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Abstract. Atmospheric inversions are used to constrain emissions of trace gases using atmospheric mole fraction 

measurements. The four-dimensional variational (4DVAR) inversion approach allows optimization of emissions at a higher 

temporal and spatial resolution than ensemble or analytical approaches but provides limited opportunities for scalable 

parallelization because it is an iterative optimization method. Multidecadal variational inversions are needed to optimally 15 

extract information from the long measurement records of long-lived atmospheric trace gases like carbon dioxide and methane. 

However, the wall time needed––up to months––complicates these multidecadal inversions. The physical parallelization (PP) 

method introduced by Chevallier (2013) addresses this problem for carbon dioxide inversions by splitting the period of the 

chemical transport model into blocks and running them in parallel. Here we present a new implementation of the PP method 

which is suitable for methane inversions accounting as it accounts for the chemical sink of methane. The performance of the 20 

PP method is tested in an 11-year inversion using a TM5-4DVAR inversion setup that assimilates surface observations to 

optimize methane emissions at grid-scale. Our PP implementation improves the wall time performance by a factor of 5 and 

shows excellent agreement with a full serial inversion in an identical configuration (global mean emissions difference = 0.06 

% with an interannual variation correlation R = 0.99; regional mean emission difference < 5 % and interannual variation R > 

0.94). The wall time improvement of the PP method increases with the size of the inversion period. The PP method is planned 25 

to be used in future releases of the Copernicus Atmosphere Monitoring Service (CAMS) multidecadal methane reanalysis. 

1 Introduction 

Methane (CH4) is the second-most important greenhouse gas after carbon dioxide (CO2), and its atmospheric abundance has 

increased by more than a factor of 2.5 since preindustrial times. Methane is responsible for 25 % of the anthropogenic radiative 

forcing despite its 200 times lower abundance than CO2 due to its strong global warming potential (Myhre et al., 2013). 30 

Atmospheric inversions provide methane emission estimates by optimally combining the information in atmospheric 
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observations and bottom-up emissions (estimates using process-based models and inventories) along with corresponding error 

characteristics. Chemical transport models (CTMs’s) simulate the spatiotemporal distribution of the methane mole fractions 

in the atmosphere for a given set of emissions while also accounting for its atmospheric sink. Inversions use CTMs’s to 

disentangle the influences of atmospheric transport from the influences of emissions and sinks on the observed mole fractions 35 

(Naus et al., 2019, Pandey et al., 2019). A few studies have performed iInversions have been performed on multidecadal scales 

to to constrain emissions using assess the information content of the long measurement records of methane mole fractions. For 

example, “The Global Methane Budget 2000–2017” (Saunois et al., 2020) presents regional emission estimates from nine 

different inversion setups. The methane emissions reanalysis project under the Copernicus Atmosphere Monitoring Service 

(CAMS) performs multidecadal inversions using the TM5-4DVAR variational approach to provide regularly updated gridded 40 

methane emissions (Segers and Houweling, 2020).  

 

Trace gas inversions adjust a state vector, which includes gridded emissions (and sometimes initial mole fraction field and 

other parameters), to improve the agreement between model simulations and observations. The inversions minimize a Bayesian 

cost function that is defined based on the difference between the modelled and observed mole fractions as well as the magnitude 45 

of the emission adjustments, weighted with respective error covariances. There are three main approaches used in atmospheric 

inverse modelling: analytical, ensemble and variational. The analytical approach is based on a closed-form solution of Bayes’ 

theorem (Gurney et al., 2002). It requires the calculation of observation-sensitivities of each of the state vector elements 

separately. The large computational cost involved restricts its application to small size state vectors. The ensemble approach 

improves the computational performance by parameterizing the state vector sensitivities using a statistical ensemble (Peters et 50 

al., 2005). Still only a relatively small size state vector can be afforded using this approach.  

 

The variational inversion approach was introduced to lift the state vector size restriction (Chevallier et al., 2005). In this 

approach, the cost function minimum is computed using an iterative procedure, with each iteration comprising of a forward 

and an adjoint CTM run. The method variational approach has the advantage over the analytical approach in that it can be 55 

applied to weakly non-linear inverse problems using a suitable steepest-decent numerical minimizer (Naus et al., 2021; Pandey 

et al., 2016). Truncated posterior uncertainties can be obtained from variational inversions using the conjugate gradient 

minimizer for linear inverse problems (Meirink et al., 2008). A more robust, but computationally expensive, estimate of 

posterior uncertainties can be obtained using a Monte Carlo method (Chevallier et al., 2007, Pandey et al., 2016). However, as 

each iteration of a variational inversion uses the output of the previous iteration, the calculations can take months depending 60 

on the spatial and temporal resolution. This long wall time limits the resolution, duration, and number of iterations that can be 

used in multidecadal variational inversions. To reduce this long wall time for carbon dioxide (CO2) inversions, Chevallier 

(2013) introduced the physical parallelization (PP) method. In this method, the full inversion period is split into a number of 

blocks, and the CTM runs for the blocks are performed in parallel within each iteration. Corrections are added to the simulated 

CO2 mole fractions in a block to account for emissions adjustments (iteration minus prior emissions) in earlier blocks. This 65 
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method reduced the wall time by an order of magnitude (seven-fold improvement for a 32-year inversion) while keeping the 

inversion-derived emission adjustments statistically consistent with a serial inversion. However, the original implementation 

of the PP method cannot be used for a reactive trace gas like methane as the method does not account for atmospheric chemical 

sink.  

