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Abstract. Dust emissions influence global climate while simultaneously reducing the productive potential and resilience of 

landscapes to climate stressors, together impacting food security and human health. Vegetation is a major control on dust 

emission because it extracts momentum from the wind and shelters the soil surface, protecting dry and loose material from 

erosion by winds. Many of the traditional dust emission models (TEM) assume that the Earth’s land surface is devoid of 

vegetation, then adjust the dust emission using a vegetation cover complement, and finally calibrate the magnitude of 30 

simulated emissions to dust in the atmosphere. We compare this approach with a novel albedo-based dust emission model 

(AEM) which calibrates Earth’s land surface shadow (1-albedo) to shelter depending on wind speed, to represent 

aerodynamic roughness spatio-temporal variation. We also compared the TEM and AEM dust emissions with estimates of 

dust in the atmosphere using dust optical depth frequency (DOD) and satellite observed dust emission from point sources 

(DPS). We show that during the same period, the DOD frequency exceeds by two orders of magnitude DPS frequency 35 

(RMSEDOD=151 days). Also relative to DPS frequency, both models over-estimated dust emission frequency but by only one 

order of magnitude (RMSETEM=27 days; RMSEAEM=20 days) and showed strong relations with DPS frequency, suitable for 
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calibrating models to observed dust emission. Theoretically, the TEMs are incomplete in their formulation, which despite the 

pragmatic adjustment using the vegetation cover complement, causes dust emission to be highly dependent on wind speed 

and over-estimates large (>0.1 kg m-2 a-1) dust emission over vast vegetated areas. Consequently, the TEMs produce 40 

considerable false change in dust emission, relative to the AEM. Since the main difference between the dust emission models 

is the treatment of aerodynamic roughness, our results suggest that its crude representation in the TEMs has caused large, 

previously unknown, uncertainty in Earth System Models (ESMs). It is difficult to avoid our conclusion, also raised by 

others, that tuning dust emission models to dust in the atmosphere has hidden for more than two decades, these TEM 

modelling weaknesses and its poor performance. The AEM overcomes these weaknesses and improves performance before 45 

calibration. The major advantage for ESMs, is that the AEM can be driven by intrinsic prognostic albedo to represent the 

fidelity of drag partition physics and reduce uncertainty of aerosol effects on, and responses to, contemporary and future 

environmental change. 

1 Introduction 

Vegetation attenuates dust emission by extracting momentum from the wind and sheltering a portion of the downstream soil. 50 

By reducing wind speeds (𝑈) at the soil surface, vegetation makes it more difficult to overcome the entrainment threshold for 

initiation of streamwise sediment flux (hereafter entrainment threshold) and consequent emission of dust particles by 

saltation bombardment and abrasion. Notably, the influence of vegetation sheltering is wind speed dependent (aerodynamic 

roughness) and both aerodynamic drag and partitioning of wind friction velocity between roughness elements and the soil, 

respond nonlinearly to changes in wind speed. Calculation of the stream-wise sediment flux density Q (g m-1 s-1) on a smooth 55 

soil for a given particle size fraction (d) on the particle size distribution (i) requires the total wind friction velocity 𝑢∗ (m s-1), 

created by all scales of roughness at the Earth’s surface, the air density ρa (g m-3), the acceleration due to gravity g (m s-2), a 

dimensionless fitting parameter C and the bare, smooth (no roughness elements) entrainment threshold of sediment flux 

𝑢∗𝑡𝑠(d) (m s-1) (Kawamura, 1951). It is now commonly rewritten in the dust modelling literature with the typographic 

correction and reformulated ratios (White, 1979) which require a cubic term: 60 
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In ESMs or reanalysis models over large areas (large pixels), with horizontal resolutions that are typically on the order of 50 

km, modelled wind speed at 10 m (U10) is used to calculate the available above canopy 𝑢∗. In recognition that vegetation 65 

exerts drag on the wind, 𝑢∗  must then be partitioned between the roughness elements (typically vegetation), and that 

available for driving flux at the soil (𝑢𝑠∗). The 𝑢∗𝑡𝑠  is adjusted by a soil moisture function 𝐻(𝑤) (Fécan et al., 1998) and 

𝑅 =
𝑢𝑠∗

𝑢∗
 (Raupach et al., 1993) the wind friction velocity ratio representing the roughness-induced drag partition (Marshall, 
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1971). The 𝑢𝑠∗ is required for sediment flux equations where 𝑢𝑠∗≠ 𝑢∗ and Q (Eq. 1) is modified (Darmenova et al., 2009) in 

the TEMs: 70 
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Instead of estimating directly 𝑢𝑠∗, the 𝑢∗𝑡𝑠 is divided by R for the model implementation to account for the drag partition and 

to make use of 𝑢∗ (Webb et al., 2020). Following this approach, this form (Eq. 2) is incomplete because 𝑢∗ (on the left-hand 75 

side, the magnitude calculation) must be multiplied by R before it is cubed (Webb et al., 2020). The entrainment threshold 

(𝑢∗𝑡𝑠) is calculated at the grain scale as a function of grain diameter, density and inter-particle cohesion (Shao et al., 1996). 

However, the above canopy 𝑢∗ is for an area, which requires 𝑢∗𝑡𝑠 to be represented over the same area, which it is not.  

The substantive issues for dust emission modelling are that the incomplete form of QTEM (Eq. 2) has been widely 

adopted in TEMs in which large area estimates of wind speed are typically used, the correct values of R are not known (for 80 

every pixel and every time step) and 𝑢∗𝑡𝑠 is not scaled correctly. The common approach to modelling dust emission in ESMs 

uses globally constant values of aerodynamic roughness length (z0), which are static over time and fixes R(z0) ≈ 0.91. The 

values of z0 are ‘pre-tuned’ to the Earth’s bare (devoid of vegetation) land surface, and therefore tend to maximize dust 

emission. This emission is then reduced  by a function of vegetation cover and ultimately ‘tuned’ down to match observed 

dust in the atmosphere. In practice, models define geographically some preferential dust sources (Ginoux et al., 2001; Tegen 85 

et al., 2002; Zender et al., 2003a; Mahowald et al., 2010; Woodward, 2001; Evans et al., 2016). A second, more recent 

approach uses satellite remote sensing to provide spatially heterogeneous estimates of z0 only for arid and semi-arid regions, 

but fixed over time (Greeley et al., 1997; Roujean et al., 1997; Marticorena et al., 2004; Prigent et al., 2012; Prigent et al., 

2005). With this second approach it is still challenging to estimate R. Here we focus on the impact for large scale TEMs 

where R(z0) is fixed over space and time with the incomplete formulation for QTEM (Eq. 2). 90 

In our new formulation called AEM for Albedo-based dust Emission Model, the spatio-temporal variation in 𝑢𝑠∗ is 

simulated using the concept that aerodynamic sheltering of vegetation is proportional to its shadow (1-albedo) (Chappell et 

al., 2010; Chappell and Webb, 2016). This albedo-based approximation of the drag partition was investigated and tested to 

provide an area-weighted value, shown to be scale invariant (Chappell et al., 2018; Chappell et al., 2019; Ziegler et al., 

2020). This approach enables direct calculation of 𝑢𝑠∗  given measurements of albedo from satellites, and the correct 95 

formulation for sediment flux and dust emission 
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Notably, this approach retains the long-established entrainment threshold 𝑢∗𝑡𝑠 which at the grain-scale is inconsistent with 100 

the new area-weighted albedo-based approach. The threshold value is very likely much smaller than the necessary (but 

currently unknown) value for entrainment threshold for a 500 m pixel. Consequently, modelled dust emission is expected to 

be over-estimated. However, this component of the modelling is beyond the scope of this manuscript. The 𝑢𝑠∗ is obtained 

directly from 𝜔𝑛𝑠, the normalised and rescaled shadow (1-albedo), enabling an albedo-based dust emission model (AEM; see 

