical cycles in lakes are 33 

complex and often regulated by physical forcing; therefore, the first step to model and forecast water quality issues, 34 

such as harmful algal blooms (Paerl and Paul, 2012; O’Neil et al., 2012) and hypoxia (Rao et al., 2008; Rao et al., 35 

2014) is the development of accurate hydrodynamic models.   36 

Over the past several decades, many computer models have been applied to hindcast (running models 37 

forced with and validated against historically collected data) lake hydrodynamics to aid management. These range 38 

from one-dimensional (1D) models such as DYRESM (Antenucci and Imerito, 2000), Simstrat (Gaudard et al., 39 

2017), and GLM (Hipsey et al., 2014), to three-dimensional (3D) models such as Delft3D (Lesser et al., 2004), 40 

FVCOM (Chen et al., 2012; Rowe et al., 2019) ELCOM (Hodges et al., 2000). Several of these hydrodynamic 41 

models may be coupled to biogeochemical models to allow for prediction of water quality. In the case of hindcast 42 

applications, the complex and time-consuming setup and calibration procedure, of these models, can result in a 43 

significant time lag (months to years) between when a project is initiated and when the model results are 44 

communicated to stakeholders.  This delay severely limits the utility of computational models for policy and 45 

management decision making.  For better application of these powerful computational tools, the ability for rapid 46 

monitoring and simulation forecasts should be established.   47 

 In addition to the significant effort required to setup and calibrate models, other hurdles exist such as data-48 

sharing agreements between the agencies collecting forcing/validation data and those running the models. For 49 

example, the US National Oceanic and Atmospheric Administration (NOAA) Great Lakes Coastal Forecasting 50 

System (Chu et al., 2011; Anderson et al., 2018), is a comparatively large-budget multi-institutional (NOAA-51 

GLERL and U. Michigan-CIGLR) project that predicts water levels, temperature profiles, currents, and wave 52 

heights over a 120-h timeframe in the five Laurentian Great Lakes and connecting channels, using FVCOM on a 3D 53 

unstructured grid with 30-2000 m horizontal resolution. Similarly, meteolakes.ch (Baracchini et al., 2020b) applies 54 

Delft3D for short-term 3D forecasts (4.5 days) of four Swiss lakes and simstrat.eawag.ch (Gaudard et al., 2019) 55 

applies Simstrat for near-realtime 1D simulation of 54 Swisss lakes.  These latter applications employ a data sharing 56 

agreement between Swiss Federal Institute of Aquatic Science and Technology (EAWAG), École Polytechnique 57 

Fédérale de Lausanne (EPFL) and MeteoSwiss. 58 

Owing to the present online proliferation of near real-time lake observation data (e.g., National Data Buoy 59 

Center (NDBC; https://www.ndbc.noaa.gov/); Great Lakes Observation System (GLOS; https://www.glos.us/)) and 60 

https://www.ndbc.noaa.gov/
https://www.glos.us/
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high-resolution meteorological forecasts (e.g., Global Deterministic Prediction System, GDPS; 61 

https://dd.weather.gc.ca/model_gem_global/; High Resolution Rapid Refresh, HRRR; 62 

https://rapidrefresh.noaa.gov/hrrr/) the data-sharing agreements and managed data transfer protocols are no longer 63 

required.  When coupled with recent dramatic improvements in workflow efficiency (e.g., Gaudard et al. (2019); 64 

Baracchini et al. (2020b)) near real-time inclusion of forcing from meteorological forecasts allow for the 65 

development of specific simulations tailored to meet diverse lake-management needs (e.g., prediction of coastal 66 

flooding, spill modelling, fish habitat, beach closures, and optimization of treatment or source water monitoring 67 

strategies).   68 

In the present study we developed and tested the COASTLINES (Canadian cOASTal and Lake forecastINg 69 

modEl System; https://coastlines.engineering.queensu.ca/) lake-model application workflow, that rapidly accesses 70 

near real-time online data (weather forecasts, water level and temperature observations) for automated model 71 

forcing, execution and validation.  Hydrodynamic forecasts are automatically post-processed and posted on a web 72 

platform.  We provide an overview of the COASTLINES system, including model implementation for Lake Erie 73 

(Section 2 Data and methods) and the accuracy of COASTLINES in forecasting water levels and temperature fields 74 

over timescales of 24-h and 240-h (Section 3 Results).  In Section 4 Discussion, the predictive ability of 75 

COASTLINES for decision making is showcased through prediction of hydrodynamic events associated with fish 76 

kills, hypoxia near a drinking water intake and coastal flooding from a storm surge. We also discuss the relative 77 

advantages of COASTLINES in comparison to other model products, including bias and uncertainty.  78 

2 Data and methods 79 

2.1 Study site 80 

Lake Erie, the shallowest lake of the Great Lakes with a mean depth of 19 m. Lake-wide hydrodynamics 81 

predominantly exhibits free surface and current oscillations from the 14-h barotropic seiche (Hamblin, 1987; 82 

Boegman et al., 2001). The lake morphometry consists of distinct, yet interconnected western, central, and eastern 83 

basins (Fig. 1), each with its own water quality concerns: The 11-m deep western basin is typically well mixed and 84 

has frequent harmful algae blooms related to climate-driven meteorological forcing (Michalak et al., 2013). The 85 

ephemeral stratification in late summer (Loewen et al., 2007) regulates vertical biogeochemical fluxes (Boegman et 86 

al., 2008). The 20-m deep central basin is prone to large-scale hypolimnetic hypoxia (Scavia et al., 2014).  87 

Hydrodynamics are governed by an internal Poincaré wave (Bouffard et al., 2012; Valipour et al., 2015) and a bowl-88 

shaped depression of the summer thermocline, which influence the oxygen budget (Beletsky et al., 2012; Bouffard et 89 

al., 2014). The 65-m deep eastern basin has nearshore water quality concerns from cladophora (Higgins et al., 2006) 90 

and ecosystem engineering by dreissenid mussels (Hecky et al., 2004).  Hydrodynamics of this region are controlled 91 

by the coastal internal Kelvin wave (Valipour et al., 2019).    92 

https://dd.weather.gc.ca/model_gem_global/
https://rapidrefresh.noaa.gov/hrrr/
https://coastlines.engineering.queensu.ca/
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 93 

