10

15

20

RavenR v2.1.4: an open source R package to support flexible
hydrologic modelling

Robert Chlumsky', James R. Craig!, Simon G.M. Lin', Sarah Grass?, Leland Scantlebury'-,
Genevieve Brown*, and Rezgar Arabzadeh!

1Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, Canada
2Geoprocess Research Associates, Edmonton, AB, Canada

3Hydrologic Sciences Graduate Group, University of California, Davis, Davis, CA, United States
4Northwest Hydraulic Consultants Ltd., North Vancouver, BC, Canada

Correspondence: Robert Chlumsky (rchlumsk @uwaterloo.ca)

Abstract. In recent decades, advances in the flexibility and complexity of hydrologic models kashave enhanced their utility
in scientific studies and practice alike. However, the increasing complexity of these tools leads to a number of challenges,
including steep learning curves for new users and in the reproducibility of modelling studies. Here, we present the RavenR
package, an R package that leverages the power of scripting to both enhance the usability of the Raven hydrologic modelling
framework and provide complimentary analyses that are useful for modellers. The RavenR package contains functions that
may be useful in each step of the model-building process, particularly for preparing input files and analyzing model outputs, and
these tools may be useful even for non-Raven users. The utility of the RavenR package is demonstrated with the presentation of
six use cases for a model of the Liard River basin in Canada. These use cases provide examples of visually reviewing the model
configuration, preparing input files for observation and forcing data, simplifying the model discretization, performing realieyre-
alism checks on the model output, and evaluating the performance of the model. All of the use cases are fully reproducible,
with additional reproducible examples of RavenR functions included with the package distribution itself. It is anticipated that
the RavenR package will continue to evolve with the Raven project, and will provide a useful tool to new and experienced

users of Raven alike.

1 Introduction

Hydrologic models are used for numerous applications, including streamflow prediction, flood forecasting, reservoir level
forecasting, and in a scientific capacity to advance our understanding of hydrologic systems. Historically, most hydrologic
models have been designed with a fixed model structure comprised of a predefined set of environmental processes, while the
input data and model parameters may vary from watershed to watershed. While these fixed model structures (e.g., GR4J; Perrin
et al., 2003) may provide sufficient performance in some catchments, they are not adequate in all catchments, environments,
or hydrologic applications (Hoey et al., 2014). Numerous studies have called this fixed structure paradigm into question, and
have instead called for the development of flexible modelling frameworks (Leavesley et al., 2002; Clark et al., 2011; Fenicia

et al., 2011), which would allow the modeller to possess more control over the model-building process. This has resulted in

25

30

35

40

45

50

55

the emergence of flexible modelling frameworks in the literature (e.g., Orellana et al., 2008; Clark et al., 2008; Kavetski and
Fenicia, 2011; Clark et al., 2015; Knoben et al., 2019; Coxon et al., 2019; Craig et al., 2020), and recent studies have been
extensively supported by the use of these frameworks (Pilz et al., 2020; Remmers et al., 2020; Chadalawada et al., 2020;
Knoben et al., 2020; Spieler et al., 2020; Mai et al., 2020; Chlumsky et al., 2021b).

The power contained in these flexible hydrologic models is limited in part by the modeler’s ability to take advantage of it.
In an ideal setup, a modeller would find converting their system conceptual model to a numerical model a seamless process; in
actuality, setting up a numerical model often involves data wrangling and other tedious tasks, with decisions ranging from those
with relatively little impact on the final modelling results (e.g., how to combine dozens of text files) to potentially problematic
and highly impactful decisions (e.g., time series interpolation or model structure adjustments). Even-among hydrological-modelling
software-that-have-graphical-user-interfaces(GUls)—Few hydrologic models offer the ability to easily deploy and compare successive

model runs, resulting in a potentially large amount of time devoted to relatively trivial tasks, such as organizing model files and

comparing successive model runs.

In order to address some of these challenges, new tools must be developed to bridge the gap between complex, customizable
tools and the ability for modellers (in particular, new users) to fully understand and deploy these tools. Increasingly, freely
available, open-source scripting languages, such as Python (Van Rossum and Drake, 2009) and R (R Core Team, 2021), are
being employed by modellers to create, visualize, and evaluate their models (Jackson et al., 2019; Slater et al., 2019; Astagneau
et al., 2021). While the languages themselves can carry significant learning curves, they unlock a wide range of time-saving

features due to their ability to reproducibly automate tasks in concise code that can be re-used between projects. Additionally;

of lines-of code: Many features and tools that would be inappropriate or inadvisable to build into the source code of hydrologic

models (e.g., downloading and quality controlling input data) are perfectly suited to scripting languages.

R, in particular, has gained significant ground in hydrology, entering the toolbox of many in both consulting and academia
(Anderson et al., 2018; Slater et al., 2019; Astagneau et al., 2021). This is due in part to the already robust package ecosystem
awaiting hydrologists; the Comprehensive R Archive Network (CRAN), which hosts and tests R packages, allows for easy
access to packages for a variety of data processing tasks such as downloading data (t idyhydat (Albers, 2017)), examining
data (t rend (Pohlert, 2020)), manipulating shapefiles and spatial data (s £, raster (Pebesma, 2018; Hijmans et al., 2021)),
evaluating model outputs (hydroGOF (Mauricio Zambrano-Bigiarini, 2020)), and visualizing data (ggplot2 (Wickham,
2016)). Many hydrology-specific open-source packages have been developed in recent years, such as the CSHShydRology
package (Shook et al., 2021), Evapot ranspiration (Guo et al., 2020), and many other packages reviewed in the literature
(Slater et al., 2019; Astagneau et al., 2021) and listed on CRAN Task View for Hydrology (https://cran.r-project.org/web/views/
Hydrology.html). R is also being used extensively in teaching hydrology to professionals and graduate students, and packages
have also been used directly as educational tools, such as the ai rGRteaching package (Delaigue et al., 2020, 2018).

Reproducibility is essential to scientific advancement: to build a usable body of knowledge, we must be able to trust, rely

on, learn from, and when necessary, upend the lessons of past experiments (Hutton et al., 2016). There are studies suggesting

https://cran.r-project.org/web/views/Hydrology.html
https://cran.r-project.org/web/views/Hydrology.html
https://cran.r-project.org/web/views/Hydrology.html

60

65

70

75

80

85

that large proportions of scientific studies may not be reproducible (Baker, 2016; Camerer et al., 2018), including the field
of computational hydrology (Hutton et al., 2016; Chawanda et al., 2020). Studies deploying proprietary or even free but not
open-source software, such as HEC-HMS (Hydrologic Engineering Center, 2020), pose issues in their reproducibility. While
open-source modelling software provides a transparent codification of the model, the reliability of the resulting model depends
heavily on the preparation of model input files and required data, which may not necessarily undergo the same level of scrutiny
and transparency in a given modelling exercise. Fhe-e<Communication of modelling methodology and workflow in science has
historically been primarily accomplished through the inclusion-of a-detailed-methods-section-within research manuscripts. However, in
hydrology, the code and data that are needed to generate published results are often not made available, and the complexity of
many hydrologic models and analyses make it infeasible for authors to include all necessary details for full reproducibility in
their manuscripts (Hutton et al., 2016). Increasingly, scientists and engineers are being encouraged to use (and in some cases
publish) computationally reproducible versions of their analyses (National Academies of Sciences, Engineering, and Medicine,
2019). Scripts, as a perfect record of the data manipulation, model setup, post-processing, and even figure creation steps, are
the ideal tools to accomplish this.

R, in particular, has gained significant ground in hydrology, entering the toolbox of many in both consulting and academia
(Anderson et al., 2018; Slater et al., 2019; Astagneau et al., 2021). This is due in part to the already robust package ecosystem
awaiting hydrologists; the Comprehensive R Archive Network (CRAN), which hosts and tests R packages, allows for easy
access to packages for a variety of data processing tasks such as downloading data (tidyhydat (Albers, 2017)), examining
data (t rend (Pohlert, 2020)), manipulating shapefiles and spatial data (s £, raster (Pebesma, 2018; Hijmans et al., 2021)),
evaluating model outputs (hydroGOF (Mauricio Zambrano-Bigiarini, 2020)), and visualizing data (ggplot2 (Wickham,
2016)). Many hydrology-specific open-source packages have been developed in recent years, such as the CSHShydRology
package (Shook et al., 2021), Evapotranspiration (Guo et al., 2020), and many other packages reviewed in the literature
(Slater et al., 2019; Astagneau et al., 2021) and listed on CRAN Task View for Hydrology (https://cran.r-project.org/web/views/
Hydrology.html). R is also being used extensively in teaching hydrology to professionals and graduate students, and packages
have also been used directly as educational tools, such as the airGRteaching package (Delaigue et al., 2020, 2018).

