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Abstract. Atmospheric inversions are used to constrain the emissions of trace gases from using atmospheric mole fraction 

measurements. The four-dimensional variationalvariational (4DVAR) inversion approach allows optimization of the emissions 

at a much higher temporal and spatial resolution than the ensemble or analytical approaches but provides limited opportunities 

for scalable parallelization because it is an iterative optimization methodas the optimization is performed iteratively. 15 

Multidecadal variational inversions are needed used to optimally extract information from the long measurement records of 

long-lived atmospheric trace gases like carbon dioxide and methane. However, the wall clock time needed––up to months––

complicates these multidecadal inversions. The physical parallelization (PP) method introduced by Chevallier (2013) addresses 

this problem for carbon dioxide CO2 inversions by splitting the time period of the chemical transport model into blocks and 

running them  that are run in parallel. Here we present a new implementation of the PP physical parallelization for variational 20 

inversion (PPVI) method approach that which is is suitable for methane inversions as it accounts for the chemical sink of 

methane’s atmospheric lifetime. The performance of the PPVI method is tested in an 11-year inversion using a TM5-4DVAR 

inversion setup that assimilates surface observations to optimize methane emissions at grid-scale. Our PP implementation 

improves the wall time performance by a factor of 5We find that the PPVI inversion approach improves the wall clock time 

performance by a factor of 5 and shows excellent agreement with the posterior emissions of a full serial inversion with in an 25 

identical configuration (global mean emissions difference = 0.06 % with an interannual variation correlation R = 0.99 %; 

regional mean emission difference < 5 % and interannual variation R > 0.945). The wall clock time improvement of using the 

PPVI method method increases with the size of the inversion period. The PPVI approach method is planned to be used in 

future releases of the CAMS (Copernicus Atmosphere Monitoring Service (CAMS)) multidecadal methane reanalysis. 
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1 Introduction 30 

Methane (CH4) is the second- most important greenhouse gas after carbon dioxide (CO2), and its atmospheric abundance has 

increased by more than a factor of 2.5250 % since preindustrial times. Due to its strong global warming potential, Methaneit 

is responsible for 25 % of the anthropogenic radiative forcing in spite ofdespite its 200 times lower abundance than CO2 due 

to its strong global warming potential (Myhre et al., 2013).   Unlike the relatively steady increase in CO2, mainly due to fossil 

fuel emissions, the methane observational record shows remarkable variability in growth rate. The causes of these variations 35 

are still debated (Rigby et al., 2017; Schaefer et al., 2016, Worden et al., 2017; Pandey et al., 2017).  

Atmospheric inversions provide calculate   

Reducing anthropogenic methane emissions has been recognized as an important requirement for achieving the 2015 Paris 

Agreement target of limiting global temperature rise to below 2° C relative to pre-industrial times (Ganesan et al., 2019; Nisbet 

et al., 2018). Climate change mitigation and adaptation strategies require reliable knowledge of the methane budget. The 40 

mmethane emission estimatess have been estimated using multidecadal inversions, which by optimally combininge the 

information in atmospheric observations and bottom-up emissions  emission estimates estimates (estimates using process-

based models and inventories) along with corresponding error characteristics.  Inversions useing a  CTM (Cchemical transport 

models (CTM’s) ) simulate the spatiotemporal distribution of the methane concentrationsmole fractions in the atmosphere for 

a given set of emissions while also accounting for its atmospheric sink. Inversions use CTM’s are used to disentangleing the 45 

influences of atmospheric transport from the influences of, and sourcesemissions and sinks on the observed mole fractions 

(Naus et al., 2019, Pandey et al., 2019). Inversions have been performed on multidecadal scales to assess the information 

content of long records of methane mole fractions. For example, “The Global Methane Budget 2000–2017” (Saunois et al., 

2020) presents regional emission estimates from nine different inversion setups. The methane emissions reanalysis project 

under the Copernicus Atmosphere Monitoring Service (CAMS) performs multidecadal inversions using the TM5-4DVAR 50 

variational approach to provide regularly updated gridded methane emissions (Segers and Houweling, 2020). Such 

multidecadal inversions have been performed, for example, for the “The Global Methane Budget 2000–2017” that was 

published recently by the Saunois et al. (2020). This study made methane emissions available from nine different inversion 

setups. The methane emissions reanalysis project under the Copernicus Atmosphere Monitoring Service (CAMS) performs 

multidecadal inversions using the TM5-4DVAR variational approach to provide regularly updated gridded methane emissions 55 

(Segers and Houweling, 2020).  

 

 

Trace gas Emission  

Atmospheric Iiinversions inversions that estimate CH4 emissions adjust a state vector, which includes (consisting of gridded 60 

emissions or emission correction factors (and sometimes also the initial mole fraction field and other parameters in some 

inversions), to improve the agreement between model simulations and observations.  These inversions use a CTM to simulate 
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the spatiotemporal distribution of the tracer in the atmosphere for a given set of emissions while also accounting for its 

atmospheric sink. They inversionsA minimize a Bayesian cost function that cost function is defined based on the difference 

between the modelled and observed mole fractions as well as the magnitude of the emission adjustments, weighted with 65 

respective error covariances. The solution of the inverse problem is posterior emission vector, which minimizes the cost 

function. There are three main minimization approaches used in atmospheric inverse modelling: analytical, ensemble and 

variational. The analytical approach is based on a closed-form solution of Bayes’ theorem (Gurney et al., 2002). It requires the 

calculation of observation-sensitivities of each of the state vector elements separately. Theis leads to a large computational 

cost involved and restrictss the approach’sits usage application to inversion problems with small sized state vectors. 70 

The  ensemble approach improves the computational performance by representing parameterizing the state vector sensitivities 

usingby a statistical ensemble (Peters et al., 2005). Still only a relatively small  sized state vector can currently be afforded 

using this approach.  

