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Abstract. In recent decades, advances in the flexibility and complexity of hydrologic models hashave enhanced their utility

in scientific studies and practice alike. However, the increasing complexity of these tools leads to a number of challenges,

including steep learning curves for new users and in the reproducibility of modelling studies. Here, we present the RavenR

package, an R package that leverages the power of scripting to both enhance the usability of the Raven hydrologic modelling

framework and provide complimentary analyses that are useful for modellers. The RavenR package contains functions that5

may be useful in each step of the model-building process, particularly for preparing input files and analyzing model outputs, and

these tools may be useful even for non-Raven users. The utility of the RavenR package is demonstrated with the presentation of

six use cases for a model of the Liard River basin in Canada. These use cases provide examples of visually reviewing the model

configuration, preparing input files for observation and forcing data, simplifying the model discretization, performing realityre-

alism checks on the model output, and evaluating the performance of the model. All of the use cases are fully reproducible,10

with additional reproducible examples of RavenR functions included with the package distribution itself. It is anticipated that

the RavenR package will continue to evolve with the Raven project, and will provide a useful tool to new and experienced

users of Raven alike.

1 Introduction

Hydrologic models are used for numerous applications, including streamflow prediction, flood forecasting, reservoir level15

forecasting, and in a scientific capacity to advance our understanding of hydrologic systems. Historically, most hydrologic

models have been designed with a fixed model structure comprised of a predefined set of environmental processes, while the

input data and model parameters may vary from watershed to watershed. While these fixed model structures (e.g., GR4J; Perrin

et al., 2003) may provide sufficient performance in some catchments, they are not adequate in all catchments, environments,

or hydrologic applications (Hoey et al., 2014). Numerous studies have called this fixed structure paradigm into question, and20

have instead called for the development of flexible modelling frameworks (Leavesley et al., 2002; Clark et al., 2011; Fenicia

et al., 2011), which would allow the modeller to possess more control over the model-building process. This has resulted in
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the emergence of flexible modelling frameworks in the literature (e.g., Orellana et al., 2008; Clark et al., 2008; Kavetski and

Fenicia, 2011; Clark et al., 2015; Knoben et al., 2019; Coxon et al., 2019; Craig et al., 2020), and recent studies have been

extensively supported by the use of these frameworks (Pilz et al., 2020; Remmers et al., 2020; Chadalawada et al., 2020;25

Knoben et al., 2020; Spieler et al., 2020; Mai et al., 2020; Chlumsky et al., 2021b).

The power contained in these flexible hydrologic models is limited in part by the modeler’s ability to take advantage of it.

In an ideal setup, a modeller would find converting their system conceptual model to a numerical model a seamless process; in

actuality, setting up a numerical model often involves data wrangling and other tedious tasks, with decisions ranging from those

with relatively little impact on the final modelling results (e.g., how to combine dozens of text files) to potentially problematic30

and highly impactful decisions (e.g., time series interpolation or model structure adjustments). Even among hydrological modelling

software that have graphical user interfaces (GUIs), fFew hydrologic models offer the ability to easily deploy and compare successive

model runs, resulting in a potentially large amount of time devoted to relatively trivial tasks, such as organizing model files and

comparing successive model runs.

In order to address some of these challenges, new tools must be developed to bridge the gap between complex, customizable35

tools and the ability for modellers (in particular, new users) to fully understand and deploy these tools. Increasingly, freely

available, open-source scripting languages, such as Python (Van Rossum and Drake, 2009) and R (R Core Team, 2021), are

being employed by modellers to create, visualize, and evaluate their models (Jackson et al., 2019; Slater et al., 2019; Astagneau

et al., 2021). While the languages themselves can carry significant learning curves, they unlock a wide range of time-saving

features due to their ability to reproducibly automate tasks in concise code that can be re-used between projects. Additionally,40

these languages can be greatly expanded through the straightforward installation of downloadable packages that allow the performing of complex statistical

analyses, obtaining and manipulating data, producing publication-ready plots, and even building interactive web visualizations, to be reduced to a handful

of lines of code. Many features and tools that would be inappropriate or inadvisable to build into the source code of hydrologic

models (e.g., downloading and quality controlling input data) are perfectly suited to scripting languages.

R, in particular, has gained significant ground in hydrology, entering the toolbox of many in both consulting and academia45

(Anderson et al., 2018; Slater et al., 2019; Astagneau et al., 2021). This is due in part to the already robust package ecosystem

awaiting hydrologists; the Comprehensive R Archive Network (CRAN), which hosts and tests R packages, allows for easy

access to packages for a variety of data processing tasks such as downloading data (tidyhydat (Albers, 2017)), examining

data (trend (Pohlert, 2020)), manipulating shapefiles and spatial data (sf, raster (Pebesma, 2018; Hijmans et al., 2021)),

evaluating model outputs (hydroGOF (Mauricio Zambrano-Bigiarini, 2020)), and visualizing data (ggplot2 (Wickham,50

2016)). Many hydrology-specific open-source packages have been developed in recent years, such as the CSHShydRology

package (Shook et al., 2021), Evapotranspiration (Guo et al., 2020), and many other packages reviewed in the literature

(Slater et al., 2019; Astagneau et al., 2021) and listed on CRAN Task View for Hydrology (https://cran.r-project.org/web/views/

Hydrology.html). R is also being used extensively in teaching hydrology to professionals and graduate students, and packages

have also been used directly as educational tools, such as the airGRteaching package (Delaigue et al., 2020, 2018).55

Reproducibility is essential to scientific advancement: to build a usable body of knowledge, we must be able to trust, rely

on, learn from, and when necessary, upend the lessons of past experiments (Hutton et al., 2016). There are studies suggesting
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that large proportions of scientific studies may not be reproducible (Baker, 2016; Camerer et al., 2018), including the field

of computational hydrology (Hutton et al., 2016; Chawanda et al., 2020). Studies deploying proprietary or even free but not

open-source software, such as HEC-HMS (Hydrologic Engineering Center, 2020), pose issues in their reproducibility. While60

open-source modelling software provides a transparent codification of the model, the reliability of the resulting model depends

heavily on the preparation of model input files and required data, which may not necessarily undergo the same level of scrutiny

and transparency in a given modelling exercise. The cCommunication of modelling methodology and workflow in science has

historically been primarily accomplished through the inclusion of a detailed methods section within research manuscripts. However, in

hydrology, the code and data that are needed to generate published results are often not made available, and the complexity of65

many hydrologic models and analyses make it infeasible for authors to include all necessary details for full reproducibility in

their manuscripts (Hutton et al., 2016). Increasingly, scientists and engineers are being encouraged to use (and in some cases

publish) computationally reproducible versions of their analyses (National Academies of Sciences, Engineering, and Medicine,