Appendix for full description of the implementation)  105 

 

𝑢𝑠∗

𝑈10
= 0.0311 (𝑒𝑥𝑝

−𝜔𝑛𝑠
1.131

0.016
) + 0.007.       (Eq. 4) 

 

The vertical dust mass flux (F; g m-2 s-1) may be calculated from Q using physically-based schemes (Kok et al., 2014; Shao 

et al., 1996). More commonly in regional and global applications and here for the TEM and AEM, F is calculated as an 110 

empirical function of Q (Marticorena and Bergametti, 1995): 

 

𝐹 = 𝐸𝑀(𝑑)𝑄(𝑑)10(0.134𝑐𝑙𝑎𝑦%−6.0).        (Eq. 5) 

 

The dust emission parameterisation considers the emission flux to be driven by saltation bombardment, with the intensity 115 

proportional to Q, and the soil’s clay content (clay% typically <2 µm fraction of soil particles at the soil). We fixed the mass 

fraction of clay particles in the parent soil to clay%=20 consistent with previous work (Zender et al., 2003a). The proportion 

of emitted dust in the atmosphere M for a given particle size fraction (d) is dependent on the particle size distribution. We 

calculated the relative particle size surface area (Marticorena and Bergametti, 1995) (M). The vegetation cover function E 

was originally defined (Marticorena and Bergametti, 1995) as the ratio of bare exposed surface area to total surface area 120 

when viewed from directly above (at nadir). It is used to adjust linearly the amount of dust emission by the bare soil fraction. 

However, sheltering is nonlinear since it depends on the mutual sheltering of the roughness (typically vegetation) structure, 

configuration and wind speed (Chappell et al., 2010). Theoretically, R in the equations above already accounts for the soil 

area which is exposed to wind friction velocity relative to that sheltered by upwind roughness elements. Therefore, E is 

theoretically redundant in the TEM (Webb et al., 2020). Nevertheless, its use assume E=1-Av where Av is the area covered by 125 

roughness elements, typically vegetation. This E is used in some ESMs so that leaf area index (LAI) or satellite ‘greenness’ 

observations e.g., normalized difference vegetation indices (NDVI) can be used as a surrogate of the land surface fraction 

occupied by green vegetation (Evans et al., 2016; Galloza et al., 2018; Zender et al., 2003a; Sellar et al., 2019). After the 

sediment flux is calculated, only then is E used to adjust dust emission using the area covered by green vegetation. In 

addition, E does not represent ‘brown roughness’ caused by dormant or dead vegetation or non-erodible stone covered 130 

surfaces in dryland regions where most sediment flux and dust emission occurs. This crude model representation of process 

is a prime example of the influence exerted by the emphasis of parsimony in model implementation. When the TEMs are 
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applied in dust-climate ESMs it is assumed that this parameterization is adequate for climate projections. In contrast, the 

albedo-based scheme for sediment flux and dust emission (AEM; Eqs. 3, 4 & 5) represents the drag partition physics without 

pre-tuning to a fixed land surface condition, without the need for E, and thereby removes these additional sources of 135 

uncertainty. 

2 Methods and Data 

1.1 Modelled dust emission evaluated against dust emission point sources and dust optical depth 

Commonly, aerosol optical depth (AOD) from point (ground-based) or large area Earth observation (EO) data are used to 

evaluate the performance and / or calibrate dust emission model simulations (Meng et al., 2021). This approach assumes 140 

that: i) dust in the atmosphere represents the dust emission process, and ii) the spatial variation in magnitude and frequency 

of dust emission in the model is correct. However, we know a priori that dust in the atmosphere is only partially related to 

dust emission because dust concentration is controlled by dust emission magnitude and frequency which varies over space 

and time, by residence time of dust near the surface which itself is dependent on wind speed, and on dust deposition in the 

dust source region, a size dependent process. To understand the extent to which AOD estimates the spatial variation in dust 145 

emission magnitude and frequency we calculated the probability of dust occurrence modelled by the dust optical depth 

(DOD>0.2) using the criteria established previously (Ginoux et al., 2012). We note the stated limitations of DOD to be 

largely restricted to bright land surfaces in the visible wavebands which implies reduced performance over areas where 

vegetation is present. To calculate DOD, we used wavebands available from monthly Moderate Resolution Imaging 

Spectroradiometer (MODIS; MOD08 M3 V6.1) at a 1-degree pixel resolution (Platnick, 2015). The DOD was retrieved from 150 

those pixels in which dust emission was observed from point sources (DPS) in space and time throughout 2001-2016. All 

available MODIS DOD data were used, quality flags were not used to filter these data.    

We described in the previous section how simplifying assumptions are made in TEMs about the dynamics of 

vegetation sheltering. We also provided a theoretical basis for TEMs formulation to be incorrect. The correct magnitude and 

frequency of dust emission per unit area depends on the correct probability that sediment flux occurs, causing dust emission 155 

which itself depends on the correct 𝑢∗𝑡𝑠𝐻(𝑤) (and the correct R in the TEM). However, most dust emission schemes using 

𝑢∗𝑡𝑠 assume that the soil is smooth and covered with an infinite supply of loose erodible material which when mobilised 

causes dust emission in proportion to the clay content. This (energy limited) assumption is rarely justified in dust source 

regions where (i) the soil is rough due to soil aggregates, rocks or gravels, (ii) sealed with biogeochemical crusts, or (iii) 

loose sediment is simply unavailable (Galloza et al., 2018). Here we circumvent these assumptions to improve the 160 

constraints on the dust emission modelling evaluation. 

We define a satellite observed dust emission point source (DPS) and its probability of occurrence P(DPS>0) as a 

first order approximation of the probability of sediment flux P(Q>0) leading to the proportion of dust (F) emission P(F>0) at 

those locations. The DPS data are from several previous studies in North America (Kandakji et al., 2020; Lee et al., 2012; 
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Baddock et al., 2011) which identified the locations of dust emissions in New Mexico and Texas between 2001-2016, 2001-165 

2009 and in 2001-2009 in the Chihuahuan Desert and New Mexico using MODIS data at 250 m spatial resolution with 

visible to thermal infrared wavebands (0.4–14.4mm; Figure 1a). Modelled (AEM and TEM) and observed frequencies are 

aggregated by a 1°x1° grid matrix, normalizing the results to the lowest resolution data (MODIS DOD) (Figure 1). For each 

grid box location, the observed frequency is calculated as the number of DPS observations per year during observation 

period (2001 – 2016). The AEM and TEM modelled dust emission frequency describes (F>0) at DPS locations in each grid 170 

cell per year during the same period. DOD modelled frequency describes DOD > 0.2 in each grid pixel per year for the same 

period.   

 

Figure 1. Location and publication source (Kandakji et al., 2020; Lee et al., 2012; Baddock et al., 2011) inventory in New 

Mexico and Texas between 2001-2016 (Kandakji), 2001-2009 (Lee) and in 2001-2009 in the Chihuahuan Desert and New 175 

Mexico (Baddock) using  satellite observed dust emission point sources (DPS) set against a background of total wind friction 

velocity (u*/U10) derived from MODIS albedo (500 m). 
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At the locations and across the study durations of those DPS data we calculated the AEM and TEM dust emission. 

We compared the model estimates during DPS observed occurrence with modelled dust emission determined by the TEM 180 

and AEM. Similarly, during those same DPS observed occurrence we compared the model estimates of dust in the 

atmosphere approximated using DOD. For all of those model estimates of dust frequency (DOD, TEM, and AEM), 

separately we fitted log-linear regression models which produced regression model parameter coefficients, R2 correlation and 

the square root of the sum of squared difference (SSE) between DPS and model predictions to form the RMSE=√SSE/(N-df) 

where N number of data are adjusted by the degrees of freedom (df=number of independent dust emission model 185 

parameters). 