Here, we introduce an R package with a collection of tools to aid a modeller in preparing, running, and post-processing
results from custom hydrologic models developed with the hydrologic modelling framework Raven. Many of the tools are not
solely Raven-specific: functions exist to plot time series, analyze yearly patterns, and compute relevant statistics. However, the
package importantly contains a robust suite of functions for creating, reading, and manipulating Raven model files. Specific
attention has been paid to supporting the testing, comparison, and diagnosis of models built with variable model structure;
many of these tools are unique. The intended purpose of the RavenR package is to enable modelers to simplify, automate, and
document their model creation process, effortlessly facilitate model visualization and evaluation, and to expand the flexibility

of the Raven hydrological modelling framework through scripting.

https://cran.r-project.org/web/views/Hydrology.html
https://cran.r-project.org/web/views/Hydrology.html
https://cran.r-project.org/web/views/Hydrology.html

90

95

100

105

110

115

120

2 Methods

Section 2.1 briefly discusses Raven, and provides context for the RavenR package as a tool that enables improved workflows
with Raven. Section 2.2 discusses RavenR in more detail, including a typical model-building workflow (Section 2.2.1), the
installation and documentation available within RavenR (Section 2.2.2), and a description of the sample data sets available

within the package and external to the package (Section 2.2.3).
2.1 Raven hydrologic modelling framework

Raven is an open-source software framework that can be used to build models from a selection of more than 100 available
process algorithms (Craig et al., 2020). It is estimated that at least 8 x 102 different hydrologic model configurations may
be setup using Raven (Mai et al., 2020) and this number is continuously increasing as new options are added to the software.
Raven is built for flexibility not only in process representation, but also in enabling multiple numerical schemes, discretization
schemes, input data types, and in providing the user control over output options. Raven is a fully object-oriented code written
in C++ (Stroustrup, 2013), and is typically run from a command line. The input and output files are generally stored as text
files (*.txt or *.csv) or in NetCDF (Network Common Data Format) format. This allows all model files to be stored as non-
proprietary formats, and to be read and processed with any number of available tools for manipulating files.

The primary input files required for Raven (listed by file extension) include:

1. *.rvi - primary input file which defines the model structure, timestep, duration, and a number of additional options
2. *.rvp - model parameter specification and soil/vegetation/land class definitions

3. *.rvh - model discretization, including all subbasin and hydrologic response unit (HRU) information

4. *.rvt - time series data, including forcing and observational data; this file often points to other *.rvt files with data sets

for various stations and locations

5. *.rvc - initial conditions for the model run

Raven provides complete control over its output generatlon (Craig et al., 2020) a relatlvely uncommon feature in hydrologlc
modelling software.

p and balanees d : PUFPOSEs: RavenAddltlonally, it also allows for custom outputs to
be generated for a given statistical, spatial and temporal spemﬁcatlon and state variable, such as the monthly average of daily
snow depth for a particular set of subbasins (Craig et al., 2020). -

This flexibility of Raven over the modelling process provides the modeller with a lot of power in configuring and running
their hydrologic model, but also provides some challenges in preparing files and working with the many possible outputs.
The command-line execution of the program and the lack of a user interface can present a learning curve for new users, but
also enables scripting languages to easily interface with Raven, and for Raven to be deployed in high-performance computing

environments.

125

130

135

140

145

150

A number of utilities exist to support the usage of Raven models, including the RavenPy (https://github.com/CSHS-CWRA/
RavenPy) for creating, running, and post-processing Raven models within Python, and HydroGlyph (http://raven.uwaterloo.
ca/hydroglyph/) for visualizing Raven time series output data. Hydrologic model support is also provided by many model-
independent packages, such as the CSHS-hydRology package (Anderson et al., 2018). However, RavenR is the most compre-

hensive tool for preparing input files and performing a range of analyses with Raven output files.
2.2 RavenR software description
2.2.1 RavenR overview

The RavenR package is developed in R, and is a collection of tools to aid the modeller in preparing, running, and post-

processing files associated with a hydrologic model developed using Raven (Craig et al., 2020). Unlike other software im-

plementations, such as SuperflexPy (Dal Molin et al., 2021), in which the model code is contained within R or Python, the

RavenR package is independent of the Raven model code, and operates only on related model input/output files and/or calling

the compiled Raven executable. The primary benefits of this separation are 1) maintaining the computational speed of the

compiled model code, and 2) allowing other users to implement their own non-R workflows in Python, shell scripts, or sys-

tem-specific forecasting frameworks, such as DELFT-FEWS (Werner et al., 2013). The development of analysis and plotting

tools in R benefits from a rich array of libraries and relatively fast development when compared to a compiled language such

as C++, which is part of the reason for choosing to develop the external analysis tools in R.

RavenRis not intended to provide every tool needed to manipulate and analyze Raven input and output files, as the flexibility
of the Raven framework would require a vast collection of highly specific scripts to accommodate the needs of all modellers.
Instead, the package aims to reduce the effort required to use Raven, and allows the modeller to more effectively use the open-
source scripting environment of R in their workflows. This may also reduce the learning curve of Raven that is created by its
flexibility, as the package provides the means to guide new users through the generation and manipulation of common files,
and reduces the burden in analyzing the model results. This can be particularly helpful for users migrating from GUI-based
software such as HEC-HMS (Hydrologic Engineering Center, 2020).

The available functions within RavenR can be broadly categorized by their utility into the main categories of: 1) preparing

input files, 2) reading outputfilesrunning Raven, 3) running Ravenreading output files, 4) tools for hydrologic analyses, and 5) support

utilities (e.g. time series processing, water year analysis, etc.). The typical workflow for RavenR is closely related to the
workflow required for the development and use of any hydrologic model, including one developed with Raven. This includes
the collecting and processing of data for the model, determining the model structure, creating model input files in the format
required by the modelling software, executing the model, and analyzing the results of the model for hydrologic consistency
and performance. This can include exercises in model calibration and validation, uncertainty analysis, identifiability analysis,
and project-specific simulations or adjustments to the model runs.

The typical workflow for developing a hydrologic model and examples of RavenR functions that may be used to support

each step are provided in Table 1.

https://github.com/CSHS-CWRA/RavenPy
https://github.com/CSHS-CWRA/RavenPy
https://github.com/CSHS-CWRA/RavenPy
http://raven.uwaterloo.ca/hydroglyph/
http://raven.uwaterloo.ca/hydroglyph/
http://raven.uwaterloo.ca/hydroglyph/

Table 1. Typical workflow table for building hydrologic models and connection to RavenR.

Step Activity

Description

RavenR

Functions

1 Collect/Prepare
Data

Preparation and quality control of Raven input files (e.g., *.rvi

files from template, *.rvt files), often from public data sources

rvn_rvi_write_template,
rvn_rvt_tidyhydat,
+ 19 others

2 Discretize

Watershed

Quality control of implemented discretization scheme and
further simplification (e.g., aggregating very small or similar

HRUs)

rvn_rvh_clean_hrus,

rvn_subbasin_network_plot

3 Identify and De-

scribe Processes

Model structure development and process algorithm selection

rvn_rvi_connections,

rvn_rvi_process_diagrammer,

rvn_rvi_process_ggplot

4 Parameterize the

Model parameter definition and parameter value specification

rvn_rvi_get_params

Model
5 Execute the Running the Raven (or other hydrologic) model rvn_download &
Model rvn_run

6 Processing

Model Outputs

Reading and processing model output files for analysis

rvn_hyd_read,
rvn_custom_read,

+ 7 others

7 Plots and Model

Checking model performance with a number of analyses, real-

rvn_annual_peak_flow,

Diagnostics ityrealism checks, and diagnostics (often in conjunction with rvn_monthly_vbias,
model calibration and validation) + 24 others
8 Report Generating quality graphics and workflows to communicate Functions from step 7 +
Results results additional R libraries (e.g.,

ggplot2 & rmarkdown)

155

160

165

170

175

180

185

Although the model-building process is listed in Table 1 as a series of steps, in practice it is not linear, but rather iterative
and cyclic. For example, a model diagnostic (step 7) may show that inadequate model performance can be remedied by the
inclusion of additional forcing data, requiring new data to be written to file (step 1). It is also recommended or common practice
in modelling to begin with a simpler model and proceed to a more complex one (e.g., Fenicia et al., 2008), which may require
iteration on steps 2-6 to potentially modify the structure (e.g. spatial and temporal discretization, hydrologic processes) after
a basic model has been established. Model calibration would typically involve an iteration upon steps 4-6 with a calibration
algorithm, and a calibration that includes model structure (e.g., Spieler et al., 2020; Chlumsky et al., 2021b) would effectively
iterate upon steps 3-6. The iterative need for these model-building steps emphasizes the benefit of tools (including those in
RavenR) that can reduce the overhead in simple but repetitive tasks, such as producing figures and writing data to a specific
file format.

The functions within the RavenR package are named, where appropriate, by the three letter Raven file name or short abbre-
viation corresponding to the output file that they interact with, e.g., rvn_rvi_connections for processing the *.rvi file
structure or rvn_res_read for reading the output ReservoirStages.csv file. Other functions simply use illustrative names to
convey their purpose (e.g. rvn_budyko_plot). This naming convention provides some navigability of the package func-
tions to the new user, even before the package documentation is reviewed (see Section 2.2.2).