2019). Scripts, as a perfect record of the data manipulation, model setup, post-processing, and even figure creation steps, are

the ideal tools to accomplish this.70

R, in particular, has gained significant ground in hydrology, entering the toolbox of many in both consulting and academia

(Anderson et al., 2018; Slater et al., 2019; Astagneau et al., 2021). This is due in part to the already robust package ecosystem

awaiting hydrologists; the Comprehensive R Archive Network (CRAN), which hosts and tests R packages, allows for easy

access to packages for a variety of data processing tasks such as downloading data (tidyhydat (Albers, 2017)), examining

data (trend (Pohlert, 2020)), manipulating shapefiles and spatial data (sf, raster (Pebesma, 2018; Hijmans et al., 2021)),75

evaluating model outputs (hydroGOF (Mauricio Zambrano-Bigiarini, 2020)), and visualizing data (ggplot2 (Wickham,

2016)). Many hydrology-specific open-source packages have been developed in recent years, such as the CSHShydRology

package (Shook et al., 2021), Evapotranspiration (Guo et al., 2020), and many other packages reviewed in the literature

(Slater et al., 2019; Astagneau et al., 2021) and listed on CRAN Task View for Hydrology (https://cran.r-project.org/web/views/

Hydrology.html). R is also being used extensively in teaching hydrology to professionals and graduate students, and packages80

have also been used directly as educational tools, such as the airGRteaching package (Delaigue et al., 2020, 2018).

Here, we introduce an R package with a collection of tools to aid a modeller in preparing, running, and post-processing

results from custom hydrologic models developed with the hydrologic modelling framework Raven. Many of the tools are not

solely Raven-specific: functions exist to plot time series, analyze yearly patterns, and compute relevant statistics. However, the

package importantly contains a robust suite of functions for creating, reading, and manipulating Raven model files. Specific85

attention has been paid to supporting the testing, comparison, and diagnosis of models built with variable model structure;

many of these tools are unique. The intended purpose of the RavenR package is to enable modelers to simplify, automate, and

document their model creation process, effortlessly facilitate model visualization and evaluation, and to expand the flexibility

of the Raven hydrological modelling framework through scripting.
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2 Methods90

Section 2.1 briefly discusses Raven, and provides context for the RavenR package as a tool that enables improved workflows

with Raven. Section 2.2 discusses RavenR in more detail, including a typical model-building workflow (Section 2.2.1), the

installation and documentation available within RavenR (Section 2.2.2), and a description of the sample data sets available

within the package and external to the package (Section 2.2.3).

2.1 Raven hydrologic modelling framework95

Raven is an open-source software framework that can be used to build models from a selection of more than 100 available

process algorithms (Craig et al., 2020). It is estimated that at least 8× 1012 different hydrologic model configurations may

be setup using Raven (Mai et al., 2020) and this number is continuously increasing as new options are added to the software.

Raven is built for flexibility not only in process representation, but also in enabling multiple numerical schemes, discretization

schemes, input data types, and in providing the user control over output options. Raven is a fully object-oriented code written100

in C++ (Stroustrup, 2013), and is typically run from a command line. The input and output files are generally stored as text

files (*.txt or *.csv) or in NetCDF (Network Common Data Format) format. This allows all model files to be stored as non-

proprietary formats, and to be read and processed with any number of available tools for manipulating files.

The primary input files required for Raven (listed by file extension) include:

1. *.rvi - primary input file which defines the model structure, timestep, duration, and a number of additional options105

2. *.rvp - model parameter specification and soil/vegetation/land class definitions

3. *.rvh - model discretization, including all subbasin and hydrologic response unit (HRU) information

4. *.rvt - time series data, including forcing and observational data; this file often points to other *.rvt files with data sets

for various stations and locations

5. *.rvc - initial conditions for the model run110

Raven provides complete control over its output generation (Craig et al., 2020), a relatively uncommon feature in hydrologic
modelling software. A large proportion of the computational cost of a model run is often used in the writing of output files, and thus a substantial

computational burden can be alleviated if only the required outputs are written. This could be a single diagnostic metric for calibration, a single time series, or

the complete mass and energy balances of the model for debugging or auditing purposes. RavenAdditionally, it also allows for custom outputs to
be generated for a given statistical, spatial and temporal specification and state variable, such as the monthly average of daily115

snow depth for a particular set of subbasins (Craig et al., 2020).

This flexibility of Raven over the modelling process provides the modeller with a lot of power in configuring and running

their hydrologic model, but also provides some challenges in preparing files and working with the many possible outputs.

The command-line execution of the program and the lack of a user interface can present a learning curve for new users, but

also enables scripting languages to easily interface with Raven, and for Raven to be deployed in high-performance computing120

environments.
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A number of utilities exist to support the usage of Raven models, including the RavenPy (https://github.com/CSHS-CWRA/

RavenPy) for creating, running, and post-processing Raven models within Python, and HydroGlyph (http://raven.uwaterloo.

ca/hydroglyph/) for visualizing Raven time series output data. Hydrologic model support is also provided by many model-

independent packages, such as the CSHS-hydRology package (Anderson et al., 2018). However, RavenR is the most compre-125

hensive tool for preparing input files and performing a range of analyses with Raven output files.

2.2 RavenR software description

2.2.1 RavenR overview

The RavenR package is developed in R, and is a collection of tools to aid the modeller in preparing, running, and post-

processing files associated with a hydrologic model developed using Raven (Craig et al., 2020). Unlike other software im-130

plementations, such as SuperflexPy (Dal Molin et al., 2021), in which the model code is contained within R or Python, the

RavenR package is independent of the Raven model code, and operates only on related model input/output files and/or calling

the compiled Raven executable. The primary benefits of this separation are 1) maintaining the computational speed of the

compiled model code, and 2) allowing other users to implement their own non-R workflows in Python, shell scripts, or sys-

tem-specific forecasting frameworks, such as DELFT-FEWS (Werner et al., 2013). The development of analysis and plotting135

tools in R benefits from a rich array of libraries and relatively fast development when compared to a compiled language such

as C++, which is part of the reason for choosing to develop the external analysis tools in R.

RavenR is not intended to provide every tool needed to manipulate and analyze Raven input and output files, as the flexibility

of the Raven framework would require a vast collection of highly specific scripts to accommodate the needs of all modellers.

