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Abstract. Atmospheric inversions are used to constrain the emissions of trace gases from atmospheric mole fraction 10 

measurements. The variational (4DVAR) inversion approach allows optimization of the emissions at a much higher temporal 

and spatial resolution than the ensemble or analytical approaches but provides limited opportunities for scalable 

parallelization as the optimization is performed iteratively. Multidecadal variational inversions are used to optimally extract 

information from the long measurement records of long-lived atmospheric trace gases like carbon dioxide and methane. 

However, the wall clock time needed––up to months–– complicates these multidecadal inversions. The physical 15 

parallelization method introduced by Chevallier (2013) addresses this problem for CO2 inversions by splitting the time period 

of the chemical transport model into blocks that are run in parallel. Here we present a new implementation of the physical 

parallelization for variational inversion (PPVI) approach that is suitable for methane inversions as it accounts for methane’s 

atmospheric lifetime. The performance of PPVI is tested in an 11-year inversion using a TM5-4DVAR inversion setup that 

assimilates surface observations to optimize methane emissions at grid-scale. We find that the PPVI inversion approach 20 

improves the wall clock time performance by a factor of 5 and shows excellent agreement with the posterior emissions of a 

full serial inversion with identical configuration (global mean emissions difference = 0.06 % with an interannual variation 

correlation R = 99 %; regional mean emission difference < 5 % and interannual variation R > 0.95). The wall clock time 

improvement using the PPVI method increases with the size of the inversion period. The PPVI approach is planned to be 

used in future releases of the CAMS (Copernicus Atmosphere Monitoring Service) multidecadal methane reanalysis. 25 

1 Introduction 

Methane (CH4) is the second most important greenhouse gas after carbon dioxide (CO2), and its atmospheric abundance has 

increased more than 250 % since preindustrial times. Due to its strong global warming potential, it is responsible for 25 % of 

anthropogenic radiative forcing in spite of its 200 times lower abundance than CO2 (Myhre et al., 2013).  Unlike the 

relatively steady increase in CO2, mainly due to fossil fuel emissions, the methane observational record shows remarkable 30 
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variability in growth rate. The causes of these variations are still debated (Rigby et al., 2017; Schaefer et al., 2016, Worden 

et al., 2017; Pandey et al., 2017).  

 

Reducing anthropogenic methane emissions has been recognized as an important requirement for achieving the 2015 Paris 

Agreement target of limiting global temperature rise to below 2° C relative to pre-industrial times (Ganesan et al., 2019; 35 

Nisbet et al., 2018). Climate change mitigation and adaptation strategies require reliable knowledge of the methane budget. 

The methane emissions have been estimated using multidecadal inversions, which optimally combine the information in 

atmospheric observations and bottom-up emission estimates (process-based models and inventories) along with 

corresponding error characteristics. Inversions using CTM (chemical transport model) are used to disentangling the 

influences of atmospheric transport, and sources and sinks on the observed mole fractions (Naus et al., 2019, Pandey et al., 40 

2019). Such multidecadal inversions have been performed, for example, for the “The Global Methane Budget 2000–2017” 

that was published recently by the Saunois et al. (2020). This study made methane emissions available from nine different 

inversion setups. The methane emissions reanalysis project under the Copernicus Atmosphere Monitoring Service (CAMS) 

performs multidecadal inversions using the TM5-4DVAR variational approach to provide regularly updated gridded 

methane emissions (Segers and Houweling, 2020).  45 

 

Atmospheric inversions that estimate CH4 emissions adjust a state vector (consisting of emissions or emission correction 

factors) to improve the agreement between model simulations and observations. These inversions use a CTM to simulate the 

spatiotemporal distribution of the tracer in the atmosphere for a given set of emissions while also accounting for its 

atmospheric sink. A cost function is defined based on the difference between the modelled and observed mole fractions as 50 

well as the magnitude of the emission adjustments. The solution of the inverse problem is posterior emission vector, which 

minimizes the cost function. There are three main minimization approaches used in atmospheric inverse modelling: 

analytical, ensemble and variational. The analytical approach is based on a closed-form solution of Bayes’ theorem (Gurney 

et al., 2002). It requires the calculation of observation-sensitivities of each of the state vector elements separately. This leads 

to a large computational cost and restricts the approach’s usage to inversion problems with small sized state vectors. 55 

The ensemble approach improves the computational performance by representing the sensitivities by a statistical ensemble 

(Peters et al., 2005). Still only a relatively small sized state vector can currently be afforded using this approach. The 

variational approach was introduced to lift the state vector size restriction, using the adjoint of the CTM (Chevallier et al., 

2005). 

