
RavenR v2.1.4: an open source R package to support flexible
hydrologic modelling
Robert Chlumsky1, James R. Craig1, Simon G.M. Lin1, Sarah Grass2, Leland Scantlebury1,3,
Genevieve Brown4, and Rezgar Arabzadeh1

1Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, Canada
2Geoprocess Research Associates, Edmonton, AB, Canada
3Department of Land, Air and Water Resources, University of California, Davis, CA, United States
4Northwest Hydraulic Consultants Ltd., North Vancouver, BC, Canada

Correspondence: Robert Chlumsky (rchlumsk@uwaterloo.ca)

Abstract. In recent decades, advances in the flexibility and complexity of hydrologic models has enhanced their utility in sci-

entific studies and practice alike. However, the increasing complexity of these tools leads to a number of challenges, including

steep learning curves for new users and in the reproducibility of modelling studies. Here, we present the RavenR package, an

R package that leverages the power of scripting to both enhance the usability of the Raven hydrologic modelling framework

and provide complimentary analyses that are useful for modellers. The RavenR package contains functions that may be useful5

in each step of the model-building process, particularly for preparing input files and analyzing model outputs, and these tools

may be useful even for non-Raven users. The utility of the RavenR package is demonstrated with the presentation of six

use cases for a model of the Liard River basin in Canada. These use cases provide examples of visually reviewing the model

configuration, preparing input files for observation and forcing data, simplifying the model discretization, performing reality

checks on the model output, and evaluating the performance of the model. All of the use cases are fully reproducible, with10

additional reproducible examples of RavenR functions included with the package distribution itself. It is anticipated that the

RavenR package will continue to evolve with the Raven project, and will provide a useful tool to new and experienced users

of Raven alike.

1 Introduction

Hydrologic models are used for numerous applications, including streamflow prediction, flood forecasting, reservoir level15

forecasting, and in a scientific capacity to advance our understanding of hydrologic systems. Historically, most hydrologic

models have been designed with a fixed model structure comprised of a predefined set of environmental processes, while the

input data and model parameters may vary from watershed to watershed. While these fixed model structures (e.g. GR4J, (Perrin

et al., 2003)) may provide sufficient performance in some catchments, they are not adequate in all catchments, environments,

or hydrologic applications (Hoey et al., 2014). Numerous studies have called this fixed structure paradigm into question, and20

have instead called for the development of flexible modelling frameworks (Leavesley et al., 2002; Clark et al., 2011; Fenicia

et al., 2011), which would allow the modeller to possess more control over the model-building process. This has resulted in
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the emergence of flexible modelling frameworks in the literature (e.g., Orellana et al., 2008; Clark et al., 2008; Kavetski and

Fenicia, 2011; Clark et al., 2015; Knoben et al., 2019; Craig et al., 2020), and recent studies have been extensively supported

by the use of these frameworks (Pilz et al., 2020; Remmers et al., 2020; Chadalawada et al., 2020; Knoben et al., 2020; Spieler25

et al., 2020; Mai et al., 2020; Chlumsky et al., 2021c).

The power contained in these flexible hydrologic models is limited in part by the modeler’s ability to take advantage of it.

In an ideal setup, a modeller would find converting their system conceptual model to a numerical model a seamless process; in

actuality, setting up a numerical model often involves data wrangling and other tedious tasks, with decisions ranging from those

with relatively little impact on the final modelling results (e.g., how to combine dozens of text files) to potentially problem-30

atic and highly impactful decisions (e.g., time series interpolation or model structure adjustments). Even among hydrological

modelling software that have graphical user interfaces (GUIs), few offer the ability to easily deploy and compare successive

model runs, resulting in a potentially large amount of time devoted to relatively trivial tasks, such as organizing model files and

comparing successive model runs.

In order to address some of these challenges, new tools must be developed to bridge the gap between complex, customizable35

tools and the ability for modellers (in particular, new users) to fully understand and deploy these tools. Increasingly, freely

available, open-source scripting languages, such as Python and R, are being employed by modellers to create, visualize, and

evaluate their models (Jackson et al., 2019; Slater et al., 2019; Astagneau et al., 2021). While the languages themselves can

carry significant learning curves, they unlock a wide range of time-saving features due to their ability to reproducibly automate

tasks in concise code that can be re-used between projects. Additionally, these languages can be greatly expanded through40

the straightforward installation of downloadable packages that allow the performing of complex statistical analyses, obtaining

and manipulating data, producing publication-ready plots, and even building interactive web visualizations, to be reduced to a

handful of lines of code. Many features and tools that would be inappropriate or inadvisable to build into the source code of

hydrologic models (e.g., downloading and quality controlling input data) are perfectly suited to scripting languages.

Reproducibility is essential to scientific advancement: to build a usable body of knowledge, we must be able to trust, rely45

on, learn from, and when necessary, upend the lessons of past experiments (Hutton et al., 2016). There are studies suggesting

that large proportions of scientific studies may not be reproducible (Baker, 2016; Camerer et al., 2018), including the field

of computational hydrology (Hutton et al., 2016; Chawanda et al., 2020). Studies deploying proprietary or even free but not

open-source software, such as HEC-HMS (Hydrologic Engineering Center, 2020), pose issues in their reproducibility. While

open-source modelling software provides a transparent codification of the model, the reliability of the resulting model depends50

heavily on the preparation of model input files and required data, which may not necessarily undergo the same level of scrutiny

and transparency in a given modelling exercise. The communication of modelling methodology and workflow in science has

historically been accomplished through the inclusion of a detailed methods section within research manuscripts. However, in

hydrology, the code and data that are needed to generate published results are often not made available, and the complexity of

many hydrologic models and analyses make it infeasible for authors to include all necessary details for full reproducibility in55

their manuscripts (Hutton et al., 2016). Increasingly, scientists and engineers are being encouraged to use (and in some cases

publish) computationally reproducible versions of their analyses (National Academies of Sciences, Engineering, and Medicine,
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2019). Scripts, as a perfect record of the data manipulation, model setup, post-processing, and even figure creation steps, are

the ideal tools to accomplish this.

