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Abstract. The snowfall prediction is important in winter and early spring because snowy conditions generate enormous eco-

nomic damages. However, there is a lack of previous studies dealing with snow prediction, especially using land surface

models (LSMs). Numerical weather prediction models directly interpret the snowfall events, whereas the LSMs evaluate the

snow cover, snow albedo, and snow depth through interaction with atmospheric conditions. Most LSMs include parameters

based on empirical relations, resulting in uncertainties in model solutions. When the initially-developed empirical parameters5

are local or inadequate, we need to optimize the parameter sets for a certain region. In this study, we seek for the optimal

parameter values in the snow-related processes — snow cover, snow albedo, and snow depth — of the Noah LSM, for South

Korea, using the micro-genetic algorithm and the in-situ surface observations and remotely-sensed satellite data. Snow data

from surface observation stations representing five land cover types — deciduous broadleaf forest, mixed forest, woody sa-

vanna, cropland, and urban and built-up lands — are used to optimize five snow-related parameters that calculate the fractional10

snow cover, maximum snow albedo of fresh snow, and the fresh snow density associated with the snow depth. Another param-

eter, reflecting the dependence of fractional snow cover on the land cover types, is also optimized. Optimization of these six

snow-related parameters has led to improvement in the root-mean squared errors by 17.0 %, 6.2 %, and 3.3 % on snow depth,

snow albedo, and fractional snow cover, respectively. In terms of the mean bias, the underestimation problems of snow depth

and overestimation problems of snow albedo have been alleviated through optimization of parameters calculating the fresh15

snow by about 44.2 % and 31.0 %, respectively.

1 Introduction

Land surface models (LSMs) act as the lower boundary conditions for regional numerical weather prediction (NWP) and

climate models, to which they provide the surface fluxes (Ek et al., 2003). However, LSMs include inevitable uncertainties due

to insufficient knowledge of surface layer processes and characteristics; for instance, unreasonable representation of the spatio-20
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temporal surface heterogeneity and the inaccuracy of the parameters based on empirical relations contribute to the uncertainties

in LSMs. In particular, uncertainties in the snow-related processes of LSMs are appreciable and exert significant impacts on

the performance of regional climate models to which the LSMs are coupled (e.g., Zhao and Li, 2015; Suzuki and Zupanski,

2018; Günther et al., 2019; Kim and Park, 2019; Xu et al., 2019; Jiang et al., 2020).

Intense snowfall events often occur in the Korean Peninsular during winter and early spring. In South Korea (SK), heavy25

snowfalls are the third most serious source of natural disasters, following typhoons and heavy rainfalls (Kim et al., 2018)

with severe economic consequences. Most of the previous studies focused on classification of snowfall (Cheong et al., 2006

(In Korean with English abstract)), investigation of synoptic characteristics (Jung et al., 2012), and comparisons of different

LSM options in the coupled atmosphere-land surface prediction system (Wang and Sun, 2018; Kim and Park, 2019). Being

coupled to the atmospheric models, the LSMs play an important role to predict the snowfall in NWP because they calculate the30

fractional snow cover, snow albedo, and snow depth through interactions with the atmosphere. For example, the choice of land

surface scheme is crucial to simulate the spatial distributions of snowfall in the land surface-coupled NWP models (e.g., Wang

and Sun, 2018; Kim and Park, 2019). In other words, the numerical snowfall forecast is strongly affected by the performance

of the coupled LSM; thus, improvement in the snow-process parameterizations of the off-line LSMs can bring about better

performance in NWP models.35

Uncertainties in parameterized physical processes have been observed and quantified in various numerical models (e.g.,

Mallet and Sportisse, 2006; Gubler et al., 2012; Shutts and Pallarès, 2014; Folberth et al., 2019; Li et al., 2020; Olafsson and

Bao, 2020; Pathak et al., 2020; Souza et al., 2020). Such uncertainties can be reduced by estimating optimal parameter values

in the subgrid-scale parameterization schemes (e.g., Annan and Hargreaves, 2004; Lee et al., 2006; Neelin et al., 2010; Yu

et al., 2013; Zhang et al., 2015; Kotsuki et al., 2018; Li et al., 2018; Chinta and Balaji, 2020). Because empirical parameters40

are commonly derived from the observations or theoretical calculations, their estimated values are strongly dependent on the

local characteristics of the region and period where the observations are made. Thus, parameter estimation that fits the model

outputs to the observations is essentially required to obtain an adequate parameter (Duan et al., 2017). It may be done using a

trial and error approach by manual, but the optimization algorithm helps to replace enormous experiments by automatically

minimizing the difference between model and observations (Duan et al., 2006). For example, a global optimization tool, called45

the micro-genetic algorithm (micro-GA), has been effectively used for estimating the optimal parameter values in NWP model

(e.g., Yu et al., 2013).

Most snow processes in the LSMs are parameterized based on the observations in specific local regions, and hence they

may not represent adequately the situation in SK and be the source of uncertainties for numerical snow prediction over SK.