Fig.1 Map of Lake Erie showing the bathymetric depths and observation sites. The bathymetric map is at the 94 
resolution of the 500 m grid applied in the model. The western, central, and eastern basins are labeled as WB, 95 
CB, and EB, respectively. Blue circles indicate lake buoys and black squares indicate water level gauges. 96 

2.2 Model description 97 

COASTLINES applies the three-dimensional Aquatic Ecosystem Model (AEM3D, version 1.1.1, HydroNumerics 98 

Pty Ltd.). This model solves the unsteady 3D Reynolds-averaged Navier-Stokes equations for incompressible flow 99 

employing the Boussinesq and hydrostatic approximations. Momentum advection is based on the Euler-Lagrange 100 

method with a conjugate-gradient solution for the free-surface height (Casulli and Cheng, 1992), and a conservative 101 

ULTIMATE QUICKEST discretization scheme for advection of scalars (Leonard, 1991). AEM3D is a parallel 102 

version of the commonly applied Estuary and Lake Computer Model (ELCOM; (Hodges et al., 2000). ELCOM has 103 

been applied to Lake Erie to simulate currents and seasonal circulation (León et al., 2005), the internal Poincaré 104 

(Valipour et al., 2015) and Kelvin waves (Valipour et al., 2019), ice cover (Oveisy et al., 2012) and the response of 105 

the thermal structure, in Lake Erie, to air temperature and wind speed changes (Liu et al., 2014).  ELCOM has been 106 

coupled with the biogeochemical CAEDYM model to simulate Lake Erie phytoplankton and nutrients (León et al., 107 

2011), and the response of hypoxia (Bocaniov and Scavia, 2016) and algae blooms (Scavia et al., 2016) to nutrient 108 

load reductions.  Recent applications of AEM3D include a study of the water level in Lake Arrowhead, California 109 

(Saber et al., 2020), ice cover in Lake Constance (Caramatti et al., 2019) and pollutant transport in Lake St. Clair 110 

(Madani et al., 2020). 111 
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2.3 Model setup and meteorological forcing variables 112 

To adequately resolve the coastal boundary layer (~ 3 km width (Rao and Murthy, 2001)) and basin-scale internal 113 

waves (Poincaré (16.8 h) and Kelvin waves), the bathymetry of Lake Erie 114 

(https://www.ngdc.noaa.gov/mgg/greatlakes/erie.html) was discretized into a 500 m × 500 m horizontal grid, which 115 

is ~10 % of the internal Rossby radius (Schwab and Beletsky, 1998). The lake was discretized into 45 vertical 116 

layers, with fine resolution (0.5 m) through the surface layer, metalimnion and bottom of the central basin, and 117 

coarse layers (5 m) through the hypolimnion of the deeper eastern basin to the maximum depth of 64 m.  118 

The model was ‘cold started’ on April 8, 2020 (day of year (day) 99) with an initial temperature field spatially 119 

interpolated from observed water temperatures at stations 45142 and MHRO1; a time when spring turnover causes 120 

thermal stratification to be minimal. The model time step is dt = 300 s to satisfy the CFL = √2 (Courant-Friedrichs-121 

Lewy) condition for internal waves (Hodges et al., 2000). 122 

The model is forced by the surface meteorology (wind speed, wind direction, air temperature, shortwave 123 

solar radiation, relative humidity, air pressure, and net longwave radiation), with net longwave radiation being 124 

computed internally within AEM3D from cloud cover and the modelled surface temperature. In order to address the 125 

spatial variability of meteorological conditions across the lake, the computational domain was forced with 126 

meteorological data on horizontal grids at 15 km (https://dd.weather.gc.ca/model_gem_global/15km/ ) and 25 km 127 

(https://dd.weather.gc.ca/model_gem_global/25km/) resolution using meteorological forecasts from the 128 

Environment and Climate Change Canada Global Deterministic Forecast System (GDPS). This resulted in 31 and 23 129 

meteorological sections for the 15 km and 25 km models, respectively. Wind speed, wind direction, air temperature, 130 

relative humidity, air pressure, dew point, and cloud cover are direct outputs from GDPS, with solar radiation 131 

calculated based on dew point and air pressure ((Meyers and Dale, 1983); Appendix C. in (Gaudard et al., 2019)). 132 

The meteorological forecast has an output timestep of 3-h and a forecast length of 240 h. The .GRIB2 133 

meteorological data were retrieved with the ‘urllib’ library in Python and formatted into AEM3D input files using 134 

the nctoolbox in MATLAB.  135 

In this pilot application, the Lake Erie inflows and outflows, which roughly balance, are neglected, 136 

however evaporation and precipitation are accounted for in the water balance. Over short timescales (<10 days), the 137 

contributions from evaporation and precipitation to water level change are minor, with water level oscillations 138 

resulting from storm surges and surface seiches (Trebitz, 2006). 139 

2.4 Observations, implementation, and model validation 140 

The water levels and temperatures simulated by COASTLINES were validated using both in situ and satellite 141 

observations. Near real-time water level data was used from six stations along the Canadian coastline, which 142 

reported hourly observations (Bar Point, Kingsville, Erieau, Port Stanley, Port Dover, and Port Colborne; Fig. 1; 143 

Table 1), retrieved from Fisheries and Oceans Canada (https://marees.gc.ca/eng/find/zone/44).  The data are parsed 144 

using the ‘BeautifulSoup’ library in Python and saved as .csv files, to be read with MATLAB for model validation. 145 

The observations showed higher fluctuations in the western (Bar Point and Kingsville) and eastern (Port Dover and 146 

https://www.ngdc.noaa.gov/mgg/greatlakes/erie.html
https://dd.weather.gc.ca/model_gem_global/15km/
https://dd.weather.gc.ca/model_gem_global/25km/
https://marees.gc.ca/eng/find/zone/44
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Port Colborne) basins (Fig. 1). Thus, we quantify the water level forecast capability and uncertainty in terms of the 147 

Root Mean Square Deviation (RMSD) and Relative Error (RE): 148 

𝑅𝑀𝑆𝐷 =  [
1

𝑁
∑ (𝑥𝑖 − 𝑦𝑖)2𝑁

𝑖=1 ]1/2,                                             (1) 149 

𝑅𝐸 = 100
𝑅𝑀𝑆𝐷

𝑙𝑜𝑔.  𝑚𝑒𝑎𝑛(𝑑𝑎𝑖𝑙𝑦 𝑟𝑎𝑛𝑔𝑒)
,                                                  (2) 150 

where xi and yi (i = 1, 2, 3, ... N) are the model and observed water level timeseries and N is the number of samples. 151 