R, in particular, has gained significant ground in hydrology, entering the toolbox of many in both consulting and academia60

(Anderson et al., 2018; Slater et al., 2019; Astagneau et al., 2021). This is due in part to the already robust package ecosystem

awaiting hydrologists; the Comprehensive R Archive Network (CRAN), which hosts and tests R packages, allows for easy

access to packages for a variety of data processing tasks such as downloading data (tidyhydat (Albers, 2017)), examining

data (trend (Pohlert, 2020)), manipulating shapefiles and spatial data (sf, raster (Pebesma, 2018; Hijmans et al., 2021)),

evaluating model outputs (hydroGOF (Mauricio Zambrano-Bigiarini, 2020)), and visualizing data (ggplot2 (Wickham,65

2016)). Many hydrology-specific open-source packages have been developed in recent years, such as the CSHShydRology

package (Shook et al., 2021), Evapotranspiration (Guo et al., 2020), and many other packages reviewed in the literature

(Slater et al., 2019; Astagneau et al., 2021) and listed on CRAN Task View for Hydrology (https://cran.r-project.org/web/views/

Hydrology.html). R is also being used extensively in teaching hydrology to professionals and graduate students, and packages

have also been used directly as educational tools, such as the airGRteaching package (Delaigue et al., 2020, 2018).70

Here, we introduce an R package with a collection of tools to aid a modeller in preparing, running, and post-processing

results from custom hydrologic models developed with the hydrologic modelling framework Raven. Many of the tools are not

solely Raven-specific: functions exist to plot time series, analyze yearly patterns, and compute relevant statistics. However, the

package importantly contains a robust suite of functions for creating, reading, and manipulating Raven model files. Specific

attention has been paid to supporting the testing, comparison, and diagnosis of models built with variable model structure;75

many of these tools are unique. The intended purpose of the RavenR package is to enable modelers to simplify, automate, and

document their model creation process, effortlessly facilitate model visualization and evaluation, and to expand the flexibility

of the Raven hydrological modelling framework through scripting.

2 Methods

Section 2.1 briefly discusses Raven, and provides context for the RavenR package as a tool that enables improved workflows80

with Raven. Section 2.2 discusses RavenR in more detail, including a typical model-building workflow (Section 2.2.1), the

installation and documentation available within RavenR (Section 2.2.2), and a description of the sample data sets available

within the package and external to the package (Section 2.2.3).

2.1 Raven hydrologic modelling framework

Raven is an open-source software framework that can be used to build models from a selection of more than 100 available85

process algorithms (Craig et al., 2020). It is estimated that at least 8× 1012 different hydrologic model configurations may

be setup using Raven (Mai et al., 2020) and this number is continuously increasing as new options are added to the software.

Raven is built for flexibility not only in process representation, but also in enabling multiple numerical schemes, discretization

schemes, input data types, and in providing the user control over output options. Raven is a fully object-oriented code written
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in C++, and is typically run from a command line. The input and output files are generally stored as text files (*.txt or *.csv) or90

in NetCDF (Network Common Data Format) format. This allows all model files to be stored as non-proprietary formats, and

to be read and processed with any number of available tools for manipulating files.

The primary input files required for Raven (listed by file extension) include:

1. *.rvi - primary input file which defines the model structure, timestep, duration, and a number of additional options

2. *.rvp - model parameter specification and soil/vegetation/land class definitions95

3. *.rvh - model discretization, including all subbasin and hydrologic response unit (HRU) information

4. *.rvt - time series data, including forcing and observational data; this file often points to other *.rvt files with data sets

for various stations and locations

5. *.rvc - initial conditions for the model run

Raven provides complete control over its output generation (Craig et al., 2020), a relatively uncommon feature in hydrologic100

modelling software. A large proportion of the computational cost of a model run is often used in the writing of output files,

and thus a substantial computational burden can be alleviated if only the required outputs are written. This could be a single

diagnostic metric for calibration, a single time series, or the complete mass and energy balances of the model for debugging or

auditing purposes. Raven also allows for custom outputs to be generated for a given statistical, spatial and temporal specification

and state variable, such as the monthly average of daily snow depth for a particular set of subbasins (Craig et al., 2020).105

This flexibility of Raven over the modelling process provides the modeller with a lot of power in configuring and running

their hydrologic model, but also provides some challenges in preparing files and working with the many possible outputs.

The command-line execution of the program and the lack of a user interface can present a learning curve for new users, but

also enables scripting languages to easily interface with Raven, and for Raven to be deployed in high-performance computing

environments.110

A number of utilities exist to support the usage of Raven models, including the RavenPy (https://github.com/CSHS-CWRA/

RavenPy) for creating, running, and post-processing Raven models within Python, and HydroGlyph (http://raven.uwaterloo.

ca/hydroglyph/) for visualizing Raven time series output data. Hydrologic model support is also provided by many model-

independent packages, such as the CSHS-hydRology package (Anderson et al., 2018). However, RavenR is the most compre-

hensive tool for preparing input files and performing a range of analyses with Raven output files.115

2.2 RavenR software description

2.2.1 RavenR overview

The RavenR package is developed in R, and is a collection of tools to aid the modeller in preparing, running, and post-

processing files associated with a hydrologic model developed using Raven (Craig et al., 2020). RavenR is not intended to
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provide every tool needed to manipulate and analyze Raven input and output files, as the flexibility of the Raven framework120

would require a vast collection of highly specific scripts to accommodate the needs of all modellers. Instead, the package

aims to reduce the effort required to use Raven, and allows the modeller to more effectively use the open-source scripting

environment of R in their workflows. This may also reduce the learning curve of Raven that is created by its flexibility, as the

package provides the means to guide new users through the generation and manipulation of common files, and reduces the

burden in analyzing the model results. This can be particularly helpful for users migrating from GUI-based software such as125

HEC-HMS (Hydrologic Engineering Center, 2020).

The available functions within RavenR can be broadly categorized by their utility into the main categories of: 1) prepar-

ing input files, 2) reading output files, 3) running Raven, 4) tools for hydrologic analyses, and 5) support utilities (e.g. time

series processing, water year analysis, etc.). The typical workflow for RavenR is closely related to the workflow required

for the development and use of any hydrologic model, including one developed with Raven. This includes the collecting and130

processing of data for the model, determining the model structure, creating model input files in the format required by the

modelling software, executing the model, and analyzing the results of the model for hydrologic consistency and performance.