We aim at obtaining the optimal parameter values of the snow-related processes — snow cover, snow albedo, and snow depth50

— in a LSM using the micro-GA, which causes a better LSM performance over SK. This study represents the first attempt to

develop a coupled system of micro-GA and Noah LSM for parameter estimation of the snow processes. Section 2 describes the

methodology, including the snow processes of the LSM and the micro-GA optimization tool. Section 3 explains experiment

design. Results, and conclusions and outlook are provided in sections 4 and 5, respectively.
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2 Methodology55

2.1 Snow-related processes in Noah Land Surface Model

In this study, we employ the Noah Land Surface Model (Noah LSM; Chen et al., 1996; Koren et al., 1999; Ek et al., 2003)

to simulate the single-site land surface processes (Mitchell, 2005), including the surface energy and water flux, and to verify

energy and water budgets in the near-surface atmospheric layer by simulating the soil moisture and soil temperature, and the

snowpack. Noah LSM is a stand-alone and one-dimensional column model, developed through multi-institutional cooperation.60

In the soil, to simulate soil moisture and soil temperature, we selected four layers with depths of 10, 30, 60, and 100 cm,

respectively, from top to bottom, for a total depth of 2 m. The model also evaluates various other variables, including skin

temperature, snow depth, snow water equivalent, snow density, canopy water content, etc. (Mitchell, 2005). The energy and

water fluxes are calculated through the surface energy and water balance equations, respectively. Due to its adequate complexity

and computational efficiency (Mitchell et al., 2004), the Noah LSM has been coupled to the operational NWP model of the65

Korea Meteorological Administration (KMA), named the Korean Integrated Model (KIM; Hong et al., 2018) — see Koo et al.

(2017) for the details of the coupled KIM-Noah LSM system.

The current Noah LSM (version 3.4.1) uses a single-layer representation to the snow processes considering a bulk snow-soil

canopy layer (Sultana et al., 2014). If air temperature is less than 0 ◦C, the resulting precipitation is considered snow. The

fractional snow cover is determined as a function of snow water equivalent (SWE) using a generalized snow depletion curve.70

Snow albedo is calculated based on the fractional snow cover and the maximum snow albedo (Ek et al., 2003). Snow depth is

represented by SWE and the bulk snow density (Jonas et al., 2009). The equations in Noah LSM describe the heat exchanges at

the snow-atmosphere and snow-soil interfaces as well as snow accumulation, sublimation, and melting (Suzuki and Zupanski,

2018). The above-mentioned snow processes contain certain estimated coefficients or constants, known as parameters, which

employ typical, empirical or a priori values. The parameters are provided as look-up tables based on their samples in the field75

or lab. Traditionally, they are tuned by trial and error to calibrate the model against historical observations in a specific location;

however, a systematic and objective procedure is essentially required for a large number of stations (Duan et al., 2006; Rosolem

et al., 2013). We explain below the details of the snow-related parameters to be optimized for various stations in SK.

2.1.1 Fractional snow cover (FSC)

The FSC (σs) is important for the accumulation and ablation processes (Livneh et al., 2010). As a function of SWE (Ws)80

extracted by the atmospheric input values (Livneh et al., 2010), σs varies nonlinearly as in Eq. (1), following the empirical

snow depletion curves of Anderson (1973):

σs = 1− e−PsW +We−Ps . (1)

Here, Ps is the distribution shape parameter and W =Ws/Wmax, where Wmax is the threshold of Ws above which σs is

100%. Note that, from Eq. (1), σs is a function of Ps and Wmax — these two parameters are to be optimized.85
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Figure 1. Responses of the snow variables to the variations in the snow-related parameters for given ranges: (a, b) Responses of FSC, for

Ws = 0.02, to variations in Ps (with Wmax = 0.08) and in Wmax (with Ps = 2.6), respectively; (c, d) Responses of SA, for αmax,sat = 0.2

and t = 10 days, to variations in αmax,CofE (with C = 0.5) and in C (with αmax,cofE = 0.85), respectively; and (e, f) Responses of SD (in

cm), for Ws = 0.02 and Tair = -5 ◦C, to variations in P1 (with P2 = 0.0017) and in P2 (with P1 = 0.05 g cm−3).

Figure 1 represents the responses of the snow variables to the variations in the snow-related parameters for given ranges. It is

noteworthy that Ps has a positive correlation with snow cover (Fig. 1(a)). For example, σs increases as Ps increases, resulting

in relatively slow snow melting. In Eq. (1), the value of Ps usually ranges between 2 and 4 (e.g., Anderson, 1973; Koren et al.,

1999), and its default value in Noah LSM is 2.6. We seek the optimal value of Ps, which lies between 2 and 4 and is suited to

SK.90

The SWE threshold, Wmax, has a negative correlation with snow cover, as shown in Eq. (1) and it is more sensitive com-

pared to Ps within a given parameter’s range (Fig. 1(b)). In Noah LSM, the values of Wmax are prespecified in a table

(VEGPARM.TBL), varying with the land cover types (LCTs). Wmax has the largest value over forest, reflecting the irregular
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geometry of forest cover (Wang et al., 2010). Previous studies suggest the uncertainty range in the values of Wmax; for in-

stance, Livneh et al. (2010) used 0.04 m for forest and 0.02 m for non-forest, respectively, whereas Wang et al. (2010) used95

0.2 m for tall vegetation and 0.01 m for short vegetation. The default values in Noah LSM are 0.08 m for forest and 0.04 m for

non-forest. We estimate the optimal Wmax values, suited to SK, in the range between 0.01 m and 2 m.