RMSD is the absolute error of the model against the observation. The difference between the observed daily 152 

minimum and maximum value was defined as the daily water level fluctuation range, where RE is the ratio between 153 

the RMSD and lognormal mean of daily range over April to September 2020. Given that our study focusses on a 154 

240-h forecast, RE is able to characterize the forecast bias, regardless of the instantaneous water level position. 155 

 Eight in situ lake buoys, distributed over the nearshore areas of the three basins (Fig. 1; Table 1), provided 156 

near real-time model validation data through the Great Lakes Observing System (GLOS: https://www.glos.us/) and 157 

National Data Buoy Center (NDBC: https://www.ndbc.noaa.gov/) portals. For each station, the text-based NDBC 158 

observations are parsed using the ‘BeautifulSoup’ Python library, and the GLOS observations are retrieved using 159 

‘webdriver’ from the ‘selenium’ Python library. All the lake buoy observations are saved as .csv files and read into 160 

MATLAB for post-processing. Attempts to retrieve missing variables would result in run-time errors.  161 

The lake buoys are deployed from April or May through mid-October, spanning the spring/fall turnover 162 

and seasonal summer stratification periods. However, due to COVID-19 related delays in instrument deployments in 163 

2020, only two buoys located offshore of Cleveland, near the water intake crib (station 45176 and station 45164), 164 

were equipped with thermistor chains to monitor temperature profiles.  The other six buoys provide air and lake 165 

surface temperature as well as wind speed and direction observations for hydrodynamic and meteorological forecast 166 

validation. Satellite-based observations of lake surface temperature were obtained from the Great Lakes Surface 167 

Environmental Analysis (GLSEA2), which is derived from NOAA CoastWatch AVHRR (Advanced Very High-168 

Resolution Radiometer) imagery and updated on NOAA GLERL website 169 

(https://coastwatch.glerl.noaa.gov/erddap/files/GLSEA_GCS/). GLSEA2 produced daily observations, with 2.6 km 170 

resolution, from the cloud-free portions of the satellite images (Schwab et al., 1999). The netCDF data are retrieved 171 

using the ‘BeautifulSoup’ library and ‘webdriver’ from ‘selenium’. 172 

We quantified the temperature forecast capability using the statistical measures of RMSD (eq. 1) and Mean 173 

Bias Deviation (MBD): 174 

𝑀𝐵𝐷 = 100 
1

𝑁
∑ (𝑥𝑖−𝑦𝑖)𝑁

𝑖=1
1

𝑁
∑ 𝑦𝑖

𝑁
𝑖=1

                                          (3) 175 

For the spatial MBD and RMSD (s-MBD and s-RMSD), xi and yi are the model and observed temperature in each 176 

grid, and N is the total number of grids. For timeseries MBD and RMSD (t-MBD and t-RMSD), xi and yi are the 177 

model and observed temperature at each sample time, and N is the total number of samples. 178 

 179 

 180 

https://www.glos.us/
https://www.ndbc.noaa.gov/
https://coastwatch.glerl.noaa.gov/erddap/files/GLSEA_GCS/
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Table 1 181 
Details of field stations with water level gauges and lake buoys. 182 

Station Parameter Sampling interval (min) Depth of measurement (m) 

Bar Point Water level 60 Surface 

Kingsville Water level 60 Surface 

Erieau Water level 60 Surface 

Port Stanley Water level 60 Surface 

Port Dover Water level 60 Surface 

Port Colborne Water level 60 Surface 

TWCO1 Temperature 10 Surface 

45005 Temperature 10 Surface 

45176 Temperature 10 1, 3, 4, 6, 7, 9, 10, 12, 14, 15 

45169 Temperature 30 surface  

45164 Temperature 60 1, 2, 4, 6, 8 10 
45132 Temperature 60 Surface 

45167 Temperature 10 Surface 

45142 Temperature 60 Surface 

2.5 System operation 183 

The COASTLINES operational forecast system is run on a local server supported by Queen’s University ITS 184 

(Kingston, Canada). The COASTLINES workflow is presented in Fig. 2. The system consists of input data 185 

acquisition and preparation, 24-h hydrodynamic simulations, 240-h hydrodynamic simulations, validation against in 186 

situ observations, and uploading the model forecasts and validation to the web platform.  Given that the standard 187 

deviations of meteorological forecast variables increase with forecast lead time (Buehner et al., 2015), we performed 188 

separate 24-h and 240-h forecast simulations each day. The model advances every day according to the 24-h forecast 189 

simulation and terminates by generating ‘re-start’ files. These files are then used to hot-start the 240-h forecast 190 

simulation and the 24-h simulations for the next day.  The input files for the 240-h forecast simulations are 191 

iteratively replaced by the new 240-h meteorological forecast generated each day. The 24-h and 240-h forecast 192 

model outputs are compared against observations to evaluate the forecast performance against forecast lead time. 193 

The long-term stability of employing daily ‘hot’ restarts can be seen in a comparison between simulated 194 

temperature profiles from a continuous run and that from stitching together the 24-h hot-start simulations (Appendix 195 

A; Fig. A1).  At present, the initial water level cannot be modified using the AEM3D re-start files. Therefore, to 196 

account for long term drift in surface water level, we used real time gauge observations as the datum point for water 197 

level forecasts (automatically performed by MATLAB in post processing) and only consider errors resulting from 198 

simulation of storm surges and seiches, as opposed to those from seasonal changes in mean lake level. Automation 199 

of the processing tasks in the workflow is performed by Python scripts triggered by the Windows Task Scheduler 200 

every 24-h at midnight. The online meteorological forecast data are retrieved from GDPS once updated at 3 am 201 

EST. Forcing variables are then formatted in MATLAB, called by the Python scripts once the meteorological 202 

forecast data has been retrieved. The AEM3D pre-compiled executable is then run as a black-box code, triggered by 203 

Python.  The 24-h and 240-h simulations take 0.5 h and 4 h to complete, respectively. The observed data, including 204 

water levels from gauge stations, water temperatures from lake buoys and satellite images are scraped with Python 205 

at 8 am, followed by post-processing in MATLAB to validate model output, calculate statistical metrics (RMSD, 206 