This can include exercises in model calibration and validation, uncertainty analysis, identifiability analysis, and project-specific

simulations or adjustments to the model runs.

The typical workflow for developing a hydrologic model and examples of RavenR functions that may be used to support135

each step are provided in Table 1.
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Table 1. Typical workflow table for building hydrologic models and connection to RavenR.

Step Activity Description RavenR

Functions

1 Collect/Prepare

Data

Preparation and quality control of Raven input files (e.g., *.rvi

files from template, *.rvt files), often from public data sources

rvn_rvi_write_template,

rvn_rvt_tidyhydat,

+ 19 others

2 Discretize

Watershed

Quality control of implemented discretization scheme and

further simplification (e.g., aggregating very small or similar

HRUs)

rvn_rvh_clean_hrus,

rvn_subbasin_network_plot

3 Identify and De-

scribe Processes

Model structure development and process algorithm selection rvn_rvi_connections,

rvn_rvi_process_diagrammer,

rvn_rvi_process_ggplot

4 Parameterize the

Model

Model parameter definition and parameter value specification rvn_rvi_get_params

5 Execute the

Model

Running the Raven (or other hydrologic) model rvn_download &

rvn_run

6 Processing

Model Outputs

Reading and processing model output files for analysis rvn_hyd_read,

rvn_custom_read,

+ 7 others

7 Plots and Model

Diagnostics

Checking model performance with a number of analyses,

reality checks, and diagnostics (often in conjunction with

model calibration and validation)

rvn_annual_peak_flow,

rvn_monthly_vbias,

+ 24 others

8 Report

Results

Generating quality graphics and workflows to communicate

results

Functions from step 7 +

additional R libraries (e.g.,

ggplot2 & rmarkdown)
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Although the model-building process is listed in Table 1 as a series of steps, in practice it is not linear, but rather iterative

and cyclic. For example, a model diagnostic (step 7) may show that inadequate model performance can be remedied by the

inclusion of additional forcing data, requiring new data to be written to file (step 1). It is also recommended or common practice

in modelling to begin with a simpler model and proceed to a more complex one (e.g., Fenicia et al., 2008), which may require140

iteration on steps 2-6 to potentially modify the structure (e.g. spatial and temporal discretization, hydrologic processes) after

a basic model has been established. Model calibration would typically involve an iteration upon steps 4-6 with a calibration

algorithm, and a calibration that includes model structure (e.g., Spieler et al. (2020), Chlumsky et al. (2021c)) would effectively

iterate upon steps 3-6. The iterative need for these model-building steps emphasizes the benefit of tools (including those in

RavenR) that can reduce the overhead in simple but repetitive tasks, such as producing figures and writing data to a specific145

file format.

The functions within the RavenR package are named, where appropriate, by the three letter Raven file name or short abbre-

viation corresponding to the output file that they interact with, e.g., rvn_rvi_connections for processing the *.rvi file

structure or rvn_res_read for reading the output ReservoirStages.csv file. Other functions simply use illustrative names to

convey their purpose (e.g. rvn_budyko_plot). This naming convention provides some navigability of the package func-150

tions to the new user, even before the package documentation is reviewed (see Section 2.2.2).

The RavenR package has a number of preferred data formats and related package dependencies. Most plots are generated

using the ggplot2 (Wickham, 2016) and related libraries from the so-called tidyverse, including dplyr (Wickham et al.,

2021a) and tidyr (Wickham, 2021) for data manipulation. This allows all plots to be exported as plot objects and further

manipulated by the user as desired, and removes the need for all plot options to be wrapped into RavenR functions. Time series155

handling is done through the lubridate (Grolemund and Wickham, 2011) and xts (Ryan and Ulrich, 2020) packages,

where the extensible time series (xts) format is generally expected for time series data. Finally, support for network analysis

is done through the igraph package (Csardi and Nepusz, 2006), which primarily supports the organization of watershed

discretization connections (*.rvh file) and the network of model structure connections (*.rvi file), including the related plot

functions, e.g., rvn_subbasin_network_plot and rvn_rvi_process_diagrammer.160

2.2.2 Installation and documentation

The package is developed as a free and open-source software tool, which is ideal for maintaining transparency and reproducibil-

ity in workflows related to hydrologic modelling and all steps involved. The stable package version is available for download

through CRAN (currently version 2.1.4), which can be installed in R using the command install.packages("RavenR").

The development version of the package is available on Github (https://github.com/rchlumsk/RavenR) and may be installed us-165

ing the devtools library (Wickham et al., 2021b) as devtools::install_github('rchlumsk/RavenR'). Both

installation commands resolve the dependencies associated with the package.

The RavenR package is fully documented and contains a description of inputs, outputs, with an usage example for each

function consistent with the standards for CRAN packages. In addition to the package documentation, an introductory vignette

Introduction to RavenR, is included with the package, which discusses getting started with the package and how it may be used170
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in a manner that is more useful to new users of Raven and RavenR. The introductory vignette is available with the command

install.packages("RavenR").

2.2.3 Sample data sets

In the interest of reproducible examples, the RavenR package contains a number of sample data sets and raw data files

embedded within the package which are used within the function examples. Sample data is embedded directly as imported175

data (accessible with the data function in R) for a number of file output types (hydrograph, watershed storage, etc.), as

well as sample data for the tidyhydat and weathercan packages. The latter sample data allows the function examples

to run without a dependency on the mentioned data-retrieval packages. Raw data files are also included (accessible with the

system.file function in R), which allow for the testing of reading raw data directly. The examples where raw data files are

first read into R using RavenR functions may be more helpful than examples which call sample data directly with the data180

command, since the workflow will be closer to the one applied in practice.

The sample Raven output files and data that is distributed with the RavenR package were generated from a model of the

Nith watershed, which is located immediately west of Kitchener-Waterloo in Ontario, Canada. The Raven model of the Nith

watershed can be found in full on the Raven webpage (http://raven.uwaterloo.ca/downloads.html) in the Tutorials 1-4 download

set. Numerous additional Raven models are available from this page, including the model of the Liard River basin (Brown and185

Craig, 2020), which is used in the RavenR case studies in this manuscript (Section 3).