 70 

Here we present an improved PP method that accounts for the limited atmospheric lifetime of reactive trace gases such as 

methane, which has an atmospheric lifetime of about 9 years (mainly due to oxidation by the OH radicals). The intention is to 

use this new PP implementation for the Copernicus Atmosphere Monitoring Service (CAMS) methane flux reanalysis, which 

aims to provide annually updated multidecadal emission estimates, within a production cycle of only a few months. In the next 

section, we present our PP method. The method’s performance is tested using an 11-year inversion setup presented in Section 75 

3. The wall time and optimized emissions of a PP inversion are compared to a serial inversion in an identical configuration. In 

Section 4, we discuss possible future improvements and applications of the PP method. Our conclusions are summarized in 

Section 5.  

2 Physical parallelization for methane inversions 

An inversion of an atmospheric trace gas minimizes a Bayesian cost function of the state vector 𝒙:  80 

 

𝐽(𝒙) = !
"
	 [𝒙 − 𝒙#$]𝐁%𝟏[𝒙 − 𝒙#$] + !

"
[𝒎 − 𝒚]	𝐑%![𝒎 − 	𝒚].     ………..(1) . 

 

 

Here 𝒚 is the observation vector, and 𝒙#$  is the prior state vector. 𝐁 and 𝐑 are the error covariance matrices of the prior 85 

emissions and the observations, respectively. The vector 𝒎	
	 constitutes the modelled mole fractions corresponding to 𝒚. It is 

computed using a CTM operator 𝐻, which simulates the mole fractions given the emissions in the state 𝒙 and the initial mole 

fraction field 𝒄(	. 

 

𝒎	
	
	 = 𝐻2𝒄(, 𝒙			4 ………..(2).   90 

 

In a variational inversion setup, the posterior solution	of Equation (1) is obtained by minimizing 𝐽 using an iterative procedure 

that computes a new emission update 𝒙)*! in each iteration 𝑖 using the gradient  

 

∇𝐽(𝒙	𝒊) = 		𝐁%![𝒙) − 𝒙#$] + 𝐻∗(𝐑%![𝒎𝒊 − 𝒚]) ………..(3).    95 
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𝐻∗	represents the adjoint CTM operator, which is implemented using the adjoint code of the CTM. The inversion finishes 

when a predefined convergence criterion is met, such as a desired gradient norm reduction or simply a maximum number of 

iterations. 

 100 

In the PP method presented in Chevallier (2013), the full period of the inversion is split into r overlapping time blocks, which 

can be run in parallel. Figure 1 schematically represents the main steps in the PP method used in the forward mode to calculate 

𝒎	
). At the start of the inversion, a serial CTM run (without segmentation) is performed to calculate initial mole fraction fields 

𝒄-#$ for each block k using the prior emissions 𝒙	#$. In an iteration, the block mole fractions for the iteration 𝒎-
)  is computed 

using the block CTM observation operator 𝐻-,, based on the iteration emissions for the block estimate from the previous 105 

iteration 𝒙𝒌𝒊 , the initial mole fraction for this block 𝒄-#, and a mole fraction correction 𝑛-) : 

 

𝒎-
) =	𝐻-	2𝒄-

#$, 𝒙-) 4 + 𝑛-) 	 ………..(4).    

 

Here the scalar 𝑛-)  accounts for the global mean mole fraction changes due to emission differences emission differences (𝒙	) −110 

𝒙	#) during the inversion period that precedes the block kbetween the prior and the iteration in the period preceding the block. 

The error due to this simplification is further reduced by using an overlap period between consecutive blocks, where modelled 

mole fractions from the succeeding block are discarded. The overlap period CTM run distributes the emission differences 

uniformly through the Earth’s atmosphere. The PP method by Chevallier (2013) was applied to CO2 inversions, where the 

scalar mole fraction correction 𝑛-) 	for block k was simply calculated as the sum of the emission differences from each preceding 115 

blocks (i.e., block 1, 2, 3…..k-1): 

 

𝑛-) = ∑ 		𝑓	𝐄	[𝒙/) − 𝒙/#]-%!
/0! 				𝑛-) = ∑ 		𝑓 		;<𝒙/) − 𝒙/$<=-%!

/0! … (5).…….. (5) 

 

Here |𝒙| E denotes a summation matrix used to denotescompute  the global sum of the over elements of 𝒙𝒍. 𝑓	 is a scalar used 120 

to convert emissions to mole fractions assuming a uniform distribution of the emitted trace gas throughout the Earth’s 

atmosphere. 𝑓	is calculated simply as the ratio between the number of moles in a unit emission and the number of moles of air 

in the atmosphere. 