The RavenR package has a number of preferred data formats and related package dependencies. Most plots are generated
using the ggplot2 (Wickham, 2016) and related libraries from the so-called tidyverse, including dplyr (Wickham et al.,
2021a) and tidyr (Wickham, 2021) for data manipulation. This allows all plots to be exported as plot objects and further
manipulated by the user as desired, and removes the need for all plot options to be wrapped into RavenR functions. Time series
handling is done through the lubridate (Grolemund and Wickham, 2011) and xts (Ryan and Ulrich, 2020) packages,
where the extensible time series (xts) format is generally expected for time series data. Finally, support for network analysis
is done through the igraph package (Csardi and Nepusz, 2006), which primarily supports the organization of watershed
discretization connections (*.rvh file) and the network of model structure connections (*.rvi file), including the related plot

functions, e.g., rvn_subbasin_network_plot and rvn_rvi_process_diagrammer.
2.2.2 Installation and documentation

The package is developed as a free and open-source software tool, which is ideal for maintaining transparency and reproducibil-
ity in workflows related to hydrologic modelling and all steps involved. The stable package version is available for download
through CRAN (currently version 2.1.4), which can be installed in R using the command install.packages ("RavenR").
The development version of the package is available on Github (https://github.com/rchlumsk/RavenR) and may be installed us-
ing the devtools library (Wickham et al., 2021b) as devtools: :install_github ('rchlumsk/RavenR"'). Both
installation commands resolve the dependencies associated with the package.

The RavenR package is fully documented and contains a description of inputs, outputs, with an usage example for each
function consistent with the standards for CRAN packages. In addition to the package documentation, an introductory vignette

Introduction to RavenR, is included with the package, which discusses getting started with the package and how it may be used

https://github.com/rchlumsk/RavenR

190

195

200

205

210

215

in a manner that is more useful to new users of Raven and RavenR. The introductory vignette is available with the command

install.packages ("RavenR").
2.2.3 Sample data sets

In the interest of reproducible examples, the RavenR package contains a number of sample data sets and raw data files
embedded within the package which are used within the function examples. Sample data is embedded directly as imported
data (accessible with the data function in R) for a number of file output types (hydrograph, watershed storage, etc.), as
well as sample data for the t idyhydat and weathercan packages. The latter sample data allows the function examples
to run without a dependency on the mentioned data-retrieval packages. Raw data files are also included (accessible with the
system. file function in R), which allow for the testing of reading raw data directly. The examples where raw data files are
first read into R using RavenR functions may be more helpful than examples which call sample data directly with the data
command, since the workflow will be closer to the one applied in practice.

The sample Raven output files and data that is distributed with the RavenR package were generated from a model of the
Nith watershed, which is located immediately west of Kitchener-Waterloo in Ontario, Canada. The Raven model of the Nith
watershed can be found in full on the Raven webpage (http://raven.uwaterloo.ca/downloads.html) in the Tutorials 1-4 download
set. Numerous additional Raven models are available from this page, including the model of the Liard River basin (Brown and

Craig, 2020), which is used in the RavenR case studies in this manuscript (Section 3).

3 Use cases of the RavenR package

In this section, we present a number of use cases of the RavenR package. These cases are not intended to be a comprehensive
review of all the applications for the RavenR package, but to provide the reader with a partial demonstration of how the
package may be used in conjunction with Raven. The cases are discussed in the context of hydrologic modelling with flexible
frameworks more broadly, and provide cases and checks that are likely to be useful when deploying both Raven and non-Raven
hydrologic models.

The use cases are presented in approximate order of the model-building process (Table 1), beginning with the generation
of model input files and proceeding to the analysis of output files. These use cases include examples and discussion of almest

allmost of the steps of in the model-building process:with-the-e

the use cases markdown file.

All R code and model files required to generate the results and figures in this section are provided in an open-source
Zenodo repository (https://doi.org/10.5281/zenodo.5534818https://doi.org/10.5281/zenodo.5534817), and utilize the version
of RavenR currently available on CRAN (version 2.1.4).

http://raven.uwaterloo.ca/downloads.html
https://doi.org/10.5281/zenodo.5534818
https://doi.org/10.5281/zenodo.5534817

220

225

230

235

240

245

250

3.1 Liard River basin

The use cases presented here utilize the Liard River basin model built with Raven. The Liard River basin is located in northern
Canada, spanning the Yukon Territory, Northwest Territories, British Columbia and Alberta. The Liard River is the largest
tributary to the Mackenzie River, with a total contributing area of 275000 km? (Brown and Craig, 2020). The basin includes
a variety of landforms, including mountainous regions and wetland-dominated regions. There are varying degrees of difficulty
when trying to accurately represent these various landforms in a hydrologic model. Additional details on the Liard River basin,
and the corresponding hydrologic model developed for the basin with Raven, can be found in Brown and Craig (2020), which

also describes the manual calibration process that was undertaken for the model.
3.2 Input file processing

An early step in the model-building process is the collection of data and preparation of model input files (step 1 in Table 1.
While the supporting data analysis may not require expert knowledge of hydrology per se, the data preparation can require
a substantial amount of time and effort in the modelling process. Further, the reproducibility and merit of research may rest
on the ability to access and reproduce the original and processed intermediate data, which is vastly improved by the use of a
scripting environment that in effect documents the steps taken to prepare the data files (Anderson et al., 2018). As such, the use
of scripting tools, such as those that will be discussed in this section, may be used to both reduce the effort required to prepare
input data files and improve the reproducibility of the research or applied project.

This section discusses the preparation of the model structure configuration, the preparation of forcing data and observation
data, and modifications to the model discretization file. Additional utilities related to input files exist within the package (such
as providing parameter information), but these applications discuss a large proportion of the workflow that would be required

in developing a set of Raven input files.
3.2.1 Model configuration

One of the key characteristics of Raven is flexibility, including the ability to customize the model structure in terms of the
organization of water storage units and selection of process equations (Craig et al., 2020). The hydrologic process schematic
is specified through the main Raven input file, in which the number of soil layers, the list of hydrologic processes and the set

of ‘to’” and ‘from’ compartments, etc., are defined.

vtThe Raven User’s Manual (Craig and the Raven
Development Team, 2022) provides the templates for a number of model structures, which can be used as a starting point
for constructing a customized hydrologic model. These are largely based on emulations of published hydrologic models in
the literature (e.g. UBCWM, HMETS, etc.), although some are based on research models that have been developed within
Raven (e.g. the Canadian Shield model). Once a base model has been selected, components of the model may be modified

using the many process options available within Raven which are documented in the Raven User’s Manual (Craig and the

255

260

265

270

275

280

Raven Development Team, 2022). The large number of process options available to the user provide no shortage of model
structure tweaks to customize their model. A critical step in making these adjustments to model structure is understanding
the structure and ensuring that it is consistent with the modeller’s conceptual understanding of the system (step 3 in Table 1).
While Raven itself does not currently have a user interface deployed that can visualize the model structure, functions within
the RavenR package can generate a model schematic from the contents of the model input (*.rvi) file. The ability to visualize
this structure can be critical in understanding the model structure and ensuring the conceptual understanding is consistent with
the implemented structure. This can also be used to check for state variables or storage units with an improper number of
connections, such as a soil layer with no outflow mechanism.

The general workflow within RavenR to generate a model *.rvi file and visualize the contents is as follows:

1. A template model structure is selected and written to file using the rvn_rvi_write_template function.

2. The file may be manually modified in consultation with the Raven User’s Manual (Craig and the Raven Development

Team, 2022)
3. The file may be read into R using the rvn_rvi_read function
4. The process connections from the file can be processed using the rvn_rvi_connections function

5. The process diagram can be generated either in ggplot format using the rvn_rvi_process_ggplot function, or as

a diagrammer plot using the rvn_rvi_process_diagrammer function

6. (optional) the ‘:CreateRVPTemplate’ command can be used to generate a template *.rvp (parameter) file when Raven is

executed

7. (optional) the rvn_rvi_get_params function may be used to obtain a data frame of parameters, ranges, and default

parameter values for parameters that are included in the hydrologic model, based on the model structure configuration

An example of the process diagram is provided for the Liard River basin in Figure 1. From this figure, the directional
connections between water storage compartments in the model can easily be ascertained and verified, allowing modelers
building a new model and modelers inheriting a model alike to quickly understand the movement of water in their current setup.
For instance, in the Liard model we can see the model has capacity for precipitation to enter specific wetland and depression
compartments, snow can melt and refreeze, and fast and slow (upper and lower) reservoirs exist to represent groundwater
processes as different time scales (Brown and Craig, 2020). A single-layer topsoil compartment is used to connect the surface
water and subsurface domains in the model along with a vadose zone reservoir to help represent a karst structure within the
model. We can see that all processes that move water to glacier are conditional based on the HRU type (glacier HRU). Ponded
water is moved to depression storage under the condition of being a wetland and surface water only directly evaporates to the
atmosphere if the HRU is a lake. The karst groundwater structure which was implemented in the model is only applicable to a

subset of the HRUs which accounts for the conditional connections between SOIL[0], surface water, the vadose reservoir, and

10

285

290

ATMOS_PRECIP ATMOSPHERE
WETLAND
CANOPY DEPRESSION

CANOPY_SNOW

SOIL[0] SURFACE_WATER

GLACIER | VADOSE_RESERVOIR |

GLACIER_ICE FAST_RESERVOIR

SLOW_RESERVOIR

Figure 1. The model configuration of the Liard basin, generated from the Liard model *.rvi input file with the
rvn_rvi_process_diagrammer function. Solid grey lines indicate connections between state variables, and dashed orange

lines indicate conditional connections.

the fast and slow reservoirs. Reviewing and verifying these conditional exceptions along with the connections between other
state variables can help ensure that the model is appropriately structured.
Typically, diagrams such as these are arduous to produce for highly-flexible modelling software such as Raven. Here, the

function has been automated to create publication-ready diagrams for most model setups.
3.2.2 Forcing data

Meteorological forcings (e.g. precipitation, temperature, wind speed) drive the hydrologic model responses. When not collected
as part of a project, these data are often obtained from online, freely available public sources generally collected, processed,
and maintained by local and/or public agencies. These data are likely to require some quality control before ingestion into
the model, such as addressing data flags, removing erroneous data, and converting units (step 1 in Table 1). This process
can be quite tedious, especially when combining multiple data sets of various formats, time steps, and quality. The RavenR
package offers the rvn_rvt_write_met function for writing forcing data directly to the Raven *.rvt format: the function
defaults are configured to accept outputs from the weathercan R package, which automatically downloads data for Canadian

meteorological stations maintained by Environment Canada (LaZerte and Albers, 2018).