3 Use cases of the RavenR package

In this section, we present a number of use cases of the RavenR package. These cases are not intended to be a comprehensive

review of all the applications for the RavenR package, but to provide the reader with a partial demonstration of how the

package may be used in conjunction with Raven. The cases are discussed in the context of hydrologic modelling with flexible190

frameworks more broadly, and provide cases and checks that are likely to be useful when deploying both Raven and non-Raven

hydrologic models.

The use cases are presented in approximate order of the model-building process (Table 1), beginning with the generation

of model input files and proceeding to the analysis of output files. These use cases include examples and discussion of almost

all steps of the model-building process, with the exception of steps 4 and 5. Tools for these steps, such as running Raven from195

within R using rvn_run (step 4), exist within the RavenR package but are not discussed in detail in this section.

All R code and model files required to generate the results and figures in this section are provided in an open-source Zenodo

repository (https://doi.org/10.5281/zenodo.5534818), and utilize the version of RavenR currently available on CRAN (version

2.1.4).
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3.1 Liard River basin200

The use cases presented here utilize the Liard River basin model built with Raven. The Liard River basin is located in northern

Canada, spanning the Yukon Territory, Northwest Territories, British Columbia and Alberta. The Liard River is the largest

tributary to the Mackenzie River, with a total contributing area of 275000 km2 (Brown and Craig, 2020). The basin includes

a variety of landforms, including mountainous regions and wetland-dominated regions. There are varying degrees of difficulty

when trying to accurately represent these various landforms in a hydrologic model. Additional details on the Liard River basin,205

and the corresponding hydrologic model developed for the basin with Raven, can be found in Brown and Craig (2020), which

also describes the manual calibration process that was undertaken for the model.

3.2 Input file processing

An early step in the model-building process is the collection of data and preparation of model input files (step 1 in Table 1.

While the supporting data analysis may not require expert knowledge of hydrology per se, the data preparation can require210

a substantial amount of time and effort in the modelling process. Further, the reproducibility and merit of research may rest

on the ability to access and reproduce the original and processed intermediate data, which is vastly improved by the use of a

scripting environment that in effect documents the steps taken to prepare the data files (Anderson et al., 2018). As such, the use

of scripting tools, such as those that will be discussed in this section, may be used to both reduce the effort required to prepare

input data files and improve the reproducibility of the research or applied project.215

This section discusses the preparation of the model structure configuration, the preparation of forcing data and observation

data, and modifications to the model discretization file. Additional utilities related to input files exist within the package (such

as providing parameter information), but these applications discuss a large proportion of the workflow that would be required

in developing a set of Raven input files.

3.2.1 Model configuration220

One of the key characteristics of Raven is flexibility, including the ability to customize the model structure in terms of the

organization of water storage units and selection of process equations (Craig et al., 2020). The hydrologic process schematic

is specified through the main Raven input file, in which the number of soil layers, the list of hydrologic processes and the set

of ‘to’ and ‘from’ compartments, etc., are defined.

For new and even more experienced users of Raven, understanding the model structure and making changes within the225

primary input file may be a somewhat daunting task, particularly when the model must be initially developed. Fortunately, the

Raven User’s Manual (Craig, 2020) provides the templates for a number of model structures, which can be used as a starting

point for constructing a customized hydrologic model. These are largely based on emulations of published hydrologic models

in the literature (e.g. UBCWM, HMETS, etc.), although some are based on research models that have been developed within

Raven (e.g. the Canadian Shield model). Once a base model has been selected, components of the model may be modified230

using the many process options available within Raven which are documented in the Raven User’s Manual (Craig, 2020). The
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large number of process options available to the user provide no shortage of model structure tweaks to customize their model.

A critical step in making these adjustments to model structure is understanding the structure and ensuring that it is consistent

with the modeller’s conceptual understanding of the system (step 3 in Table 1). While Raven itself does not currently have

a user interface deployed that can visualize the model structure, functions within the RavenR package can generate a model235

schematic from the contents of the model input (*.rvi) file. The ability to visualize this structure can be critical in understanding

the model structure and ensuring the conceptual understanding is consistent with the implemented structure. This can also be

used to check for state variables or storage units with an improper number of connections, such as a soil layer with no outflow

mechanism.

The general workflow within RavenR to generate a model *.rvi file and visualize the contents is as follows:240

1. A template model structure is selected and written to file using the rvn_rvi_write_template function.

2. The file may be manually modified in consultation with the Raven User’s Manual (Craig, 2020)

3. The file may be read into R using the rvn_rvi_read function

4. The process connections from the file can be processed using the rvn_rvi_connections function

5. The process diagram can be generated either in ggplot format using the rvn_rvi_process_ggplot function, or as245

a diagrammer plot using the rvn_rvi_process_diagrammer function

6. (optional) the ‘:CreateRVPTemplate’ command can be used to generate a template *.rvp (parameter) file when Raven is

executed

7. (optional) the rvn_rvi_get_params function may be used to obtain a data frame of parameters, ranges, and default

parameter values for parameters that are included in the hydrologic model, based on the model structure configuration250

An example of the process diagram is provided for the Liard River basin in Figure 1. From this figure, the directional

connections between water storage compartments in the model can easily be ascertained and verified, allowing modelers

building a new model and modelers inheriting a model alike to quickly understand the movement of water in their current setup.

For instance, in the Liard model we can see the model has capacity for precipitation to enter specific wetland and depression

compartments, snow can melt and refreeze, and fast and slow (upper and lower) reservoirs exist to represent groundwater255

processes as different time scales (Brown and Craig, 2020). A single-layer topsoil compartment is used to connect the surface

water and subsurface domains in the model along with a vadose zone reservoir to help represent a karst structure within the

model. We can see that all processes that move water to glacier are conditional based on the HRU type (glacier HRU). Ponded

water is moved to depression storage under the condition of being a wetland and surface water only directly evaporates to the

atmosphere if the HRU is a lake. The karst groundwater structure which was implemented in the model is only applicable to a260

subset of the HRUs which accounts for the conditional connections between SOIL[0], surface water, the vadose reservoir, and

the fast and slow reservoirs. Reviewing and verifying these conditional exceptions along with the connections between other

state variables can help ensure that the model is appropriately structured.
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Figure 1. The model configuration of the Liard basin, generated from the Liard model *.rvi input file with the

rvn_rvi_process_diagrammer function. Solid grey lines indicate connections between state variables, and dashed orange

lines indicate conditional connections.