 

Methane has an atmospheric lifetime of about 9 years. Unlike CO2, the mole fraction impact of a large fraction of methane 125 

emission differences will be reduced due to atmospheric chemistry chemically removed within the duration of a multidecadal 

inversion as well as within a PP inversion block. Therefore, in our new implementation of the PP, we use a mole fraction 

correction vector 𝒏-)  (with size of 𝒎-
) ) instead of the scalaer 𝑛-)  to apply separate corrections to each observation. We account 

for the limited lifetime of methane by implementing an atmospheric sink operator 𝑆	 . In addition, we use a CTM block 



5 
 

sensitivity vector 𝒉-	  to distribute global emission changes more precisely, taking into account the full 3D atmospheric 130 

transport and the sink rather than assuming a globally uniform distribution. 𝒉-	  is computed at the start of the inversion by 

running 𝐻- 	 in forward mode with an uniform unit initial mole fraction field and zero emissions, i.e., 𝒉-	 =

	𝐻-	(𝒄-
	 = 1, 𝒙-	 = 0).  𝒏-)  is computed as   

 

𝒏-) =	𝒉-	 	∑ 𝑠-,/		𝑓	 	𝐄	[𝒙/) − 𝒙/#]-%!
/0! 		𝒏_𝑘^𝑖 = 	𝒉_𝑘^							∑_(𝑙 = 1)^(𝑘 − 1)▒〖𝑆_(𝑙, 𝑘)	(	𝑓_			[|𝒙_𝑙^𝑖 − 𝒙_𝑙^𝑎	|)〗)	  135 

.………..(6).    

 

Here the scalar  

𝑠-,/		𝑆/,- accounts for the impact of atmospheric sinks on the global uniform concentration mole fraction change during the 

time period betweenat the start of blocks k and , linduced by emission differences within block 𝑙. 𝑠-,/	is generated using a sink 140 

operator S. We describe a formulation of S in the next section. Within block k itself, the impact of atmospheric sinks is 

accounted for by	𝒉-	 .  

 

 

 145 
Each iteration of a variational inversion computes a departures vector 𝛿𝒎	

		: 

 

	𝛿𝒎	
		 	= 𝐑%![𝒎 − 𝒚] ………. (7). 

 

The adjoint CTM 𝐻∗ is run with 𝛿𝒎	
		to compute the local gradient of the cost function (Equation 2). In the PP method, 𝐻∗	is 150 

split into blocks covering the same periods as used for the forward CTM simulation. In an iteration, each adjoint block is first 

run with the respective departures. Then, the modelled adjoint sensitivities of a block 𝛿𝒙-) 	are adjusted for the effects of 

departures of succeeding blocks by adding adjoint mole fraction correction scalar 𝑔-) : 

 

𝑔-) = 		𝑓	 ∑ 	𝑠-,/𝑆∗-,/	
	 	(		𝒉/33		𝛿𝒎/

)	4
/0-*! 	)          (8),  155 

 

Here 𝒉/3		𝛿𝒎/
)		is the matrix dot product of the two vectors, both of which have the same size. The correctness of the adjoint 

implementation of the PP method can be verified using the adjoint test (Meirink et al., 2008). The test checks if the for the 

equality  

 160 

⟨𝑀(𝒂), 𝒃⟩ = 	 ⟨𝒂,𝑀∗(𝒃)⟩ …….   (9), 
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is satisfied to an accuracy near the computing precision. where 𝑀 and 𝑀∗ denote the forward and adjoint model operators, 

〈			〉 denotes the inner product. 𝒂 and 	𝒃 are the arbitrary forward and adjoint model states.  

 165 

In a PP inversion, the initial mole fraction field 𝒄(	
	needs to be consistent with the observations as a discrepancy between the 

two leads to large emission differences in the early months of the inversion period. This issue can easily be dealt with in a 

serial inversion using a spin-up period and rejecting this period from the posterior solution.  However, in a PP inversion, the 

large emission differences may result in large mole fraction corrections, which increases the error in the PP approximation 

(see Equations 4 & 5). This can be avoided by taking a realistic 𝒄(	
	from the posterior mole fractions simulations of from 170 

another inversion covering the period before the PP inversion. If such an inversion is not available, 𝒄(	can be computed by 

performing an inversion for the 1-year period preceding the PP inversion.  

 

In summary, the main steps of the PP methane inversion are as follows: 

1. Construct an initial mole fraction field 𝒄(	consistent with observations at the start of the inversion.  175 

2. Split the full period of the inversion into r overlapping time blocks.  

3. To calculate 𝒄-#$	, run the forward CTM serially with prior emissions 𝒙#$ and save the simulated mole fraction 

fields at the start time of each block. 

4. Calculate the CTM block sensitivities vector 𝒉-	  by running the CTM over each block with a uniform initial mole 

fraction field of 1 and zero emissions, and sample the model output at the observation time and locations. 180 

4.5. Prepare a sink operator S which accounts for the impact of atmospheric sinks on methane mole fractions during a 

period. 

5.6. Perform the inversion by iteratively minimizing the cost function until the convergence condition is met using a 

forward and an adjoint run in each iteration: 

a. Forward run:  185 

i. Run all forward CTM blocks in parallel with the initial mole fraction fields from step 3.  

ii. Account for the emission changes relative to the prior in preceding blocks by adding the corrections 

𝒏-)  (Equation 5). 

b. Adjoint run: 

i. Run all adjoint CTM blocks in parallel to calculate the adjoint emission sensitivities. 190 

ii. Add the adjoint correction 𝑔-) 	to account for the effect of departures in successive blocks (Equation 8).  

 

The CTM runs in the steps 4, 65.a.i and 65.b.i are performed in parallel. The steps without CTM run (1, 2, 5, 65.a.ii and 65.b.ii) 

require very little wall time. Step 3 is the most time-consuming because a full serial CTM run is performed in the step. To 

reduce the wall time, this run can be performed at a coarse CTM resolution. This will not have a major impact on the inversion’s 195 
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performance as the coarse resolution mole fraction fields would be consistent with the source, sink and large-scale atmospheric 

transport patterns, and 𝒎 is sampled after the coarse field is transported by a high-resolution CTM block runs during the 

overlap periods. 