11

295

300

305

310

315

fort_liard <- ¢(60.241711, -123.467377)
stns <- weathercan::stations_search(coords=fort_liard, interval="day",

dist = 500, starts_latest = 1985, ends_earliest = 2006)

weather_dl (stns$station_id[1:10], interval="day",
start="1985-10-01", end="2005-10-01") %>%
rvn_met_interpolate (cc=c ("max_temp", "min_temp", "total_ precip"),
key_stn_ids = stns$station_id[1:5]) %>%

rvn_rvt_write_met ()

Figure 2. Minimum code required for the use case described in Section 3.2.2 of downloading, interpolating, and writing meteorological data
into Raven *.rvt format using the weathercan and RavenR R packages. The pipe operator (%>%) from the dplyr package is used for

readability. Additional code comments are provided in the accompanying repository.

In this use case, daily meteorological data for a 20-year period is downloaded, interpolated, and written to Raven *.rvt format.
The weathercan R package is used to search for stations within 500 km of Fort Liard and with data records spanning from
1985 to 2005. A subset of stations meeting these criteria is downloaded for pre-processing. Missing values in the meteorological
data are then interpolated using data from nearby stations, and a fix is also applied to any interpolated data where the maximum
daily temperature is less than the daily minimum. The data from five of the selected stations are then written to Raven *.rvt
format. This workflow would be of substantial time and effort if performed manually or scripts for this task were adapted
with each new application; in this use case, the entire workflow is performed with two main functions from the weathercan
package and two from the RavenR package. The code required to accomplish this is provided in Figure 2.

The advantages of this workflow are 1) the ease of implementation, which can process any number of stations with only a
few lines of R code; 2) the transparency and reproducibility of the *.rvt file generation, which is useful for both review of the
data and possible future corrections to all *.rvt files (e.g., extending the time series to incorporate more recent data). The code
may be extended to any supplied set of stations and any meteorological variable that is recognized by Raven. The function also
assumes standardized Raven parameter units for all meteorological variables (see reference tables in Appendix C of the Raven

User’s Manual (Craig and the Raven Development Team, 2022)).
3.2.3 Observation data

Observation data, such as streamflow records, are generally not required to run hydrologic models; an exception to this may be
for truncated model domains, where the model simulates a portion of the watershed and is supplemented by upstream measured
flow data. However, observed time series are key to evaluating model performance (history matching) in both calibration and
validation exercises and may also be used to enable data assimilation in forecasting applications.

Similar to the use of the weathercan R package for downloading Canadian meteorological data, the tidyhydat R

package may be used to download stream gauge data from Canadian stations maintained by the Water Survey of Canada

12

(Albers, 2017). RavenR provides the rvn_rvt_tidyhydat function to process t idyhydat inputs directly by wrapping

the rvn_rvt_write function, which can write any non-meteorological time series to *.rvt format. Possible types of time

series supported by Raven *.rvt files include reservoir inflows, irregular observations, observation weights, temporal reservoir

operation rules, etc. The entire list of available formats can be found in the Raven User’s Manual (Craig and the Raven
320 Development Team, 2022).

In this use case, the t idyhydat package is used to prepare *.rvt files of observed streamflow for 9 specified stations (con-
sistent with the stations listed in Table 2 of Brown and Craig (2020)) used in the Liard model. The daily streamflow for these sta-
tions are downloaded using t idyhydat from 1985 to present day, and written to *.rvt format using the rvn_rvt_tidyhydat
function (a wrapper for the rvn_rvt_write function). Raven will automatically exclude any missing values from the cal-

325 culation of diagnostics, thus missing values in observation data generally do not need to be interpolated or infilled in the same
manner that meteorological forcing data needs to be processed. However, the user may still wish to be aware of and avoid large

gaps in observation data that may bias the calculation of diagnostic metrics (e.g., consistent winter gaps or multi-year gaps).

13

330

335

340

345

350

obs_stns <- read.csv("observation_stations.csv")
tidyhydat::hy_daily_flows (station_number = obs_stns$stnlID,
start_date = "1985-01-01") %>%
rvn_rvt_tidyhydat (subIDs=obs_stns$sublID)

Figure 3. Minimum code required for the use case described in Section 3.2.3 of downloading and writing observed flow data into Raven
*rvt format using the tidyhydat and RavenR R packages. The pipe operator ($>%) from the dplyr package is used for readability.
Observation station IDs and associated model subbasin IDs are provided in the ‘observation_stations.csv’ file for brevity. Additional code

comments are provided in the accompanying repository.

The same rvn_rvt_write function may be used to write other *.rvt data types by adjusting the rvt_type parameter,
which may be useful for writing the observation weights generated from the rvn_gen_obsweights function to exclude
certain data periods from Raven diagnostics, as was done in the Liard model for winter periods with unreliable data records

(Brown and Craig, 2020).
3.2.4 Model discretization file

The development of distributed and semi-distributed models requires the discretization of a basin into homogeneous units
representing hydrologically similar areas. This is typically completed through overlaying a number of spatial data sets which
have a dominant effect on the hydrological response of the basin, such as land use, elevation, or soil information (step 2 in
Table 1). In overlaying the spatial data sets, a large number of small computational units, insignificant to the model function,
can be created. Since the model runtime is scaled with the number of HRUs, these small areas can increase computational and
calibration run times and are not necessary to simulate the dominant hydrological response of the basin. The RavenR package
offers a way to effectively eliminate small computational units using the rvn_rvh_cleanhrus function. This function may
merge units based on a set area threshold, and can also merge similar HRUs based on similarity in HRU properties such as
landcover, slope, elevation and aspect. HRUs which are significant to the model can be locked or protected. Locked HRUs
cannot be removed from the model or increase in size and protected HRUs cannot be removed but may increase in size (to
maintain the total watershed area) if other HRUs are removed. This is useful in cases where a point observation is available at
a given location (snow survey data) or if the HRUs are part of a significant hydrological response (glaciers).

In this use case, the reduction in the number of model HRUs is demonstrated for a subset of the initial HRUs within subbasin

3 only (initially with 172 HRUs). In the ‘basic’ reduction of HRUs, a simple area threshold is applied. In subsequent examples,

HRUs that are of land use type GLACIER are locked HRUs (i.e. cannot be removed or change in size), and HRUs that are
either WETLAND or WATER are protected (i.e. cannot be removed but can still increase in size if other HRUs are removed).

This operation is applied using area thresholds of 0.5% (with no locked or protected HRUs), 0.5% and 2.0% of the subbasin

area, resulting in 56, 87 and 44 HRUs, respectively. The impact of this operation on land use distribution within the subbasin

is summarized in Figure 4.

14

355

360

3000 - Clean Type

Uncleaned

0.5% Area
Tolerance
(Basic)

2000+

.

0.5% Area
Tolerance

Area (km2

1000 -

2.0% Area
Tolerance

0- .— —

FOREST 4
GRASSLAND A
WATER A
BARREN A
SHRUBLAND A
WETLAND A
GLACIER A

Land Class

Figure 4. A barplot of total areas by land use for three sets of HRU configurations, including 1) prior to any ’cleaning’, 2) following a ‘basic’

0.5% area threshold merging criteria with the rvn_rvh_cleanhrus function with no locked or protected HRUs, 2) following the same

operation but with locked and protected HRUs specified, and 34) following a 2.0% area threshold merging criteria.-Fhe-GLACIER Jand-use
is-locked;-and-the- WETLAND-and- WATERland-uses-are-protected. The example is done for a single subbasin in the watershed for demonstration

purposes, and shows how the land use in the subbasin changes when the removal of subbasins below the area percentage threshold is

performed, and when locked/protected HRUs are introduced, using the rvn_rvh_cleanrhus function.