 

The variational inversion approach was introduced to lift the state vector size restriction , using the adjoint of the CTM 75 

(Chevallier et al., 2005).   

 

In  the variational this approach, the minimum of a the cost function minimum is computed using an iterative procedure, with 

each iteration  that comprisinges of a forward and an adjoint CTM run. The method has the advantage over the analytical 

approach in that it can be applied to non-linear inverse problems. Truncated posterior uncertainties can be obtained forfrom 80 

variational inversions using the conjugate gradient minimizer for linear inverse problems (Meirink et al., 2008). A more robust, 

but computationally expensive, estimate of posterior uncertainties can be obtained using a Monte Carlo method (Chevallier et 

al., 2007, Pandey et al., 2016). However, aAs each iteration of a variational inversion uses the output of the previous iteration,, 

there are limited opportunities for scalable parallelization in variational inversions, and these the calculations can take months 

depending on the spatial and temporal resolution of the inversion. Thise long wall -clock time limits the resolution, the 85 

durationmaximum time range, andor the number of iterations that can be used in multidecadal variational inversions.  

 

To improve reduce this longe wall timecomputational efficiency for of multidecadal variational CO2 inversions carbon dioxide 

(CO2) inversions, Chevallier (2013) introduced the physical parallelization (PP) method. In this method, which the timeseries 

full inversion period is of forward and adjoint CTM runs within each iteration aresplit  divided into a number of blocks, and 90 

the CTM runs for the blocks  and that are performed run in parallel within each iteration and. a. tmospheric mass 

cCorrectionsCorrections factors  are added to the  simulated CO2 tracer mole fractions in a block  applied after the CTM block 

runs are finished to account for changes in the background mole fractions due to net for emissions adjustments (iteration minus 

prior emissions) changes  released in earlier blocks. This method reduceds the wall-clock time by an order of magnitude (seven-
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fold improvement for a 32-year inversion) while keeping the inversion-derived emission adjustments statistically consistent 95 

with a serial inversion. However, However, the original implementation of the PPtheir method cannot be used for  a cannot be 

applied directly to reactive trace gas like methane methane as the methodit does not account for atmospheric  chemical sink.  

 

the limited chemical lifetime of methane of about 10 years, due to oxidation by the OH radicals in the atmosphere. Here we 

report present an extension improved PP of the method that accounts for the limited atmospheric lifetime of reactive trace 100 

gases such as methane, which has an atmospheric lifetime of about 9 years (mainly due to oxidation by the OH radicals). the 

atmospheric lifetime. The intention is to use this new PP implementation for the Copernicus Atmosphere Monitoring Service 

(CAMS) methane flux reanalysis, which aims to provide every year annually an updated multi-decadal emission estimates 

inversion, within a production cycle  window of only a few months. The method is referred to as PPVI (physical parallelization 

for variational inversion) from here on.   105 

 

In the next section, we present our the PPVI method. In Section 3, weThe method’s  test the performance is tested of the PPVI 

inversion method using an 11-year test inversions setup presented in Section 3.. The wall time and optimized emissions of a 

PP inversion are compared to a serial inversion in an identical configuration. We compare the wall clock time and optimized 

emissions of a serial inversion with a PPVI inversion.In Section 4, we discuss possible future improvements and applications 110 

of the PP method. We discuss the current CAMS methane inversion setup, and possible improvements and applications of the 

PPVI method in Section 4. Our conclusions are summarized in Section 5.  

 

2 Physical parallelization for methane inversionsfor variational inversions 

An In the 4D-var approach,inversion of an atmospheric trace gas The the solution of aatmospheric methane inverse problems 115 

of a trace gas is calculated by minimizesing the a Bayesian cost function of the state vector 𝒙:  

 

𝐽(𝒙) = !
"
	 [𝒙 − 𝒙#]𝐁$𝟏[𝒙 − 𝒙#] + !

"
	 [𝒎𝐻(𝒙) − 𝒚]	𝐑$![𝑯(𝒙)𝒎− 	𝒚]	.     ………..(1) .   

 

 120 

 

Here In here, 𝒚 is the observation vector, and, 𝒙# is the priori state vector. 𝐁 and 𝐑 are the error covariance matrices of the 

prior emissions and the observations, respectively.  For methane emission inversions,The vector 𝒎	
	 constitutes the modelled 

mole fractions corresponding to 

𝒚The	the	observation	operator	𝐻	consists	of	the	a	CTM	run	that	simulates	methane	mole	fractions	at	time	and	location	of	𝒚. given	the	emissions	in	the	state	𝒙. 𝐁 125 
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and 𝐑 are the error covariance matrices of the prior statea priori emissions and the observations, respectively. . It is computed 

using a CTM operator 𝐻, which simulates the mole fractions given the emissions in the state 𝒙 and the initial mole fraction 

field 𝒄'	. 

 

𝒎	
	
	 = 𝐻(𝒄', 𝒙			) ………..(2).   130 

 

In a variational inversion setup, the posterior solution	 𝑥(	of Equation. (1) is found obtained by minimizing 𝐽 using an iterative 

procedure that computes a estimatesnew emission update a new 𝒙)*! in  	in each iteration 𝑖 using the gradient  of 𝐽: 

 

∇𝐽(𝒙	𝒊) = 		𝐁$![𝒙)𝒙 − 𝒙#](𝑥) − 𝑥#) + 𝐻∗-(𝐑$![𝒎𝒊 − 𝒚])(𝐻(𝑥)) − 𝑦)   ………..(32).    135 

 

where, 𝐻∗-	represents the adjoint CTM operator, which is implemented using the adjoint code of the CTM. The inversion 

finishes when a predefined convergence criterion is met, such as a desired gradient norm reduction or simply a maximum 

number of iterations. 