3 PP performance test  

We evaluate the performance of the PP method by comparing a PP inversion with a serial methane inversion. Both inversions 200 

are performed for an 11-year period (1999-2010) with identical observations and prior emissions. We use the TM5-4DVAR 

inversion system (Bergamaschi et al., 2010; Meirink et al., 2008, Krol et al., 2005) with the settings used in Pandey et al. 

(2016). The TM5 CTM is run at 6° × 4° horizontal resolution and 25 vertical hybrid sigma-pressure levels from the surface to 

the top of the atmosphere. The meteorological fields for this offline model are taken from the European Centre for Medium-

Range Weather Forecasts (ECMWF) ERA-Interim reanalysis (Dee et al., 2011). We optimize a single category (‘total’) of 205 

methane emissions at 6° × 4° spatial resolution and monthly temporal resolution. The posterior emissions of the two inversions 

are compared after integrating over the TRANSCOM regions shown in Figure 2a.  

 

The inversion assimilates surface observations from the NOAA Earth System Research Laboratory (ESRL) global cooperative 

air sampling network at on- and off-shore sites (Dlugokencky et al., 2011; Dlugokencky et al., 2020). The locations of the 210 

observation sites are shown in Figure 2b. The prior covariance matrix 𝐁 is constructed as follows. The diagonal elements of 

Bassuming  are constructed assuming ±1σ uncertainties relative emission uncertainties of 50 % of the emissions per grid box 

cell per month. The off-diagonal elements are constructed by The emissions are assuming the emissionsed to be correlated 

temporally using an exponential correlation function with an e-folding time scale of 3 months, and spatially with a Gaussian 

correlation function using a length scale of 500 km (Houweling et al., 2014). Uncertainties of 1.4 ppb are assigned to methane 215 

observations. Our system also assigns a modelling representation error based on simulated local mole fractions gradients (Basu 

et al., 2013). The prior emissions are taken from the same sources as in Pandey et al. (2016).  The prior emissions of the yearin 

2008 are used for applied to every year in the priorinversion period, hence there is no interannual variability in the prior 

emissions. The cost function 𝐽 is minimized using the conjugate gradient minimizer, which is based on the Lanczos algorithm 

(Fisher and Courtier, 1995). The inversions use the convergence criterion of gradient norm reduction by a factor 1000, which 220 

is achieved after 19 iterations in both inversions.  

 

In the PP inversion, we split the inversion period of 1999-2010 into 11 blocks of  21 months. The first 9 months of each block 

is the overlap period used for uniformly mixing the emission changes within the atmosphere, while the last 12 months provide 

modelled mole fractions for assimilating the observations. We parameterize the sink operatoroperator S, w 𝑆	(Equation 6)hich 225 

computes the sink scaling factor 𝑠-,/	(Equation 6), with an e-folding decay function and a constant atmospheric lifetime of 

methane (𝜏) of 9 years. 
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 𝑠#,%	 =		 𝑆(𝑘, 𝑙) =		𝑒&|(!&("|/*   ……. (10) 

 

Here 𝑡/		and  𝑡-	 are the start times of the blocks l and k, respectively.with a constant 9-year atmospheric lifetime of methane. 230 

We found this simple parameterization with a constant lifetime is sufficient for our test inversion (Section 3).  

 

The input emissions of TM5 are mass fluxes (Tg yr-1) and the output is in mole fractions (ppb). The methane emission changes 

are converted in mole fractions using an 𝑓	 = 0.361 556
37

. Successful implementations of the PP method in the adjoint mode was 

verified using the adjoint test (Equation 9). The next section (3.1) evaluates the observation-model mismatches and posterior 235 

emissions differences between the PP and serial inversions, and the section thereafter (3.2) presents the wall time improvement 

achieved by the PP inversion.  

 

3.1 PP Emission estimationinversion errorserrors 

Here we The next section (3.1) evaluates the difference in observation-modelled mole fractions mismatches and posterior 240 

emissionss differences between the PP and serial inversions.s, and the section thereafter (3.2) presents the wall time 

improvement achieved by the PP inversion.  

 

3.1.1 Mole fraction errors 

Here Wwe first examine the quality of the inversion-optimized fit to the observation. Figure 3 shows the time series of the 245 

prior and posterior simulations and the observations for two background sites, representing each hemisphere: Barrow (Alaska) 

and the South Pole. The prior observation RMSD (root mean square difference (RMSD)) with observations for Barrow (78 

ppb) is 3 times higher than for the South Pole (28 pbb). Barrow observations show more high-frequency variations than the 

South Pole as the Northern Hemisphere station is influenced by methane emissions from wetlands. The mole fractions 

simulated by the PP inversion are in good agreement with the results obtained from the serial inversion:  RMSDs of 2 ppb and 250 

1 pbb for Barrow and the South pole, respectively, which are only 2.5% and 3.2% of the prior observation RMSD. This shows 

that the PP inversion, starting from an identical prior, is able to match the observations at these sites as good well as the serial 

inversion. 