Typically, diagrams such as these are arduous to produce for highly-flexible modelling software such as Raven. Here, the

function has been automated to create publication-ready diagrams for most model setups.265

3.2.2 Forcing data

Meteorological forcings (e.g. precipitation, temperature, wind speed) drive the hydrologic model responses. When not collected

as part of a project, these data are often obtained from online, freely available public sources generally collected, processed,

and maintained by local and/or public agencies. These data are likely to require some quality control before ingestion into

the model, such as addressing data flags, removing erroneous data, and converting units (step 1 in Table 1). This process270

can be quite tedious, especially when combining multiple data sets of various formats, time steps, and quality. The RavenR

package offers the rvn_rvt_write_met function for writing forcing data directly to the Raven *.rvt format: the function

defaults are configured to accept outputs from the weathercan R package, which automatically downloads data for Canadian

meteorological stations maintained by Environment Canada (LaZerte and Albers, 2018).

In this use case, daily meteorological data for a 20-year period is downloaded, interpolated, and written to Raven *.rvt format.275

The weathercan R package is used to search for stations within 500 km of Fort Liard and with data records spanning from

1985 to 2005. A subset of stations meeting these criteria is downloaded for pre-processing. Missing values in the meteorological
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fort_liard <- c(60.241711, -123.467377)

stns <- weathercan::stations_search(coords=fort_liard, interval="day",

dist = 500, starts_latest = 1985, ends_earliest = 2006)

weather_dl(stns$station_id[1:10], interval="day",

start="1985-10-01", end="2005-10-01") %>%

rvn_met_interpolate(cc=c("max_temp", "min_temp", "total_precip"),

key_stn_ids = stns$station_id[1:5]) %>%

rvn_rvt_write_met()

Figure 2. Minimum code required for the use case described in Section 3.2.2 of downloading, interpolating, and writing meteorological data

into Raven *.rvt format using the weathercan and RavenR R packages. The pipe operator (%>%) from the dplyr package is used for

readability. Additional code comments are provided in the accompanying repository.

data are then interpolated using data from nearby stations, and a fix is also applied to any interpolated data where the maximum

daily temperature is less than the daily minimum. The data from five of the selected stations are then written to Raven *.rvt

format. This workflow would be of substantial time and effort if performed manually or scripts for this task were adapted280

with each new application; in this use case, the entire workflow is performed with two main functions from the weathercan

package and two from the RavenR package. The code required to accomplish this is provided in Figure 2.

The advantages of this workflow are 1) the ease of implementation, which can process any number of stations with only a

few lines of R code; 2) the transparency and reproducibility of the *.rvt file generation, which is useful for both review of the

data and possible future corrections to all *.rvt files (e.g., extending the time series to incorporate more recent data). The code285

may be extended to any supplied set of stations and any meteorological variable that is recognized by Raven. The function also

assumes standardized Raven parameter units for all meteorological variables (see reference tables in Appendix C of the Raven

User’s Manual (Craig, 2020)).

3.2.3 Observation data

Observation data, such as streamflow records, are generally not required to run hydrologic models; an exception to this may be290

for truncated model domains, where the model simulates a portion of the watershed and is supplemented by upstream measured

flow data. However, observed time series are key to evaluating model performance (history matching) in both calibration and

validation exercises and may also be used to enable data assimilation in forecasting applications.

Similar to the use of the weathercan R package for downloading Canadian meteorological data, the tidyhydat R

package may be used to download stream gauge data from Canadian stations maintained by the Water Survey of Canada295

(Albers, 2017). RavenR provides the rvn_rvt_tidyhydat function to process tidyhydat inputs directly by wrapping

the rvn_rvt_write function, which can write any non-meteorological time series to *.rvt format. Possible types of time
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series supported by Raven *.rvt files include reservoir inflows, irregular observations, observation weights, temporal reservoir

operation rules, etc. The entire list of available formats can be found in the Raven User’s Manual (Craig, 2020).

In this use case, the tidyhydat package is used to prepare *.rvt files of observed streamflow for 9 specified stations (con-300

sistent with the stations listed in Table 2 of Brown and Craig (2020)) used in the Liard model. The daily streamflow for these sta-

tions are downloaded using tidyhydat from 1985 to present day, and written to *.rvt format using the rvn_rvt_tidyhydat

function (a wrapper for the rvn_rvt_write function). Raven will automatically exclude any missing values from the cal-

culation of diagnostics, thus missing values in observation data generally do not need to be interpolated or infilled in the same

manner that meteorological forcing data needs to be processed. However, the user may still wish to be aware of and avoid large305

gaps in observation data that may bias the calculation of diagnostic metrics (e.g., consistent winter gaps or multi-year gaps).
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obs_stns <- read.csv("observation_stations.csv")

tidyhydat::hy_daily_flows(station_number = obs_stns$stnID,

start_date = "1985-01-01") %>%

rvn_rvt_tidyhydat(subIDs=obs_stns$subID)

Figure 3. Minimum code required for the use case described in Section 3.2.3 of downloading and writing observed flow data into Raven

*.rvt format using the tidyhydat and RavenR R packages. The pipe operator (%>%) from the dplyr package is used for readability.

Observation station IDs and associated model subbasin IDs are provided in the ‘observation_stations.csv’ file for brevity. Additional code

comments are provided in the accompanying repository.

The same rvn_rvt_write function may be used to write other *.rvt data types by adjusting the rvt_type parameter,

which may be useful for writing the observation weights generated from the rvn_gen_obsweights function to exclude

certain data periods from Raven diagnostics, as was done in the Liard model for winter periods with unreliable data records

(Brown and Craig, 2020).310

3.2.4 Model discretization file

The development of distributed and semi-distributed models require the discretization of a basin into homogeneous units

representing hydrologically similar areas. This is typically completed through overlaying a number of spatial data sets which

have a dominant effect on the hydrological response of the basin, such as land use, elevation, or soil information (step 2 in

Table 1). In overlaying the spatial data sets, a large number of small computational units, insignificant to the model function,315

can be created. Since the model runtime is scaled with the number of HRUs, these small areas can increase computational and

calibration run times and are not necessary to simulate the dominant hydrological response of the basin. The RavenR package

offers a way to effectively eliminate small computational units using the rvn_rvh_cleanhrus function. This function may

merge units based on a set area threshold, and can also merge similar HRUs based on similarity in HRU properties such as

landcover, slope, elevation and aspect. HRUs which are significant to the model can be locked or protected. Locked HRUs320

cannot be removed from the model or increase in size and protected HRUs cannot be removed but may increase in size (to

maintain the total watershed area) if other HRUs are removed. This is useful in cases where a point observation is available at

a given location (snow survey data) or if the HRUs are part of a significant hydrological response (glaciers).