 140 

In a serial variational inversion the observation operator iteration 𝑖,	the CTM 𝐻		simulates amole fraction vector 𝒎	
)	with mole 

fractions representing the observationsfor observation vector 𝒚	, based on using the initial mole fraction field 𝒄'	and emission 

estimates 𝒙	) of iteration i: 

 

𝒎	
)
	 = 𝐻		, 𝒙	

)
	) ………..(3)   [SP1] 145 

  

In the PPVI method presented in Chevallier (2013), , the full period period of the CTM inversion is split is broken into r 

overlapping time blocksblocks, which can be are run in parallel. Figure 1 shows a schematically represents diagram of the 

main steps in of the PPVI method used in the forward mode to calculate 𝒎	
). At the start of the inversion, a serial CTM run is 

performed serially  (without blockssegmentation) is performed first in order to calculate initial mole fraction fields 𝒄.# for each 150 

block k using the a priori emissions 𝒙	#. This CTM run can be performed at coarser resolution than the main inversion to save 

time.. In an iteration, mole fractions for the iterationCTMA mole fraction vector 𝒎.
)  is then computed using the block 

observation operator 𝐻., computes the mole fraction vector 𝒎.
)  withbased on the latest emission estimate from the previous 

iterations 𝒙𝒌𝒊 ,and the initial mole fraction for this block,   

The overlaps between consecutive blocks is kept, where modelled modeeled mole fraction from  are needed for methane 155 

perturbations to uniformly distribute over the spatial domain of the CTM, such that each perturbation could be diagnosed by 

at least some observation sites. The mole fraction vector 𝒎.
)  for the observations 𝒚. could now be calculated by using the 
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small CTM block 𝐻. with emissions  𝒙𝒌𝒊  and a mole fraction a correction factor vector 𝑛.) .	which accounts for the state vector 

innovation in the preceding block.   

: 160 

 

𝒎.
) =	𝐻.	O𝒄.

#, 𝒙.) P + 𝑛.) 	 ………..(4).    

 

Here the scalarThe correction  𝑛.)  accounts for the impact of emission differences between the prior and the iteration in the 

time period from preceding the to preceblock on the simulated observations within the block. The error due to this 165 

simplification is further reduced by using an overlap period between consecutive blocks, where modelled mole fractions from 

the succeeding block are discarded. The overlap period CTM run distributes the emission differences uniformly through the 

Earth’s atmosphere. The PP method by Chevallier (2013) was applied to CO2 inversions, where 𝑛.) 	was simply calculated as 

the sum of the emission differences from each preceding block: 

 170 

𝑛.) = ∑ 		𝑓	 	[|𝒙0) − 𝒙0#|].$!
01! … (5).  

 

 

Here |𝒙| denotes the global sum over elements of 𝒙. 𝑓	 is a scalar used to convert emissions to mole fractions. 𝑓		is calculated 

for a tracer by, assuming a uniform distribution of the emitted trace gas throughout the Earth’s atmosphere. 𝑓	is calculated 175 

simply as the ratio between the number of moles in a unit emission and the number of moles of air in the atmosphere. 

 

Methane has an atmospheric lifetime of about 9 years. Unlike CO2, a large fraction of methane emission differences will be 

chemically removed within the duration of a multidecadal inversion as well as within a PP inversion block. Therefore, in our 

new implementation of the PP, we use a mole fraction correction vectorThe correction  𝒏.)  (with size of 𝒎.
) )  instead of the 180 

scaler 𝑛.)  to apply separate corrections to each observation. We account for the also limited lifetime of methane by 

implementing an atmospheric sink operator 𝑆	 . In addition, we use we implement a CTM block sensitivity vector 𝒉.	 , is 

implemented, distribute global emission changes more precisely, as per taking into account the full 3D atmospheric transport 

and the sink rather than assuming a globally uniform distribution. 𝒉.	  is computed at the start of the inversion by running 𝐻. 	( 

in forward mode with a unit initial mole fraction field and zero emissions, i.e., 𝒉.	 =	𝐻.	(𝒄.
	 = 1, 𝒙.	 = 0).  is calculated using 185 

an emission to mole fraction conversion factor f = 0.361	ppb/Tg	 and a methane sink operator S :  

𝒏.)  is computed as   

 

𝒏.) =	𝒉𝐇.	 	∑ 𝑆0,.(	𝑓	 	[|𝒙0) − 𝒙0#|].$!
01! )  . , ………..(65).    

 190 
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The scalarIn here, 𝐇.	 	
	is the CTM block sensitivity to a uniform initial mole fraction field perturbation, which is calculated at 

the start of the inversion by running each block with an initial unit mole fraction field and a zero emissions field. 𝑆0,. accounts 

for the impact of atmospheric sinks on the global uniform concentration change at the start of block k, induced by emission 

perturbations differences during thewithin block 𝑙	till	the	start	of	the	block	𝑘	. . ThereafterWithin block k itselfon, the impact 

of atmospheric sinks, as well as atmospheric transport, is accounted for by 	𝒉.	 𝐇.	 .  We parameterize 𝑺0,.	with an e-folding 195 

decay function with atmospheric lifetime of methane of 9 years, which was found to be sufficient for our test inversion (Section 

3).  

 
In Eeach iteration of a variational inversion computes a departures vector 𝛿𝒎	

		: 

 200 

	𝛿𝒎	
		 	= 𝐑$![𝒎 − 𝒚], the modelled mole fractions from the forward CTM run are used to calculate departures, i.e., the ………. 

(7). 