1.2 Large scale dust emission modelling, mapping spatial variation and change detection 

We used contemporary (2001-2020) Earth observation data including spatially and temporally varying wind speeds (at 10 

m), soil moisture (0-7 cm) and soil temperature (to represent frozen ground which inhibits sediment flux) from the latest 

ERA5-Land (Muñoz Sabater, 2019) (hourly; ⁓11 km). The use of these data does not imply priority over any other data. We 190 

recognize that there are different qualities to different model data as evident in their wind fields (Fan et al., 2021). Where 

applicable, we used the same data in both TEM and AEM to consider the relative differences. We used the TEM (Eqs. 1 & 

5) with R(z0, z0s)≈0.91 fixed over space and static over time. Following the current practice, we calculated 𝑢∗ from the 

modeled 10 m wind velocity using the logarithmic layer profile theory and aeolian roughness length (Darmenova et al., 

2009) (details are provided in the Appendix). In the TEM we allowed soil moisture to vary and used MODIS Normalised 195 

Difference Vegetation Index (NDVI only in the TEM) data to calculate the bare soil fraction E. For comparison, we used the 

AEM (Eqs. 3, 4 & 5) with soil wind friction velocity 𝑢𝑠∗/𝑈10 obtained from MODIS albedo (MCD43A3; Collection 6) 

varying daily, every 500 m pixel across the study area. MODIS is aboard polar-orbiting satellites which cause incomplete 

coverage. However, the variation in roughness at the daily scale is so small that we were able to smooth the available data to 

improve the coverage. Soil clay content was represented with a digital soil texture map (Dai et al., 2019) and used in both 200 

models (see Methods).  

All data were available from the catalogue of the Google Earth Engine (GEE) (Gorelick et al., 2017) which then 

required no downloading and reformatting. We used the Java script coding environment to calculate daily dust emission (kg 

m-2 y-1). Given the availability of DPS validation data at sites in south-western USA, we restricted the mapping to North 

America including dust source regions bordering the USA. Testing the code and visualising the results for smaller time 205 

periods across the study area was almost instantaneous in the GEE. Data processing at 500 m and daily resolution between 

2001-2020 across North America took typically less than 12 hours. These data were exported from the GEE for the 

calibration / validation in a Python coding environment and images (TIF) from the GEE were also exported for manipulation 

and presentation using ArcGIS Pro. 

At the sites and days when dust was observed using dust emission point sources (DPS) we compared it with the dust 210 

emission produced by TEM, AEM and dust in the atmosphere using DOD. For the year 2020 and the main dust emission 
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months of March-May (MAM), we analysed across North America the spatial variation of the main controlling variables 

(wind and aerodynamic roughness) and dust emission produced by TEM and AEM. The dust emission of both models is 

restricted to wind speeds between 8.5-9.5 m s-1 to emphasise the difference in the modelling approaches, which would 

otherwise be hidden by taking the average for all wind speeds. Finally, we also map the difference in driving variables 215 

during MAM for the year 2001 compared with the year 2020. The dust emission on dust days is similarly compared to obtain 

the mean difference. That mean difference is then tested for significance using the minimum detectable change (MDC) 

framework (Woodward, 1992; Webb et al., 2019) and the results are displayed. The minimum detectable change (MDC) was 

established using critical values for false acceptance and false rejection (𝛼 = 0.05;  𝛽 = 0.05, respectively) and the change 

in dust emission which did not exceed the MDC, was set to 0 (not detectable=white). Details of how the MDC was 220 

calculated are described in the Appendix. 

3 Results 

3.1 The impact of incorrect formulation and fixed drag partition (R) on dust emission modelling 

We simulated dust emission separately for a smooth and rough surface with wind speed varying between 0-12.5 m s-1 

(Figure 2a). The TEM is shown with a fixed aerodynamic roughness length for the landscape z0=100 µm and the soil z0s = 225 

33.3 µm following previous studies (Zender et al., 2003a), which fixes R(z0)≈0.91 and assumes that the Earth’s land surface 

is devoid of vegetation roughness and static over time. With E=1, dust emission is unadjusted and increases along the upper 

(dashed) curve as wind speed increases. When the land surface is partially covered in vegetation it becomes rough and 

E=0.5, all other conditions remaining the same. In this case, dust emission increases as wind speed increases but at a 

consistently reduced rate (the lower dashed curve for the rough situation). The implication is that the same amount of dust 230 

emission is produced for a range of wind speeds (e.g., 8-9.2 m s-1) regardless of whether the land surface is smooth or rough 

(open square to filled square).  

In contrast, the albedo-based dust emission model (AEM) for the smooth situation (𝑢𝑠∗/𝑈10=0.035; dotted line) 

produces larger dust emission than the TEM for the same 8 m s-1 wind speed (Figure 2a). In a rough situation (𝑢𝑠∗/

𝑈10=0.022) dust emission declines along the same curve to almost zero. Despite a larger wind speed of 9.2 m s-1, the rough 235 

surface causes the surface wind friction velocity to decrease, barely exceeding the entrainment threshold, and dust emission 

to be considerably reduced. The implication is that the increase in roughness is sufficient to overcome the increase in wind 

speed and causes dust emission to be much smaller. The interplay between wind speed and roughness influences surface 

wind friction velocity which is essential to accurate and precise dust emission estimates. 
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 240 

 

Figure 2. Dust emission (kg m-2 y-1) simulations shown with varying soil wind friction velocity (A) and with varying soil 

wind friction velocity (B) normalised by wind speed at 10 m height (𝑈10) using fixed entrainment threshold 𝑢∗𝑡𝑠=0.2 m s-1, 
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clay=10%, soil moisture function H(w)=1 and the bare soil function E depending on the roughness. The TEM was 

implemented (Eqs. 2 & 5) with fixed aerodynamic roughness length (z0) and consequently fixed R(z0)≈0.91. The albedo-245 

based dust emission was implemented (Eq. 3, 4 & 5) as described in the main text with details in the Appendix. 

 

These findings are expected based on the theory described above in the Methods section: the TEM is driven by 

wind speed attenuated by aerodynamic roughness which is fixed over space and static over time, and dust emission is 

subsequently reduced by a bare soil fraction (E based on vegetation cover). Consequently, wherever and whenever wind 250 

speed exceeds the entrainment threshold, the TEM will produce sediment flux and dust emission. To illustrate this point, 

Figure 2b shows change in dust emission with change in 𝑢𝑠∗ normalized by wind speed U10. In other words, Figure 2b 

shows how dust emission changes as roughness changes in either space and / or time for the TEM and AEM. Since the 

influence of wind speed is removed on the x-axis, TEM produces no change for a given wind speed of e.g., 10 m s-1. The 

cause of change in the TEM at 10 m s-1 (solid red line) is due solely to the value of E varying. Since E is not aerodynamic, 255 

dust emission does not change except when E changes. Under a scenario with the wind speed reduced from 10 m s-1 to 8 m s-

1, the TEM F increases but at a reduced rate; that rate does not change with 𝑢𝑠∗/𝑈10. Similarly, when the wind speed 

increases from 10 m s-1 to 12 m s-1, the TEM F increases at an increased rate, but does not change with 𝑢𝑠∗/𝑈10. 

In contrast, for a given wind speed of 10 m s-1, the AEM produced the greatest reduction in dust emission with the greatest 

decrease in 𝑢𝑠∗/𝑈10  (the largest increase in roughness; Figure 2b). With the greatest increase in 𝑢𝑠∗/𝑈10  (the largest 260 

decrease in roughness) the largest increase in dust emission is produced by the AEM. When wind speed is consistently 

reduced to 8 m s-1, the change in dust is smaller with 10 m s-1. Notably, there is no change in dust emission between a change 

of -0.01<𝑢𝑠∗/𝑈10>0.01 (Figure 2b). When wind speed is consistently increased to 12 m s-1, the change in dust emission 

produced by the AEM is large, continuous and evident as 𝑢𝑠∗/𝑈10 changes.  