Instead, the package aims to reduce the effort required to use Raven, and allows the modeller to more effectively use the open-140

source scripting environment of R in their workflows. This may also reduce the learning curve of Raven that is created by its

flexibility, as the package provides the means to guide new users through the generation and manipulation of common files,

and reduces the burden in analyzing the model results. This can be particularly helpful for users migrating from GUI-based

software such as HEC-HMS (Hydrologic Engineering Center, 2020).

The available functions within RavenR can be broadly categorized by their utility into the main categories of: 1) preparing145

input files, 2) reading output filesrunning Raven, 3) running Ravenreading output files, 4) tools for hydrologic analyses, and 5) support

utilities (e.g. time series processing, water year analysis, etc.). The typical workflow for RavenR is closely related to the

workflow required for the development and use of any hydrologic model, including one developed with Raven. This includes

the collecting and processing of data for the model, determining the model structure, creating model input files in the format

required by the modelling software, executing the model, and analyzing the results of the model for hydrologic consistency150

and performance. This can include exercises in model calibration and validation, uncertainty analysis, identifiability analysis,

and project-specific simulations or adjustments to the model runs.

The typical workflow for developing a hydrologic model and examples of RavenR functions that may be used to support

each step are provided in Table 1.
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Table 1. Typical workflow table for building hydrologic models and connection to RavenR.

Step Activity Description RavenR

Functions

1 Collect/Prepare

Data

Preparation and quality control of Raven input files (e.g., *.rvi

files from template, *.rvt files), often from public data sources

rvn_rvi_write_template,

rvn_rvt_tidyhydat,

+ 19 others

2 Discretize

Watershed

Quality control of implemented discretization scheme and

further simplification (e.g., aggregating very small or similar

HRUs)

rvn_rvh_clean_hrus,

rvn_subbasin_network_plot

3 Identify and De-

scribe Processes

Model structure development and process algorithm selection rvn_rvi_connections,

rvn_rvi_process_diagrammer,

rvn_rvi_process_ggplot

4 Parameterize the

Model

Model parameter definition and parameter value specification rvn_rvi_get_params

5 Execute the

Model

Running the Raven (or other hydrologic) model rvn_download &

rvn_run

6 Processing

Model Outputs

Reading and processing model output files for analysis rvn_hyd_read,

rvn_custom_read,

+ 7 others

7 Plots and Model

Diagnostics

Checking model performance with a number of analyses, real-

ityrealism checks, and diagnostics (often in conjunction with

model calibration and validation)

rvn_annual_peak_flow,

rvn_monthly_vbias,

+ 24 others

8 Report

Results

Generating quality graphics and workflows to communicate

results

Functions from step 7 +

additional R libraries (e.g.,

ggplot2 & rmarkdown)
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Although the model-building process is listed in Table 1 as a series of steps, in practice it is not linear, but rather iterative155

and cyclic. For example, a model diagnostic (step 7) may show that inadequate model performance can be remedied by the

inclusion of additional forcing data, requiring new data to be written to file (step 1). It is also recommended or common practice

in modelling to begin with a simpler model and proceed to a more complex one (e.g., Fenicia et al., 2008), which may require

iteration on steps 2-6 to potentially modify the structure (e.g. spatial and temporal discretization, hydrologic processes) after

a basic model has been established. Model calibration would typically involve an iteration upon steps 4-6 with a calibration160

algorithm, and a calibration that includes model structure (e.g., Spieler et al., 2020; Chlumsky et al., 2021b) would effectively

iterate upon steps 3-6. The iterative need for these model-building steps emphasizes the benefit of tools (including those in

RavenR) that can reduce the overhead in simple but repetitive tasks, such as producing figures and writing data to a specific

file format.

The functions within the RavenR package are named, where appropriate, by the three letter Raven file name or short abbre-165

viation corresponding to the output file that they interact with, e.g., rvn_rvi_connections for processing the *.rvi file

structure or rvn_res_read for reading the output ReservoirStages.csv file. Other functions simply use illustrative names to

convey their purpose (e.g. rvn_budyko_plot). This naming convention provides some navigability of the package func-

tions to the new user, even before the package documentation is reviewed (see Section 2.2.2).

The RavenR package has a number of preferred data formats and related package dependencies. Most plots are generated170

using the ggplot2 (Wickham, 2016) and related libraries from the so-called tidyverse, including dplyr (Wickham et al.,

2021a) and tidyr (Wickham, 2021) for data manipulation. This allows all plots to be exported as plot objects and further

manipulated by the user as desired, and removes the need for all plot options to be wrapped into RavenR functions. Time series

handling is done through the lubridate (Grolemund and Wickham, 2011) and xts (Ryan and Ulrich, 2020) packages,

where the extensible time series (xts) format is generally expected for time series data. Finally, support for network analysis175

is done through the igraph package (Csardi and Nepusz, 2006), which primarily supports the organization of watershed

discretization connections (*.rvh file) and the network of model structure connections (*.rvi file), including the related plot

functions, e.g., rvn_subbasin_network_plot and rvn_rvi_process_diagrammer.

2.2.2 Installation and documentation

The package is developed as a free and open-source software tool, which is ideal for maintaining transparency and reproducibil-180

ity in workflows related to hydrologic modelling and all steps involved. The stable package version is available for download

through CRAN (currently version 2.1.4), which can be installed in R using the command install.packages("RavenR").

The development version of the package is available on Github (https://github.com/rchlumsk/RavenR) and may be installed us-

ing the devtools library (Wickham et al., 2021b) as devtools::install_github('rchlumsk/RavenR'). Both

installation commands resolve the dependencies associated with the package.185

The RavenR package is fully documented and contains a description of inputs, outputs, with an usage example for each

function consistent with the standards for CRAN packages. In addition to the package documentation, an introductory vignette

Introduction to RavenR, is included with the package, which discusses getting started with the package and how it may be used
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in a manner that is more useful to new users of Raven and RavenR. The introductory vignette is available with the command

install.packages("RavenR").190

2.2.3 Sample data sets

In the interest of reproducible examples, the RavenR package contains a number of sample data sets and raw data files

embedded within the package which are used within the function examples. Sample data is embedded directly as imported

data (accessible with the data function in R) for a number of file output types (hydrograph, watershed storage, etc.), as

well as sample data for the tidyhydat and weathercan packages. The latter sample data allows the function examples195

to run without a dependency on the mentioned data-retrieval packages. Raw data files are also included (accessible with the

system.file function in R), which allow for the testing of reading raw data directly. The examples where raw data files are

first read into R using RavenR functions may be more helpful than examples which call sample data directly with the data

command, since the workflow will be closer to the one applied in practice.