MBD) and generate figures. The results are exported to Google sheets and published to the COASTLINES website 207 
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(e.g., Appendix B). The authors (supervisors of COASTLINES) and Queen’s ITS monitor forecast results and 208 

maintain system operation. 209 

Global coverage of the GDPS forecasts enable this operational system to be readily implemented at other 210 

sites where lake bathymetry, boundary flows and in-situ validation data are available.  The workflow may be easily 211 

modified to include additional meteorological forecasts or black-box hydrodynamic drivers (e.g., HRRR and 212 

Delft3D, respectively (Rey and Mulligan, 2021)).   213 

 214 

Fig. 2 Daily workflow and automated processes in the COASTLINES operational system as performed on the 215 
local server. 216 

3 Results 217 

The COASTLINES water level and temperature forecasts have been operational since April and July 2020, 218 

respectively. The 24-h and 240-h forecast water levels from the 15 km and 25 km resolution models were validated 219 

against real-time gauge station observations. The water level statistical metrics (RMSD and RE) were ensembled 220 

and averaged over April to September 2020. The 24-h and the 240-h forecast lake surface temperature and 221 

temperature profiles, from the models, were also validated against real-time lake buoy data and daily averaged 222 

satellite imagery. The timeseries and spatial MBD and RMSD (t-RMSD, t-MBD and s-RMSD, s-MBD) were 223 

ensembled and averaged over July to September 2020.  224 
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3.1 Water level  225 

The Relative Error (RE) of the forecast water level increases with forecast time when averaged over April to 226 

September 2020; the 24-h forecast error being ~ 40% at all six gauge stations (Fig. 3 a, c, e, g, i, k). Given the large 227 

water level fluctuation at Port Colborne (Fig. 3 l), the 240-h forecast RE is highest at this station, exceeding 70% 228 

(Fig. 3 k). Of the six gauge stations reported in this study, those at the western (Bar Point and Kingsville) and 229 

eastern (Port Dover and Port Colborne) ends of Lake Erie longitudinal axis had the largest water level fluctuations, 230 

resulting from the predominant south-westerly winds generating strong wind set-up and surface seiches (Fig. 3 b, d, 231 

f, h, j, l).  The lognormal means of the daily range in water level at the six gauge stations are 0.21 cm (Bar Point), 232 

0.16 cm (Kingsville), 0.07 cm (Erieau), 0.10 cm (Port Stanley), 0.15 cm (Port Dover), 0.17 cm (Port Colborne).  233 

The 24-h forecasts show qualitative agreement with observations in phase and magnitude (Fig. 4). The 24-h 234 

forecasts reproduce the dramatic surface seiches induced by westerly winds > 15 m s-1 (Fig. C2) on day 251 (RMSD 235 

< 0.1 cm), especially the obvious water level fluctuations at stations in the western and eastern basins (Fig. 4 a, b, e). 236 

However, the prediction of water level at Bar Point showed large bias (Fig. 4 f), with the model overestimating the 237 

water level fluctuation. The uncertainty in the model forecast, which increased with the range of the daily 238 

fluctuation, was captured by the ensemble 24-h forecast RE over April to September (the shaded areas in Fig. 4). 239 

Overall, the confidence interval of the 24-h forecast included most of the discrepancies between the observations 240 

and the model results. 241 

 242 

Fig. 3 Relative error (RE) in water level predictions against forecast time at six stations (a, c, e, g, i, k). Panels 243 
(b, d, f, h, j, l) are the corresponding frequency distribution of lognormal means of the daily water level 244 
fluctuation range (x-axes, unit in meter) at Bar Point, Kingsville, Erieau, Stanley, Port Dover, Port Colborne, 245 
respectively.  246 



10 
 

 247 

Fig. 4 Comparison between observed and stitched 24-h forecast modeled water level at (a) Port Colborne, (b) 248 
Port Dover, (c) Port Stanley, (d) Erieau, (e) Kingsville, and (f) Bar Point. The shaded areas show the confidence 249 
interval of the 15 km model (red shading) and the 25 km model (blue shading), as given by the ensemble 24-h 250 
RE in Fig. 3. 251 

Timeseries validations for the 240-h model forecast (Fig. 5) include confidence intervals from the ensemble RE 252 

(Fig. 3). As shown, the forecast began 6 days in advance of the large surface seiche event on day 251 and predicted 253 

the seiche to crest at Port Colborne 1-2 h ahead of the observations, and to trough at Kingsville 1-2 h behind the 254 

observations (Fig. 5 a, c). Damping of the seiche oscillations (~144 hours in the future) was excessive, with the 255 

water levels being underestimated and the phase shifted by approximately 12 hours (Fig 5. a, b). Despite the wide 256 

confidence intervals, due to the increasing RE with forecast time, large bias existed after the seiche event (forecast 257 

time >168 hours). When the forecast was initiated close to the event (3 days before), the prediction of seiche phase 258 

was more accurate (Fig. 5 d, e, f); however, the seiche decay still had a 12-h phase shift. The discrepancies in seiche 259 

amplitude (< 0.1 m) were within the confidence intervals of the models.  260 
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 261 

Fig. 5 Comparison between the observed water level and 240-h forecast hot-started on day 245 (a, b, c) and day 262 
248 (d, e, f) at Port Colborne, Port Dover, and Kingsville, respectively. The shaded areas show the confidence 263 
interval of the 15 km model (red shading) and the 25 km model (blue shading), as given by the ensemble 240-h 264 
RE in Fig. 4. 265 

3.2 Water temperature 266 

3.2.1 Lake surface temperature 267 

Using satellite-based and lake buoy-based observations, we evaluated the lake surface temperature forecast (Fig. 6). 268 

The 24-forecast captured the seasonal variation of lake surface temperature, particularly the rapid increase in 269 

temperature on days 180-190, and the gradual decrease in temperature after day 240; at all eight stations. However, 270 

the forecast overestimated the lake surface temperature in July by 3-5 ℃ (days 180-210), particularly at STN 45167 271 

and 45142. Due to the 3-h output interval associated with the meteorological forecast data, the forecast model was 272 

insensitive to temperature fluctuations over shorter timescales, as recorded by the lake buoys, and it underestimated 273 

the sudden decrease in temperature near day 220 and 255 at STN 45005.  274 

Overall, the t-MBD and t-RMSD, over these eight stations, were ~6% and 1.4 ℃ (15 km model) and ~5% 275 

1.3 ℃ (25 km model) for the 24-h forecast, respectively (Table 2). The average s-MBD and s-RMSD over the 50 276 

days from July-September were ~4% and 1.2 ℃, respectively, for both 15 km and 25 km resolution models. 277 
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 278 