The results of these simulations illustrate how the TEM does not adequately represent vegetation sheltering 265 

dynamics and that E merely adjusts the magnitude, not the onset of dust emission. In contrast, the AEM provides a direct 

estimate of 𝑢𝑠∗, which modifies dust emission as roughness and / or wind speed changes. Since this direct estimate of 𝑢𝑠∗ is 

available from albedo, either monitored from satellite remote sensing or modelled prognostically in ESMs, it is available 

over space and / or time without the need for R or the bare soil fraction E, thereby reducing uncertainty in the model 

parameterisation. 270 

3.2 Modelled and observed dust emission frequency at DPS locations. 

We reproduced DOD > 0.2 probability at previously identified DPS locations across southwestern areas North America to 

compare with their observed frequency (Figure 3). The probability of DOD showed little resemblance to DPS, with a 

distinctly different spatial pattern and considerably greater probability in some areas. Peak DOD occurred across the USA / 

Mexico border in the Chihuahuan Desert, while DPS peaked over the Southern High Plains in eastern New Mexico and 275 

western Texas. DOD probability increases in areas of reduced vegetation roughness (Figure 1) as difficulties in measuring 
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atmospheric dust over dark surfaces (e.g., vegetation), limit the DOD data to only the most arid regions. In areas where the 

data are comparable (e.g., northern Chihuahuan Desert; 108°-104°W, 29°-32°N), DOD probability is (at least) an order of 

magnitude greater than DPS.  

 280 

 

Figure 3. Comparison between the probability of observed dust emission point sources (DPS > 0) observations (a) and 

MODIS (b) dust optical depth (DOD > 0.2) during the period of DPS observation (2001-2016). All available MODIS DOD 

data were used, quality flags were not used to filter these data. The missing value of the pixel in the south-east of MODIS 

DOD is evident in the original data and has not been removed during processing.  285 

 

We compared estimated dust emission frequency (AEM and TEM models with F > 0 or DOD > 0.2) with observed 

DPS frequency (in days per year) at each DPS grid location (Figure 1). For each model comparison, the observed DPS 

frequency remained the same, with differences in the model described on the x axis (Figure 4). At most grid points, 

modelled frequency exceeds observation. Both AEM and TEM over-estimate dust emission frequency with RMSE = 20 and 290 

27 days per year respectively (Figure 4). Nevertheless, across all grid box data, the relation between DOD and DPS was 

very large exceeding DPS frequency by nearly 2 orders of magnitude, with RMSE = 151 days per year, considerably larger 

than the relation between DPS and the dust models. Least squares log-linear regression models were fitted to all models, 

with AEM and TEM frequencies showing significant correlation with DPS observed frequency, producing a regression slope 

of 0.5 (AEM) 0.51 (TEM) and R2 = 0.43 and R2 = 0.48 (P<<.001). DOD frequency did not show a significant correlation 295 

with DPS observed frequency, with a regression slope of 0.07 and R2 = 0.01, P.35, as shown in Figure 3.  
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Figure 4 Modelled and observed frequency at known North American satellite observed dust emission point sources (DPS), 

identified in satellite observations (Kandakji et al., 2020; Lee et al., 2012; Baddock et al., 2011).  For each point, the y axis 

represents the observed number of DPS observations (per grid cell) per year during different observation phases of the DPS 300 

datasets within the observation time period (2001 – 2016). For AEM and TEM, the x axis describes number of modelled 

observations (F>0) at DPS locations in each grid cell per year during the same time period (x axis). For DOD, the x axis 

describes the frequency that DOD > 0.2 per year for the same period. The least squares logarithm regression of modelled 

against DPS observations produced the model parameter coefficients, R2 correlation and the square root of the mean squared 

difference between DPS, and model predictions (RMSE) adjusted by the degrees of freedom using the number of dust 305 

emission model parameters (df = 9 for AEM; 12 for TEM; 6 for DOD). 
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3.3 Modelling dust emission change over space and time 

The mean u*/U10 and full range of U10 for the year 2020 are shown (Figure 5a & b). For consistency with Figure 2, the mean 

dust emission is shown for selected wind speeds (U10 = 8.5 – 9.5 m s-1) from both AEM and TEM (Figure 5c & 5d). The 

spatial distribution of mean dust emission varied between AEM and TEM in both magnitude and spatial extent of dust 310 

emission. According to AEM, large dust emissions (0.05 – 0.12 kg m-2 y-1) occurred in discrete areas across the Southern 

High Plains (104.5°W, 33.5°N), northern Chihuahuan Desert (107.5°W, 32°N), southwest Colorado Plateau (110.5°W, 

35°N), and the Great Divide Basin within the Wyoming Basin (108.5°W, 42°N). These areas correspond with small u*/U10, 

and large wind speed (U10). TEM dust emission occurred with similar magnitude over a greater area, including large parts of 

New Mexico and Wyoming, while also extending through the Great Plains in northwest Texas, Oklahoma, Colorado, and 315 

Nebraska (Figure 5d). This pattern matches closely the distribution of mean U10 (Figure 5b). 
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Figure 5. Mean conditions for North America during the year 2020 for peak dust season months March-May, including (a) 

total wind friction velocity (u*) scaled by wind speed at 10m height (U10), (b) wind speed, and modelled dust emission with 320 

(c; AEM) and without (d; TEM) varying aerodynamic roughness. The dust emission displayed is for wind speeds restricted 

to between 8.5-9.5 m s-1 (for comparison with Figure 2). The daily maximum of hourly data from ERA5-Land (Source: 

ECMWF) are used in both models.   

Differences in mean dust emission during peak dust season (MAM) for years 2001 and 2020 greater than MDC significance 

(P < 0.05) were produced for both TEM and AEM (Figure 6c & d). These were compared to total mean difference in u*/U10 325 

and U10 during the same periods (Figure 6a & b). Comparing the change () between the two periods, u*/U10 across North 

America produced a range +/- 0.01, with the greatest reduction (< -0.01) associated with decreased roughness in Canada, 

very likely caused by changes in snow coverage. Note that snow is removed from u*/U10 when calculating dust emission. 
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South of the USA/Canada border, roughness reduced (-0.01) across large areas of Montana, the Wyoming Basin, and eastern 

parts of the Great Plains (Colorado, Kansas, and Nebraska). Further reductions in u*/U10 (-0.01 to -0.005) occurred in 330 

discrete areas of the Southern High Plains, and northern Chihuahuan Desert. The greatest increase in u*/U10 (> 0.01) 

occurred across the American Mid-West, including Minnesota, Iowa, and South Dakota. In dusty areas (Figure 5), the 

greatest increase in u*/U10 (0.005 to 0.01) occurred as discrete locations within the Chihuahuan and Sonoran Desert, the 

Great Basin (Nevada), and the southern extent of the Southern High Plains (eastern New Mexico and western Texas). Mean 

U10 produced a range +/- 1.6 m s-1, with the largest increase (>1.6 m s-1) across southwest USA, including the Great Basin, 335 

Mojave and Sonoran Deserts and the Colorado Plateau. Mean U10 reduced (<-0.8 m s-1) in the Mid-West states of Wisconsin 

and Illinois.   