 

difference between observations and the modelled mole fractions scaled with the respective errors. Thereafter, Tthe adjoint 

CTM 𝐻∗ is run with 𝛿𝒎	
		uses these departures to compute  calculate the local gradient of the cost function (Equationuation 2).  205 

In the PPVI method, 𝐻∗, the adjoint CTM 	is split into blocks ofcovering the same periods blocks are kept the same asas used 

for the forward CTM simulation blocks and Equation 2 is applied in adjoint mode. In an iteration, First, each adjoint block is 

first run with the respective departures. Then, the modelled adjoint sensitivities of a block 𝛿𝒙.0) 	of	block	𝑘	are adjusted for the 

effects of departures of succeeding successive blocks by adding adjoint mole fraction correction scalars 𝑔.) 𝛿𝒏0) calculated using 

as follows: 210 

 

𝑔𝛿𝒏.) = 		𝑓	 ∑ 	𝑆∗.,0
	∗ 	(			𝒉𝐇03∗			(𝛿𝒎0

)	)4
01.*! 	)         ….. (86),  

 

The correct adjoint implementation of the adjoint part of  the PPVI method was can be verified using the adjoint test (Meirink 

et al., 2008). The test checks for the equality.  215 

 

⟨𝑀(𝒂), 𝒃⟩ = 	 ⟨𝒂,𝑀∗(𝒃)⟩ …….   (9), 

 

 

 220 

where 𝑀 and 𝑀∗ denote the forward and adjoint model operators, 〈			〉 denotes the inner product. 𝒂 and 	𝒃 are the arbitrary 

forward and adjoint model states.  
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In a PPVI inversion, the initial mole fraction field 𝒄'	
	needs to be consistent with the observations as a discrepancy between 

the two leads to large emission adjustments differences in the early months of the inversion period. This issue can easily be 225 

dealt with in a serial inversion using a spin-up period and rejecting this period from the posterior solution.  However, in a PPVI 

inversion, the large emission differences adjustments may result in large mole fraction corrections factors, which increases the 

error in the PPVI approximation (see Equationsuation 4 & 5). This can be avoided by taking a realistic 𝒄'	
	from anotheranother 

inversion covering the period before the PPVI inversion.  

 230 

In summary, the main steps of a the PPVI methane inversion are as follows: 

1. Construct an initial mole fraction field 𝒄'	consistent with observations at the start of the inversion.  

2. Divide Split the full period of the inversion into r over-lapping time blocks.  

3. To calculate Calculate the initial mole fraction fields (𝒄.#'	, ) for each block by Calculate the initial mole fraction 

fields (𝒄.' 	) for each block by rrunning the forward CTM serially with the prior a priori emissions 𝒙# and saveing 235 

the simulated mole fraction fields at the start time of each block. 

4. Calculate the CTM block sensitivities (𝒉𝐇.	 ) by running the CTM over each blocks with a unity uniform initial 

mole fraction field of 1 and zero emissions, and sampleing the model output at the observation time and locations. 

5. Perform the inversion by iteratively minimizing the cost function until the convergence criteriacondition is met 

using a forward and an adjoint run in each iteration: 240 

a. Forward run:  

i. Run all the forward CTM for each blocks in parallel with the initial mole fraction fields from the step 

3.  

ii. Account for the emission differences changes relative to from the a priori in preceding blocks, by 

applying adding the mole fraction corrections 𝒏.)  (Equation 54). 245 

b. Adjoint run: 

i. Run the all adjoint CTM for each blocks in parallel to calculate the adjoint emissions sensitivities.s 

𝛿𝒙0). 

ii. AddApply the adjoint corrections 𝑔.) 𝛿𝒏0) 	to account for the effect of departures in successive blocks 

(Equation 86).  250 

 

The CTM runs in the steps 4, 5.a.i and 5.b.i are performed in parallel. The steps without CTM run (1, 2, 5.a.ii and 5.b.ii) require 

very little wall time. Step 3 is the most time-consuming because a full serial CTM run is performed in the step. To reduce the 

wall time, this run can be performed at a coarse CTM resolution. This will not have a major impact on the inversion’s 

performance as the coarse resolution mole fraction fields would be consistent with the source, sink and large-scale atmospheric 255 
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transport patterns, and 𝒎 is sampled after the coarse field is transported by a high-resolution CTM block runs during the 

overlap periods. 

 

3 PP VI pPerformance test  

In this section, Wwe evaluate the the performance of the PPVI method by comparing a PP inversion with against a serial  260 

methane inversion. Both inversions are performed for an 11-year period (1999-2010) with identical observations and prior 

emissions. We We perform the inversions for a 11-year period (1999-2010) useing the TM5-4DVAR inversion system 

(Bergamaschi et al., 2010; Meirink et al., 2008, Krol et al., 2005) , which consists of the TM5  (Transport Model version 5; 

Krol et al., 2005) with the settings used in Pandey et al. (2016). The TM5 CTM is run at 6° × 4° horizontal resolution and 25 

vertical hybrid sigma-pressure levels from the surface to the top of the atmosphere. The meteorological fields for this offline 265 

model are taken from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis (Dee et 

al., 2011). We optimize a single category (‘total’) of methane emissions at 6° × 4° spatial resolution and monthly temporal 

resolution. The posterior emissions of the two inversions are compared after integrating over the TRANSCOM regions shown 

in Figure 2a.  

 270 

The inversion assimilates surface observations from the NOAA Earth System Research Laboratory (ESRL) global cooperative 

air sampling network at on- and off-shore sites (Dlugokencky et al., 2011; Dlugokencky et al., 2020). The locations of the 

observation sitess are shown in Figure 2b. The prior covariance matrix 𝐁  is constructed assuming relative emission 

uncertainties of 50 % per grid box per month. The emissions are assumed to be correlated temporally using an exponential 

correlation function with an e-folding time scale of 3 months, and spatially with a Gaussian correlation function using a length 275 

scale of 500 km (Houweling et al., 2014). Uncertainties of 1.4 ppb are assigned to the CH4methane   observations. Our system 

also assigns a modelling representation error based on simulated local mole fractions gradients (Basu et al., 2013). The prior 

emissions are taken from the same sources as in , same as in Pandey et al. (2016). , The emissions of in 2008 are applied to 

every year in the inversion time period, h, hence there is no interannual variability in the prior emissions.  The cost function 𝐽 

is minimized using the conjugate gradient minimizer, which is based on the Lanczos algorithm (Fisher and Courtier, 1995). 280 

The inversions use the convergence criterion of gradient norm reduction by a factor 1000, which is achieved after 19 iterations 

in both inversions.  