Fig. 6 Comparison between the stitched 24-h forecast and observed lake surface temperature at 8 stations (a) 279 
TWCO1, (b) 45164, (c) 45005, (d) 45132, (e) 45176, (f) 45167, (g) 45169, and (h) 45142. The green lines are 280 
timeseries observations from lake buoys, the black lines are daily observations derived from satellite imagery.  281 

 282 

Fig. 7 (a) Mean-Bias Deviation (MBD) against forecast time; (b) Root-Mean-Square Deviation (RMSD) against 283 
forecast time. (c-f) Timeseries of 240-h forecast and observed lake surface temperature at stations 45164, 45167, 284 
45169, 45176, respectively, and daily averaged satellite lake surface temperature (black asterisks). The 285 
confidence interval (shaded areas) in (c-f) represents the uncertainty of the 240-h forecast model through the 286 
timeseries RMSD with the forecast time (panel b). 287 

The 240-h forecast MBD and RMSD, surprisingly, do not show an increase in error with forecast time (Fig. 7 a, b). 288 

Both t-MBD and s-MBD, over the 240-h forecast, are ~4-5%, with s-MBD 0.5-1% higher than t-MBD. Although 289 
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both 240-h s- and t-RMSD are under 2 ℃, the t-RMSD show the error with forecast time to be higher than s-RMSD. 290 

Both timeseries observations from lake buoys and daily averaged observations from satellite imagery fall into the 291 

forecast confidence interval based on the 240-h t-RMSD (Fig 7 c-f).   292 

Spatial comparisons of satellite-based observations to the 24-h, 48-h, 120-h, 168-h surface temperature 293 

forecasts illustrate that the forecast system (with 15 km meteorological data) predicted the cooler water mass along 294 

the northwest shoreline of the central basin with a cold bias ~ 2 ℃ (Fig. 8); this may be up-welling hypolimnetic 295 

water (see following Discussion 4.2). The model also predicted lower surface temperatures in coastal regions of the 296 

western basin with a cold bias ~2 ℃ (Fig. 8 m-t); the bias presumably was induced by neglecting riverine inflows 297 

(e.g., Detroit River and Maumee River; see also Discussion 4.3), which are typically near the air temperature and 298 

several degrees warmer than the lake surface (Wang and Boegman, 2021). Further comparisons between model 299 

predictions and satellite-based observations of lake surface temperature can be found in the Supporting material 300 

(Fig. D1-2). 301 

 302 

 303 

Fig. 8 Comparison of lake surface temperature from (a-d) satellite observations, (e-h) 15 km model forecast, 304 
and (i-l) 25 km model forecast during late summer. The models were hot-started on day 251. The difference 305 
between observations and models are shown in (m-t). 306 

3.2.2 Thermal structure 307 

The 3D AEM3D model structure applied in COASTLINES enables the prediction of the thermal profiles in the lake. 308 

On 15 Jun. 2020 (day 168), a rapid drop (~ 6℃) in surface temperature, was recorded by the thermistor at STN 45176, 309 

and predicted by the stitched 24-h COASTLINES model (15 km meteorological input) (Fig. 9 a, b). The timing and 310 

intensity of this up-welling event were accurately forecast, but before and after the upwelling event, the mixed layer 311 

depth was modelled to be deeper than observed; perhaps a result of spurious numerical diffusion resulting from the 312 
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thermocline swashing along the stair-step z-level grid at the lake perimeter. The 240-h forecast model was not yet 313 

operational at this time.  314 

Both the 240-h 15 km and 25 km resolution forecasts predicted the down-welling event on 11 Jul. 2020 (day 315 

193) at STN 45176 (Fig. 10). The forecasts were hot-started 7 days before the event (day 187), successfully predicting 316 

when warm surface water down-welled toward the bed displacing the thermocline (Fig. 10 b, c), but the 15 km 317 

resolution underestimated the intensity of down-welling, predicting thermocline recovery on day 193. The forecast 318 

hot-started 5 days before the event (day 189) gave a more accurate prediction with the down-welling persisting over 319 

2 days (Fig. 10 d, e) – as observed (Fig. 10 a).  320 

 321 

Fig. 9 Temperature profile comparisons between (a) observations and (b) stitched daily 24-h forecasts from the 322 
15 km resolution model at station 45176. (c) Observed dissolved oxygen concentration at station 45164 from 323 
lake buoy (https://www.glos.us/). The inset image shows the bathymetry and locations of lake buoys. The black 324 
square indicates the timing of the up-welling event.  325 

https://www.glos.us/
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 326 

Fig. 10 Comparisons of (a) observed temperature profile, (b, d) 240-h 15 km resolution modeled, and (c, e) 240-327 
h 25 km resolution modeled temperature profiles at STN 45176.  The forecast models were hot-started on day 328 
187 (b, c), and day 189 (d, e). The black square indicates the down-welling event. 329 

Table 2 330 
Statistical measures of t-MBD (Mean-Bias Deviation) and t-RMSD (Root-Mean-Square Deviation) between 331 
the 24-h forecast model and observations of water temperature. 332 

Station RMSD (℃) MBD (%) 

15 km model 25 km model 15 km model 25 km model 

45176 2.6 2.6 6.8 6.8 

45164 1.8 2.1 2.2 2.3 

45132 1.5 1.5 5.5 5.7 

45142 2.4 2.1 9.9 8.8 

45167 1.2 1.1 4.6 4.0 

45169 1.3 1.2 4.7 4.6 

TWCO1 1.0 1.0 3 1.9 

45005 1.2 1.1 8.2 7.9 

4 Discussion 333 

4.1 Prediction of coastal up-welling for fishery and drinking water management 334 

The central basin of Lake Erie is vulnerable to hypoxia in summer from near-bed thermal stratification and the 335 

relatively large ratio of sediment area to hypolimnetic volume (Bouffard et al., 2013; Nakhaei et al., 2021). 336 

Associated fish kill events (10s of thousands) are regularly reported, including an event on north shore of the central 337 

basin in the late summer of 2012, which was presumably was caused by up-welling of cold anoxic water from the 338 

hypolimnion (MOE, 2012; Rao et al., 2014). Similarly, 1000s of freshwater drum were killed in a rapid warming 339 

event (~5 ℃ /week) in the western basin in 2020 (https://www.13abc.com/content/news/Hundreds-of-dead-fish-340 

https://www.13abc.com/content/news/Hundreds-of-dead-fish-wash-up-in-Sandusky-Bay-571025541.html
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wash-up-in-Sandusky-Bay-571025541.html).  Similarly, shoreward advection of hypoxic water, from up-welling or 341 

internal waves also adversely affects source water quality at drinking water intakes (https://epa.ohio.gov), whereby 342 

high Fe and Mn or low pH, associated with hypoxic water requires adjustment of treatment processes.  This is a 343 

particular issue along the Ohio coast of the central basin (Ruberg et al., 2008; Rowe et al., 2019).  344 