The sample Raven output files and data that is distributed with the RavenR package were generated from a model of the200

Nith watershed, which is located immediately west of Kitchener-Waterloo in Ontario, Canada. The Raven model of the Nith

watershed can be found in full on the Raven webpage (http://raven.uwaterloo.ca/downloads.html) in the Tutorials 1-4 download

set. Numerous additional Raven models are available from this page, including the model of the Liard River basin (Brown and

Craig, 2020), which is used in the RavenR case studies in this manuscript (Section 3).

3 Use cases of the RavenR package205

In this section, we present a number of use cases of the RavenR package. These cases are not intended to be a comprehensive

review of all the applications for the RavenR package, but to provide the reader with a partial demonstration of how the

package may be used in conjunction with Raven. The cases are discussed in the context of hydrologic modelling with flexible

frameworks more broadly, and provide cases and checks that are likely to be useful when deploying both Raven and non-Raven

hydrologic models.210

The use cases are presented in approximate order of the model-building process (Table 1), beginning with the generation

of model input files and proceeding to the analysis of output files. These use cases include examples and discussion of almost

allmost of the steps of in the model-building process, with the exception of steps 4 and 5. Tools for these steps, such as running Raven from within

R using rvn_run (step 4), exist within the RavenR package but are not discussed in detail in this section., with additional examples available in

the use cases markdown file.215

All R code and model files required to generate the results and figures in this section are provided in an open-source

Zenodo repository (https://doi.org/10.5281/zenodo.5534818https://doi.org/10.5281/zenodo.5534817), and utilize the version

of RavenR currently available on CRAN (version 2.1.4).
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3.1 Liard River basin

The use cases presented here utilize the Liard River basin model built with Raven. The Liard River basin is located in northern220

Canada, spanning the Yukon Territory, Northwest Territories, British Columbia and Alberta. The Liard River is the largest

tributary to the Mackenzie River, with a total contributing area of 275000 km2 (Brown and Craig, 2020). The basin includes

a variety of landforms, including mountainous regions and wetland-dominated regions. There are varying degrees of difficulty

when trying to accurately represent these various landforms in a hydrologic model. Additional details on the Liard River basin,

and the corresponding hydrologic model developed for the basin with Raven, can be found in Brown and Craig (2020), which225

also describes the manual calibration process that was undertaken for the model.

3.2 Input file processing

An early step in the model-building process is the collection of data and preparation of model input files (step 1 in Table 1.

While the supporting data analysis may not require expert knowledge of hydrology per se, the data preparation can require

a substantial amount of time and effort in the modelling process. Further, the reproducibility and merit of research may rest230

on the ability to access and reproduce the original and processed intermediate data, which is vastly improved by the use of a

scripting environment that in effect documents the steps taken to prepare the data files (Anderson et al., 2018). As such, the use

of scripting tools, such as those that will be discussed in this section, may be used to both reduce the effort required to prepare

input data files and improve the reproducibility of the research or applied project.

This section discusses the preparation of the model structure configuration, the preparation of forcing data and observation235

data, and modifications to the model discretization file. Additional utilities related to input files exist within the package (such

as providing parameter information), but these applications discuss a large proportion of the workflow that would be required

in developing a set of Raven input files.

3.2.1 Model configuration

One of the key characteristics of Raven is flexibility, including the ability to customize the model structure in terms of the240

organization of water storage units and selection of process equations (Craig et al., 2020). The hydrologic process schematic

is specified through the main Raven input file, in which the number of soil layers, the list of hydrologic processes and the set

of ‘to’ and ‘from’ compartments, etc., are defined.

For new and even more experienced users of Raven, understanding the model structure and making changes within the primary input file may be a

somewhat daunting task, particularly when the model must be initially developed. Fortunately,tThe Raven User’s Manual (Craig and the Raven245

Development Team, 2022) provides the templates for a number of model structures, which can be used as a starting point

for constructing a customized hydrologic model. These are largely based on emulations of published hydrologic models in

the literature (e.g. UBCWM, HMETS, etc.), although some are based on research models that have been developed within

Raven (e.g. the Canadian Shield model). Once a base model has been selected, components of the model may be modified

using the many process options available within Raven which are documented in the Raven User’s Manual (Craig and the250
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Raven Development Team, 2022). The large number of process options available to the user provide no shortage of model

structure tweaks to customize their model. A critical step in making these adjustments to model structure is understanding

the structure and ensuring that it is consistent with the modeller’s conceptual understanding of the system (step 3 in Table 1).

While Raven itself does not currently have a user interface deployed that can visualize the model structure, functions within

the RavenR package can generate a model schematic from the contents of the model input (*.rvi) file. The ability to visualize255

this structure can be critical in understanding the model structure and ensuring the conceptual understanding is consistent with

the implemented structure. This can also be used to check for state variables or storage units with an improper number of

connections, such as a soil layer with no outflow mechanism.

The general workflow within RavenR to generate a model *.rvi file and visualize the contents is as follows:

1. A template model structure is selected and written to file using the rvn_rvi_write_template function.260

2. The file may be manually modified in consultation with the Raven User’s Manual (Craig and the Raven Development

Team, 2022)

3. The file may be read into R using the rvn_rvi_read function

4. The process connections from the file can be processed using the rvn_rvi_connections function

5. The process diagram can be generated either in ggplot format using the rvn_rvi_process_ggplot function, or as265

a diagrammer plot using the rvn_rvi_process_diagrammer function

6. (optional) the ‘:CreateRVPTemplate’ command can be used to generate a template *.rvp (parameter) file when Raven is

executed

7. (optional) the rvn_rvi_get_params function may be used to obtain a data frame of parameters, ranges, and default

parameter values for parameters that are included in the hydrologic model, based on the model structure configuration270

An example of the process diagram is provided for the Liard River basin in Figure 1. From this figure, the directional

connections between water storage compartments in the model can easily be ascertained and verified, allowing modelers

building a new model and modelers inheriting a model alike to quickly understand the movement of water in their current setup.

For instance, in the Liard model we can see the model has capacity for precipitation to enter specific wetland and depression

compartments, snow can melt and refreeze, and fast and slow (upper and lower) reservoirs exist to represent groundwater275

processes as different time scales (Brown and Craig, 2020). A single-layer topsoil compartment is used to connect the surface

water and subsurface domains in the model along with a vadose zone reservoir to help represent a karst structure within the

model. We can see that all processes that move water to glacier are conditional based on the HRU type (glacier HRU). Ponded

water is moved to depression storage under the condition of being a wetland and surface water only directly evaporates to the

atmosphere if the HRU is a lake. The karst groundwater structure which was implemented in the model is only applicable to a280

subset of the HRUs which accounts for the conditional connections between SOIL[0], surface water, the vadose reservoir, and
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Figure 1. The model configuration of the Liard basin, generated from the Liard model *.rvi input file with the

rvn_rvi_process_diagrammer function. Solid grey lines indicate connections between state variables, and dashed orange

lines indicate conditional connections.

the fast and slow reservoirs. Reviewing and verifying these conditional exceptions along with the connections between other

state variables can help ensure that the model is appropriately structured.