 60 

In the variational approach, the minimum of the cost function is computed using an iterative procedure that comprises of a 

forward and an adjoint CTM run. As each iteration uses the output of the previous iteration, there are limited opportunities 

for scalable parallelization in variational inversions, and these calculations can take months depending on the spatial and 

https://doi.org/10.5194/gmd-2021-339
Preprint. Discussion started: 2 November 2021
c© Author(s) 2021. CC BY 4.0 License.



3 
 

temporal resolution of the inversion. The long wall-clock time limits the resolution, the maximum time range, or the number 

of iterations used in multidecadal inversions.  65 

 

To improve the computational efficiency of multidecadal variational CO2 inversions, Chevallier (2013) introduced the 

physical parallelization method in which the forward and adjoint CTM runs within each iteration are divided into blocks and 

run in parallel. Correction factors are applied after the CTM block runs are finished to account for changes in the background 

mole fractions due to net emission changes in earlier blocks. This method reduces the wall-clock time by an order of 70 

magnitude (seven-fold improvement for a 32-year inversion) while keeping the inversion-derived emission adjustments 

statistically consistent with a serial inversion. However, their method cannot be applied directly to methane as it does not 

account for the limited chemical lifetime of methane of about 10 years, due to oxidation by the OH radicals in the 

atmosphere. Here we report an extension of the method that accounts for the atmospheric lifetime. The intention is to use this 

new implementation for the CAMS methane flux reanalysis, which aims to provide every year an updated multi-decadal 75 

inversion within a production window of only a few months. The method is referred to as PPVI (physical parallelization for 

variational inversion) from here on.  

 

In the next section, we present the PPVI method. In Section 3, we test the performance of the PPVI method using 11-year 

test inversions. We compare the wall clock time and optimized emissions of a serial inversion with a PPVI inversion. We 80 

discuss the current CAMS methane inversion setup, and possible improvements and applications of the PPVI method in 

Section 4. Our conclusions are summarized in Section 5.  

 

2 Physical parallelization for variational inversions 

The solution of a methane inverse problems is calculated by minimizing the cost function of the state vector 𝑥:  85 

 

𝐽(𝑥) = !
"
	(𝑥 − 𝑥#)𝐵$!(𝑥 − 𝑥#) + !

"
	(𝐻(𝑥) − 𝑦)𝑅$!(𝐻(𝑥) − 𝑦)     ………..(1)    

 

In here, 𝑦 is the observation vector, 𝑥# is the a priori vector. The observation operator 𝐻 consists of the a CTM run that 

simulates methane mole fractions at time and location of 𝑦 . 𝐵  and 𝑅  are the error covariance matrices of the a priori 90 

emissions and the observations, respectively. In a variational inversion setup, the posterior solution 𝑥%	of Eq. (1) is found by 

minimizing 𝐽 using an iterative procedure that estimates a new 𝑥& 		in each iteration 𝑖 using the gradient of 𝐽: 

 

∇𝐽(𝑥	&) = 		𝐵$!(𝑥& − 𝑥#) + 𝐻(𝑅$!(𝐻(𝑥&) − 𝑦)   ………..(2)    
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 95 

where, 𝐻(	represents the adjoint operator, which is implemented using the adjoint code of the CTM. The inversion finishes 

when a predefined convergence criterion is met, such as a desired gradient norm reduction or simply a maximum number of 

iterations. 