The ability to predict these movements of hypolimnion water would aid management of both Lake Erie 345 

fisheries and drinking water treatment.  Here, we test the ability of the model to predict up-welling of cold bottom 346 

water in the region where the fish kill was observed in 2012. On days 249-253, 2020 (Fig. 8) strong southwesterly 347 

winds (~ 12 m s-1; Fig. C2) were modelled and observed to create up-welling along the north shore, as expected 348 

from Ekman drift of the surface layer (Jabbari et al., 2019). The upwelled cold hypolimnetic water is shown near the 349 

coast of Erieau in the satellite observations and the 15 km resolution model (Fig. 8 a, b, e, f). The depth-averaged 350 

water temperature and current circulation in the forecast shows up-welling to persist for several days (Fig. 11), with 351 

cold hypolimnetic water accumulating along north shore and strong eastward currents along the northern shoreline 352 

of the east-central basin. The up-welling region matched that shown in a 2013 hindcast simulation (Valipour et al., 353 

2019), revealing the hotspots of vertical transport of nutrients and anoxic hypolimnetic water.  354 

Another up-welling event occurred near the Cleveland drinking water intake crib on days 167-170 (Fig. 9).  355 

This event was accompanied by simultaneous ~8 mg L-1 oscillations in the observed dissolved oxygen concentration 356 

(Fig. 9 c) at STN 45164 (~20 km away from STN 45176), followed by the dissolved oxygen concentration 357 

becoming locally hypoxic (< 2 mg/L) for ~2 days.  The COASTLINES model predicted this event (section 3.2.2), 358 

which would have provided sufficient notice for drinking water plane operators to implement the additional 359 

treatment required for hypoxic water (Rowe et al., 2019).  Future work, using the coupled iWaterQuality 360 

biogeochemical module (formerly CAEDYM) could extend COASTLINES to forecast water quality in Lake Erie 361 

(León et al., 2011), including dissolved oxygen concentrations and formation of algae blooms (Bocaniov et al., 362 

2020). 363 

https://www.13abc.com/content/news/Hundreds-of-dead-fish-wash-up-in-Sandusky-Bay-571025541.html
https://epa.ohio.gov/
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 364 

Fig. 11 Color maps showing the forecast depth-averaged temperature throughout the lake. The red arrows 365 
represent forecast depth-averaged currents. The model results are from the 240-h forecast model hot-started 366 
on day 247.  367 

4.2 Prediction of storm surge events for public safety  368 

Due to its shallowness and long fetch aligned with the predominant southwest winds (Hamblin, 1979), Lake Erie has 369 

the largest daily range of water level amongst the Great Lakes (Trebitz, 2006); these water level fluctuations are 370 

mainly due to storm surges and surface seiches (Mortimer, 1987). In every month of 2020, Lake Erie set new mean 371 

water level records (https://www.tides.gc.ca/C&A/bulletin-eng.html), causing the shoreline to be exposed to high 372 

risk from erosion and flooding and making the shoreline communities susceptible to costly damage and economic 373 

loss  (e.g., https://www.lowerthames-conservation.on.ca/flood-forecasting/flood-notices/). Given the ability of 374 

COASTLINES to predict water level fluctuations induced by storm surges and seiches (Fig. 3, 5), we tested the 375 

ability of the model to act as a coastal flooding warning system.  Due to the unpredictability and severity of water 376 

https://www.tides.gc.ca/C&A/bulletin-eng.html
https://www.lowerthames-conservation.on.ca/flood-forecasting/flood-notices/
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level fluctuations in Lake Erie, there is currently a need to improve short-term water level forecasts and water level 377 

warning systems (Gronewold and Stow, 2014). This would assist early decision making during natural hazards 378 

(Gronewold and Rood, 2019). 379 

We forecast the storm event on 15 Nov.  2020, which generated a wind-induced storm surge (~1-1.5 m) in 380 

the eastern basin with associated strong surface currents (Fig. 12). The inset image, taken during the event, shows 381 

the coastal flooding from this event.  COASTLINES successfully predicted the high-water level phase at Port Dover 382 

72 hours in advance, but underestimated the water level increase by 0.5 m. The hot-start forecast 24 hours in 383 

advance was more accurate in predicting the water level prediction, with a difference <0.5 m from the observations 384 

(Fig. 12 d).  Note that both forecasts missed the small (~0.5 m) seiche before the significant increase at the end of 385 

day 320, presumably due to the low temporal resolution of the meteorological forecast input or local topography 386 

near the gauge. The overall wind-induced tilt of the free surface was less from the 72 hours hot-start, relative to the 387 

24 hour hot start (Fig. E1), which predicted a larger local storm surge (Fig. 12d). 388 

The impacts of coastal flooding could be improved by including simulation of wind-waves through 389 

enabling the coupled surface wave model SWAN (Booij et al., 1999) in AEM3D. Similarly coupled Delft3D-SWAN 390 

models have recently been applied in the development of a real-time predictive system for the coastal ocean and 391 

large estuaries (Rey and Mulligan, 2021).  392 

 393 

Fig. 12 Color maps showing the water level change compared to Nov 15th 00h from (a) 12 h, (b) 15 h, and (c) 394 
18 h forecasts from 15 km resolution model. The black arrows are depth-averaged mean current fields. Panel 395 
(d) shows a comparison between forecast and observed water level at Port Dover. The upper panel shows the 396 
forecast hot-started on 15 Nov. 2020 (day 320), and the lower panel shows the forecast hot-started on 12 Nov. 397 
2020 (day 317). The shaded region indicates the confidence interval. The inset image (extracted from a footage 398 
by J. Homewood from Lower Thames Valley Conservation Authority) shows the flooding induced by the 399 
dramatic water level increase during this event. The two cottages shown in the images were destroyed later in 400 
the afternoon. 401 
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4.3 Bias and uncertainty 402 

The AEM3D model (formerly ELCOM) employed in COASTLINES has shown skill in temperature hindcasts in the 403 