Between 2001 and 2020, significant change in dust emission (DF) from AEM and TEM  varied across the range +/-

2 kg m-2 y-1. AEM produced a significant decrease in F (-1 to -2 kg m-2 y-1) from several areas, including the Southern High 

Plains (eastern New Mexico and western Texas), the Colorado Plateau, and the Sonoran Desert (Figure 6c). The AEM 340 

showed a significant increase in F from the Wyoming Basin, and discrete locations in Montana, and western areas of the 

Great Plains (west Colorado, Nebraska). In contrast, where no change in the AEM was detected, the TEM produced a 

significant decrease of F during the 2020 period across large areas of the Great Plains (up to -2 kg m-2 y-1), the arid 

southwest (-1 to -2 kg m-2 y-1), including the Mojave, Sonoran, and Chihuahuan Deserts, and the Mid-West (-1 to -2 kg m-2 y-

1). The TEM F increased significantly across the Wyoming Basin (up to 2 kg m-2 y-1), the Great Basin and northern Mexico 345 

(Figure 6d). 
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Figure 6. Difference maps between the year 2001 and the year 2020 for the peak dust season months March-May and only 

dust days (not all days), showing total difference in (a) mean wind friction velocity (u*) scaled by wind speed at 10m height 

(U10) and (b) wind speed (U10). Minimal detectable change in dust emission with significance (P > 0.05) with AEM varying 350 

aerodynamic roughness (c) and with TEM z0 fixed and static over time (d). Wind data = ERA5-Land (Source: ECMWF). See 

Appendix for details on the calculation of the minimum detectable change. 

4. Discussion 

4.1 Overcoming dust emission model weaknesses using the albedo-based approach 

Dust emission modelling has historically struggled to represent adequately soil wind friction velocity. Many of the TEMs 355 

assume homogenous bare ground, before using the complement of vegetation cover to reduce emission. Using satellite 

observed dust emission point sources (DPS; Figure 1) we have shown that TEMs overestimate dust emission frequency by 
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nearly an order of magnitude (RMSE = 0.76 using log10) (Figure 4). Using albedo to describe variability in aerodynamic 

roughness through changes in vegetation structure, the AEM performs theoretically better (Figure 2) at correctly estimating 

the probability of us* exceeding the entrainment threshold, and subsequent changes in dust emission timing and magnitude. 360 

When compared to observed DPS (Figure 4), AEM performs only moderately better than TEM, still overestimating dust 

emission frequency by 0.6 orders of magnitude (RMSE = 0.6 using log10). However, it is important to recall that the AEM is 

not tuned in any way, but the TEM is tuned using values of z0m an z0s which are fixed over space and static over time and 

then dust emission is adjusted by E. Furthermore, most DPS are from predominantly barren and windy environments, with 

mean u*/U10 of 0.069 and mean U10 of 6.9 m s-1, reducing the potential influence of dynamic vegetation. Nevertheless, the 365 

over-estimation of dust emission caused by the frequency of occurrence being too large relative to the observed frequency 

occurs because of one of more of the factors described in Table 1. Those factors are classified to form a future research 

priority based on the results and conclusions reached in this study and based on our understanding of the process that has 

arisen during the investigation of the results. 

 370 

Table 1. Assessment of the factors causing over-estimation of dust emission frequency, their likely impact on dust emission 

modelling and suggested priority for research investment. 

Factors causing over-estimated dust emission 

frequency 

Assessment of impact on dust emission 

modelling 

Research 

priority 

Modelled 𝑢∗𝑡𝑠 at the grain scale is very likely to be 

much smaller in value than that of 𝑢∗𝑡𝑠  at 500 m 

(MODIS albedo). The generalized problem is that 

𝑢∗𝑡𝑠  is not upscaled for use with 𝑢𝑠∗  and the 

(typically larger) scale of wind speed data (see 

below). The modelled 𝑢∗𝑡𝑠 is also assumed fixed over 

space and static over time.   

The scale difference is very likely causing 𝑢∗𝑡𝑠  to 

be too small relative to 𝑢𝑠∗  causing 𝑢∗𝑡𝑠  to be 

exceeded too frequently and hence over-estimating 

dust emission (too many dust days). 

High 

Dust emission modelling assumes an infinite supply 

of dry, loose erodible material is available once 𝑢∗𝑡𝑠 

has been exceeded. 

 

Under this assumption, the amount of dust emission 

which occurs when 𝑢∗𝑡𝑠  is exceeded is over-

estimated where sediment is unavailable and / or 

restricted by rocks and biogeochemical soil crusts. 

High 

Modelled U10 may be too large. However, the scale-

invariant albedo-based approach (Ziegler et al., 2020) 

able to operate over large grid boxes should eradicate 

scale differences. 

Wind speed may be too large despite the 

considerable effort to reproduce realistic wind 

fields. Tied to the evaluation of wind speed 

magnitude for dust emission, is the discrepancy 

between the scale of wind fields e.g., ERA5-Land 

Medium 
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11 km pixels, and the scale of dust emission 

modelling e.g., MODIS 500 m pixels. 

The DPS are derived from polar-orbiting satellite 

observations, which may not accurately and 

completely identify the sources and frequency of all 

dust emissions.  

 

The grid-boxes approach used here overcome 

concerns about precision in the location of dust 

points. Inevitably, there is a scale dependency to the 

frequency of occurrence that needs to be quantified. 

Small magnitude, high frequency dust emissions 

may not be included in the observed dust emissions 

at point source (DPS).  

Medium 

The wind tunnel data used in the albedo-based drag 

partition calibration may not represent the complete 

range of conditions and flexibility in the vegetation 

(deforming to change shape). 

 

This research hypothesis queries the calibration but, 

given the nature of the data already included 

probably amounts to reducing the uncertainty in the 

calibration. 

Low 

 

Here, we use the latest version of ERA5-Land wind (at 10 m height) data at a reasonably fine (11 km) resolution. It is 

evident that U10 is over-estimated in some regions (Fan et al., 2021). However, there appears to be no systematic bias that 375 

would lead to the over-estimation of dust emission frequency. The grain scale of 𝑢∗𝑡𝑠 is evidently incompatible with dust 

emission modelling over area (e.g., pixels at 500 m), and this factor appears to be the most likely cause of the over-estimated 

model dust emission frequency and should be a priority for future work. Without resolving the scale of 𝑢∗𝑡𝑠 it is not possible 

to determine the impact of the assumed infinite supply of loose erodible material (Table 1). It is very likely that these two 

factors explain the first-order differences between the DPS frequency and the dust emission model frequency. There remains 380 

uncertainty over the use of DPS frequency. However, by comparison with dust in the atmosphere represented by DOD, the 

use of DPS frequency is up to two orders of magnitude smaller. There is a small, perhaps lower-order likelihood that the 

original calibration of the albedo-based approach is not representative and universal, despite recent support for the approach 

(Ziegler et al., 2020). 

Beyond these observed dust emission point sources, vegetation roughness appears more influential, constraining 385 

dust emission greater than 0.1 kg m-2 a-1 to areas where u*/U10 is no greater than 0.06, even during periods of peak (8.5 – 9.5 

m s-1) wind speed. In contrast, TEM predicts dust emission >0.1 kg m-2 a-1 in areas where u*/U10 is greater than 0.075, 

including large areas of the Great Plains. This difference is emphasized in parts of western Oklahoma (99.5°W, 35.5°N), 

where mean u*/U10 > 0.08 prevent dust emission from the AEM, despite a mean U10 > 7 m s-1. However, in those areas TEM 

dust emission exceeds 0.2 kg m-2 a-1. These contrasting estimates emphasise TEM dependency on variability in U10, due to 390 

the use of u*
3 and the inability of R(z0)=0.91 fixed over space and time to correctly attenuate wind speeds by aerodynamic 

roughness. This limitation creates two main issues, a) a requirement for post-process tuning, which restricts model ability (or 
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increases uncertainty) to effectively predict dust without a priori information; b) large scale uncertainty driven by a large 

spatial and temporal variability in U10. 