 

Figure 4 shows the average mole fraction differences at all observation sites.  The observation-prior RMSD for all observations 255 

combined is 67 ppb. The mean mismatch is –58 ppb because the 2008 bottom-up emissions used as the prior are larger than 

the mean posterior emission over 1999-2010. The average data uncertainty (mean of the square root of the diagonal elements 

of R) is 19 ppb (not shown). For both inversions, a good model fit (90 % reduction in mean of observation-model mole fraction 
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mismatch) to the observations is achieved with a gradient norm reduction of 1000. The posterior simulation of both the serial 

and PP inversions reduce the RMSD to 20 ppb (mean = –2 ppb). The RMSD between PP and serial is 1.9 ppb (mean = –0.1 260 

ppb), which is an order of magnitude smaller than the posterior-prior RMSD of 62 ppb (mean = –55 ppb). This shows that the 

implementation of the PP method has little impact on the inversion’s ability to fit the observations.  

 

3.1.2 Posterior emission errors 

 265 

A good agreement between observations and posterior models does not guarantee that the inversions have produced similar 

posterior emissions. The physically parallelized CTM used in the PP inversion has lost some of the consistency of the full 

CTM used in the serial inversion and. the PP emission errors will depend on the impact of this If the impact of this CTM 

simplification is small, the posterior emissions of the two inversions should be in good agreement. Figure 5 shows mean 

emissions (averaged over 1999-2010) from the inversions integrated over the globe and over TRANSCOM regions. We do 270 

not have a good estimate of the posterior uncertainties because a large number of variational inversion iterations are needed 

for the second derivative of the cost function to converge. Therefore, we evaluate PP performance by comparing the PP-serial 

emission differences against the emission adjustments performed by the serial inversion (serial-prior differences) and prior 

emission uncertainties. The serial inversion adjusts the global mean prior emissions of 544 ± 11 Tg yr-1 by –22 Tg yr-1. The 

PP inversion is in excellent agreement with the serial inversion in this respect. The two differ by  0.3 Tg yr-1 (0.06%), which 275 

is 1% of the difference between the prior and posterior serial emissions from the serial inversion. The global methane emissions 

are in general well constrained by the NOAA observations in a serial inversion, and the additional error introduced by the PP  

method only causes a does not seem to have a significant impact on the global emission1 % error relative to the serial-prior 

emission mismatch. s. At regional scales, the serial inversion adjustment is the smallest for Australia: + 0.4 Tg yr-1 from thefor 

a prior emissions of 6.6 ± 0.4 Tg yr-1. The PP inversion adjusts the prior emissions here by +0.5 Tg yr-1, implying that the 280 

difference with the serial inversion (0.1 Tg yr-1) is well within the prior emission uncertainty. The serial inversion changes the 

Eurasian temperate emissions the most, by –58 Tg yr-1, where prior emissions are 135 ± 8 Tg yr-1. The PP inversion changes 

these emissions by –60 Tg yr-1, i. e., a difference of 2 Tg yr-1 and well within the prior uncertainty also. The South American 

temperate region has the largest PP differenceerror, relative to the serial-prior difference, between the serial and PP emission 

estimates of 2 Tg yr-1. The serial emissions for this region are 6.5 Tg yr-1 higher than the prior of 36 ± 2.4 Tg yr-1. In summary, 285 

mean PP emission estimates for the TRANSCOM regions deviate within < 5 % from the prior serial emissions, while the 

serial-prior differences .are up to 50 % of the prior emissions.  

 

Figure 6 shows the inter-annual variability of the emission estimates. The global emissions time series of the PP and serial 

inversions show a very good agreement with a correlation coefficient R = 0.99, explained by the large observational constraint.  290 
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Over the TRANSCOM regions, the North American temperate region has the best agreement (R = 1.0). All other regions have  

R higher than 0.98 except for Australia (0.96) and Europe (0.94). Figure 7 shows the intra-annual variations of the emissions. 

At the global scale, the PP and serial time series match very well with R = 1.00, whereas R between prior and serial is 0.93. 

The agreement between PP and serial time series is also very good for all TRANSCOM regions (R > 0.98) despite low 

correlations between prior and serial emissions for some regions, for example, R = 0.13 for the South American temperate 295 

region. This shows that the PP inversion is able to reproduce the seasonal cycle of the emissions very well. Figure 8 shows the 

spatial distribution of the emission differences at grid scale. The mean (± 1σ spread) of the differences between the serial 

inversion and prior is −8	 ×	10%8	(±		0.5	) Tg gridbox-1 yr-1, and it is 9	 ×	10%9	(±		0.04	) Tg gridbox-1 yr-1 for serial and PP 

inversions. Emission differences between the PP and serial inversions are visible over India and South American temperate. 

These differences are likely due to the lack of observational constraint in these regions (see Figure 2). In summary, the 300 

combination of small differences in the mean emissions, and the high correlations between intra- and inter-annual time series, 

shows that the PP inversion can effectively reproduce results of the serial inversion at regional scales.  

3.2 Wall time 

Table 1 compares the wall times used by the PP and serial inversions. The TM5 model in our inversion setup uses OpenMP 

parallelization and gives the best wall time performance on 4 CPUs on a single node (12-core 2.6 GHz Intel Xeon E5-2690 305 

v3). Using more CPUs reduces the performance as the communication overhead within the CPUs becomes the bottleneck 

(Note that the TM5-MP version described in Williams et al., 2017, with improved parallel scaling, was not used in this study). 