Typically, diagrams such as these are arduous to produce for highly-flexible modelling software such as Raven. Here, the

function has been automated to create publication-ready diagrams for most model setups.285

3.2.2 Forcing data

Meteorological forcings (e.g. precipitation, temperature, wind speed) drive the hydrologic model responses. When not collected

as part of a project, these data are often obtained from online, freely available public sources generally collected, processed,

and maintained by local and/or public agencies. These data are likely to require some quality control before ingestion into

the model, such as addressing data flags, removing erroneous data, and converting units (step 1 in Table 1). This process290

can be quite tedious, especially when combining multiple data sets of various formats, time steps, and quality. The RavenR

package offers the rvn_rvt_write_met function for writing forcing data directly to the Raven *.rvt format: the function

defaults are configured to accept outputs from the weathercan R package, which automatically downloads data for Canadian

meteorological stations maintained by Environment Canada (LaZerte and Albers, 2018).
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fort_liard <- c(60.241711, -123.467377)

stns <- weathercan::stations_search(coords=fort_liard, interval="day",

dist = 500, starts_latest = 1985, ends_earliest = 2006)

weather_dl(stns$station_id[1:10], interval="day",

start="1985-10-01", end="2005-10-01") %>%

rvn_met_interpolate(cc=c("max_temp", "min_temp", "total_precip"),

key_stn_ids = stns$station_id[1:5]) %>%

rvn_rvt_write_met()

Figure 2. Minimum code required for the use case described in Section 3.2.2 of downloading, interpolating, and writing meteorological data

into Raven *.rvt format using the weathercan and RavenR R packages. The pipe operator (%>%) from the dplyr package is used for

readability. Additional code comments are provided in the accompanying repository.

In this use case, daily meteorological data for a 20-year period is downloaded, interpolated, and written to Raven *.rvt format.295

The weathercan R package is used to search for stations within 500 km of Fort Liard and with data records spanning from

1985 to 2005. A subset of stations meeting these criteria is downloaded for pre-processing. Missing values in the meteorological

data are then interpolated using data from nearby stations, and a fix is also applied to any interpolated data where the maximum

daily temperature is less than the daily minimum. The data from five of the selected stations are then written to Raven *.rvt

format. This workflow would be of substantial time and effort if performed manually or scripts for this task were adapted300

with each new application; in this use case, the entire workflow is performed with two main functions from the weathercan

package and two from the RavenR package. The code required to accomplish this is provided in Figure 2.

The advantages of this workflow are 1) the ease of implementation, which can process any number of stations with only a

few lines of R code; 2) the transparency and reproducibility of the *.rvt file generation, which is useful for both review of the

data and possible future corrections to all *.rvt files (e.g., extending the time series to incorporate more recent data). The code305

may be extended to any supplied set of stations and any meteorological variable that is recognized by Raven. The function also

assumes standardized Raven parameter units for all meteorological variables (see reference tables in Appendix C of the Raven

User’s Manual (Craig and the Raven Development Team, 2022)).

3.2.3 Observation data

Observation data, such as streamflow records, are generally not required to run hydrologic models; an exception to this may be310

for truncated model domains, where the model simulates a portion of the watershed and is supplemented by upstream measured

flow data. However, observed time series are key to evaluating model performance (history matching) in both calibration and

validation exercises and may also be used to enable data assimilation in forecasting applications.

Similar to the use of the weathercan R package for downloading Canadian meteorological data, the tidyhydat R

package may be used to download stream gauge data from Canadian stations maintained by the Water Survey of Canada315
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(Albers, 2017). RavenR provides the rvn_rvt_tidyhydat function to process tidyhydat inputs directly by wrapping

the rvn_rvt_write function, which can write any non-meteorological time series to *.rvt format. Possible types of time

series supported by Raven *.rvt files include reservoir inflows, irregular observations, observation weights, temporal reservoir

operation rules, etc. The entire list of available formats can be found in the Raven User’s Manual (Craig and the Raven

Development Team, 2022).320

In this use case, the tidyhydat package is used to prepare *.rvt files of observed streamflow for 9 specified stations (con-

sistent with the stations listed in Table 2 of Brown and Craig (2020)) used in the Liard model. The daily streamflow for these sta-

tions are downloaded using tidyhydat from 1985 to present day, and written to *.rvt format using the rvn_rvt_tidyhydat

function (a wrapper for the rvn_rvt_write function). Raven will automatically exclude any missing values from the cal-

culation of diagnostics, thus missing values in observation data generally do not need to be interpolated or infilled in the same325

manner that meteorological forcing data needs to be processed. However, the user may still wish to be aware of and avoid large

gaps in observation data that may bias the calculation of diagnostic metrics (e.g., consistent winter gaps or multi-year gaps).
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obs_stns <- read.csv("observation_stations.csv")

tidyhydat::hy_daily_flows(station_number = obs_stns$stnID,

start_date = "1985-01-01") %>%

rvn_rvt_tidyhydat(subIDs=obs_stns$subID)

Figure 3. Minimum code required for the use case described in Section 3.2.3 of downloading and writing observed flow data into Raven

*.rvt format using the tidyhydat and RavenR R packages. The pipe operator (%>%) from the dplyr package is used for readability.

Observation station IDs and associated model subbasin IDs are provided in the ‘observation_stations.csv’ file for brevity. Additional code

comments are provided in the accompanying repository.

The same rvn_rvt_write function may be used to write other *.rvt data types by adjusting the rvt_type parameter,

which may be useful for writing the observation weights generated from the rvn_gen_obsweights function to exclude

certain data periods from Raven diagnostics, as was done in the Liard model for winter periods with unreliable data records330

(Brown and Craig, 2020).

3.2.4 Model discretization file

The development of distributed and semi-distributed models requires the discretization of a basin into homogeneous units

representing hydrologically similar areas. This is typically completed through overlaying a number of spatial data sets which

have a dominant effect on the hydrological response of the basin, such as land use, elevation, or soil information (step 2 in335

Table 1). In overlaying the spatial data sets, a large number of small computational units, insignificant to the model function,

can be created. Since the model runtime is scaled with the number of HRUs, these small areas can increase computational and

calibration run times and are not necessary to simulate the dominant hydrological response of the basin. The RavenR package

offers a way to effectively eliminate small computational units using the rvn_rvh_cleanhrus function. This function may

merge units based on a set area threshold, and can also merge similar HRUs based on similarity in HRU properties such as340

landcover, slope, elevation and aspect. HRUs which are significant to the model can be locked or protected. Locked HRUs

cannot be removed from the model or increase in size and protected HRUs cannot be removed but may increase in size (to

maintain the total watershed area) if other HRUs are removed. This is useful in cases where a point observation is available at

a given location (snow survey data) or if the HRUs are part of a significant hydrological response (glaciers).