4.2 Overcoming dust emission model tuning to dust in the atmosphere  395 

Previously, inconsistency in modelled dust emission from areas unlikely to produce dust has been filtered out by utilizing a 

preferential dust source map (Ginoux et al., 2012), whereby the probability of dust emission is pre-defined by the 

topographic setting, constraining emission to drainage basins (Zender et al., 2003b). These pre-defined conditions limit the 

ability to simulate the dynamics of dust emission in these areas, as well as omitting most small dust sources in other areas of 

the basin (Urban et al., 2018). Furthermore, modelled dust emission frequency is typically several orders of magnitude 400 

greater than observation, creating the need for calibration when integrated into ESM. Currently, a global observed dust 

emission archive does not exist, thus calibration is achieved against observed dust in the atmosphere (e.g., DOD). However, 

we have shown that DOD poorly represents observed dust emission frequency by nearly two orders of magnitude, with no 

spatial correlation in frequency variability. Previous studies have suggested that this inconsistency is due to the spatial bias 

between time of emission and downwind observation in sun-synchronous daily observations (Schepanski et al., 2012). 405 

Whilst explaining some of the inconsistency in our results, it also illustrates the fundamental problem of calibrating dust 

emission using dust in the atmosphere. Using extant DPS, our results demonstrate that DOD is limited to areas with highly 

reflective surface e.g., creating a bias over northern areas of the Chihuahuan Desert. The DOD hotspots for the period 2001-

2016 were located upwind of the DPS locations. These findings severely undermine the efficacy of dust emission model 

calibration to DOD, especially in areas where dust emission occurs in relatively discrete areas surrounded by more densely 410 

vegetated areas such as North America. Over-estimation of dust emission in these environments very likely alters the 

magnitude and frequency of the global dust distribution, which currently considers continental-scale barren environments 

(e.g., North Africa, Middle East) as the main source of dust. 

Our comparison of dust emission between two time periods emphasizes a previously unrealised impact of dynamic 

aerodynamic roughness in the temporal variability of dust emission magnitude. Through the correct calculation of 𝑢𝑠∗, the 415 

AEM constrains dust emission to relatively small areas, restricting significant variability between time steps to only dust 

producing areas (e.g., the arid southwest and semi-arid parts of the Great Plains - Figure 6c). In contrast, TEM’s dependency 

on U10 variability produces significant changes in dust emission over vast vegetated areas, including those which are unlikely 

to produce dust (e.g., temperate areas of the Great Plains and the grasslands of North Mexico; Figure 6d). 

4.3. Implications of model deficiencies for dust emission modelling 420 

Our study has demonstrated that dust emission modelling can be considerably improved by utilising a calibrated drag 

partition, rather than the traditional static approach. The TEMs were developed more than two decades ago when dynamic 

data inputs were less available. Many global dust emission studies still use static inputs, such as vegetation cover thresholds 

and bare soil fraction in global dust emission modelling (Albani et al., 2014). Preferences for which regions emit or how 
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much vegetation to allow before dust emission ceases, have contributed to the inability to detect model weaknesses (Zender 425 

et al., 2003a). The ad hoc delineation of source regions and / or tuning to dust in the atmosphere, constrains dust emission to 

areas with large concentrations of dust in the atmosphere (Huneeus et al., 2011). However, there may be regional differences 

in magnitude and frequency of dust emission, wind speed and particle size controlling dust residence times. Furthermore, 

current atmospheric dust loads do not enable unbiased reconstruction of past trends or to project future shifts in the location 

or strength of emissions (Mahowald et al., 2010). There is also a great risk that the major scientific advances made in 430 

developing dust emission schemes (Marticorena and Bergametti, 1995; Shao et al., 1996) and newly developed data / 

parameterizations (Prigent et al., 2012) are being overlooked by an over-reliance on simplistic assumptions about dust source 

location and erodibility to implement dust emission models. Model ‘tuning’ in its various guises, makes it hard to routinely 

evaluate the dust emission implementation. We contend that it is essential to ensure that the balance of dust emission 

modelling is towards the fidelity of the dust emission scheme (processes) rather than the parsimony of its implementation 435 

(parameterization) (Raupach and Lu, 2004). As new parameterization schemes are developed and new data sources become 

available, the research community will benefit from being open to critical re-evaluations to avoid model deficiencies 

enduring. 

Incomplete TEMs predict unreasonably large dust emission particularly in vegetated regions, because 𝑢𝑠∗ is over-

estimated. Despite their multiple parameters, incomplete TEMs operate like other dust emission models explicitly controlled 440 

only by wind speed (e.g., GOCART) at some f height Uf and t threshold of Uft (Ginoux et al., 2001). In our study, we did not 

include these dust emission models based on wind threshold. However, given their similarity with the incomplete TEMs, our 

results suggest that both of these model types are inadequate for representing dust emission across Earth’s dynamic 

vegetated drylands and over time. Model weaknesses most likely explain why on monthly time scales, the relation between 

surface wind speed and TEMs could be linearized, and why differences between CMIP5 models appear to be due solely to 445 

wind field biases (Evan et al., 2016). Perhaps most significantly, our results explain to a large degree how the incomplete 

TEMs lack validity in 21st century dust emission projections (Evan et al., 2014). 

5 Conclusion 

Improving climate change projections requires dust models that are sensitive to and accurately represent dust emission 

responses to changing environmental conditions (wind speed, precipitation, evapotranspiration), land use and land cover 450 

dynamics. The incomplete TEMs were shown here to over-estimate dust magnitude, frequency and extent, and lacks the 

dynamics in dust emission of the albedo-based approach. Albedo is increasingly available from accurate and precise ground 

measurements using net radiometers, from various airborne and satellite platforms most notably MODIS and more recently 

VIIRS, or intrinsic prognostic estimates used in ESMs. The use of albedo as a prognostic variable provides the opportunity 

for this new albedo-based approach to be readily adopted in ESMs. Therefore, coupling the albedo-based approach to ESMs 455 

is expected to reduce uncertainty in dust emission and may transform climate change projections. 
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6. Code Availability 

The Google Earth Engine Java script code is available to run using the links below for the traditional dust emission model 

(TEM) and the albedo-based dust emission model (AEM). 

TEM - https://code.earthengine.google.com/97aaaad02da2af9b914fff8d9cd1bf5d 460 

AEM - https://code.earthengine.google.com/9726348d2fc3e81381e8a9229667afdd 

The code is archived as a text file using Zenodo (where the code will not run without access to the Google Earth Engine) 

using the DOI below 

https://doi.org/ 10.5281/zenodo.5626825 

7. Data Availability 465 

The data used are identified in the main text and below using the the Google Earth Engine data description and catalogue 

references, link and DOI. 

Dates used Google Earth Engine data Google Earth Engine Catalogue reference, link 

or DOI 

2009 MODIS land cover used to mask 

land / sea 

MODIS/051/MCD12Q1/2009_01_01 

https://doi.org/10.5067/MODIS/MCD12Q1.006 

Static ISRIC clay content https://github.com/ISRICWorldSoil/SoilGrids250m/ 

2001-2020 MODIS albedo (Band1 Band1_iso) MODIS/006/MCD43A1 

https://doi.org/10.5067/MODIS/MCD43A1.006 

2001-2020 ECMWF ERA5-Land  

u-component_of_wind_10m 

v-component_of_wind_10m 

volumetric_soil_water_layer_1 

soil_temperature_level_1 

ECMWF/ERA5_LAND/HOURLY 

doi:10.24381/cds.e2161bac 

2001-2020 MODIS Snow Cover MODIS/006/MOD10A1 

https://doi.org/10.5067/MODIS/MOD10A1.006 

2001-2020 MODIS Normalised Difference 

Vegetation Index 

MODIS/MOD09GA_006_NDVI 

https://doi.org/10.5067/MODIS/MOD09GA.006 
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8. Appendix 

8.1 Implementation of traditional dust emission scheme (TEM) 470 

When the dust emission scheme (Marticorena and Bergametti, 1995) is implemented (Eq 2 and 4), the wind friction velocity 

(𝑢∗) is assumed to be the total 𝑢∗. We set c=1, the air density was fixed for simplicity (𝜌𝑎=1230 g m-3). The acceleration due 

to gravity was also fixed (g=9.81 m s-2). Following the current practice, we calculated 𝑢∗ from the modeled 10 m wind 

velocity using the logarithmic layer profile theory and aeolian roughness length (Darmenova et al., 2009) following the 

Monin-Obukhov similarity theory: 475 

𝑢∗ =
𝑘𝑈𝑓

ln(
𝑍𝑈
𝑍0

)+𝜑𝑚

,           (Eq. 6) 

 

where 𝜑𝑚  is the stability function accounting for a deviation of the wind profile from the logarithmic, von Kármán’s 

constant (k=0.4) and 𝑍𝑈=10 m the height at which the freestream wind speed U10 estimates were provided. We assumed the 

wind profile is logarithmic and stable and used modelled wind speed (10 m) data from the ECMWF ERA5-Land (Muñoz 480 

Sabater, 2019) (hourly; ⁓11 km). 