In the figure, the total area of the GLACIER type decreases in the basic application, but otherwise remains the same when

it is lockedthe-total-area-of-al- GLACIER land-use-type- HRUs-remains-the-same;-as-this land-use-type-wasJocked. The WATER and WETLAND

land use types either decrease or reduce to zero in the basic application, and otherwise increase slightly with each individual

cleaning, relative to their proportion of the total area and the total area of removed HRUs based on the respective area threshold.

moved-entirely-with-a 2.0% threshold: Literature has shown that hydrologic areas such as wetlands that are small in size can still have

a disproportionately large effect on the hydrologic and biogeochemical response of the watershed (McLaughlin et al., 2014),
thus retaining particular HRUs or HRU types may be critical in the cleaning of the HRUs. Finally, the plot shows how the
other land use types change with these operations. The FOREST type increases in each case, suggesting that the proportion
of small forested HRUs may be small, and that forested HRUs tend to be larger in size. The SHRUBLAND HRUs decrease
in represented proportion in each case. This type of analysis could be repeated for other HRU properties (e.g. slope, aspect,

vegetation type, etc.). This analysis should be done in conjunction with the use of the rvn_rvh_cleanrhus function to

15

365

370

375

380

385

390

395

ensure that the reduction in the number of HRUs does not unexpectedly alter the overall representation of HRUs within the

model, and inhibit the ability of the model to capture the dominant hydrologic response.
3.3 Output file processing and analysis

A number of functions within RavenR are included to handle the reading of common Raven output files, such as the Hy-
drographs file (rvn_hyd_read), the WatershedStorage file (rvn_watershed_read), and other output files (forcings,
custom output, etc.). In addition, functions to analyze the output data with typical hydrologic checks and diagnostics are in-
cluded in the package. While these functions are built to work with the Raven-specific read functions they are otherwise not
specific to Raven, and may be used for any hydrologic model given a means of reading time series output is provided.

This section provides use cases where the realism of the Liard model is assessed, providing insight to the question, ‘is the
model getting the right answers for the right reasons?” (Kirchner, 2006; Euser et al., 2013). These checks provide the modeller
with an understanding of the model dynamics and provide more confidence that the model is functioning as expected without
model compensation errors (step 7 in Table 1). This section also provides a demonstration of tools for evaluating model

performance.
3.3.1 Evaluation of model realism

The flexibility of Raven in the generation of model outputs, including customized outputs that may be specified by the user,
can be leveraged to undertake rigorous checks of the hydrologic model. Tools have been built into the RavenR package to

capitalize on this feature, and facilitate a set of model realityrealism checks. Here, we define model realism as the model’s ability

to replicate and be consistent with anticipated hydrologic behaviour, such as reproducing snowpack measurements, producing

reasonable evapotranspiration and runoff coefficients, etc. This definition echoes the one provided in the literature by Euser

et al. (2013). These checks can be considered semi-automatic, since a script may be deployed to generate the figures but they
still require interpretation by a modeller with an understanding of both the natural system and the developed model. Here, the
focus is on the realism of the model to ensure that it is providing hydrologically plausible results; the actual performance of

the model with respect to streamflow is discussed further in Section 3.3.2.

The checks that are applied to the Liard River basin in this use case include: 1) plotting the Budyko curve (Budyko, 1974)
for the annual average watershed indices, 2) plotting the annual regime curve with monthly averages, 3) examining the sta-
tionarity of moisture content in soil storage layers, and 4) plotting the model performance with respect to snowpack storage as
snow water equivalent (SWE). Additional checks supported (not demonstrated here) include: plotting the forcing functions to
understand how the inputs may be influencing the model results (i.e. wet and dry years, erroneous temperature readings, etc.),
checking the annual water balance, examining baseflow characteristics by comparing modelled and ebservedestimated baseflow
usingfrom baseflow separation techniques, plotting annual hydrographs in an overlay (i.e. spaghetti plot), and checking the
modelled hydrographs and reservoir levels, if any reservoirs or lakes are included in the model.

The four plots associated with the stated checks performed in this example are provided in Figure 5.

16

Evaporative Index (AET/P)

Soil Storage (mm)

Figure 5. Multiple diagnostic plots generated from the RavenR package that may be useful in evaluating the realism of any hydrologic
model; A) budyko curve with annual average data points for the watershed, B) a series of regime curves, C) soil storage time series showing

the stationarity in long-term storage within soil layers and D) plots of observed and simulated snowpack measurements at Frances River. All

1.004

0.754

0.50 1

0.254

0.00 A
0.0 05 10 15 2.0
Aridity Index (PET/P)
(C) Soil Layer

601 1

2

3

4
404
20
0 -

1988 1990 1992 1994 1996
Date

Depth (mm)

Snow SWE (mm)

34 aet
obs
pet

reci

5] p_ P
sim

l-

0-

1 2 3 4 6 7 8 9 10 11
Month
°
300-(D) [
Simulated
® Observed
°
200+
°] 0
o
I A & ’
100 1 !
® ° . .
° e

0+ ° 3 . [. .

19I88 19I90 19I92 19I94 19I96
Date

data are generated from the Raven model averaged at the watershed scale unless otherwise indicated (i.e. snowpack SWE).

17

400

405

410

415

420

425

430

The Budyko plot in Figure SA was generated using the rvn_budyko_plot function. The Budyko Curve (Budyko, 1974)
shows the relationship that quantifies how mean annual precipitation is partitioned into discharge or evapotranspiration (ET),

where the aridity index is plotted on the x-axis and the evaporative index on the y-axis. The Budyko pattern has been observed

in multiple catchments around the world (Vereecken et al., 2015). The x-axis-of the Budyke-curve-is-the-aridity-index-whichrepresents-the

tics, such as significant basin storage or the presence of wetlands (which are present in the Liard model), can cause deviations

from the Budkyo curve. Deviation from the line may also indicate that actual evapotranspiration is underestimated, which may

prompt further examination of the model.

The regime curve can be used to examine the quantities and timing of some of the key model functions. For example, the
Figure 5B shows that the PET in the Liard model(based on the Hargreaves 1985 calculation method, see Hargreaves and
Samani (1985)) peaks at the same time as the AET in June, and maintains-a-similar pattern-over-the-other-months-of theyear-on-average:
Thethe simulated and observed flows are close in value, and both peaking prior to the peak in precipitation. This aligns with the

fact that peaks in the Liard River basin are typically freshet driven. mismatchMismatches in elements of the regime curvesuch

er would provide a point of investigation and validation into the

model.

The soil storage information can be retrieved from Raven in either the WatershedStorage.csv file (generated with the
:WriteMassBalanceFile command), or with the custom output options for specific soil layers (e.g., : CustomOutput
DAILY AVERAGE SOIL[0] ENTIRE_WATERSHED). Plots such as Figure SC may be applied to any storage compart-
ment in the model to verify the general assumption of long-term stationarity in storage within the hydrologic model, such as

lake or reservoir storage. The stationarity assumption for a continuous simulation model is that over a long duration the soil

storage should reach a quasi-equilibrium, oscillating around a steady mean. Therefore, a continuous simulation model which is

continuously accumulating soil moisture during the simulation period may indicate that, for example, there is insufficient evap-

otranspiration or baseflow, resulting in the soil storage continuously increasing to compensate for this deficiency. A-similareheek

18

435

440

445

450

455

The snow plot provides a method to evaluate the snow balance representation in the model for a particular station. The
simulated snow series is produced in Raven with the custom output command (e.g., : CustomOutput DAILY AVERAGE
SNOW BY_HRU), and is compared against the observed snow course measurements. The plot in Figure 5D was generated
for the Frances River station. The snow plot provides a visual representation of the model’s ability to represent the snow
processes and compares it directly to observations. The model provides a reasonable representation of the snowpack SWE
with no consistent bias in estimation.
evaluating the snow routines in the model. InR a v e 112, the custom output snow is read into R-using the v vii__cu st om_read function, and irregular
asread.table)orthe rvn_rvt_ read-functoniftheyare provided-asirregular

ed-A similar custom output request for any

state variable over a specified temporal and spatial resolution may be produced by Raven at the user’s request, and processed

using RavenR.

3.3.2 Evaluation of model performance

The RavenR package provides a broad suite of tools for analyzing the results of any Raven hydrologic model, including
many tools that can be considered model independent (step 7 in Table 1). For example, hydrograph plots, calculation of runoff
coefficients, and flow duration curve plots are available within RavenR but may be computed for any time series of flows.
The calculation of diagnostics, such as the commonly used Nash-Sutcliffe Efficiency (Nash and Sutcliffe, 1970) and Kling-
Gupta Efficiency (Gupta et al., 2009) metrics, are not included in the RavenR package as they can be calculated directly within
Raven, and are also available comprehensively in existing packages such as hydroGOF (Mauricio Zambrano-Bigiarini, 2020).

In this use case, a number of diagnostic plots based on simulated and observed hydrographs are presented for the Liard River
basin model. These diagnostic plots are computed at the outlet of the Liard River basin (at the outlet near Water Survey of
Canada station 10ED1002), and are provided in Figure 6. These plots are provided for a portion of the simulation period (where

the plot is time-based), and in practice these plots may be applied in both calibration and validation periods for comparison.