In this use case, the reduction in the number of model HRUs is demonstrated for a subset of the initial HRUs within subbasin345

3 only (initially with 172 HRUs). In the ‘basic’ reduction of HRUs, a simple area threshold is applied. In subsequent examples,

HRUs that are of land use type GLACIER are locked HRUs (i.e. cannot be removed or change in size), and HRUs that are

either WETLAND or WATER are protected (i.e. cannot be removed but can still increase in size if other HRUs are removed).

This operation is applied using area thresholds of 0.5% (with no locked or protected HRUs), 0.5% and 2.0% of the subbasin

area, resulting in 56, 87 and 44 HRUs, respectively. The impact of this operation on land use distribution within the subbasin350

is summarized in Figure 4.
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Figure 4. A barplot of total areas by land use for three sets of HRU configurations, including 1) prior to any ’cleaning’, 2) following a ‘basic’

0.5% area threshold merging criteria with the rvn_rvh_cleanhrus function with no locked or protected HRUs, 2) following the same

operation but with locked and protected HRUs specified, and 34) following a 2.0% area threshold merging criteria. The GLACIER land use

is locked, and the WETLAND and WATER land uses are protected. The example is done for a single subbasin in the watershed for demonstration

purposes, and shows how the land use in the subbasin changes when the removal of subbasins below the area percentage threshold is

performed, and when locked/protected HRUs are introduced, using the rvn_rvh_cleanrhus function.

In the figure, the total area of the GLACIER type decreases in the basic application, but otherwise remains the same when

it is lockedthe total area of all GLACIER land use type HRUs remains the same, as this land use type was locked. The WATER and WETLAND

land use types either decrease or reduce to zero in the basic application, and otherwise increase slightly with each individual

cleaning, relative to their proportion of the total area and the total area of removed HRUs based on the respective area threshold.355

It is noted that, were the WATER and WETLAND HRUs not protected (or locked), the area of these HRUs would be reduced with a 0.5% threshold and re-

moved entirely with a 2.0% threshold. Literature has shown that hydrologic areas such as wetlands that are small in size can still have

a disproportionately large effect on the hydrologic and biogeochemical response of the watershed (McLaughlin et al., 2014),

thus retaining particular HRUs or HRU types may be critical in the cleaning of the HRUs. Finally, the plot shows how the

other land use types change with these operations. The FOREST type increases in each case, suggesting that the proportion360

of small forested HRUs may be small, and that forested HRUs tend to be larger in size. The SHRUBLAND HRUs decrease

in represented proportion in each case. This type of analysis could be repeated for other HRU properties (e.g. slope, aspect,

vegetation type, etc.). This analysis should be done in conjunction with the use of the rvn_rvh_cleanrhus function to
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ensure that the reduction in the number of HRUs does not unexpectedly alter the overall representation of HRUs within the

model, and inhibit the ability of the model to capture the dominant hydrologic response.365

3.3 Output file processing and analysis

A number of functions within RavenR are included to handle the reading of common Raven output files, such as the Hy-

drographs file (rvn_hyd_read), the WatershedStorage file (rvn_watershed_read), and other output files (forcings,

custom output, etc.). In addition, functions to analyze the output data with typical hydrologic checks and diagnostics are in-

cluded in the package. While these functions are built to work with the Raven-specific read functions they are otherwise not370

specific to Raven, and may be used for any hydrologic model given a means of reading time series output is provided.

This section provides use cases where the realism of the Liard model is assessed, providing insight to the question, ‘is the

model getting the right answers for the right reasons?’ (Kirchner, 2006; Euser et al., 2013). These checks provide the modeller

with an understanding of the model dynamics and provide more confidence that the model is functioning as expected without

model compensation errors (step 7 in Table 1). This section also provides a demonstration of tools for evaluating model375

performance.

3.3.1 Evaluation of model realism

The flexibility of Raven in the generation of model outputs, including customized outputs that may be specified by the user,

can be leveraged to undertake rigorous checks of the hydrologic model. Tools have been built into the RavenR package to

capitalize on this feature, and facilitate a set of model realityrealism checks. Here, we define model realism as the model’s ability380

to replicate and be consistent with anticipated hydrologic behaviour, such as reproducing snowpack measurements, producing

reasonable evapotranspiration and runoff coefficients, etc. This definition echoes the one provided in the literature by Euser

et al. (2013). These checks can be considered semi-automatic, since a script may be deployed to generate the figures but they

still require interpretation by a modeller with an understanding of both the natural system and the developed model. Here, the

focus is on the realism of the model to ensure that it is providing hydrologically plausible results; the actual performance of385

the model with respect to streamflow is discussed further in Section 3.3.2.

The checks that are applied to the Liard River basin in this use case include: 1) plotting the Budyko curve (Budyko, 1974)

for the annual average watershed indices, 2) plotting the annual regime curve with monthly averages, 3) examining the sta-

tionarity of moisture content in soil storage layers, and 4) plotting the model performance with respect to snowpack storage as

snow water equivalent (SWE). Additional checks supported (not demonstrated here) include: plotting the forcing functions to390

understand how the inputs may be influencing the model results (i.e. wet and dry years, erroneous temperature readings, etc.),

checking the annual water balance, examining baseflow characteristics by comparing modelled and observedestimated baseflow

usingfrom baseflow separation techniques, plotting annual hydrographs in an overlay (i.e. spaghetti plot), and checking the

modelled hydrographs and reservoir levels, if any reservoirs or lakes are included in the model.