 

Estimates of the aerodynamic roughness length (z0) were fixed over time and fixed over space. The threshold of sediment 

flux (𝑢∗𝑡) is commonly represented as only an energy-limited process by calculating it as: 

 485 

𝑢∗𝑡(𝑑, 𝑤, 𝑍0, 𝑍0𝑠) =
𝑢∗𝑡𝑠(𝑑)𝐻(𝑤)

𝑅(𝑍0,𝑍0𝑠)
,        (Eq. 7) 

 

where the entrainment threshold 𝑢∗𝑡𝑠(d) for a given size fraction d, can be modified by functions including the drag partition 

R(z0, z0s) and the moisture content H(w). The 𝑢∗𝑡𝑠 of a given d (mm): 

 490 

𝑢∗𝑡𝑠(𝑑) = {
0.129𝐾

(1.928𝑅𝑒0.092−1)0.5

0.129𝐾(1−0.0858)𝑒−0.0617(𝑅𝑒−10)

, 0.03<Re≤10 or Re>10,    (Eq. 8) 

 𝑅𝑒 = 𝑎𝐷𝑥 + 𝑏; 𝑎 = 1331𝑐𝑚−𝑥; 𝑏 = 0.38; 𝑥 = 1.56,     (Eq. 9) 

𝐾 = (
𝜌𝑝𝑔𝑑

𝜌𝑎
)

0.5

(1 +
0.006

𝜌𝑝𝑔𝑑2.5)
0.5

,        (Eq. 10) 

 

includes pa=1230 g m3 fixed air density, pp=2650 g m3 fixed particle density, g=9.81 m s-2 acceleration due to gravity. The 495 

dimensionless function H (Fécan et al., 1998) was developed using wind tunnel experiments to account for gravimetric 
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surface soil moisture content w (kg3 kg-3) using the difference between the potential w’ based on clay content and near 

surface w: 

 

𝐻(𝑤) = √1 + (1.21(𝑤 − 𝑤′)0.68)        (Eq. 11) 500 

where 

𝑤′ = 0.0014%𝑐𝑙𝑎𝑦2 + 0.17%𝑐𝑙𝑎𝑦 ,       (Eq. 12) 

 

and clay is the finest fraction (expressed as a percentage) of the soil and typically less than 2 µm. 

A discussion of the use of this parameterization in dust emission schemes is included elsewhere (Zender et al., 2003a; Xi and 505 

Sokolik, 2015). We make use of the ERA5-Land volumetric soil moisture data (0-7 cm of soil layer; hourly; 11 km). To 

convert from volumetric soil moisture to the required gravimetric soil moisture we divided by the soil bulk density. We 

assumed that the gravimetric moisture of the uppermost soil layer was 20% of the 7 cm soil layer (Edwards et al., 2013). The 

soil bulk density and clay, silt and sand soil texture are from ISRIC (Hengl et al., 2017)  and is fixed over time (250 m). 

The R(z0, z0s) is valid for small wakes (z0 < 1 cm), and to parameterize solid obstacles only. This poses a problem in applying 510 

this approach to partially vegetated surfaces such as mixed grasslands, shrublands, and agricultural/shrubland mosaics 

(Darmenova et al., 2009). Applying different parameterizations for surfaces with similar roughness values could result in a 

significant discrepancy in the estimated drag partition (Darmenova et al., 2009). To reduce the impact of this discontinuity 

on R(z0, z0s), a modification is used because it includes a wider range of land surface types 

 515 

𝑅(𝑍0, 𝑍0𝑠) = 1 −
𝑙𝑛(

𝑍0
𝑍0𝑠

⁄ )

𝑙𝑛[0.7(12255𝑐𝑚
𝑍0𝑠

⁄ )
0.8

]
.       (Eq. 13) 

In the absence of regional and global spatio-temporal dynamics of R and aerodynamic roughness length (z0) data to calculate 

𝑢∗ from U10, two approaches for representing surface roughness have been developed in regional and global dust emission 

modelling over the last two decades. The older, but still common approach uses globally constant values of z0, fixed over 

time (Zender et al., 2003a; Ginoux et al., 2001; Mahowald et al., 2010; Woodward, 2001; Tegen et al., 2002). Fixed 520 

aerodynamic roughness length for the landscape z0=100 µm and the soil z0s = 33.3 µm, fixes R(z0)≈0.91 which assumes that 

the Earth’s land surface is devoid of vegetation roughness and static over time. This approach therefore tends to over-

estimate dust emission. With R(z0) fixed, R(𝑧0)𝑢∗ = 𝑢𝑠∗is assumed. We recognize that the use of a constant value for z0s 

smooths out the heterogeneity of dust sources. We also know that it is recommended to use a z0s≈1/30 of the coarse mode 

mass median diameter of the undisturbed soil size distribution, instead of setting it to a fixed constant (which assumes that 525 

the coarse population of an undisturbed soil is equivalent to the coarse population of the soil texture (Darmenova et al., 

2009). Nevertheless, we fixed z0s to ensure that results were consistent with previous work. A second approach is to use 

spatially heterogeneous estimates for arid and semi-arid regions (Prigent et al., 2012). That work follows continued efforts to 
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use active and passive reflectance obtained from satellite remote sensing to characterize aerodynamic roughness(Marticorena 

et al., 2006). Although this approach provides an observation-based approximation of z0, it remains a challenge to estimate R 530 

to approximate 𝑢𝑠∗ necessary for the complete sediment flux equation. 

To implement vertical dust emission, we introduced additional terms to Eq. 5 which are explained below 

 

𝐹 = 𝐴𝑛𝐴𝑓𝐸𝑀𝑖(𝑑)𝑄𝑖(𝑑)10(0.134𝑐𝑙𝑎𝑦%−6.0).        (Eq. 14) 

 535 

Notably, no global tuning is applied to either the traditional or new albedo-based dust emission model. In the traditional dust 

emission, we fixed the mass fraction of clay particles in the parent soil to clay%=20 consistent with previous work (Zender et 

al., 2003a). The proportion of emitted dust in the atmosphere M for a given particle size fraction (d) is dependent on the 

particle size distribution. We calculated the relative particle size surface area (Marticorena and Bergametti, 1995) (M). The 

parameter E was defined in the main text assuming E=1-Av so that vegetation indices can be used (Shao et al., 1996). To 540 

conform with that practice, we calculated 

 

𝐴𝑣 = −22.5 + 150𝑁𝐷𝑉𝐼           (Eq. 15) 

 

from global daily NDVI from MODIS (MOD09GA Collection 6 from Terra at 500 m pixel). 545 

 

When the soil is covered by snow it is unable to provide any dust emission. In this situation it is most effective to use a mask 

which determines whether snow is present or absent (𝐴𝑛). However, the coverage of snow in a given pixel is an areal 

quantity and therefore ranges between 0-1. Consequently, we applied the MODIS Normalised Difference Snow Index (Hall, 

2016) (MOD10A1 from Terra, daily at 500 m). Similarly, if the soil is bare but frozen it is unable to release sediment almost 550 

regardless of how much wind energy is applied. In this situation it is most effective to use a mask which determines whether 

the soil is frozen or not (Af). We used soil temperature available in ERA5-Land and set a threshold of 273.15 K above which 

sediment flux can occur. 