 

In a serial variational inversion iteration 𝑖,	the CTM 𝐻		simulates mole fraction vector 𝑚	
& 	for observation vector 𝑦	 using the 100 

initial mole fraction field 𝑐)	and emissions 𝑥	&: 

 

𝑚	
&
	 = 𝐻			(𝑐)		

	, 𝑥	& 	) ………..(3)    

  

In the PPVI method, the full period of the CTM is broken into r overlapping time blocks, which are run in parallel. Figure 1 105 

shows a schematic diagram of the main steps of the PPVI method used in the forward mode to calculate 𝑚	
&. At the start of 

the inversion, a CTM run is performed serially (without blocks) to calculate initial mole fraction fields 𝑐*# for each block k 

using the a priori emissions 𝑥	#. This CTM run can be performed at coarser resolution than the main inversion to save time.  

The overlaps between consecutive blocks are needed for methane perturbations to uniformly distribute over the spatial 

domain of the CTM, such that each perturbation could be diagnosed by at least some observation sites. The mole fraction 110 

vector 𝑚*
&  for the observations 𝑦*  could now be calculated by using the small CTM block 𝐻*  with emissions  𝑥*&  and a 

correction factor vector 𝑛*& 	which accounts for the state vector innovation in the preceding block.   

 

𝑚*
& =	𝐻*	3𝑐*

#, 𝑥*& 4 + 𝑛*& 	 ………..(4)    

 115 

The correction 𝑛*&  is calculated using an emission to mole fraction conversion factor f = 0.361	ppb/Tg		and a methane sink 

operator 𝑆	:  

 

𝑛*& =	𝐇*	 	∑ 𝑆+,*	f	(𝑥+& − 𝑥+#)*$!
+-!  , ………..(5)    

 120 

In here, 𝐇*	 	
	is the CTM block sensitivity to a uniform initial mole fraction field perturbation, which is calculated at the start 

of the inversion by running each block with an initial unit mole fraction field and a zero emissions field. 𝑆+,* account for the 

impact of atmospheric sinks on the emission perturbations during block 𝑙 till the start of the block 𝑘	. Thereon the impact of 

atmospheric sink, as well as atmospheric transport, is accounted for by 𝐇*	 . We parameterize 𝑆+,*	with an e-folding decay 

function with atmospheric lifetime of methane of 9 years, which was found to be sufficient for our test inversion (Section 3).  125 
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In each iteration of a variational inversion, the modelled mole fractions from the forward CTM run are used to calculate 

departures, i.e., the difference between observations and the modelled mole fractions scaled with the respective errors. 

Thereafter, the adjoint CTM uses these departures to calculate the local gradient of the cost function (Equation 2).  In the 

PPVI method, the adjoint CTM blocks are kept the same as the forward CTM blocks and Equation 2 is applied in adjoint 130 

mode. First, each adjoint block is run with the respective departures. Then, the modelled adjoint sensitivities 𝛿𝑥+&	of block k 

are adjusted for the effects of departures of successive blocks by adding adjoint corrections 𝛿𝑛+& calculated using as follows: 

 

𝛿𝑛*& = 		f	 ∑ 	𝑆*,+∗
	
	
		𝐇+∗			(𝛿𝑚+

&	)/
+-*0! 	….. (6) 

 135 

In here ‘*’ represents the adjoint of an operator. 𝐇∗
*
	  is applied to the departures of each block 𝛿𝑚+

&	 to specify adjoint mole 

fraction increments. 𝑆∗*,+	are applied to the adjoint mole fraction increments, and the result is added to each element 𝛿𝑥+&. The 

correct implementation of the adjoint part of the PPVI method was verified using the adjoint test.  

 

In a PPVI inversion, the initial mole fraction field 𝑐)	
	needs to be consistent with the observations as a discrepancy between 140 

the two leads to large emission adjustments in the early months of the inversion period. This issue can easily be dealt with in 

a serial inversion using a spin-up period and rejecting this period from the posterior solution.  However, in a PPVI inversion, 

the large emission adjustments may result in large correction factors, which increases the error in the PPVI approximation 

(Equation 4 & 5). This can be avoided by taking a realistic 𝑐)	
	from another inversion covering the period before the PPVI 

inversion.  145 

 

In summary, the main steps of a PPVI inversion are as follows: 

1. Construct an initial mole fraction field 𝑐)	consistent with observations at the start of the inversion.  

2. Divide the full period of the inversion into r over-lapping time blocks.  

3. Calculate the initial mole fraction fields (𝑐*)	) for each block by running the forward CTM serially with the a priori 150 

emissions 𝑥# and saving the simulated mole fraction fields at the start time of each block. 