In this use case, the reduction in the number of model HRUs is demonstrated for a subset of the initial HRUs within subbasin

3 only (initially with 172 HRUs). HRUs that are of land use type GLACIER are locked HRUs (i.e. cannot be removed or change325

in size), and HRUs that are either WETLAND or WATER are protected (i.e. cannot be removed but can still increase in size

if other HRUs are removed). This operation is applied using area thresholds of 0.5% and 2.0% of the subbasin area, resulting

in 87 and 44 HRUs, respectively. The impact of this operation on land use distribution within the subbasin is summarized in

Figure 4.
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Figure 4. A barplot of total areas by land use for three sets of HRU configurations, including 1) prior to any ’cleaning’, 2) following a 0.5%

area threshold merging criteria with the rvn_rvh_cleanhrus function, and 3) following a 2.0% area threshold merging criteria. The

GLACIER land use is locked, and the WETLAND and WATER land uses are protected. The example is done for a single subbasin in the

watershed for demonstration purposes, and shows how the land use in the subbasin changes when the removal of subbasins below the area

percentage threshold is performed using the rvn_rvh_cleanrhus function.

In the figure, the total area of all GLACIER land use type HRUs remains the same, as this land use type was locked. The330

WATER and WETLAND land use types increase slightly with each individual cleaning, relative to their proportion of the

total area and the total area of removed HRUs based on the respective area threshold. It is noted that, were the WATER and

WETLAND HRUs not protected (or locked), the area of these HRUs would be reduced with a 0.5% threshold and removed

entirely with a 2.0% threshold. Literature has shown that hydrologic areas such as wetlands that are small in size can still have

a disproportionalety large effect on the hydrologic and biogeochemical response of the watershed (McLaughlin et al., 2014),335

thus retaining particular HRUs or HRU types may be critical in the cleaning of the HRUs. Finally, the plot shows how the

other land use types change with these operations. The FOREST type increases in each case, suggesting that the proportion

of small forested HRUs may be small, and that forested HRUs tend to be larger in size. The SHRUBLAND HRUs decrease

in represented proportion in each case. This type of analysis could be repeated for other HRU properties (e.g. slope, aspect,

vegetation type, etc.). This analysis should be done in conjunction with the use of the rvn_rvh_cleanrhus function to340

ensure that the reduction in the number of HRUs does not unexpectedly alter the overall representation of HRUs within the

model, and inhibit the ability of the model to capture the dominant hydrologic response.
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3.3 Output file processing and analysis

A number of functions within RavenR are included to handle the reading of common Raven output files, such as the Hy-

drographs file (rvn_hyd_read), the WatershedStorage file (rvn_watershed_read), and other output files (forcings,345

custom output, etc.). In addition, functions to analyze the output data with typical hydrologic checks and diagnostics are in-

cluded in the package. While these functions are built to work with the Raven-specific read functions they are otherwise not

specific to Raven, and may be used for any hydrologic model given a means of reading time series output is provided.

This section provides use cases where the realism of the Liard model is assessed, providing insight to the question, ‘is the

model getting the right answers for the right reasons?’ (Kirchner; Euser et al., 2013). These checks provide the modeller with350

an understanding of the model dynamics and provide more confidence that the model is functioning as expected without model

compensation errors (step 7 in Table 1). This section also provides a demonstration of tools for evaluating model performance.

3.3.1 Evaluation of model realism

The flexibility of Raven in the generation of model outputs, including customized outputs that may be specified by the user,

can be leveraged to undertake rigorous checks of the hydrologic model. Tools have been built into the RavenR package to355

capitalize on this feature, and facilitate a set of model reality checks. These checks can be considered semi-automatic, since

a script may be deployed to generate the figures but they still require interpretation by a modeller with an understanding of

both the natural system and the developed model. Here, the focus is on the realism of the model to ensure that it is providing

hydrologically plausible results; the actual performance of the model is discussed further in Section 3.3.2.

The checks that are applied to the Liard River basin in this use case include: 1) plotting the Budyko curve (Budyko, 1974)360

for the annual average watershed indices, 2) plotting the annual regime curve with monthly averages, 3) examining the sta-

tionarity of moisture content in soil storage layers, and 4) plotting the model performance with respect to snowpack storage as

snow water equivalent (SWE). Additional checks supported (not demonstrated here) include: plotting the forcing functions to

understand how the inputs may be influencing the model results (i.e. wet and dry years, erroneous temperature readings, etc.),

checking the annual water balance, examining baseflow characteristics by comparing modelled and observed baseflow using365

baseflow separation techniques, plotting annual hydrographs in an overlay (i.e. spaghetti plot), and checking the modelled

hydrographs and reservoir levels, if any reservoirs or lakes are included in the model.