The four plots associated with the stated checks performed in this example are provided in Figure 5.395
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Figure 5. Multiple diagnostic plots generated from the RavenR package that may be useful in evaluating the realism of any hydrologic

model; A) budyko curve with annual average data points for the watershed, B) a series of regime curves, C) soil storage time series showing

the stationarity in long-term storage within soil layers and D) plots of observed and simulated snowpack measurements at Frances River. All

data are generated from the Raven model averaged at the watershed scale unless otherwise indicated (i.e. snowpack SWE).
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The Budyko plot in Figure 5A was generated using the rvn_budyko_plot function. The Budyko Curve (Budyko, 1974)

shows the relationship that quantifies how mean annual precipitation is partitioned into discharge or evapotranspiration (ET),

where the aridity index is plotted on the x-axis and the evaporative index on the y-axis. The Budyko pattern has been observed

in multiple catchments around the world (Vereecken et al., 2015). The x-axis of the Budyko curve is the aridity index which represents the

ratio between potential evapotranspiration and precipitation. The y-axis is the evaporative index and represents the ratio between actual evapotranspiration and400

precipitation. The curve is bound by two lines, shown in Figure 4a as the solid lines: the energy limiting line, which is when the evaporative index is equal to

the aridity index, and the water limiting line which occurs when the actual evapotranspiration is equal to precipitation. Certain catchment characteris-

tics, such as significant basin storage or the presence of wetlands (which are present in the Liard model), can cause deviations

from the Budkyo curve. Deviation from the line may also indicate that actual evapotranspiration is underestimated, which may

prompt further examination of the model.405

In a traditional application of the Budyko Curve it is expected that the plotted points would fall closer to the theoretical line shown in Figure 5A as the

dashed line. However, certain traits of a basin, such as significant basin storage, can result in deviation from this line. The interpretation of the plot in Figure 4a

could also indicate that actual evapotranspiration is being underestimated in the model. Alternatively, if there is significant inter-annual storage in the basin,

perhaps due to the presence of wetlands, then the plot would be in line with reality. Ultimately, it is up to the modeller to decide whether this plotted behaviour

is expected or if there is a possible misrepresentation of hydrologic processes in the model.410

The regime curve can be used to examine the quantities and timing of some of the key model functions. For example, the

Figure 5B shows that the PET in the Liard model(based on the Hargreaves 1985 calculation method, see Hargreaves and

Samani (1985)) peaks at the same time as the AET in June, and maintains a similar pattern over the other months of the year on average.

Thethe simulated and observed flows are close in value, and both peaking prior to the peak in precipitation. This aligns with the

fact that peaks in the Liard River basin are typically freshet driven. mismatchMismatches in elements of the regime curve, such415

as AET and PET or precipitation and flow that is not expected by the modeller would provide a point of investigation and validation into the

model.

The soil storage information can be retrieved from Raven in either the WatershedStorage.csv file (generated with the

:WriteMassBalanceFile command), or with the custom output options for specific soil layers (e.g., :CustomOutput

DAILY AVERAGE SOIL[0] ENTIRE_WATERSHED). Plots such as Figure 5C may be applied to any storage compart-420

ment in the model to verify the general assumption of long-term stationarity in storage within the hydrologic model, such as

lake or reservoir storage. The stationarity assumption for a continuous simulation model is that over a long duration the soil

storage should reach a quasi-equilibrium, oscillating around a steady mean. Therefore, a continuous simulation model which is

continuously accumulating soil moisture during the simulation period may indicate that, for example, there is insufficient evap-

otranspiration or baseflow, resulting in the soil storage continuously increasing to compensate for this deficiency. A similar check425

for reservoir or lake storage could also be warranted. In the plot provided, all four soil storage units have a pattern that generally repeats annually, indicating

the storage is stationary in the long term. In addition to verifying the stationarity assumption in storage and examining model compensation effects,Figure

5C may be used to better understand the soil dynamics in the model, and ensure that it is consistent with the understanding of the natural system. The pattern

indicates that the top soil layer (layer 1) peaks in May-June (presumably with snowmelt) and rapidly depletes, while the fourth soil layer representing deep

groundwater storage receives the infiltration at a more delayed rate and has a slower release from storage.430
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The snow plot provides a method to evaluate the snow balance representation in the model for a particular station. The

simulated snow series is produced in Raven with the custom output command (e.g., :CustomOutput DAILY AVERAGE

SNOW BY_HRU), and is compared against the observed snow course measurements. The plot in Figure 5D was generated

for the Frances River station. The snow plot provides a visual representation of the model’s ability to represent the snow

processes and compares it directly to observations. The model provides a reasonable representation of the snowpack SWE435

with no consistent bias in estimation. The same plots may be created wherever snow measurements are available, and provide a method for directly

evaluating the snow routines in the model. InRavenR, the custom output snow is read into R using thervn_custom_read function, and irregular

observations may be read using any native R read function (such asread.table) or the rvn_rvt_read function if they are provided as irregular

observations in an *.rvt file. Raven may also directly calculate any model diagnostics for irregular snow observations (such as NSE) if they are provided to

the model, which may be useful in building objective functions for automatic calibration of the watershed.A similar custom output request for any440

state variable over a specified temporal and spatial resolution may be produced by Raven at the user’s request, and processed

using RavenR.

Although not included in the plots above, examination of the model input forcings is often an insightful step in diagnosing potential model issues and

realism. The forcing functions file that is outputted by Raven may be quickly read and visualized withRavenR (i.e. rvn_forcings_read()

%>% rvn_forcings_plot) as a check. Issues such as errors in the temperature record or in the units of precipitation (mm/h instead of mm/d, for445

example) may be quickly determined with a visual check on the array of forcings that are both supplied to and determined by the Raven model.

3.3.2 Evaluation of model performance

The RavenR package provides a broad suite of tools for analyzing the results of any Raven hydrologic model, including

many tools that can be considered model independent (step 7 in Table 1). For example, hydrograph plots, calculation of runoff

coefficients, and flow duration curve plots are available within RavenR but may be computed for any time series of flows.450

The calculation of diagnostics, such as the commonly used Nash-Sutcliffe Efficiency (Nash and Sutcliffe, 1970) and Kling-

Gupta Efficiency (Gupta et al., 2009) metrics, are not included in the RavenR package as they can be calculated directly within

Raven, and are also available comprehensively in existing packages such as hydroGOF (Mauricio Zambrano-Bigiarini, 2020).

In this use case, a number of diagnostic plots based on simulated and observed hydrographs are presented for the Liard River

basin model. These diagnostic plots are computed at the outlet of the Liard River basin (at the outlet near Water Survey of455

Canada station 10ED1002), and are provided in Figure 6. These plots are provided for a portion of the simulation period (where

the plot is time-based), and in practice these plots may be applied in both calibration and validation periods for comparison.
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Figure 6. Multiple diagnostic plots generated from the RavenR package that may be useful in evaluating model performance; A) a hydro-

graph plot for a subset of the simulation period, B) a scatterplot of simulated and observed annual peak flows, C) plot of timing annual peak

timing errors, and D) a plot of cumulative annual flow volumes in time. In plots A and D, the observed is plotted in black and the simulated

in orange.