4. Calculate the CTM block sensitivities (𝐇*	 ) by running the CTM blocks with a unity initial mole fraction field and 

zero emissions, and sampling the model output at the observations. 

5. Perform the inversion by iteratively minimizing the cost function until the convergence criteria is met using a 

forward and an adjoint run in each iteration: 155 

a. Forward run:  

i. Run the forward CTM for each block in parallel with the initial mole fraction fields from the step 3.  

ii. Account for the emission differences from the a priori in preceding blocks, by applying the mole 

fraction corrections 𝑛*&  (Equation 4). 
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b. Adjoint run: 160 

i. Run the adjoint CTM for each block in parallel to calculate the adjoint emissions sensitivities 𝛿𝑥+&. 

ii. Apply the adjoint corrections 𝛿𝑛+& 	to account for the effect of departures in successive blocks 

(Equation 6).  

 

3 PPVI Performance test  165 

In this section, we evaluate the performance of the PPVI method against a serial inversion. We perform the inversions for a 

11-year period (1999-2010) using the TM5-4DVAR inversion system (Bergamaschi et al., 2010; Meirink et al., 2008), which 

consists of the TM5  (Transport Model version 5; Krol et al., 2005) with the settings used in Pandey et al. (2016). TM5 is run 

at 6° ×  4° horizontal resolution and 25 vertical hybrid sigma-pressure levels from the surface to the top of the 

atmosphere. We optimize a single category (‘total’) of methane emissions at 6° × 4° spatial resolution and monthly temporal 170 

resolution. The posterior emissions of the two inversions are compared after integrating over the TRANSCOM regions 

shown in Figure 2a. The inversion assimilates surface observations from the NOAA Earth System Research Laboratory 

(ESRL) global cooperative air sampling network at on- and off-shore sites (Dlugokencky et al., 2011; Dlugokencky et al., 

2020). The locations of the observations are shown in Figure 2b. The prior covariance matrix is constructed assuming 

relative emission uncertainties of 50% per grid box per month. The emissions are assumed to be correlated temporally using 175 

an exponential correlation function with e-folding time scale of 3 months, and spatially with a Gaussian correlation function 

using a length scale of 500 km (Houweling et al., 2014). Uncertainties of 1.4 ppb are assigned to the CH4  observations. Our 

system also assigns a modeling representation error based on simulated local mole fractions gradients (Basu et al., 2013). 

The prior emissions, same as in Pandey et al. (2016), of 2008 are applied to every year in the inversion time period, hence 

there is no interannual variability in the prior emissions.  180 

 

In the PPVI inversion, we divide the inversion period of 1999-2010, into 11 blocks of 21 months with 9 months overlap 

between successive blocks. Effectively, each block provides modelled mole fractions for one year. The successful 

implementations of the PPVI method on this TM5-4DVAR setup was verified using the adjoint and gradient tests. The next 

section (3.1) compares the observation-model mismatches and posterior emissions differences between the two inversions, 185 

and the section thereafter (3.2) presents the wall clock time improvement by the PPVI method. 
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3.1 Emission estimation errors 

Here we compare the observation fit and the posterior emissions of the PPVI and serial inversions. Figure 3 shows the 190 

timeseries of the posterior simulations and the observations for two background sites, one for each hemisphere: Barrow 

(Alaska) and South Pole. The observation-model RMSE (root mean square error) for Barrow (78 ppb) is 3 time higher than 

for South Pole (28 pbb). The Barrow observations shows a larger high-frequency variation than the South Pole as the 