In this configuration, a forward or adjoint TM5 CTM run of one year took about 15 minutes. Hence an iteration of the serial 

inversion, consisting of 11 years forward and adjoint runs, required 5 hours. The PP inversion iterations were performed in 11 

parallel blocks of 21 months each on 4 CPUs. A single PP iteration took 55 mins, which is > 5 times faster than the serial 310 

inversion. The main steps of PP implementation are listed in Section 2. In our inversion test, the initial mole fraction fields 𝑐( 

(step 1) were taken from an inversion using surface measurements that was not performed in this study. Steps 1, 2, 5, 65.a.ii 

and 6.ba.ii took negligible time. Step 3 took 2.5 hours because it consists of a full serial TM5 forward run. Steps 4, 65.a.i and 

66.ba.i consist of 11 TM5 run over blocks of 21 months which were run in parallel and took 25 minutes each. Note that an 

iteration took longer than the sum of the forward and adjoint block runs because of a few minutes waiting time for the computer 315 

cores to become available again. In total, the PP inversion took 20 hours, 5 times less than the serial inversion which took 101 

hours. Note that although the PP inversion took a shorter wall time, it needed extra CPU core hours for the additional 9-month 

overlap, CTM block sensitivity and initial mole fraction computation runs. The PP inversion used a total of 700 CPU core 

hours, whereas the serial inversion used about 400 CPU core hours. Table 1 also provides a projection of the wall time 

improvement of a hypothetical 35-year inversion (not performed in this study) based on the TM5-4DVAR inversion setup 320 

used in this study. A PP inversion would be 15 times faster for such a long period.  
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Overall, we find that the PP method, which accounts for the atmospheric lifetime of methane, is able to effectively reproduce 

the posterior emissions of a traditional 11-year conventional serial inversion 5 times faster. 

4 Discussion 

4.1 PP method applications 325 

The utility of the PP method for inversion of a trace gas depends on the time scale of the influence of emissions on observations 

within the spatial domain of the CTM. Therefore, PP is mainly useful in global inversions of trace gases that have atmospheric 

lifetime of a year or longer in the atmosphere. For a trace gas with a shorter lifetime, such as of carbon monoxide with 2 months 

lifetime, emission perturbations last for a short duration. A multidecadal inversion of such a trace gas can be broken into many 

short inversions. These short inversions can be performed in parallel, and the posterior emission can be combined thereafter. 330 

A similar approach can be used for regional inversions of short-and long-lived trace gases because emission perturbations are 

quickly advected out of the regional CTM domain and hence do not influence observations for a long period. 

 

The hydroxyl radical OH is the main sink of methane in the atmosphere. Zhang et al. (2018) showed that the satellite-observed 

atmospheric signature of the methane sink is sufficiently distinct from that of methane emissions, hence OH mole fractions 335 

can be optimized using synthetic shortwave infrared (SWIR) and thermal infrared (TIR) satellite observations. Following up 

on this, Maasakkers et al. (2019) and Zhang et al. (2021) used methane observations from the GOSAT satellite to optimize 

atmospheric OH fields along with methane emissions. The simultaneous optimization of OH with methane emissions 

introduces a non-linearity in the inversion because methane loss rate depends on the product of methane and OH mole fractions. 

However, the changes to the methane mole fractions are expected to remain small during the inversions. Hence, the non-linear 340 

effect is small and a quasi-linearity is assumed to solve the inversion analytically using the computation of the full Jacobian 

matrix of the CTM. Under a quasi-linearity assumption, OH can be optimized in a PP methane inversion by introducing annual 

OH scaling factors in the state vector and the methane lifetimes in the sink operator can be scaled in each iteration to reflect 

the corresponding OH adjustments. Such an implementation can also be used in inversions optimizing OH using methyl 

chloroform (Naus et al., 2021). 345 

 

4.1 Current CAMS inversion setup 

In the future, the PP method will be implemented in the CAMS multidecadal methane emissions reanalysis setup. The 

European Commission has anticipated the need for reliable information about atmospheric composition of greenhouse gases 

through development of numerical systems that combine sophisticated physical models with measurements from a wide range 350 

of observing systems for an operational service, which is being implemented. The current CAMS methane flux reanalysis 

product (Segers and Houweling, 2020) uses the TM5-4DVAR inverse modelling system and provides measurement-informed 
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monthly methane emission estimates. The latest release has two sets of methane emissions: (1) release v19r1 for 1990-2019 

using surface observation; (2) release v19r1s for 2010-2019 using surface and also GOSAT satellite observations. The surface 

observations are mainly from the NOAA network (Dlugokencky et al., 2011). Methane emissions are optimized at 3° × 2° 355 

spatial resolution and monthly temporal resolution using TM5 with 34 vertical layers. If performed in serial mode each iteration 

of the 1990-2019 inversion would take about 5-10 days, and the full inversion will require multiple months to finish. Segers 

and Houweling (2020) circumvent this issue by breaking the full inversion into smaller inversions of 3-year time windows that 

are performed in parallel. The target inversion on high resolution (3° × 2° degrees, 34 layers) is preceded by a coarse resolution 

inversion (6° × 4°, 25 layers) that provides the initial mole fraction fields and is processed serially.  The high-resolution 360 

inversion optimizes only the emissions and uses initial mole fractions for each 3-year block obtained from mole fraction fields 

of a coarse resolution inversion, which optimizes both emission and initial mole fractions. The 1990-2019 inversion using this 

approach still takes 3-4 months to finish and requires about 40 smaller inversions to provide the end result. These numbers 

depend of course on the parallel efficiency of the model and the computing server, but even if these are improved, the need for 

a serial sequence of inversions to provide a time series of initial mole fractions imposes a limitation to the model resolution 365 

that can be used. With the implementation of the PP method presented in this study, the wall time performance of the CAMS 

reanalysis inversions will improve in future. 