19

15000 w
(A) o (B)
£ .
;S .
o 15000+ L
~ 10000+ = e o °
£ [} .
"’E 2 [Phe
s | . 9 10000 o« ¥ 0
3 M‘ , S * .4
L 50001 ‘ \ | \ o *
' ! | ¥ 3 .’
| © 5000+ o
\‘ ‘ J H > e
- P —~— - £ ™
01 I} -
1989 1990 1991 1992 1993 5000 10000 15000
Date Observed Peak Discharge (m3/s)
(C) 1.0e+11 (D)
® 301 ° | g /
o £ 7.5e+104 f
£ . ® % 2 /
o
8 ® e e o . (0 °® > |
S Of-=-===="="==="===-=-=-=-=--- o 7" . o 5.0e+104
o . °~| 2
£ §| ® ‘
5 -
- 304 . = E 2.5e+10 [
8 . &gl 3
/
L] 0.0e+00 ‘/ g /
1989 1990 1991 1992 1993
Date (Water year ending) Date
— Obs Sim

Figure 6. Multiple diagnostic plots generated from the RavenR package that may be useful in evaluating model performance; A) a hydro-
graph plot for a subset of the simulation period, B) a scatterplot of simulated and observed annual peak flows, C) plot of timing annual peak
timing errors, and D) a plot of cumulative annual flow volumes in time. In plots A and D, the observed is plotted in black and the simulated

in orange.

20

460

465

470

475

480

485

490

In Figure 6A, a simple hydrograph plot for a subset of the simulation period is provided. The hydrograph shows good
agreement in the magnitude and timing of summer peaks for the years shown as well as the rising limb of the hydrograph,
which was the focus of the calibration in the work of Brown and Craig (2020), with a tendency to overestimate the recession
from the peak in June until late December/early January. The underestimation tends to continue until the next peak. The

hydrograph is shown for a subset of a few years, allowing for a more critical evaluation of the model performance, since

examiningrather-than-the-entire-periods-as the full period can obscure the important deviations of the simulated hydrograph from

observations and mask deficiencies.-Examining-a-smallersection-of the plot-(e-g-with-the prd-arcument in-many RavenR-functions);

5. A subset of a hydrograph

can also be viewed dynamically as a dygraph in RavenR with the rvn_hyd_dygraph function, which is supported by the
dygraphs package (Vanderkam et al., 2018).

The peak flow scatterplot (Figure 6B) is a scatterplot of the simulated and observed annual peak flows, calculated based on
the October 1st water year and produced using the rvn_annual_peak function. This figure provides a visual assessment

of the performance of modelled peak flow magnitudes, including any systematic bias in over- or under-predicting peaks as a

function of peak magnitude. Here, the model appears to estimate peaks with reasonable performance and without systematic

bias, although whi

~additional data may be required to produce conclusions that are statistically

valid.

While (Figure 6C)Figure 6B captures the performance with respect to the magnitude of the flow peaks, the timing of peak
flows is not assessed. The plot in Figure 6DFigure 6C assesses the error in peak timing (rather than magnitude) with the
rvn_annual_peak_timing_error function. A perfect model would have all points fall along the zero line, indicating
that there is no error in the timing of predicted peaks. The results for the Liard simulation indicate that the model tends to
predict peaks slightly later than the observed data, while some of the larger errors in timing tend to be in early peak prediction.
In a forecasting framework, a data assimilation technique may reduce the timing (and magnitude) errors that are present in
the continuous simulation evaluated here. However, this tendency of the model may still be useful information for forecasters.
The use of multiple functions in tandem within RavenR to examine both the peak magnitude and timing errors can be used
to evaluate the model performance more comprehensively than a single function (see multiple RavenR functions named as
rvn_annual_ x).

Finally, Figure 6D provides a comparison of cumulative flow volumes between the simulated and observed model in time.
This plot is generated by the rvn_cum_plot_f1low function. The plotshows clearly-where deviations-in-the-overall-volume- arise-in-time-
For-examples-the-plot for the Liard model shows that the December-March winter period of each year is a time of deviation in
cumulative volumes, while the freshet-driven summer peak periods tend to match volume quite well overall. This is likely a

result of the calibration procedure in (Brown and Craig, 2020), where ice affected flows in the winter were not considered in the

21

495

500

505

510

515

520

calibration procedure due to high levels of uncertainty associated with the measurements. Additional functions that examine
the relative volumes of simulated and observed flows, but aggregate them rather than examining the differences in time, are the
rvn_monthly_vbias and the rvn_annual_volume functions, which provide the monthly average volume differences
and the annual volume differences in a scatterplot for each year, respectively. The volume is generally a useful diagnostic metric
as it integrates the modelled hydrograph performance in time, and allows the modeller to identify periods of poor cumulative

error or systematic errors (e.g. underestimating overall volume) that may be not clear or obvious when only examining flows.

4 Conclusions

This paper presented the RavenR package, an R-based set of tools that is designed to support the development, use, and
analysis of hydrologic models developed using Raven but can be readily adapted for any hydrologic modelling output. RavenR
is a free, open-source software that is intended to support the wealth of options in a flexible modelling framework while
maintaining or improving the transparency and reproduciblity of the analyses undertaken by the modeller.

The tools within RavenR may be used in any stage of the typical modelling workflow. Although the tools are designed for
use with Raven, the analysis and utility functions may be useful in conjunction with any hydrologic model that has similar
requirements and workflows as Raven. The RavenR tools provide the means for preparing Raven input files, visualizing and
processing input data, executing Raven, and generating a vast array of model checks and performance-related graphics from
the Raven output files. All functions in the package are supplemented by additional information and examples (consistent with
CRAN requirements), and the package is further accompanied by the introductory documentation in the form of a vignette.
This paper illustrates how the RavenR functions may be used in both academic and industrial projects, including generating
model input *.rvt files, visualizing the model structure, and exploring and assessing the hydrologic model results. This includes
aiding the modeller in building an understanding and trust of the constructed hydrologic model.

A set of RavenR use cases are presented for the Liard River basin, for which a Raven model has previously been built and
thoroughly tested (Brown and Craig, 2020). The use cases present how a subset of tools may be used to generate input files
for, or analyze the results of, the Raven model of the Liard river basin. The examples are bolstered by an interpretation of the
functions and results, which may be useful in interpreting and building confidence in any hydrologic model. The accompanying
data repository and code for this manuscript can fully recreate the figures and analyses presented in the use cases, demonstrating
best practices for reproducibility in hydrologic and scientific publications.

Due to the open-source nature of the Raven project, the code is transparent and accessible to users and is being continuously
supplemented with new functionalities and improvements. Similarly, the RavenR package is open-source and is in active
development. It is anticipated that the RavenR project will also continue to improve and expand its functionality in order to
meet its goal of supporting Raven users from all backgrounds and experience levels while improving the reproducibility of

their work.

22

525

530

535

Code and data availability. The RavenR package is free and open-source software, and the version of the package (v.2.1.4) used to produce
the results of this paper is archived on Zenodo (Chlumsky et al., 2021a). All R code and data used to generate the results and figures

presented in this manuscript is also archived on Zenodo at doi 10.5281/zenodo.5534817 (Chlumsky et al., 2022), and is also available on

Github (https://github.com/rchlumsk/RavenR_manuscript_2021). The RavenR package is currently available as v2.1.4 on the Comprehensive
R Archive Network (CRAN) (https://cran.r-project.org/package=RavenR), and the development version of the package is also available on
Github (https://github.com/rchlumsk/RavenR). The Raven hydrologic modelling framework is open-source and may be downloaded from

http://raven.uwaterloo.ca/.

Author contributions. RC initiated the concept of the RavenR package. RC and JRC contributed the bulk of the package scripts, with
contributions and development efforts from all authors. GB and JRC provided the Liard River model files. The use cases were prepared by

RC, LS, SL, SG, and GB. The article was prepared by RC with contributions from all authors.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. Mr. Chlumsky would like to acknowledge the financial support provided by the NSERC Canada Graduate Scholarship
(CGSD3-558879-2021) and the Engineering Excellence Doctoral Fellowship provided at the University of Waterloo that helped make this
work possible. The authors would like to thank all those who have contributed to the RavenR project since its inception, including Larry

(Haobo) Liu and Joel Trubilowicz. The authors would also like to thank Paul C. Astagneau and one anonymous reviewer for their comments

on improving our manuscript and software.

23

https://github.com/rchlumsk/RavenR_manuscript_2021
https://cran.r-project.org/package=RavenR
https://github.com/rchlumsk/RavenR
http://raven.uwaterloo.ca/

540

545

550

555

560

565

570

References

Albers, S.: tidyhydat: Extract and Tidy Canadian Hydrometric Data, The Journal of Open Source Software, 2,
https://doi.org/10.21105/joss.00511, 2017.

Anderson, E., Chlumsky, R., McCaffrey, D., Trubilowicz, J., Shook, K. R., and Whitfield, P. H.: R-functions for Canadian hydrologists: a
Canada-wide collaboration, Canadian water resources journal, 44, 108-112, 2018.

Astagneau, P. C., Thirel, G., Delaigue, O., Guillaume, J. H. A., Parajka, J., Brauer, C. C., Viglione, A., Buytaert, W., and Beven, K. J.:
Technical note: Hydrology modelling R packages — a unified analysis of models and practicalities from a user perspective, Hydrology and
Earth System Sciences, 25, 3937-3973, https://doi.org/10.5194/hess-25-3937-2021, 2021.

Baker, M.: 1,500 scientists lift the lid on reproducibility, Nature, 533, 452-454, https://doi.org/10.1038/533452a, 2016.