Great Lakes with RMSD ~ 0.9 – 3 ℃ in Lake Erie (Liu et al., 2014; Oveisy et al., 2012) and 1.5 – 1.9 ℃ in Lake 404 

Ontario (Paturi et al., 2012). Similarly, the 24-h COASTLINES forecast predicted water temperatures with an 405 

average s-RMSD and t-RMSD < 2 ℃ at the surface (Table 2). Therefore, the forecasts are within ~1 ℃ RMSD in 406 

comparison to hindcasts, showing sufficient model skill for predictive simulations to aid lake management (e.g., 407 

movements of hypoxic water, fish thermal habitat, etc.).  The accuracy of the COASTLINES forecasts may result 408 

from the high spatial resolution and coverage of meteorological forecast compensating for the inherent inaccuracies 409 

in the weather forecast data. Errors in forcing data may be compensated for using data assimilation (Baracchini et 410 

al., 2020b).  In the hindcast models, Liu et al. (2014) applied uniform Lake Erie meteorological forcing over 4 zones 411 

and Valipour et al. (2019) utilized 6 zones, each spanning ~100 km. These included land-based observations, when 412 

there was no available lake buoy data, which induces error, especially in large shallow lakes (Hamblin, 1987). The 413 

comparatively high-resolution GDPS meteorological forecast was four to five times higher in horizontal resolution 414 

than used in the hindcast simulations, improving the representation of regional meteorological and climatological 415 

conditions.     416 

Compared to other operational lake forecast systems, the 240-h COASTLINES forecast is longer (e.g., 417 

GLCFS forecasts 120 hours and meteolakes.ch forecasts 108 hours) and is the only one forced with open-access 418 

meteorological data that has global coverage. The GLCFS provided 48-h water level forecasts with RMSD ~0.12 m 419 

at the Buffalo gauge and ~0.14 m at the Toledo gauge, corresponding to RE ~ 60% and 51%, respectively (O’connor 420 

et al., 1999; Trebitz, 2006); using the older 4 km grid Princeton Ocean Model implementation, as opposed to the 421 

newer unstructured grid FVCOM GLCFS.  COASTLINES gives better 48-h water level forecast performance (RE ~ 422 

40 %) at six gauge stations. For temperature, benefitting from a smaller domain, finer resolution meteorological 423 

input (~2.2 km) and data assimilation, the 4.5-day lake surface temperature predicted by meteolakes.ch has a RMSD 424 

= 0.8 ℃ (Baracchini et al., 2020b), whereas COASTLINES predicted the 120-h (5 d) lake surface temperature with 425 

RMSD ~ 1.7 ℃.  COASTLINES also outperforms 1D climatological hindcasts (e.g., Freshwater Lake (FLake)), 426 

with 2– 4 ℃ RMSD over a 120-h lake surface temperature forecast (Lv et al., 2019; Gu et al., 2015) and has similar 427 

error to the 3D Princeton Ocean Model (Kelley et al., 1998), with 0.6-0.9 ℃ mean absolute error in the 36-h lake 428 

surface temperature forecast at station 45005.  429 

The uncertainty and bias in the COASTLINES forecast results from error induced by the initial conditions 430 

at each hot-start, error in the meteorological forecasts and error in the numerical methods.  These errors could be 431 

reduced by improving model calibration through data assimilation.  For example, Baracchini et al. (2020a) reduced 432 

the RMSE temperature simulation of Lake Geneva from ~ 2 ℃ to ~ 1 ℃ by employing a data assimilation routine; 433 

this would correspond to a <5% improvement in simulation of Lake Erie summer surface temperature.  Before 434 

implementing data assimilation, the limitations of such a scheme must be considered: (i) The lack of observations in 435 

the future, makes data assimilation impossible for adjusting forecasts; (ii) data assimilation is computationally 436 

intensive, required ~1 month of computational time (Baracchini et al., 2020a), clearly not an option for operational 437 

forecasting); and (iii) data assimilation requires modification of the source code, which is not consistent with our 438 
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philosophy to develop modelling tools that can be universally applied.  Rather, future work will focus on adding real 439 

time model calibration (e.g., Gaudard et al. (2019)), which is not presently included in the COASTLINES forecast 440 

workflow.  For example, Baracchini et al. (2020a) employed OpenDA (https://www.openda.org/) as a black-box 441 

wrapper to calibrate DELFT3D for Lake Geneva.  This approach can be adapted to any other model.   442 

The errors induced by hot-starting were shown to be negligible (Fig. 4, 6, 7 (a, b), Fig. A1).  However, 443 

uncertainty from boundary conditions, especially the meteorological forcing, may introduce error.  The 23 to 31 444 

meteorological zones from the forecast wind field provides spatial variability required to simulate the mean surface 445 

circulation (Laval et al., 2003), water level (Trebitz, 2006), and thermocline motions (Valipour et al., 2015; Valipour 446 

et al., 2019). However, the 3-h time interval between GDPS forecast dataset updates is much less than the 10-min 447 

interval associated with meteorological data observed at lake-buoys (typically one to six) used to drive hindcasts 448 

(e.g., León et al. (2005)) and so the coarse temporal resolution in GDPS forecast may alias temporal events, such as 449 

wind gusts (Fig. C1). This is of particular concern in large shallow lakes, such as Lake Erie, where winds play the 450 

dominant role in driving hydrodynamics. The rapid response of the water level to windstorms (Hamblin, 1987) 451 

could result in the effects of aliasing and forecast error being passed to the water level, leading to the growth of RE 452 

against forecast time (Fig. 3).The meteorological forecast from the 15 km and 25 km GDPS models did not show 453 

discrepancies (Fig. C2-5) and the evaluation metrics indicate that forecast results were largely insensitive to the 454 

meteorological inputs in Lake Erie (Fig. 3, 7). However, the 15 km model better predicted the mesoscale upwelling 455 

event (Fig. 8, 9, D2). The 24-h air temperature and wind speed forecasts had ~ 1.5 ℃ and ~ 2 m s-1 RMSD, 456 

respectively. However, bias in the 240-h forecast increases with forecast time (Buehner et al., 2015). The 168-h 457 

forecast meteorological data overestimated wind speeds by up to 10 m s-1 (Fig. C4), and bias in the air temperature 458 

forecast (Fig. C5) may cause the consistent warm bias (up to 3℃) in forecast lake surface temperature (Fig. 8). 459 