8.2 New parameterization of 𝒖𝒔∗ by relating shelter to shadow (AEM) 

To implement Eq. 1, we assume that the total wind friction velocity (𝑢∗) is used in the sediment flux equation. We use a new 555 

albedo-based implementation of the sediment flux equation which avoids 𝑢𝑠∗=𝑢∗R and therefore does not use 𝑢∗, R or the 

aerodynamic roughness length of vegetation (z0) or that of the soil (z0s). Instead we used a robust direct estimation (Chappell 

and Webb, 2016) for 𝑢𝑠∗ 

 

𝑢𝑠∗

𝑈𝑓
= 0.0311 (𝑒𝑥𝑝

−𝜔𝑛𝑠
1.131

0.016
) + 0.007,       (Eq. 16) 560 
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where 𝜔𝑛𝑠 is the normalised and rescaled albedo (𝜔) translated and scaled (𝜔𝑛) from a MODIS range (𝜔𝑛min=0, 𝜔𝑛max=35) 

for a given illumination zenith angle (ϴ=0°) to that of the calibration data (a=0.0001 to b=0.1) using the following rescaling 

equation (Chappell and Webb, 2016): 

 565 

𝜔𝑛𝑠 =
(𝑎−𝑏)(𝜔𝑛(𝜃)−𝜔𝑛(𝜃)𝑚𝑎𝑥)

(𝜔𝑛(𝜃)𝑚𝑖𝑛−𝜔𝑛(𝜃)𝑚𝑎𝑥)
+ 𝑏.           (Eq. 17) 

 

Shadow is the complement of albedo 1 − 𝜔𝑑𝑖𝑟(0°,   𝜆) and the spectral influences due to e.g., soil moisture, mineralogy and 

soil organic carbon, were removed by normalizing (Chappell et al., 2018) with the directional reflectance viewed and 

illuminated at nadir 𝜌(0°,   𝜆): 570 

 

𝜔𝑛 =
1−𝜔𝑑𝑖𝑟(0°,   𝜆)

𝜌(0°,   𝜆)
=

1−𝜔𝑑𝑖𝑟(0°)

𝜌(0°)
.        (Eq. 18) 

 

This was implemented by making use of the available MODIS black sky albedo (Schaaf, 2015) to estimate 𝜔𝑛, and the 

shadow is normalized by dividing it by the MODIS isotropic parameter fiso (MCD43A1 Collection 6, daily at 500 m) to 575 

remove the spectral influences:   

 

𝜔𝑛(0°) =
1−𝜔𝑑𝑖𝑟(0°,𝜆)

𝑓𝑖𝑠𝑜(𝜆)
=

1−𝜔𝑑𝑖𝑟(0°)

𝑓𝑖𝑠𝑜
.        (Eq. 19) 

 

The fiso is a MODIS parameter that contains information on spectral composition as distinct from structural information 580 

(Chappell et al., 2018). In theory, the structural information is waveband independent(Chappell et al., 2018). The 

normalization of MODIS data using this parameter and that of MODIS Nadir BRDF-Adjusted Reflectance (NBAR) is 

similarly sufficient to remove the spectral content for all bands examined (Chappell et al., 2018). In practice, we calculated 

𝜔𝑛 using MODIS band 1 (620-670 nm).  

To calculate the vertical dust emission, we followed the same approach as above (Eq. 14) except for E which was not used. 585 

In the new albedo-based model we used the latest, reliable spatially varying layer of particle size (Dai et al., 2019) and 

restricted clay% to a maximum value of 20% consistent with reasonable results when applied in regional models (Woodward, 

2001). This new implementation provides a highly dynamic representation of the soil wind friction velocity. To this model, 

we applied no other tuning. 
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8.3 Minimum detectable change framework 590 

This approach, well-established for environmental resource monitoring (Chappell et al., 2015; De Gruijter, 2006; Webb et 

al., 2019), aims to establish the mean difference (𝑑̂̅2,1 ) of estimated means 𝑧̅̂(𝑡1) and 𝑧̅̂(𝑡2) between events t1 and t2 by  

𝑑̂̅2,1 = 𝑧̅̂(𝑡2) − 𝑧̅̂(𝑡1).         (Eq. 20) 

The locations are pixels which are assumed fixed in space and are revisited over time. This static synchronous pattern 

implies that in estimating the sampling variance of the change, a possible temporal correlation between the estimated means 595 

𝑧̅̂(𝑡1) and 𝑧̅̂(𝑡2) must be taken into account. The true sampling variance equals 

𝑉(𝑑̂̅2,1) = 𝑉(𝑧̅̂(𝑡2)) + 𝑉(𝑧̅̂(𝑡1)) − 2𝜌(𝑧̅̂(𝑡2), 𝑧̅̂(𝑡2)),      (Eq. 21) 

where 𝜌 is the temporal correlation between the two estimated means. As 𝜌 increases, the sampling variance of change gets 

smaller.  

Our target quantity 𝑑̂̅2,1 is greater than zero and statistically significant and defined as (Woodward, 1992): 600 

𝐻0: 𝑧̅̂(𝑡1) = 𝑧̅̂(𝑡2), 

𝐻1: 𝑧̅̂(𝑡1) = 𝑧̅̂(𝑡2) + 𝜃 (𝜃 ≠ 0).        (Eq. 22) 

The alternative hypothesis H1 is the adjustment due to 𝜃 = 𝑑̂̅2,1 which between sampling periods t1 and t2 is the net result of 

change in the property of interest during an intervening time. The uncertainty due to reaching an incorrect conclusion is the 

minimum detectable change (MDC) which is related to the probability of the errors on the conclusion. In general, the smaller 605 

the MDC, the larger the required sample size for a given probability of false acceptance error (De Gruijter, 2006). 

Our 𝐻0: 𝑑̂̅2,1 = 0 is that the average difference in our property of interest has stayed the same over time. The 

alternative hypothesis H1: 𝑑̂̅2,1 ≠ 0 is that the average difference in our property of interest has changed over time. In 

statistical hypothesis testing two types of errors may be made. We may reject H0 and conclude that there is a positive effect 

when in reality there is no effect (false rejection; type-I error). We assigned a probability denoted α to this type of error and 610 

decide on a value of 5% based on the implications of making a false rejection. The alternative error is that we may accept H0 

and conclude that there is no effect, when in reality there is a positive effect (false acceptance; type-II error, 𝛽). The 

probability 1 − 𝛽 is referred to as the power of the test and is used as a quality measure with a value set at 5%. First the 

critical value is calculated for the mean beyond which H0 is rejected. The power is the probability that one correctly 

concludes that there is a positive effect, that 𝑑̂̅2,1 ≠ 0. The power of the test depends on 𝑑̅̂
2,1 i.e., the greater 𝑑̂̅2,1, the larger 615 

the power.  

A two-tailed test (for change without direction) statistic is commonly based on the t-test (Woodward, 1992): 

(𝑋1−𝛼 + 𝑋1−𝛽)2 =
𝑑̂̅2,1

2

𝑉(𝑧̂̅(𝑡1))

𝑁1
+

𝑉(𝑧̂̅(𝑡2))

𝑁2

 ,        (Eq. 23) 
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where X is a standard normal distribution. Re-arranging to give an expression for 𝑑̂̅2,1, that is the difference between means 

which it is possible to detect with the specified power (and size) of test or more usefully, the smallest difference detectable 620 

with at least the given power  

𝑑̂̅2,1 = (𝑋1−𝛼 + 𝑋1−𝛽)(
𝑉(𝑧̂̅(𝑡1))

𝑁1
+

𝑉(𝑧̂̅(𝑡2))

𝑁2
)0.5.       (Eq. 24) 

This last equation is our estimate of the difference in means and our MDC for a given set of conditions which were applied 

to our properties of interest. 
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