20



In Figure 6A, a simple hydrograph plot for a subset of the simulation period is provided. The hydrograph shows good

agreement in the magnitude and timing of summer peaks for the years shown as well as the rising limb of the hydrograph,

which was the focus of the calibration in the work of Brown and Craig (2020), with a tendency to overestimate the recession460

from the peak in June until late December/early January. The underestimation tends to continue until the next peak. The

hydrograph is shown for a subset of a few years, allowing for a more critical evaluation of the model performance, since

examiningrather than the entire period, as the full period can obscure the important deviations of the simulated hydrograph from

observations and mask deficiencies. Examining a smaller section of the plot (e.g. with the prd argument in many RavenR functions), such as only a

few years of simulation or a particular event of interest, allows for a more critical examination of the nature of the model errors. A subset of a hydrograph465

can also be viewed dynamically as a dygraph in RavenR with the rvn_hyd_dygraph function, which is supported by the

dygraphs package (Vanderkam et al., 2018).

The peak flow scatterplot (Figure 6B) is a scatterplot of the simulated and observed annual peak flows, calculated based on

the October 1st water year and produced using the rvn_annual_peak function. This figure provides a visual assessment

of the performance of modelled peak flow magnitudes, including any systematic bias in over- or under-predicting peaks as a470

function of peak magnitude. Here, the model appears to estimate peaks with reasonable performance and without systematic

bias, although which can be seen as a function of the flow magnitudes themselves (i.e. does the model simulate peak flow magnitudes well at lower and

higher flow values?). A model that is able to perfectly simulate peak flow magnitudes will have all points fall on the 1:1 line included in the plot. The plot also

provides insight into the nature of the peak error i.e. whether there is a systematic bias in over- or under-predicting peaks, or whether the errors are normally

distributed. The plot provided shows that points are relatively close to the 1:1 line and there is no strong evidence of a systematic bias in flow magnitude pre-475

diction. However, since only 20 points are included on the plot, additional data may be required to produce conclusions that are statistically

valid.

While (Figure 6C)Figure 6B captures the performance with respect to the magnitude of the flow peaks, the timing of peak

flows is not assessed. The plot in Figure 6DFigure 6C assesses the error in peak timing (rather than magnitude) with the

rvn_annual_peak_timing_error function. A perfect model would have all points fall along the zero line, indicating480

that there is no error in the timing of predicted peaks. The results for the Liard simulation indicate that the model tends to

predict peaks slightly later than the observed data, while some of the larger errors in timing tend to be in early peak prediction.

In a forecasting framework, a data assimilation technique may reduce the timing (and magnitude) errors that are present in

the continuous simulation evaluated here. However, this tendency of the model may still be useful information for forecasters.

The use of multiple functions in tandem within RavenR to examine both the peak magnitude and timing errors can be used485

to evaluate the model performance more comprehensively than a single function (see multiple RavenR functions named as

rvn_annual_*).

Finally, Figure 6D provides a comparison of cumulative flow volumes between the simulated and observed model in time.

This plot is generated by the rvn_cum_plot_flow function. The plot shows clearly where deviations in the overall volume arise in time.

For example, the plot for the Liard model shows that the December-March winter period of each year is a time of deviation in490

cumulative volumes, while the freshet-driven summer peak periods tend to match volume quite well overall. This is likely a

result of the calibration procedure in (Brown and Craig, 2020), where ice affected flows in the winter were not considered in the
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calibration procedure due to high levels of uncertainty associated with the measurements. Additional functions that examine

the relative volumes of simulated and observed flows, but aggregate them rather than examining the differences in time, are the

rvn_monthly_vbias and the rvn_annual_volume functions, which provide the monthly average volume differences495

and the annual volume differences in a scatterplot for each year, respectively. The volume is generally a useful diagnostic metric

as it integrates the modelled hydrograph performance in time, and allows the modeller to identify periods of poor cumulative

error or systematic errors (e.g. underestimating overall volume) that may be not clear or obvious when only examining flows.

4 Conclusions

This paper presented the RavenR package, an R-based set of tools that is designed to support the development, use, and500

analysis of hydrologic models developed using Raven but can be readily adapted for any hydrologic modelling output. RavenR

is a free, open-source software that is intended to support the wealth of options in a flexible modelling framework while

maintaining or improving the transparency and reproduciblity of the analyses undertaken by the modeller.

The tools within RavenR may be used in any stage of the typical modelling workflow. Although the tools are designed for

use with Raven, the analysis and utility functions may be useful in conjunction with any hydrologic model that has similar505

requirements and workflows as Raven. The RavenR tools provide the means for preparing Raven input files, visualizing and

processing input data, executing Raven, and generating a vast array of model checks and performance-related graphics from

the Raven output files. All functions in the package are supplemented by additional information and examples (consistent with

CRAN requirements), and the package is further accompanied by the introductory documentation in the form of a vignette.

This paper illustrates how the RavenR functions may be used in both academic and industrial projects, including generating510

model input *.rvt files, visualizing the model structure, and exploring and assessing the hydrologic model results. This includes

aiding the modeller in building an understanding and trust of the constructed hydrologic model.

A set of RavenR use cases are presented for the Liard River basin, for which a Raven model has previously been built and

thoroughly tested (Brown and Craig, 2020). The use cases present how a subset of tools may be used to generate input files

for, or analyze the results of, the Raven model of the Liard river basin. The examples are bolstered by an interpretation of the515

functions and results, which may be useful in interpreting and building confidence in any hydrologic model. The accompanying

data repository and code for this manuscript can fully recreate the figures and analyses presented in the use cases, demonstrating

best practices for reproducibility in hydrologic and scientific publications.

Due to the open-source nature of the Raven project, the code is transparent and accessible to users and is being continuously

supplemented with new functionalities and improvements. Similarly, the RavenR package is open-source and is in active520

development. It is anticipated that the RavenR project will also continue to improve and expand its functionality in order to

meet its goal of supporting Raven users from all backgrounds and experience levels while improving the reproducibility of

their work.
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Code and data availability. The RavenR package is free and open-source software, and the version of the package (v.2.1.4) used to produce

the results of this paper is archived on Zenodo (Chlumsky et al., 2021a). All R code and data used to generate the results and figures525

presented in this manuscript is also archived on Zenodo at doi 10.5281/zenodo.5534817 (Chlumsky et al., 2022), and is also available on

Github (https://github.com/rchlumsk/RavenR_manuscript_2021). The RavenR package is currently available as v2.1.4 on the Comprehensive

R Archive Network (CRAN) (https://cran.r-project.org/package=RavenR), and the development version of the package is also available on

Github (https://github.com/rchlumsk/RavenR). The Raven hydrologic modelling framework is open-source and may be downloaded from

http://raven.uwaterloo.ca/.530
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