The four plots associated with the stated checks performed in this example are provided in Figure 5.
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Figure 5. Multiple diagnostic plots generated from the RavenR package that may be useful in evaluating the realism of any hydrologic

model; A) budyko curve with annual average data points for the watershed, B) a series of regime curves, C) soil storage time series showing

the stationarity in long-term storage within soil layers and D) plots of observed and simulated snowpack measurements at Frances River. All

data are generated from the Raven model averaged at the watershed scale unless otherwise indicated (i.e. snowpack SWE).
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The Budyko plot in Figure 5A was generated using the rvn_budyko_plot function. The Budyko Curve (Budyko, 1974)

shows the relationship that quantifies how mean annual precipitation is partitioned into discharge or evapotranspiration (ET).370

The Budyko pattern has been observed in multiple catchments around the world (Vereecken et al., 2015). The x-axis of the

Budyko curve is the aridity index which represents the ratio between potential evapotranspiration and precipitation. The y-axis

is the evaporative index and represents the ratio between actual evapotranspiration and precipitation. The curve is bound by

two lines, shown in Figure 4a as the solid lines: the energy limiting line, which is when the evaporative index is equal to the

aridity index, and the water limiting line which occurs when the actual evapotranspiration is equal to precipitation.375

In a traditional application of the Budyko Curve it is expected that the plotted points would fall closer to the theoretical

line shown in Figure 5A as the dashed line. However, certain traits of a basin, such as significant basin storage, can result in

deviation from this line. The interpretation of the plot in Figure 4a could also indicate that actual evapotranspiration is being

underestimated in the model. Alternatively, if there is significant inter-annual storage in the basin, perhaps due to the presence

of wetlands, then the plot would be in line with reality. Ultimately, it is up to the modeller to decide whether this plotted380

behaviour is expected or if there is a possible misrepresentation of hydrologic processes in the model.

The regime curve can be used to examine the quantities and timing of some of the key model functions. For example, the

Figure 5B shows that the PET in the Liard model (based on the Hargreaves 1985 calculation method, see Hargreaves and

Samani (1985)) peaks at the same time as the AET in June, and maintains a similar pattern over the other months of the year

on average. The simulated and observed flows are close in value, and both peak prior to the peak in precipitation. This aligns385

with the fact that peaks in the Liard River basin are typically freshet driven. Overall the plot provides a wealth of diagnostic

information to the modeller, and a mismatch in elements of the regime curve, such as AET and PET or precipitation and flow

that is not expected by the modeller would provide a point of investigation and validation.

The soil storage information can be retrieved from Raven in either the WatershedStorage.csv file (generated with the

:WriteMassBalanceFile command), or with the custom output options for specific soil layers (e.g., :CustomOutput390

DAILY AVERAGE SOIL[0] ENTIRE_WATERSHED). Plots such as Figure 5C may be applied to any storage compart-

ment in the model to verify the general assumption of long-term stationarity in storage within the hydrologic model. The

stationarity assumption for a continuous simulation model is that over a long duration the soil storage should reach a quasi-

equilibrium, oscillating around a steady mean. Therefore, a continuous simulation model which is continuously accumulating

soil moisture during the simulation period may indicate that, for example, there is insufficient evapotranspiration or baseflow,395

resulting in the soil storage continuously increasing to compensate for this deficiency. A similar check for reservoir or lake

storage could also be warranted. In the plot provided, all four soil storage units have a pattern that generally repeats annually,

indicating the storage is stationary in the long term. In addition to verifying the stationarity assumption in storage and exam-

ining model compensation effects, Figure 5C may be used to better understand the soil dynamics in the model, and ensure

that it is consistent with the understanding of the natural system. The pattern indicates that the top soil layer (layer 1) peaks in400

May-June (presumably with snowmelt) and rapidly depletes, while the fourth soil layer representing deep groundwater storage

receives the infiltration at a more delayed rate and has a slower release from storage.
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The snow plot provides a method to evaluate the snow balance representation in the model for a particular station. The

simulated snow series is produced in Raven with the custom output command (e.g., :CustomOutput DAILY AVERAGE

SNOW BY_HRU), and is compared against the observed snow course measurements. The plot in Figure 5D was generated405

for the Frances River station. The snow plot provides a visual representation of the model’s ability to represent the snow

processes and compares it directly to observations. The model provides a reasonable representation of the snowpack SWE

with no consistent bias in estimation. The same plots may be created wherever snow measurements are available, and pro-

vide a method for directly evaluating the snow routines in the model. In RavenR, the custom output snow is read into R

using the rvn_custom_read function, and irregular observations may be read using any native R read function (such as410

read.table) or the rvn_rvt_read function if they are provided as irregular observations in an *.rvt file. Raven may

also directly calculate any model diagnostics for irregular snow observations (such as NSE) if they are provided to the model,

which may be useful in building objective functions for automatic calibration of the watershed.

Although not included in the plots above, examination of the model input forcings is often an insightful step in diagnosing

potential model issues and realism. The forcing functions file that is outputted by Raven may be quickly read and visualized415

with RavenR (i.e. rvn_forcings_read() %>% rvn_forcings_plot) as a check. Issues such as errors in the tem-

perature record or in the units of precipitation (mm/h instead of mm/d, for example) may be quickly determined with a visual

check on the array of forcings that are both supplied to and determined by the Raven model.

3.3.2 Evaluation of model performance

The RavenR package provides a broad suite of tools for analyzing the results of any Raven hydrologic model, including420

many tools that can be considered model independent (step 7 in Table 1). For example, hydrograph plots, calculation of runoff

coefficients, and flow duration curve plots are available within RavenR but may be computed for any time series of flows.

The calculation of diagnostics, such as the commonly used Nash-Sutcliffe Efficiency (Nash and Sutcliffe, 1970) and Kling-

Gupta Efficiency (Gupta et al., 2009) metrics, are not included in the RavenR package as they can be calculated directly within

Raven, and are also available comprehensively in existing packages such as hydroGOF (Mauricio Zambrano-Bigiarini, 2020).425

In this use case, a number of diagnostic plots based on simulated and observed hydrographs are presented for the Liard River

basin model. These diagnostic plots are computed at the outlet of the Liard River basin (at the outlet near Water Survey of

Canada station 10ED1002), and are provided in Figure 6. These plots are provided for a portion of the simulation period (where

the plot is time-based), and in practice these plots may be applied in both calibration and validation periods for comparison.
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Figure 6. Multiple diagnostic plots generated from the RavenR package that may be useful in evaluating model performance; A) a hydro-

graph plot for a subset of the simulation period, B) a scatterplot of simulated and observed annual peak flows, C) plot of timing annual peak

timing errors, and D) a plot of cumulative annual flow volumes in time. In plots A and D, the observed is plotted in black and the simulated

in orange.
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In Figure 6A, a simple hydrograph plot for a subset of the simulation period is provided. The hydrograph shows good430

agreement in the magnitude and timing of summer peaks for the years shown as well as the rising limb of the hydrograph,

which was the focus of the calibration in the work of Brown and Craig (2020), with a tendency to overestimate the recession

from the peak in June until late December/early January. The underestimation tends to continue until the next peak. The

hydrograph is shown for a subset of a few years, rather than the entire period, as the full period can obscure the important

deviations of the simulated hydrograph from observations and mask deficiencies. Examining a smaller section of the plot435

(e.g. with the prd argument in many RavenR functions), such as only a few years of simulation or a particular event of

interest, allows for a more critical examination of the nature of the model errors. A subset of a hydrograph can also be viewed

dynamically as a dygraph in RavenR with the rvn_hyd_dygraph function, which is supported by the dygraphs package

(Vanderkam et al., 2018).