Northern Hemisphere station is closer to methane sources. The PPVI results are good agreement with the results from serial: 

the RMSE between the two is 2 ppb and 1 pbb respectively for Barrow and South pole, which are only 2.5 % and 3.2 % of 195 

the initial observation-prior mismatch. This shows that, starting from an identical prior, the PPVI inversion is able to match 

the observations about as good as the serial inversion. Figure 4 shows the probability density functions of the observation-

model mismatch weighted with the uncertainties used in the inversion. The observation-prior mismatch is -6.7 ± 6, with 

negative mean because the 2008 bottom-up emissions used as prior are larger than the mean posterior emission over 1999-

2010. In the posterior solution of the serial inversion, the mismatch is reduced to –0.06 ± 1.24. PPVI mismatch (–0.06 ± 1.26 200 

) is also very small and similar to the serial inversion. The mismatch between the PPVI and serial inversions (0.005 ± 0.23 ) 

is an order of magnitude smaller than the observation-prior mismatch, which shows that the implementation of PPVI method 

does not have a significant impact on the inversion system’s ability to fit the observations. For both inversions, the good fit 

to the observations also confirms that a gradient norm reduction of 1000 is sufficient. 

 205 

A good agreement between observations and posterior models do not necessary mean that the inversions have produced 

similar posterior emissions. The parallelized transport model of the PPVI is a simplification of the “perfect” transport model 

of used in the serial inversion. If the impact of this simplification is small, the posterior emissions of the two inversions 

should be in good agreement. Figure 5 shows the mean emission estimates of the inversions integrated over globe and the 

TRANSCOM regions. The mean global emissions of the PPVI and serial inversions are in excellent agreement with < 0.3 Tg 210 

yr-1 (0.05 %) difference. The global methane emissions are generally well constrained by the NOAA observations in the 

serial and PPVI inversions meaning that the error in the PPVI approach does not impact the constraint on emissions at the 

global scale. The performance of PPVI in other TRANSCOM regions is also good for mean emissions with < 5 % deviation 

from the serial inversion. On average, the deviations are within 30% of the posterior uncertainty. Figure 6 shows the 

interannual variability of the emission estimates. Due to the large observational constraint, the global emissions of the two 215 

inversions show the best agreement with a correlation coefficient R = 0.99.  Over the TRANSCOM regions, the agreements 

are also good with R > 0.95.  
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3.2 Computational cost 

Table 1 compares the wall clock times needed for the PPVI and serial inversions. Our TM5 model runs use OpenMP 220 

parallelization and gave best wall clock performance on 4 CPUs on a single node. Using more CPUs reduces the 

performance as the communication overhead within the CPUs becomes the bottleneck. (Note that the TM5-MP version  

described in Williams et al., 2017, with improved parallel scaling, was not used in this study). In this configuration, a 

forward or adjoint TM5 run of one year takes about 15 minutes. Hence an iteration of the serial inversion, consisting of 11 

years forward and adjoint runs, requires 5 hours. PPVI inversion iterations are performed in 11 parallel blocks of 21 months 225 

each on 4 CPUs. A single PPVI iteration takes 55 mins, which is > 5 time faster than the serial inversion. Both inversions 

achieved a gradient norm reduction of 1000 in 19 iterations. The PPVI inversion runtime is given in Table 1, including the 

time needed for (1) a serial TM5 forward run for the initial mole fraction fields (2) a block run for the initial mole fraction 

sensitivities. Overall, the PPVI inversion takes 20 hours, or 5 time less than the serial inversion (101 hours). Table 1 also 

provides an estimate of the wall clock time of a hypothetical 35-year inversions using the TM5-4DVAR setup. For such a 230 

long period, a PPVI inversion would be 15 times faster.  

 

Overall, we find that the PPVI method, which account for the atmospheric lifetime of methane, is able to reproduce the 

posterior emissions of a traditional 11 years serial inversion well within its uncertainties in 5 times less wall clock time. 