 

4.2 Possible further improvements  

The PP method accounts for changes in the background mole fractions due to emission changes in preceding blocks using a 370 

sink operator S, a CTM block sensitivity h, and an overlap between the consecutive blocks. In our test experiment, 𝑆		is assumed 

to be an e-folding decay function with an atmospheric lifetime of methane of 9 years, which we found to be sufficient for the 

annually-repeating OH field used in our 11-year CTM runs. Methane lifetime within the duration of a longer multidecadal 

inversion will vary due to climatological influences as well as possible trends and interannual variations in the hydroxyl radical 

abundance. In such cases, 𝑆 can be defined as a function of an annual lifetime vector for the specific CTM run. The lifetime 375 

vector can be calculated as the ratio of the annual sink and global methane burden simulated by the serial CTM run in step 3 

of the PP method.   

The overlap period between consecutive blocks in the PP method allows methane emission perturbations to mix within the 

CTM domain according to atmospheric transport. We used a 9-month overlap in our test inversion setup. It was  sufficient 

estimate for optimizing emissions from the total emissions from large TRANSCOM regions using the surface observations. 380 

The 6-month overlap used by Chevalier et al. (2013) for CO2 inversion was found to be insufficient for a PP methane inversion, 

likely because of the differences between the source and sink distributions of methane and CO2. Increasing the overlap period 

to 9-month and using CTM block sensitivity vector solved this issue. We expect that a 1-year overlap, equal to the 

interhemispheric mixing time, would be more than sufficient for all tracers irrespective of their source-sink distribution and 
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lifetime. A shorter overlap would improve the computational efficiency and wall time but reduce the accuracy of the physical 385 

parallelization of the CTM. The PP accuracy could be maintained with shorter overlap periods by using a mole fraction 

correction vector per hemisphere rather than the single global vector used in this study. However, the computational resources 

and wall time saved by this would be partially spent on the additional block sensitivity runs. Our test inversions are performed 

at a relatively coarse horizontal resolution of 6° × 4° with 25 vertical hybrid sigma-pressure levels. We do not expect the 

performance of the PP method to degrade significantly for higher resolution inversions if there is sufficient overlap between 390 

the blocks and the mole fraction corrections are parameterized correctly. Furthermore, the performance gained by performing 

the inversions at higher resolution because of the improved computational performance will likely outweigh the accuracy loss 

due to the assumptions made in the PP method. 

The PP method reduced the wall time of the CTM simulations in a variational inversion but introduces additional model errors 

because of the simplifications made. For our test inversion setup, these PP-CTM model errors are minor as the posterior PP 395 

emission estimates are in good agreement with the serial estimates. In future PP implementations, these PP-CTM errors can 

be accounted for in the observation error matrix 𝐑. The PP-CTM error can be calculated as the difference between the model 

output of a PP and a serial forward CTM run with randomly perturbed prior emissions.  

  

4.3 Methane sink optimization 400 

The hydroxyl radical OH is the main sink of methane in the atmosphere. Zhang et al. (2018) showed that the satellite-observed 

atmospheric signature of the methane sink is sufficiently distinct from that of methane emissions, hence OH mole fractions 

can be optimized using synthetic shortwave infrared (SWIR) and thermal infrared (TIR) satellite observations. Following up 

on this, Maasakkers et al. (2019) and Zhang et al. (2021) used methane observations from the GOSAT satellite to optimize 

atmospheric OH fields along with methane emissions. These studies assume a quasi-linearity for the inversion as changes to 405 

the methane mole fractions are expected to remain small compared to the mean. Under a quasi-linear assumption, OH can be 

optimized in a PP methane inversion by introducing annual OH scaling factors in the state vector and the methane lifetimes in 

the sink operator can be scaled in each iteration to reflect the corresponding OH adjustments. Such an implementation can also 

be used in inversions optimizing OH using methyl chloroform (Naus et al., 2021). 

4.31 Current CAMS inversion setup 410 

In the future, the PP method will be implemented in the CAMS multidecadal methane emissions reanalysis setup. The 

European Commission has anticipated the need for reliable information about atmospheric composition of greenhouse gases 

through development of numerical systems that combine sophisticated physical models with measurements from a wide range 

of observing systems for an operational service, which is being implemented. The current CAMS methane flux reanalysis 
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product (Segers and Houweling, 2020) uses the TM5-4DVAR inverse modelling system and provides measurement-informed 415 

monthly methane emission estimates. The latest release has two sets of methane emissions: (1) release v19r1 for 1990-2019 

using surface observation; (2) release v19r1s for 2010-2019 using surface and also GOSAT satellite observations. The surface 

observations are mainly from the NOAA network (Dlugokencky et al., 2011). Methane emissions are optimized at 3° × 2° 

spatial resolution and monthly temporal resolution using TM5 with 34 vertical layers. If performed in serial mode each iteration 

of the 1990-2019 inversion would take about 5-10 days, and the full inversion will require multiple months to finish. Segers 420 

and Houweling (2020) circumvent this issue by breaking the full inversion into smaller inversions of 3-year time windows that 

are performed in parallel. The target inversion on high resolution (3° × 2° degrees, 34 layers) is preceded by a coarse resolution 

inversion (6° × 4°, 25 layers) that provides the initial mole fraction fields and is processed serially.  The high-resolution 

inversion optimizes only the emissions and uses initial mole fractions for each 3-year block obtained from mole fraction fields 

of a coarse resolution inversion, which optimizes both emission and initial mole fractions. The 1990-2019 inversion using this 425 

approach still takes 3-4 months to finish and requires about 40 smaller inversions to provide the end result. These numbers 

depend of course on the parallel efficiency of the model and the computing server., but even if these are improved, Tthe need 

for a coarse resolution serial sequence of inversions to provide a time series of initial mole fractions fields limits the inversion 

period for which this method can be usedimposes a limitation to the model resolution that can be used. With the implementation 

of the PP method presented in this study, the wall time performance of the CAMS reanalysis inversions will improve in future. 430 