 

In the PPVI inversion, we divide split the inversion period of 1999-2010, into 11 blocks of  of 21  monthss with 9 months 

overlap between successive blocks. Effectively, The first 9 months of each block is the overlap period used for uniformly 285 

mixing the emission changes within the atmosphere, while the last 12 months each block provides modelled mole fractions for 

assimilating the observationsfor one year.. We parameterize the sink operator 𝑆	(Equation 6) with an e-folding decay function 
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with a constant 9-year atmospheric lifetime of methane. sufficient for our test inversion (Section 3). The input emissions of 

TM5 are mass fluxes (Tg yr-1) and the output is in mole fractions (ppb). The methane emission changes are converted in mole 

fractions using an 𝑓	 = 0.361	ppb/Tg. The Ssuccessful implementations of the PPVI method in the adjoint mode on this TM5-290 

4DVAR setup was verified using the adjoint and gradient test (Equation 9)s. The next section (3.1) compares evaluates the 

observation-model mismatches and posterior emissions differences between the PP and serialtwo inversions, and the section 

thereafter (3.2) presents the wall clock time improvement by achieved of usingby the PP VI methodinversion.  

 

 295 

3.1 Emission estimation errors 

Here we compare examine the quality of the inversion-optimized fit to the observation.the observation fit and the posterior 

emissions of the PPVI and serial inversions . Figure 3 shows the time series of the prior and posterior simulations and the 

observations for two background sites, representing one for each hemisphere: Barrow (Alaska) and the South Pole. The prior 

observation-prior-model RMSDE (root mean square errordifference) for Barrow (78 ppb) is 3 times higher than for the South 300 

Pole (28 pbb). The Barrow observations shows a more larger high-frequency variations than the the South Pole as the Northern 

Hemisphere station is influenced by methane emissions from wetlands. closer to methane sources. The PPThe simulatedVI 

mole fractions simulated by from the PP inversion results are are in good agreement with the results obtained from the serial 

inversion: an the RMSDsE of between the two is 2 ppb and 1 pbbis obtained for Barrow, and the of 1 pbb respectively for 

Barrow and South pole, respectively, which are only 2.5 % and 3.2 % of the prior initial observation-prior RMSDmismatch. 305 

This shows that the PP inversion, starting from an identical prior,, starting from an identical prior, the PPVI inversion is able 

to match the observations at these sites about as good as the serial inversion.configuration.  

 

Figure 4 shows the average mole fraction differences at all observation sites. Figure 4 shows the probability density functions 

of the observation-model mismatch weighted with the uncertainties used in the inversion. The prior observation-prior-prior 310 

RMSD for all observations combined mismatch is 67 ppb. The mean-6.7 ± 6, with negative mean mismatch is –58 ppb because 

the 2008 bottom-up emissions used as the prior are larger than the mean posterior emission over 1999-2010. The In the 

posterior solution of the serial inversion, the mismatch is reduced to –0.06 ± 1.24. average data  uncertainty (mean of the 

square root of the diagonal elements of R) is 19 ppb (not shown). For both inversions, a good model fit to the observations is 

achieved with a gradient norm reduction of 1000. The posterior simulation of both the serial and PP inversions reduce the 315 

RMSD to 20 ppb (mean = –2 ppb). PPVI mismatch The posterior (–0.06 ± 1.26 ) simulation is also very small and similar to 

the serial inversion. TThe minus-mismatch RMSD between the PPVI and serial inversions is 1.9 ppb (mean = –0.1(0.005 ppb 

± ), which is0.23 ) an is an order of magnitude smaller than the observationposterior-minus-prior RMSD of 62 ppb (mean = –

55 ppb) mismatch. This, which shows that the implementation of the PPVI method has does not have a significantlittle impact 
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impact on the inversion system’s ability to fit the observations. For both inversions, the good fit to the observations also 320 

confirms that a gradient norm reduction of 1000 is sufficient. 

 

A good agreement between observations and posterior models does not guarantee necessary mean that the inversions have 

produced similar posterior emissions. The physically parallelized CTM used transport model inof the PPVI inversion has lost 

some of the consistency of the full is a simplification of the “perfect” transport modelCTM of used in the serial inversion. If 325 

the impact of this simplification is small, the posterior emissions of the two inversions should be in good agreement. Figure 5 

shows the mean emissions estimates (averaged over 1999-2010) fromof the inversions integrated over the globe and over the 

TRANSCOM regions. The serial inversion adjusts the global mean prior emissions of 544 ± 11 Tg yr-1 by –22 Tg yr-1. The 

The mean global emissions of the PPVI inversion isand serial inversions are in in excellent agreement with the serial inversion 

in with this respect. The two differ by with < 0.3 Tg yr-1  (0.065 %) difference, which is. 1 % of the difference between prior 330 

and posterior emissions from the serial inversion.  The global methane emissions are in generally well constrained by the 

NOAA observations in a the serial inversion, and PPVI inversions meaning that the additional error introduced by in the PP  

methodVI approach does not seem to have a significant impact the constraint on the emissions at the global emissions scale. 

At regional scales , the serial inversion adjustment is the smallest for Australia: + 0.4 Tg yr-1 for a prior of 6.6 ± 0.4 Tg yr-1. 