Brown, G. and Craig, J. R.: Structural calibration of an semi-distributed hydrological model of the Liard River basin, Canadian Water
Resources Journal / Revue canadienne des ressources hydriques, pp. 1-17, https://doi.org/10.1080/07011784.2020.1803143, 2020.

Budyko, M. I.: Climate and life, International Geophysics Series, 18, 508, 1974.

Camerer, C. F,, Dreber, A., Holzmeister, F., Ho, T.-H., Huber, J., Johannesson, M., Kirchler, M., Nave, G., Nosek, B. A., Pfeiffer, T., Altmejd,
A., Buttrick, N., Chan, T., Chen, Y., Forsell, E., Gampa, A., Heikensten, E., Hummer, L., Imai, T., Isaksson, S., Manfredi, D., Rose, J.,
Wagenmakers, E.-J., and Wu, H.: Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015,
Nature Human Behaviour, 2, 637-644, https://doi.org/10.1038/s41562-018-0399-z, 2018.

Chadalawada, J., Herath, H. M. V. V., and Babovic, V.: Hydrologically Informed Machine Learning for Rainfall-Runoft Modeling: A Genetic
Programming-Based Toolkit for Automatic Model Induction, Water Resources Research, 56, 2020.

Chawanda, C. J., George, C., Thiery, W., van Griensven, A., Tech, J., Arnold, J., and Srinivasan, R.: User-friendly workflows
for catchment modelling: Towards reproducible SWAT+ model studies, Environmental Modelling & Software, 134, 104812,
https://doi.org/10.1016/j.envsoft.2020.104812, 2020.

Chlumsky, R., Craig, J. R., Brown, G., Scantlebury, L., Grass, S., Lin, S., and Arabzadeh, R.: rchlumsk/RavenR: v2.1.4 release,
https://doi.org/10.5281/zenodo.5525041, 2021a.

Chlumsky, R., Mai, J., Craig, J. R., and Tolson, B. A.: Simultaneous Calibration of Hydrologic Model Structure and Parameters Using a
Blended Model, Water Resources Research, 57, e€2020WR029 229, https://doi.org/10.1029/2020WR029229, 2021b.

Chlumsky, R., Craig, J. R., Brown, G., Scantlebury, L., Grass, S., Lin, S., and Arabzadeh, R.: rchlumsk/RavenR_manuscript_2021: Initial
pre- release v0.2, https://doi.org/10.5281/zenodo.6421692, 2022.

Clark, M. P,, Slater, A. G., Rupp, D. E., Woods, R. A., Vrugt, J. A., Gupta, H. V., Wagener, T., and Hay, L. E.: Framework for Understanding
Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models, Water Resources Research, 44,
https://doi.org/10.1029/2007WR006735, 2008.

Clark, M. P,, Kavetski, D., and Fenicia, F.: Pursuing the method of multiple working hypotheses for hydrological modeling, Water Resources
Research, 47, https://doi.org/10.1029/2010WR009827, 2011.

Clark, M. P, Nijssen, B., Lundquist, J. D., Kavetski, D., Rupp, D. E., Woods, R. A., Freer, J. E., Gutmann, E. D., Wood, A. W., Brekke, L. D.,
Arnold, J. R., Gochis, D. J., and Rasmussen, R. M.: A unified approach for process-based hydrologic modeling: 1. Modeling concept,
Water Resources Research, 51, 2498-2514, 2015.

24

https://doi.org/10.21105/joss.00511
https://doi.org/10.5194/hess-25-3937-2021
https://doi.org/10.1038/533452a
https://doi.org/10.1080/07011784.2020.1803143
https://doi.org/10.1038/s41562-018-0399-z
https://doi.org/10.1016/j.envsoft.2020.104812
https://doi.org/10.5281/zenodo.5525041
https://doi.org/10.1029/2020WR029229
https://doi.org/10.5281/zenodo.6421692
https://doi.org/10.1029/2007WR006735
https://doi.org/10.1029/2010WR009827

575

580

585

590

595

600

605

610

Coxon, G., Freer, J., Lane, R., Dunne, T., Knoben, W. J. M., Howden, N. J. K., Quinn, N., Wagener, T., and Woods, R.: DE-
CIPHeR v1: Dynamic fluxEs and Connectlvity for Predictions of HydRology, Geoscientific Model Development, 12, 2285-2306,
https://doi.org/10.5194/gmd-12-2285-2019, 2019.

Craig, J. R. and the Raven Development Team: Raven: User’s and Developer’s Manual v3.5, http://raven.uwaterloo.ca/, 2022.

Craig, J. R., Brown, G., Chlumsky, R., Jenkinson, R. W., Jost, G., Lee, K., Mai, J., Serrer, M., Sgro, N., Shafii, M., Snowdon, A. P., and
Tolson, B. A.: Flexible watershed simulation with the Raven hydrological modelling framework, Environmental Modelling and Software,
129, https://doi.org/10.1016/j.envsoft.2020.104728, 2020.

Csardi, G. and Nepusz, T.: The igraph software package for complex network research, InterJournal, Complex Systems, 1695, http://igraph.
org, 2006.

Dal Molin, M., Kavetski, D., and Fenicia, F.: SuperflexPy 1.3.0: an open-source Python framework for building, testing, and improving
conceptual hydrological models, Geoscientific Model Development, 14, 7047-7072, https://doi.org/10.5194/gmd-14-7047-2021, 2021.
Delaigue, O., Thirel, G., Coron, L., and Brigode, P.: airGR and airGRteaching: Two Open-Source Tools for Rainfall-Runoff Modeling and
Teaching Hydrology, in: HIC 2018. 13th International Conference on Hydroinformatics, edited by La Loggia, G., Freni, G., Puleo, V., and

De Marchis, M., vol. 3 of EPiC Series in Engineering, pp. 541-548, EasyChair, https://doi.org/10.29007/gsqj, 2018.

Delaigue, O., Coron, L., and Brigode, P.: airGRteaching: Teaching Hydrological Modelling with GR (Shiny Interface Included),
https://doi.org/10.15454/WOSSKT, r package version 0.2.9.25, 2020.

Euser, T., Winsemius, H. C., Hrachowitz, M., Fenicia, F., Uhlenbrook, S., and Savenije, H. H. G.: A framework to assess the realism of
model structures using hydrological signatures, Hydrology and Earth System Sciences, 17, 1893-1912, https://doi.org/10.5194/hess-17-
1893-2013, 2013.

Fenicia, F.,, Savenije, H. H. G., Matgen, P., and Pfister, L.: Understanding catchment behavior through stepwise model concept improvement,
Water Resources Research, 44, https://doi.org/10.1029/2006WR005563, 2008.

Fenicia, F., Kavetski, D., and Savenije, H. H. G.: Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and
theoretical development, Water Resources Research, 47, https://doi.org/10.1029/2010WR010174, 2011.

Grolemund, G. and Wickham, H.: Dates and Times Made Easy with lubridate, Journal of Statistical Software, 40, 1-25, https://www.jstatsoft.
org/v40/i03/, 2011.

Guo, D., Westra, S., and Peterson, T.: Evapotranspiration: Modelling Actual, Potential and Reference Crop Evapotranspiration, https://
CRAN.R-project.org/package=Evapotranspiration, r package version 1.15, 2020.

Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Impli-
cations for improving hydrological modelling, Journal of Hydrology, 377, 80-91, https://doi.org/10.1016/].jhydrol.2009.08.003, 2009.
Hargreaves, G. H. and Samani, Z. A.: Reference Crop Evapotranspiration from Temperature, Applied Engineering in Agriculture, 1, 96-99,

https://doi.org/10.13031/2013.26773, 1985.

Hijmans, R. J., van Etten, J., Sumner, M., Cheng, J., Baston, D., Bevan, A., Bivand, R., Busetto, L., Canty, M., Fasoli, B., Forrest, D., Ghosh,
A., Golicher, D., Gray, J., Greenberg, J. A., Hiemstra, P., Hingee, K., for Mathematics Applied Geosciences, 1., Karney, C., Mattiuzzi,
M., Mosher, S., Naimi, B., Nowosad, J., Pebesma, E., Lamigueiro, O. P., Racine, E. B., Rowlingson, B., Shortridge, A., Venables, B., and
Waueest, R.: raster: Geographic Data Analysis and Modeling, https://rspatial.org/raster, r package version 3.4-13, 2021.

Hoey, S. V., Seuntjens, P., van Der Kwast, J., and Nopens, 1.: A qualitative model structure sensitivity analysis method to support model

selection, Journal of Hydrology, 519, 3426-3435, https://doi.org/10.1016/j.jhydrol.2014.09.052, 2014.