The peak flow scatterplot (Figure 6B) is a scatterplot of the simulated and observed annual peak flows, calculated based on440

the October 1st water year and produced using the rvn_annual_peak function. This figure provides a visual assessment

of the performance of modelled peak flow magnitudes, which can be seen as a function of the flow magnitudes themselves

(i.e. does the model simulate peak flow magnitudes well at lower and higher flow values?). A model that is able to perfectly

simulate peak flow magnitudes will have all points fall on the 1:1 line included in the plot. The plot also provides insight into

the nature of the peak error i.e. whether there is a systematic bias in over- or under-predicting peaks, or whether the errors are445

normally distributed. The plot provided shows that points are relatively close to the 1:1 line and there is no strong evidence of

a systematic bias in flow magnitude prediction. However, since only 20 points are included on the plot, additional data may be

required to produce conclusions that are statistically valid.

While (Figure 6C) captures the performance with respect to the magnitude of the flow peaks, the timing of peak flows is not

assessed. The plot in Figure 6D assesses the error in peak timing (rather than magnitude) with the450

rvn_annual_peak_timing_error function. A perfect model would have all points fall along the zero line, indicating

that there is no error in the timing of predicted peaks. The results for the Liard simulation indicate that the model tends to

predict peaks slightly later than the observed data, while some of the larger errors in timing tend to be in early peak prediction.

In a forecasting framework, a data assimilation technique may reduce the timing (and magnitude) errors that are present in

the continuous simulation evaluated here. However, this tendency of the model may still be useful information for forecasters.455

The use of multiple functions in tandem within RavenR to examine both the peak magnitude and timing errors can be used

to evaluate the model performance more comprehensively than a single function (see multiple RavenR functions named as

rvn_annual_*).

Finally, Figure 6D provides a comparison of cumulative flow volumes between the simulated and observed model in time.

This plot is generated by the rvn_cum_plot_flow function. The plot shows clearly where deviations in the overall volume460

arise in time. For example, the plot for the Liard model shows that the December-March winter period of each year is a time

of deviation in cumulative volumes, while the freshet-driven summer peak periods tend to match volume quite well overall.

This is likely a result of the calibration procedure in (Brown and Craig, 2020), where ice affected flows in the winter were

not considered in the calibration procedure due to high levels of uncertainty associated with the measurements. Additional
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functions that examine the relative volumes of simulated and observed flows, but aggregate them rather than examining the465

differences in time, are the rvn_monthly_vbias and the rvn_annual_volume functions, which provide the monthly

average volume differences and the annual volume differences in a scatterplot for each year, respectively. The volume is

generally a useful diagnostic metric as it integrates the modelled hydrograph performance in time, and allows the modeller to

identify periods of poor cumulative error or systematic errors (e.g. underestimating overall volume) that may be not clear or

obvious when only examining flows.470

4 Conclusions

This paper presented the RavenR package, an R-based set of tools that is designed to support the development, use, and

analysis of hydrologic models developed using Raven but can be readily adapted for any hydrologic modelling output. RavenR

is a free, open-source software that is intended to support the wealth of options in a flexible modelling framework while

maintaining or improving the transparency and reproduciblity of the analyses undertaken by the modeller.475

The tools within RavenR may be used in any stage of the typical modelling workflow. Although the tools are designed for

use with Raven, the analysis and utility functions may be useful in conjunction with any hydrologic model that has similar

requirements and workflows as Raven. The RavenR tools provide the means for preparing Raven input files, visualizing and

processing input data, executing Raven, and generating a vast array of model checks and performance-related graphics from

the Raven output files. All functions in the package are supplemented by additional information and examples (consistent with480

CRAN requirements), and the package is further accompanied by the introductory documentation in the form of a vignette.

This paper illustrates how the RavenR functions may be used in both academic and industrial projects, including generating

model input *.rvt files, visualizing the model structure, and exploring and assessing the hydrologic model results. This includes

aiding the modeller in building an understanding and trust of the constructed hydrologic model.

A set of RavenR use cases are presented for the Liard River basin, for which a Raven model has previously been built and485

thoroughly tested (Brown and Craig, 2020). The use cases present how a subset of tools may be used to generate input files

for, or analyze the results of, the Raven model of the Liard river basin. The examples are bolstered by an interpretation of the

functions and results, which may be useful in interpreting and building confidence in any hydrologic model. The accompanying

data repository and code for this manuscript can fully recreate the figures and analyses presented in the use cases, demonstrating

best practices for reproducibility in hydrologic and scientific publications.490

Due to the open-source nature of the Raven project, the code is transparent and accessible to users and is being continuously

supplemented with new functionalities and improvements. Similarly, the RavenR package is open-source and is in active

development. It is anticipated that the RavenR project will also continue to improve and expand its functionality in order to

meet its goal of supporting Raven users from all backgrounds and experience levels while improving the reproducibility of

their work.495
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Code and data availability. The RavenR package is free and open-source software, and the version of the package (v.2.1.4) used to

produce the results of this paper is archived on Zenodo (Chlumsky et al., 2021b). All R code and data used to generate the results

and figures presented in this manuscript is also archived on Zenodo (Chlumsky et al., 2021a), and is also available on Github (https:

//github.com/rchlumsk/RavenR_manuscript_2021). The RavenR package is currently available as v2.1.4 on the Comprehensive R Archive

Network (CRAN) (https://cran.r-project.org/package=RavenR), and the development version of the package is also available on Github500

(https://github.com/rchlumsk/RavenR). The Raven hydrologic modelling framework is open-source and may be downloaded from http:

//raven.uwaterloo.ca/.
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