The PP inversion adjusts the prior here by 0.5 Tg yr-1, implying that the difference with the serial inversion (0.1 Tg yr-1) is well 335 

within the prior emission uncertainty. The serial inversion changes the Eurasian temperate emissions the most, by –58 Tg yr-

1, where prior emissions are 135 ± 8 Tg yr-1. The PP inversion changes these emissions by –60 Tg yr-1, i. e., a difference of 2 

Tg yr-1 and well within the prior uncertainty also. The South American temperate region has the largest difference between the 

serial and PP emission estimates of 2 Tg yr-1. The serial emissions for this region are 6.5 Tg yr-1 higher than the prior of 36 ± 

2.4 Tg yr-1. In summary, Themean  performance of PPVI in other TRANSCOM regions is also good for mean PP emissions 340 

estimates for the TRANSCOM regions deviate within < 5 % deviation from the serial emissions inversion.  

 

On average, the deviations are within 30% of the posterior uncertainty. Figure 6 shows the inter-annual variability of the 

emission estimates. Due to the large observational constraint, Tthe global emissions time series of the PP and serial two 

inversions show a very good the best agreement with a correlation coefficient R = 0.99, explained by the large observational 345 

constraint.  Over the TRANSCOM regions,  the North American temperate region has the best agreement (R = 1.0). All other 

regions have an R betterhigher than 0.98 except for Australia (0.96) and Europe (0.94). Figure 7 shows the intra-annual 

variations of the emissions. At the global scale, the PP and serial time series match very well with R = 1.00, whereas R between 

prior and serial is 0.93. The agreement between PP and serial time series is also very good for all TRANSCOM regions (R > 

0.98) despite low correlations between prior and serial emissions for some regions, for example, R = 0.13 for the South 350 

American temperate region. This shows that the PP inversion is able to reproduce the seasonal cycle of the emissions very 

well. In summary, the combination of small differences in the mean emissions, and the high correlations between intra- and 
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inter-annual time series, shows that the PP inversion can effectively reproduce results of the serial inversion. the agreements 

are also good with R > 0.95.  

 355 

3.2 Computational costWall time 

Table 1 compares the wall clock times used needed by for the PPVIPP and serial inversions. Our The TM5 model in our 

inversion setup runs uses OpenMP parallelization and givesgave  the best wall time clock performance on 4 CPUs on a single 

node. Using more CPUs reduces the performance as the communication overhead within the CPUs becomes the bottleneck . 

(Note that the TM5-MP version  described in Williams et al., 2017, with improved parallel scaling, was not used in this study). 360 

In this configuration, a forward or adjoint TM5 CTM run of one year took takes about 15 minutes. Hence an iteration of the 

serial inversion, consisting of 11 years forward and adjoint runs, requireds 5 hours. The PPVIPP inversion iterations are were 

performed in 11 parallel blocks of 21 months each on 4 CPUs. A single PPVIPP iteration took takes 55 mins, which is > 5 

times faster than the serial inversion. Both inversions achieved a gradient norm reduction of 1000 in 19 iterations. The PPVI 

inversion runtime is given in Table 1, including the time needed for (1) a serial TM5 forward run for the initial mole fraction 365 

fields (2) a block run for the initial mole fraction sensitivities. The main steps of PP implementation are listed in Section 2. In 

our inversion test, the initial mole fraction fields 𝑐' (step 1) were taken from an inversion using surface measurements that was 

not performed in this study. Steps 1, 2, 5.a.ii and 6.a.ii took negligible time. Step 3 took 2.5 hours because it consists of a full 

serial TM5 forward run. Steps 4, 5.a.i and 6.a.i consisting of 11 21-month TM5 simulationsrun over blocks overof  21 months 

which were run in parallel and, took this 25 minutes each. Note that an iteration took longer than the sum of the forward and 370 

adjoint block runs because of a few minutes waiting time for the computer cores to become available again. Overall, In total, 

the PPVIPP inversion tooktakes 20 hours, or 5 times less than the serial inversion which took (101 hours). Note that although 

the PP inversion took a shorter wall time, it needed extra CPU core hours for the additional 9-month overlap, CTM block 

sensitivity and initial mole fraction computation runs. The PP inversion used a total of 700 CPU core hours, whereas the serial 

inversion used about 400 CPU core hours. Table 1 also provides a n estimateprojection of the wall clock time improvement of 375 

a hypothetical 35-year inversions (not performed in this study) based on the using the TM5-4DVAR inversion setup used in 

this study. For such a long period, Aa PPVIPP inversion would be 15 times faster for such a long period.  

 

 

Overall, we find that the PPVIPP method, which accounts for the atmospheric lifetime of methane, is able to effectively 380 

reproduce the posterior emissions of a traditional 11- years serial inversion well within its uncertainties in 5 times  fasterless 

wall clock time. 
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4 Discussion 

The utility of the PP method for inversion of a trace gas  emissionsdepends on the time scale of the influence of emissions on 385 

observations within the spatial domain of the CTM. Therefore, PP is mainly useful in global inversions of trace gases that have 

atmospheric lifetime of a year or longer in the atmosphere. For a trace gas with a shorter lifetime, such as of carbon monoxide 

with 2 months lifetime, emission perturbations last for a short duration. A multidecadal inversion of such a trace gas can be 

broken into many short inversions. These short inversions can be performed in parallel, and the posterior emission can be 

combined thereafter. A similar approach can be used for regional inversions of short-and long-lived trace gases because 390 

emission perturbations are quickly advected out of the regional CTM domain and hence do not influence observations for a 

long period. 