 235 

4 Discussion 

4.1 Current CAMS inversion setup 

In the future, the PPVI method will be implemented in the CAMS  multidecadal methane emissions reanalysis setup. The 

European Commission has anticipated the need for reliable information about atmospheric composition of greenhouse gases 

through development of numerical systems that combine sophisticated physical models with measurements from a wide 240 

range of observing systems for an operational service, which is being implemented. The current CAMS methane flux 

reanalysis product (Segers and Houweling, 2020) uses the TM5-4DVAR inverse modelling system and provides 

measurement-informed monthly methane emission estimates. The product has two sets of methane emissions: (1) release 

v19r1 for 1990-2019 using surface observation; (2) release v19r1s for 2010-2019 using surface and GOSAT satellite 

observations. The surface observations are mainly from the NOAA network (Dlugokencky et al., 2011). Methane emissions 245 

are optimized at 3° × 2° spatial resolution and monthly temporal resolution using TM5 with 34 vertical layers. If performed 

in serial mode each iteration of the 1990-2019 inversion would take about 5-10 days, and the full inversion will require 

multiple months to finish. Segers and Houweling (2020) circumvent this issue by breaking the full inversion into smaller 

inversions of 3-year time windows that are performed in parallel. The target inversion on high resolution (3° × 2° degrees, 34 
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layers) is preceded by a coarse resolution inversion (6° × 4°, 25 layers) that provides the initial mole fraction fields and is 250 

processed serially.  The high-resolution inversion optimizes only the emissions and uses initial mole fractions for each 3-year 

block obtained from mole fraction fields of a coarse resolution inversion, which optimizes both emission and initial mole 

fractions. The 1990-2019 inversion using this approach still takes 3-4 months to finish, and requires about 40 smaller 

inversions to provide the end result. These numbers depend of course on the parallel efficiency of the model and the 

computing server, but even if these are improved, the need for a serial sequence of inversions to provide a timeseries of 255 

initial mole fractions imposes a limitation to model resolution that can be used. With the implementation of the PPVI method 

presented in this study, the computational performance of the CAMS reanalysis inversions will improve if future. 

 

4.2 Possible further improvements  

In the PPVI method, the wall clock time of a CTM run in an inversion iteration is reduced by physical parallelization of 260 

CTM into blocks. To account for changes in the background mole fractions due to emission changes in pervious blocks, the 

sink operator 	𝑆,	CTM block sensitivity 𝐇		and the overlaps between the consecutive blocks are used. In our test experiment, 

𝑆		is assumed to be a e-folding decay function with atmospheric lifetime of methane of 9 years, which we find is sufficient 

for the annually-repeating OH field used in our 11-year CTM runs. This might not be the case for multi-decadal inversions, 

in which the methane lifetime will vary due to climatological influences, as well as possible trends and interannual variations 265 

in the hydroxyl radical abundance. In such cases, 𝑆 can be defined as a function of an annual lifetime vector for the specific 

CTM run. The lifetime vector can be calculated as the ratio of the annual sink and mean methane burden simulated in a serial 

CTM run.   

 

The overlap period between the blocks in the PPVI method allows a uniform mole fraction perturbations to mix within the 270 

CTM domain according the atmospheric transport. We use a 9-month overlap in our test experiment and found it to be 

sufficient for emissions from large regions at annual scale (Figure 5 & 6) that are optimized using the surface observations. 

A shorter overlap, which improves the computational efficiently but reduces the accuracy of the physical CTM 

parallelization, could be used depending on the scales that are addressed by the inversion. 

4.3 Methane sink optimization 275 

The hydroxyl radical OH is the main sink of methane in atmosphere. Zhang et al. (2018) showed that the satellite-observed 

atmospheric signature of the methane sink from oxidation by OH is sufficiently distinct from that of methane emissions, 

hence OH mole fractions can be optimized using synthetic SWIR and TIR satellite observations. Following up on this, 

Maasakkers et al. (2019) and Zhang et al. (2021) used methane observations from the GOSAT satellite to optimize 

atmospheric OH fields along with methane emissions. These studies assume a quasi-linearity as the changes to the methane 280 

mole fractions and OH are small in an inversion. Under such conditions, the PPVI method can also be implemented in 
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inversions optimizing OH. In such a PPVI implementation, the methane lifetimes in the 𝑆 operator would be scaled in each 

iteration to reflect the adjustments to the OH mole fractions. Such an implementation can also be used in inversions 

optimizing OH using methyl chloroform (CH3CCl3) and a CTM, for example, Naus et al. (2021). 