 

5 Conclusions 

Regular surface observations of methane mole fractions started in early 1984, and by now the measurement record spans more 

than 35 years (Dlugokencky et al., 2011). An atmospheric inversion with a very large state vector is needed optimize emissions 

using to properly utilize the information in such long measurement records at a grid scale. The variational inversion approach 435 

allows for optimization of a much larger state vector than the ensemble or analytical approaches. However, each iteration of a 

variational inversion uses the output of the previous iteration, limiting the opportunity for scalable parallelization. At the same 

time, an increase in the spatiotemporal resolution of CTMs needed to take full advantage of the rapidly improving precision 

and coverage of surface and satellite measurements results in a rapid increase in wall time. 

 440 

We have developed the PP method for methane inversions which improves the wall time of variational methane inversions by 

physical CTM parallelization while accounting for the atmospheric lifetime in forward and adjoint variational modes. We have 

tested the performance of this method using an 11-year TM5-4DVAR inversion setup that consists of a traditional conventional 

serial inversion and a PP inversion in an identical configuration. The PP method reduced the wall time by a factor of 5 while 

still showing excellent agreement with the posterior emissions from the serial inversion. The wall time improvement of using 445 

PP will be even larger for longer inversions, for example, by a factor of 15 for a 35-year inversion. The PP method makes 
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multidecadal global inversions of long-lived atmospheric trace gases more feasible. It will be implemented in the CAMS 

reanalysis setup which provides regular updates of multidecadal emission estimates by assimilating surface and satellite 

observations. 

 450 
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Table 1  Wall time comparison for the inversions performed in this study. Wall time projections for a hypothetical 35-year 580 
inversion are also given. 

Model runs Serial  PP  

One year forward or adjoint run 15 minutes 

1999-2010 inversion 1 iteration (forward + 

adjoint TM5 run) 

5 hours 55 minutes 

Inversion with 19 

iterations 

101 hours 20 hours 

1985-2020 inversion* 1 iteration (forward + 

adjoint TM5 run) 

16 hours 55 minutes 

Inversion with 50 

iterations 

34 days 56 hours 

*Projection based on the 1999-2010 inversion 
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Figure 1 Schematic diagram of a PP methane inversion’s forward mode, which computes mole fractions 𝒎𝒊 in iteration i. The 
steps shown with red boxes use CTM runs and take long wall time. The steps shown in green are without CTM runs and require 
negligible wall time.  The subscripts denote the block numbers (except for 𝒄𝟎, which is the initial mole fraction field at the 590 
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start of the inversion). For block 1, the initial mole fraction field (𝒄𝟏𝒃𝒂 = 𝒄𝟎	 ) and mole fraction correction vector (𝒏𝒊) is not 
needed. The overlap between the successive blocks (𝑯𝟏

	 , 𝑯𝟐
	 , 𝑯𝟑

	 	)	represent the overlap period, where the modelled mole 
fractions from the preceding block are used in the inversion. The “CTM block sensitivity calculation” and “Prepare sink 
operator” steps of the PP method are implemented in this study, whereas the rest are from Chevallier (2013). Note that the 
diagram illustrates the PP splitting into only three blocks, whereas more blocks are used in practice depending on the inversion 595 
period. 
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Figure 2 (a) Definition of the TRANSCOM regions (Gurney et al., 2002). (b) Locations of NOAA methane observation sites 
used in this study. The size of the symbol “+” is proportional to the number of observations assimilated from each site. 

 
Figure 3 Modelled and observed methane mole fractions at the two remote background NOAA stations. Barrow, Alaska is 
shown in panel (a), and the South Pole is shown in panel (b).  605 
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Figure 4 Methane mole fraction differences at the observation sites (see Figure 2.b). Panel (a), (b), (c) and (d) show the average 

difference between observations and prior, observation and serial, prior and serial, and PP and serial, respectively. The color 

scale range is set at mean ± 1 standard deviation of the plotted values. 610 
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Figure 5  Total methane emission estimates fromof the inversions for the globe and TRANSCOM regions (see Figure 2), 615 
averaged over 1999-2010. (see Figure 1). The vertical lines on the markers show the ±2σ uncertainties of the prior emissions.  
.  
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Figure 6  Annual methane emission estimates fromof the PP and serial inversions for the globe and the TRANSCOM regions. 
The vertical bars show the ±2σ uncertainties of the prior emissions. The correlation coefficients of PP and serial time series 
are given at the bottom of each panel.  
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Figure 7 Intra-annual variation of the PP and serial emissions for the TRANSCOM regions. The correlation coefficients of 
the PP (red) and prior (grey) time series with the serial time series are given at the bottom of each panel. 630 
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Figure 8 Emission differences averaged over 1999-2010. Panel (a) shows differences between serial and prior. Panel (b) shows 

differences between serial and PP.  635 

 

 