4.1 Current CAMS inversion setup 

In the future, the PPVIPP method will be implemented in the CAMS  multidecadal methane emissions reanalysis setup. The 

European Commission has anticipated the need for reliable information about atmospheric composition of greenhouse gases 395 

through development of numerical systems that combine sophisticated physical models with measurements from a wide range 

of observing systems for an operational service, which is being implemented. The current CAMS methane flux reanalysis 

product (Segers and Houweling, 2020) uses the TM5-4DVAR inverse modelling system and provides measurement-informed 

monthly methane emission estimates. The product latest release has two sets of methane emissions: (1) release v19r1 for 1990-

2019 using surface observation; (2) release v19r1s for 2010-2019 using surface and also GOSAT satellite observations. The 400 

surface observations are mainly from the NOAA network (Dlugokencky et al., 2011). Methane emissions are optimized at 3° 

× 2° spatial resolution and monthly temporal resolution using TM5 with 34 vertical layers. If performed in serial mode each 

iteration of the 1990-2019 inversion would take about 5-10 days, and the full inversion will require multiple months to finish. 

Segers and Houweling (2020) circumvent this issue by breaking the full inversion into smaller inversions of 3-year time 

windows that are performed in parallel. The target inversion on high resolution (3° × 2° degrees, 34 layers) is preceded by a 405 

coarse resolution inversion (6° × 4°, 25 layers) that provides the initial mole fraction fields and is processed serially.  The 

high-resolution inversion optimizes only the emissions and uses initial mole fractions for each 3-year block obtained from 

mole fraction fields of a coarse resolution inversion, which optimizes both emission and initial mole fractions. The 1990-2019 

inversion using this approach still takes 3-4 months to finish, and requires about 40 smaller inversions to provide the end result. 

These numbers depend of course on the parallel efficiency of the model and the computing server, but even if these are 410 

improved, the need for a serial sequence of inversions to provide a times series of initial mole fractions imposes a limitation 

to the model resolution that can be used. With the implementation of the PPVIPP method presented in this study, the 

computational wall time performance of the CAMS reanalysis inversions will improve inif future. 
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4.2 Possible further improvements  415 

The In the PPVIPP method, the wall clock time of a CTM run in an inversion iteration is reduced by physical parallelization 

of the CTM into blocks. To accounts for changes in the background mole fractions due to emission changes in 

perviouspreceding blocks using, the a sink operator S, a 	𝑆, a CTM block  sensitivity hy 𝐁𝐇		𝐁, and the an  overlaps between 

the consecutive blocks are is used. In our test experiment, 𝑆		is assumed to be an e-folding decay function with an atmospheric 

lifetime of methane of 9 years, which we find isfound to be sufficient for the annually-repeating OH field used in our 11-year 420 

CTM runs. This might not be the case for multi-decadal inversions, in which thMe methane lifetime within the duration of a 

longer multidecadal inversion will vary due to climatological influences, as well as possible trends and interannual variations 

in the hydroxyl radical abundance. In such cases, 𝑆 can be defined as a function of an annual lifetime vector for the specific 

CTM run. The lifetime vector can be calculated as the ratio of the annual sink and mean global methane burden simulated byin 

thea serial CTM run in step 3 of the PP method.   425 

 

The overlap period between the consecutive blocks in the PPVIPP method allows a uniform mole fractionmethane emission 

perturbations to mix within the CTM domain according to the atmospheric transport. We used a 9-month overlap in our test 

inversion experiment setup. It was and found it to be sufficient for optimizing emissions from large TRANSCOM regions at 

annual scale (Figure 5 & 6) that are optimized using the surface observations. The 6-month overlap as used by Chevalier et al. 430 

(2013) for CO2 inversions was found to be insufficient for a PP methane inversion, likely because of the differences between 

the source and sink distributions of methane and CO2. Increasing the overlap period to 9-month and using CTM block 

sensitivity vector solved this issue. We expect that a 1-year overlap, equal to the interhemispheric mixing time, would be more 

than sufficient for all tracers irrespective of their source-sink distribution and lifetime. A shorter overlap , which would improve 

improves the computational efficiencntly and wall time but reduces the accuracy of the physical CTM parallelization of the 435 

CTM, could be used depending on the scales that are addressed by the inversion. The PP accuracy cancould be maintained 

with shorter overlap periods by using a mole fraction correction vector per hemisphere rather than the single global vector 

used in this study. AlthoughHowever, the computational resources and wall clock time saved by this would bethis are are 

partially offsetspent on by the additional block sensitivityies runs. Our performance test inversions are performed at a relatively 

coarse resolutionhorizontal resolution of of 6° × 4° horizontal resolution andwith 25 vertical hybrid sigma-pressure levels. We 440 

do not expect the performance of the PP method to degrade significantly for higher resolution inversions if there is sufficient 

overlap between the blocks and the mole fractionmassmixing ratio corrections are parameterized correctly. Furthermore, the 

performance gained by performing the inversions at higher resolution because of the improved computational performance 

will likely outweigh the accuracy loss due to the assumptions made in the PP method. 
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The PP method reduced the wall time of the CTM simulations in a variational inversion but introduces additional model errors 445 

because of the simplifyingsimplifications made assumptions madefor simulation over long time periodsto simulate long 

durations. For our test inversion setup, these PP-CTM model errors are minor as the posterior PP emission estimates are in 

good agreement with the serial estimates. In future PP implementations, these PP-CTM errors can be accounted for in the 

observation error matrix 𝐑. The PP-CTM error can be calculated as the difference between the model output of a PP and a 

serial forward CTM run with randomly perturbed prior emissions.  450 

  

4.3 Methane sink optimization 

The hydroxyl radical OH is the main sink of methane in the atmosphere. Zhang et al. (2018) showed that the satellite-observed 

atmospheric signature of the methane sink from oxidation by OH is sufficiently distinct from that of methane emissions, hence 

OH mole fractions can be optimized using synthetic shortwave infrared (SWIR) and thermal infrared (TIR) satellite 455 

observations. Following up on this, Maasakkers et al. (2019) and Zhang et al. (2021) used methane observations from the 

GOSAT satellite to optimize atmospheric OH fields along with methane emissions. These studies assume a quasi-linearity for 

the inversion asas  the changes to the methane mole fractions are expected to remain small compared to the mean.and OH are 

small in an inversion. Under a quasi-linear such conditionsassumption,  OH can be optimized in a the PPVIPP methane 

inversion method by can also be implemented in inversions optimizing OH. In such a PPVI implementation, introducing annual 460 

OH scaling factors in the state vector and the the methane lifetimes in the sink 𝑆 operator can would be scaled in each iteration 

to reflect the corresponding OH adjustments to the.  OH mole fractions. Such an implementation can also be used in inversions 

optimizing OH using methyl chloroform (CH3CCl3) and a CTM(, as for example performed by, Naus et al.,  (2021). 