5 Conclusions 285 

Regular surface observations of methane mole fractions started in the early 1984, and by now the measurement record spans 

more than 35 years (Dlugokencky et al., 2011). An atmospheric inversion with a very large state vector is needed to properly 

utilize the information in such long measurement records. The variational inversion approach allows for optimization of state 

vector of a larger size than the ensemble or analytical approaches. However, each iteration step of a variational inversion 

uses the CTM output of the previous iteration, limiting the opportunity for scalable parallelization. At the same time, an 290 

increase in the spatio-temporal resolution of CTMs, which is needed to take full advantage of the rapidly improving 

precision and coverage of surface and satellite measurements, results in an exponential increase in wall clock time. 

 

We have developed the PPVI method which improves the wall clock time of variational methane inversions by the 

application of physical parallelization while accounting for the atmospheric lifetime in forward and adjoint variational 295 

modes. We have tested the performance of this method using a TM5-4DVAR inverse modeling setup that consists of a 

traditional serial inversion and a PPVI inversion of identical configuration performed for a period of 11 years. The PPVI 

method reduced the wall clock time by 5 times and showed excellent agreement with the posterior emissions of the serial 

inversion. The wall clock time improvement of using PPVI will be even larger for longer inversions, for example, 15 times 

for a 35 years inversion. The PPVI method makes multi-decadal inversions more feasible. It will be implemented in the 300 

CAMS reanalysis setup which provides multidecadal emission estimates by assimilating surface and satellite observations. 

 

 

Data Availability. NOAA GMD ESRL methane mole fraction observations are available at 

https://www.esrl.noaa.gov/gmd/dv/data/. last access: 27-03-2021.  305 

 

Code availability. The TM5 model is described in detail on http://tm5.sourceforge.net/  and the source codes of the TM5-

4DVAR inversion system are available at https://sourceforge.net/projects/tm5/.  
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Table 1:  Wall clock time comparison for inversions performed in this study. Wall clock time projections for a 440 
hypothetical 35 years inversion are also given. 

Model runs Serial  PPVI  

One year forward or adjoint run 15 minutes 

1999-2010 inversion 1 iteration  (forward + 

adjoint TM5 run) 

5 hours 55 minutes 

Inversion with 19 

iterations 

101 hours 20 hours 

1985-2020 inversion* 1 iteration (forward + 

adjoint TM5 run) 

16 hours 55 minutes 

Inversion with 50 

iterations 

34 days 56 hours 

*Projection based on the 1999-2010 inversion 
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 445 
 

Figure 1: Schematic diagram of the PPVI method in forward mode used to calculate modelled mole fractions 𝒎𝒊 of 
iteration i. The subscripts represent the time block number (except for 𝒄𝟎, which is the initial mole fraction field at 
the start of the inversion). For the block 1, the initial mole fraction field 𝒄𝟏𝒂 = 𝒄𝟎	

	, and no correction factor 𝒏𝒊 is used. 
The overlap between the blocks ( 𝑯𝟏

	 , 𝑯𝟐
	 , 𝑯𝟑

	 	)	represent the block overlap period, where the modelled mole fractions 450 
from the preceding block are used in 𝒎𝒊.   
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Figure 2: (a) Definition of the TRANSCOM regions (Gurney et al., 2002). (b) Locations of NOAA methane 
observation sites used in this study. The size of the symbol “+” is proportional to the number of observations 
assimilated from each site. 
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Figure 3: Modelled and observed methane mole fractions at two remote background NOAA stations, in the Northern 
(a) and Southern (b) hemisphere. 
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 465 

 
 

Figure 4: Probability density functions of the observation-model mismatches weighted with their uncertainties used 
in the inversions.  
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Figure 5:  Mean emission estimates of the inversions for TRANSCOM regions (see Figure 1). The vertical bars show 
±2σ uncertainties.  475 
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  480 

Figure 6:  Emission estimates of the PPVI and serial inversions for TRANSCOM regions. The vertical bars show ±2σ  
uncertainties. 
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