These errors may be corrected through real time calibration using data assimilation (Baracchini et al., 2020a, b). The 460 

growing bias in air temperature, with forecast time, does not affect the lake surface temperature (Fig. 7), presumably 461 

owing to the buffer effect of surface mixing layer (Schertzer et al., 1987).  462 

Neglecting the inflows and outflows in the predictive simulation could induce bias in the forecast. The 463 

overestimation of water level fluctuation range near Bar Point (Fig. 4f) may result from neglecting the large Detroit 464 

River inflow, which regulates the seiche magnitude. The inflows also adjust more rapidly to air temperatures 465 

compared to deep lake waters. Thus, the up to 2 ℃ cold bias in coastal regions of the western basin (Fig. 8 m-t, Fig. 466 

D2) could be induced by neglecting the heated flux from two major inflows (i.e., Detroit River and Maumee River) 467 

of Lake Erie.  468 

In addition to inaccuracy in initial and boundary conditions, the discrepancies in simulating temperature 469 

profiles forecast may result from numerical diffusion arising due to the discrete nature of the vertical and horizontal 470 

grids. The simulated thermocline depth is overestimated (Fig. 9, 10), as occurred in applications of ELCOM with 471 

both higher (Nakhaei et al., 2019) and lower resolution (Paturi et al., 2012).  COASTLINES has the potential to 472 

predictively simulate mesoscale physical processes, such as Kelvin waves (Bouffard and Lemmin, 2013) and 473 

nearshore-offshore exchange (Valipour et al., 2019); however, model performance is poor in nearshore areas, where 474 

topographic features remain poorly resolved. 475 

https://www.openda.org/
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5 Conclusions 476 

We developed an operational forecast system COASTLINES, using the Windows Task Scheduler, Python-based 477 

data scrapping/formatting, and MATLAB data processing scripts, to automate application of a black-box 478 

hydrodynamic driver (AEM3D) to Lake Erie as an operational forecast tool.  The resulting real-time and predictive 479 

lake modelling system used meteorological forecasts to generate 240-h forecasts of the lake surface level and 3D 480 

temperature and current fields on a 500 m × 500 m (horizontal) × ~ 1 m (vertical) grid, compares model output with 481 

near real time observations and publishes the model output on a web-based platform.  482 

The favorable agreement between forecast model results and observed physical variables (e.g., water level 483 

RE ~ 40 % and temperature t-RMSD and s-RMSD < 2 ℃) in Lake Erie demonstrates the ability of the forecast 484 

system to make predictions of hydrodynamic processes on time horizons up to 240-h that are as accurate as 485 

traditional hindcast simulations using directly observed meteorological forcing.  This enables the near real-time 486 

updates to the web platform to be used as a communication tool that rapidly disseminate forecast results to managers 487 

and stakeholders. Examples include >24-h prediction of: (i) up- and down-welling events leading to fish kills; (ii) 488 

up-welling events transporting hypoxic water to a drinking water intake; and (iii) coastal flooding events from storm 489 

surges. 490 

This operational system shows the feasibility of applying freely available meteorological forecasts (e.g., 491 

GDPS, HRRR), in situ buoy data and satellite images to drive and validate any computational lake model (e.g., 492 

AEM3D, DELFT3D, GLM), without modifying the source code. The global coverage of the weather model allows 493 

generalization of model application to and lake or coastal domain.  To facilitate further development of open-access 494 

predictive modelling systems, agencies are encouraged to share model validation observations, in real-time, through 495 

organizations such as GLEON (www.gleon.org) and GLOS (www.glos.us). This will enable extension of 496 

COASTLINES to include prediction of the physical-biogeochemical variables that drive sediment transport, 497 

hypoxia, and harmful algal blooms.  498 
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Appendix A: Comparison of 24 h model run with re-start files and model run with continuous files. 696 

697 
Fig. A1 Temperature profile comparison between (a) stitched 24 h model run with re-start files, and (b) model 698 
run with continuous input files. 699 

 700 
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Appendix B: COASTLINE website snapshot  701 

 702 

Fig. B1 Snapshot of water level forecast validation web page displayed on COASTLINES online platform: 703 
https://coastlines.engineering.queensu.ca/erie/water-level-forecast. Status on Sep 23rd, 2020. 704 

  705 

https://coastlines.engineering.queensu.ca/erie/water-level-forecast


29 
 

Appendix C: Validation of meteorological input variables  706 

 707 

Fig. C1 Comparisons of stitched GDPS wind forecast with 3 h delivery interval and lake buoy measured wind 708 
speed at (a) station 45005 (10 min sampling interval), and (b) station 45142 (1 h sampling interval). The wind 709 
gusts on day 327 at station 45005 and day 324 at station 45142 were missed by wind forecast. 710 
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 711 

Fig. C2 Comparisons of 24-h meteorological forecast and lake buoy observations of wind speed (a, b) and wind 712 
direction (c, d). The gray rectangle indicates the storm that led to up-welling along northern shoreline on days 713 
248-253.  714 
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 715 

Fig. C3 Comparisons of 24-h air temperature forecast and lake buoy observations of air temperature. 716 

 717 

Fig. C4 Comparisons of 240-h meteorological forecast and lake buoy observations of wind speed (a, b) and wind 718 
direction (c, d). 719 

 720 
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 721 

Fig. C5 Comparisons of 240-h air temperature forecast and lake buoy observations.  722 
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Appendix D: Temperature validation against satellite observations 723 

 724 

725 

Fig. D1 comparisons of (a-d) satellite observations, (e-h) 15 km model 240-h forecast, and (i-l) 25 km model 726 

240-h forecast during summer. The models were hot-started on Day 215. The difference between observations 727 

and models are shown in (m-t). 728 

 729 

 730 
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Fig. D2 comparisons of (a-d) satellite observations, (e-h) 15 km model 240-h forecast, and (i-l) 25 km model 731 

240-h forecast during late summer. The models were hot-started on Day 244. The difference between 732 

observations and models are shown in (m-t). 733 

Appendix E: Water level change during windstorm on Nov 15th, 2020 734 

 735 

Fig. E1 Spatial distribution of water level change from forecasts hot-started on Nov 15th (a, b) and Nov 12th 736 

(c, d). The water level at Nov 15th 00:00 is the reference level. The black arrows are depth-averaged mean 737 

current fields. The black squares in the upper right corners of each map indicate the location of Port Dover 738 

(Fig. 12d). 739 

 740 

 741 