5 Conclusions 

Regular surface observations of methane mole fractions started in the early 1984, and by now the measurement record spans 465 

more than 35 years (Dlugokencky et al., 2011). An atmospheric inversion with a very large state vector is needed to properly 

utilize the information in such long measurement records. The variational inversion approach allows for optimization of a 

much larger state vectors of a larger size than the ensemble or analytical approaches. However, each iteration step of a 

variational inversion uses the CTM output of the previous iteration, limiting the opportunity for scalable parallelization. At the 

same time, an increase in the spatio-temporal resolution of CTMs, which is needed to take full advantage of the rapidly 470 

improving precision and coverage of surface and satellite measurements, results in an exponential rapid increase in wall clock 

time. 
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We have developed the PPVIPP method for methane inversions which improves the wall clock time of variational methane 

inversions by the application of physical CTM parallelization while accounting for the atmospheric lifetime in forward and 475 

adjoint variational modes. We have tested the performance of this method using an 11-year TM5-4DVAR inversion e modeling 

setup that consists of a traditional serial inversion and a PPVIPP inversion inof an identical configuration performed for a 

period of 11 years. The PPVIPP method reduced the wall clock time by a factor of 5 times andwhile still  showedshowing 

excellent agreement with the posterior emissions of thefrom thean equivalent serial inversion. The wall clock time 

improvement of using PPVIPP will be even larger for longer inversions, for example, by a factor of 15 times for a 35- years 480 

inversion. The PPVIPP method makes multi-decadal global inversions of long-lived atmospheric trace gases more feasible. 

ItIt will be implemented in the CAMS reanalysis setup which provides regular updates of multidecadal emission estimates by 

assimilating surface and satellite observations. 

 

 485 
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Table 1:  Wall clock time comparison for the inversions performed in this study. Wall clock time projections for a 
hypothetical 35- years inversion are also given. 

Model runs Serial  PPVIPP  

One year forward or adjoint run 15 minutes 

1999-2010 inversion 1 iteration (forward + 

adjoint TM5 run) 

5 hours 55 minutes 

Inversion with 19 

iterations 

101 hours 20 hours 

1985-2020 inversion* 1 iteration (forward + 

adjoint TM5 run) 

16 hours 55 minutes 

Inversion with 50 

iterations 

34 days 56 hours 

*Projection based on the 1999-2010 inversion 
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Figure  11: Schematic diagram of athe PPVI methane inversion’s method in forward mode, which computes used to calculate 
modelled mole fractions 𝒎𝒊 inof iteration i. The subscripts represent denote the time block numbers (except for 𝒄𝟎, which is 
the initial mole fraction field at the start of the inversion). For the block 1, the initial mole fraction field 𝒄𝟏𝒂 = 𝒄𝟎	

	, (𝒄𝟏𝒂 = 𝒄𝟎	 ) and 655 
mole fraction no correction factor vector (𝒏𝒊 ) is not neededused. The overlap between the successive blocks ( 𝐻𝟏	 , 
𝐻𝟐	 , 𝐻𝟑	 	)	represent represent the  block overlapoverlap period period,, where the modelled mole fractions from the preceding 
block are used in the inversioned in 𝒎𝒊. The “CTM block sensitivity calculation” and “Prepare sink   operator” steps of the PP 
method are implemented in this study, whereas the rest are from Chevallier (2013). 
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Figure 2: (a) Definition of the TRANSCOM regions (Gurney et al., 2002). (b) Locations of NOAA methane observation sites 665 
used in this study. The size of the symbol “+” is proportional to the number of observations assimilated from each site. 
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Figure 3: Modelled and observed methane mole fractions at the two remote background NOAA stations., Barrow, Alaska in 
the Northern is shown in panel (a), and the South Pole is shown in panel Southern (b) hemisphere.  670 
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Figure 4 Methane mole fraction differences at the observation sites (see Figure 2.b). Panel (a), (b), (c) and (d) show the average 

difference between observations and prior, observation and serial, prior and serial, and PP and serial, respectively. The color 

scale range is set at mean ± 1 standard deviation of the plotted values. 675 

 
 

 
 

Figure 4: Probability density functions of the observation-model mismatches weighted with their uncertainties used in 680 
the inversions.  

Observation-model mismatch (unitless)
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 685 

 
Figure 55:  Total methane Mean emission estimates of  estimates of the inversions for the globe and TRANSCOM regions 
(see Figure 1), averaged over 1999-2010 (see Figure 1). The vertical linesbars on the markers show the ±2σ uncertainties of 
the prior emissions.  
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 695 

Figure 66:  Annual methane eEmission estimates of the PPVIPP and serial inversions for the globe and the TRANSCOM 
regions. The vertical bars show the ±2σ  uncertainties of the prior emissions. The correlation coefficients of PP and serial time 
series are given at the bottom of each panel.  
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Figure 7 Intra-annual variation of the PP and serial emissions for the TRANSCOM regions. The correlation coefficients of 
the PP (red) and prior (grey) time series with the serial time series are given at the bottom of each panel. 

 