25

https://doi.org/10.5194/gmd-12-2285-2019
http://raven.uwaterloo.ca/
https://doi.org/10.1016/j.envsoft.2020.104728
http://igraph.org
http://igraph.org
http://igraph.org
https://doi.org/10.5194/gmd-14-7047-2021
https://doi.org/10.29007/qsqj
https://doi.org/10.15454/W0SSKT
https://doi.org/10.5194/hess-17-1893-2013
https://doi.org/10.5194/hess-17-1893-2013
https://doi.org/10.5194/hess-17-1893-2013
https://doi.org/10.1029/2006WR005563
https://doi.org/10.1029/2010WR010174
https://www.jstatsoft.org/v40/i03/
https://www.jstatsoft.org/v40/i03/
https://www.jstatsoft.org/v40/i03/
https://CRAN.R-project.org/package=Evapotranspiration
https://CRAN.R-project.org/package=Evapotranspiration
https://CRAN.R-project.org/package=Evapotranspiration
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.13031/2013.26773
https://rspatial.org/raster
https://doi.org/10.1016/j.jhydrol.2014.09.052

615

620

625

630

635

640

645

Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C., and Arheimer, B.: Most computational hydrology is not reproducible, so is it really
science?, Water Resources Research, 52, 7548-7555, https://doi.org/10.1002/2016WR019285, 2016.

Hydrologic Engineering Center: HEC-HMS User’s Manual version 4.8., https://www.hec.usace.army.mil/confluence/hmsdocs/hmsum/4.8,
2020.

Jackson, E. K., Roberts, W., Nelsen, B., Williams, G. P., Nelson, E. J., and Ames, D. P.: Introductory overview: Error metrics for hydrologic
modelling — A review of common practices and an open source library to facilitate use and adoption, Environmental Modelling & Software,
119, 3248, https://doi.org/10.1016/j.envsoft.2019.05.001, 2019.

Kavetski, D. and Fenicia, F.: Elements of a flexible approach for conceptual hydrological modeling: 2. Application and experimental insights,
‘Water resources research, 47, 2011.

Kirchner, J. W.: Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of
hydrology, Water Resources Research, 42, https://doi.org/https://doi.org/10.1029/2005WR004362, 2006.

Knoben, W. J. M., Freer, J. E., Fowler, K. J. A., Peel, M. C., and Woods, R. A.: Modular Assessment of Rainfall-Runoff Models Toolbox
(MARRMOT) v1.2: an open-source, extendable framework providing implementations of 46 conceptual hydrologic models as continuous
state-space formulations, Geoscientific model development, 12, 24632480, 2019.

Knoben, W. J. M., Freer, J. E., Peel, M. C., Fowler, K. J. A., and Woods, R. A.: A brief analysis of conceptual model structure uncertainty
using 36 models and 559 catchments, Water Resources Research, https://doi.org/10.1029/2019WR025975, 2020.

LaZerte, S. E. and Albers, S.: weathercan: Download and format weather data from Environment and Climate Change Canada, The Journal
of Open Source Software, 3, 571, https://joss.theoj.org/papers/10.21105/joss.00571, 2018.

Leavesley, G. H., Markstrom, S. L., Restrepo, P. J., and Viger, R. J.: A modular approach to addressing model design, scale, and parameter
estimation issues in distributed hydrological modelling, Hydrological Processes, 16, 173—187, 2002.

Mai, J., Craig, J. R., and Tolson, B. A.: Simultaneously determining global sensitivities of model parameters and model structure, Hydrology
and Earth System Sciences, 24, 5835-5858, https://doi.org/10.5194/hess-24-5835-2020, 2020.

Mauricio Zambrano-Bigiarini: hydroGOF: Goodness-of-fit functions for comparison of simulated and observed hydrological time series,
https://doi.org/10.5281/zenodo.839854, r package version 0.4-0, 2020.

McLaughlin, D. L., Kaplan, D. A., and Cohen, M. J.: A significant nexus: Geographically isolated wetlands influence landscape hydrology,
Water Resources Research, 50, 7153-7166, https://doi.org/10.1002/2013WR015002, 2014.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I — A discussion of principles, Journal of Hydrology,
10, 282-290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970.

National Academies of Sciences, Engineering, and Medicine: Reproducibility and Replicability in Science, The National Academies Press,
Washington, D.C., https://doi.org/10.17226/25303, 2019.

Orellana, B., Pechlivanidis, I., Mcintyre, N., Wheater, H., and Wagener, T.: A Toolbox for the Identification of Parsimonious Semi-Distributed
Rainfall-Runoff Models: Application to the Upper Lee Catchment, in: International Congress on Environmental Modelling and Software,
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2723&context=iemssconference, 2008.

Pebesma, E.: Simple Features for R: Standardized Support for Spatial Vector Data, The R Journal, 10, 439-446, https://doi.org/10.32614/RJ-
2018-009, 2018.

Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious model for streamflow simulation, Journal of Hydrology, 279,

275-289, 2003.

26

https://doi.org/10.1002/2016WR019285
https://www.hec.usace.army.mil/confluence/hmsdocs/hmsum/4.8
https://doi.org/10.1016/j.envsoft.2019.05.001
https://doi.org/https://doi.org/10.1029/2005WR004362
https://doi.org/10.1029/2019WR025975
https://joss.theoj.org/papers/10.21105/joss.00571
https://doi.org/10.5194/hess-24-5835-2020
https://doi.org/10.5281/zenodo.839854
https://doi.org/10.1002/2013WR015002
https://doi.org/10.1016/0022-1694(70)90255-6
https://doi.org/10.17226/25303
https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2723&context=iemssconference
https://doi.org/10.32614/RJ-2018-009
https://doi.org/10.32614/RJ-2018-009
https://doi.org/10.32614/RJ-2018-009

650

655

660

665

670

675

Pilz, T., Francke, T., Baroni, G., and Bronstert, A.: How to Tailor my Process-based Hydrological Model? Dynamic Identifiability Analysis
of Flexible Model Structures, Water resources research, 2020.

Pohlert, T.: Non-Parametric Trend Tests and Change-Point Detection, https://cran.r-project.org/package=trend, r package version 1.1.4, 2020.

R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https:
/Iwww.R-project.org/, 2021.

Remmers, J. O., Teuling, A. J., and Melsen, L. A.: Can model structure families be inferred from model output?, Environmental modelling
and software : with environment data news, pp. 104 817—, 2020.

Ryan, J. A. and Ulrich, J. M.: xts: eXtensible Time Series, https://CRAN.R-project.org/package=xts, r package version 0.12.1, 2020.

Shook, K., Whitfield, P., Chlumsky, R., Albers, S., and Munoz, V.: Canadian Hydrological Analyses, https://github.com/CSHS-CWRA/
CSHShydRology, r package version 1.1.2, 2021.

Slater, L. J., Thirel, G., Harrigan, S., Delaigue, O., Hurley, A., Khouakhi, A., Prosdocimi, I., Vitolo, C., and Smith, K.: Using R in hydrology:
a review of recent developments and future directions, Hydrology and earth system sciences, 23, 2939-2963, 2019.

Spieler, D., Mai, J., Craig, J. R., Tolson, B. A., and Schiitze, N.: Automatic Model Structure Identification for Conceptual Hydrologic Models,
Water resources research, 56, 2020.

Stroustrup, B.: The C++ programming language, Addison-Wesley, Upper Saddle River, NJ, fourth edition. edn., 2013.

Van Rossum, G. and Drake, F. L.: Python 3 Reference Manual, CreateSpace, Scotts Valley, CA, 2009.

Vanderkam, D., Allaire, J., Owen, J., Gromer, D., and Thieurmel, B.: dygraphs: Interface to 'Dygraphs’ Interactive Time Series Charting
Library, https://CRAN.R-project.org/package=dygraphs, r package version 1.1.1.6, 2018.

Vereecken, H., Huisman, J. A., Hendricks Franssen, H. J., Briiggemann, N., Bogena, H. R., Kollet, S., Javaux, M., van der Kruk, J., and
Vanderborght, J.: Soil hydrology: Recent methodological advances, challenges, and perspectives, Water Resources Research, 51, 2616—
2633, https://doi.org/10.1002/2014WR016852, 2015.

Werner, M., Schellekens, J., Gijsbers, P., van Dijk, M., van den Akker, O., and Heynert, K.: The Delft-FEWS flow forecasting system,
Environmental Modelling & Software, 40, 65-77, https://doi.org/https://doi.org/10.1016/j.envsoft.2012.07.010, 2013.

Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New York, https://ggplot2.tidyverse.org, 2016.

Wickham, H.: tidyr: Tidy Messy Data, https://CRAN.R-project.org/package=tidyr, r package version 1.1.3, 2021.

Wickham, H., Frangois, R., Henry, L., and Miiller, K.: dplyr: A Grammar of Data Manipulation, https://CRAN.R-project.org/package=dplyr,
r package version 1.0.5, 2021a.

Wickham, H., Hester, J., and Chang, W.: devtools: Tools to Make Developing R Packages Easier, https://CRAN.R-project.org/package=
devtools, r package version 2.4.0, 2021b.

27

https://cran.r-project.org/package=trend
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://CRAN.R-project.org/package=xts
https://github.com/CSHS-CWRA/CSHShydRology
https://github.com/CSHS-CWRA/CSHShydRology
https://github.com/CSHS-CWRA/CSHShydRology
https://CRAN.R-project.org/package=dygraphs
https://doi.org/10.1002/2014WR016852
https://doi.org/https://doi.org/10.1016/j.envsoft.2012.07.010
https://ggplot2.tidyverse.org
https://CRAN.R-project.org/package=tidyr
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=devtools
https://CRAN.R-project.org/package=devtools
https://CRAN.R-project.org/package=devtools