2.1.2 Snow albedo (SA)

SA is defined as the fraction of incident radiation reflected by the snowpack and is crucial for evaluating surface-energy

balance, particularly during snow melting (Warren and Wiscombe, 1980; Warren, 1982); however, accurate representation of100

SA is difficult due to numerous complexities (Livneh et al., 2010).

Surface albedo generally increases over snow, but it may react differently over a shallow snowpack: when accumulation

starts by snowfall or diminution occurs by snow melt, patchy areas can be generated and corresponding model grid boxes may

not be covered by snow (Ek et al., 2003). The Noah-LSM reflects this patchiness effect by calculating surface albedo (α) as a

composite of snow-covered surface albedo (αs) and snow-free surface albedo (α0) as105

α= α0 +σs(αs −α0). (2)

Note that SA is generally highest over the fresh snow and decays thereafter, and the decay rate depends on the seasonal snow

phase — faster during the ablation phase and slower during the accumulation phase. By reflecting this fact, αs is evaluated as

a function of the fresh SA (αmax), the number of days after the last snowfall (t), and the albedo-decay rates (A and B) as

αs = αmaxA
tB , (3)110

where the default values of empirical parameters A and B are 0.94 and 0.58, respectively, during the accumulation phase and

0.82 and 0.46, respectively, during the ablation. However, the current Noah LSM activates only the accumulation phase in Eq.

(3), and both A and B are excluded from our optimization.

Spatial variation in SA is taken into consideration in αmax, by incorporating the satellite-based maximum SA (αmax,sat)

from Robinson and Kukla (1985) and by imposing adjustment to a maximum SA (αmax,CofE) from USACE (1956) (see also115

Livneh et al., 2010), as

αmax = αmax,sat +C(αmax,CofE −αmax,sat), (4)

where C is a proportionality coefficient. We optimize two empirical parameters that show positive relation to SA — αmax,CofE

and C, whose default values are 0.85 and 0.5, respectively (Fig. 1(c)-(d)): SA shows similar sensitivities to both parameters

within the same range but is a bit more sensitive to C. Some other values have been used in previous studies (e.g., Livneh et al.,120

2010), such as 0.6 to 0.95 for αmax,CofE and 1.0 for C. For the parameter estimation in this study, we set the ranges from 0.1

to 1.0 for both parameters.
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2.1.3 Snow depth (SD)

In Noah LSM, SD is evaluated as the ratio of SWE (Ws) to snow density (µs), i.e., Ws/µs (Gotleib, 1980; Koren et al., 1999).

While SWE is determined by precipitation in the model, snow density is determined by several other parameters such as the125

compression and melting of snow (Koren et al., 1999). Fresh snow density (µs,fresh) depends on air temperature (Tair), i.e., 2

m temperature (Gotleib, 1980) as

µs,fresh = P1 +P2(Tair +15)1.5, (5)

where P1 = 0.05 g cm−3 and P2 = 0.0017 g cm−3 ◦C−1 are the default values of the coefficients. If Tair is less than −15

◦C, µs,fresh is set to 0.05 g cm−3; otherwise, µs,fresh tends to increase as Tair increases. As the empirical parameters P1130

and P2 are directly associated with µs,fresh, we seek optimal values of these parameters. Because snow density is inversely

proportional to SD, both P1 and P2 have negative correlations with the SD (Fig. 1(e)-(f)), where SD shows similar sensitivities

to both parameters.

2.2 Optimization tool: micro-genetic algorithm

The genetic algorithm (GA) is a global optimization algorithm developed by John Holland in the 1970s (e.g., Holland, 1973,135

1975) and is based on Darwinian principles of natural selection (Golberg, 1989). It uses reproduction selection, crossover

and mutation to operate a set of potential solutions, i.e., population or individuals, which are expressed by a string, called a

chromosome: its binary form is called a gene (Koren et al., 1999; Rudnaya and Santosa, 2000). The reproduction operator

first selects good solutions or eliminates bad solutions based on the fitness value; then, the crossover operator exchanges the

genetic information between the solutions using the single-point or uniform types. The mutation operator modifies the value of140

each gene of the chromosomes by replacing it with the opposite value, e.g., 0 with 1, which prevents premature convergence.

When a new generation is created, the above processes are repeated until the convergence condition or the prescribed number

of iterations is satisfied.

Micro-GA is an advanced and simplified GA with smaller generation sizes, thus requiring less computational time than the

conventional GA (Krishnakumar, 1990; Wang et al., 2010). It has been used in meteorology for optimal parameter estimation145

(e.g., Yu et al., 2013) or scheme-based optimization (e.g., Hong et al., 2014, 2015; Park and Park, 2021; Yoon et al., 2021).

Its main difference from the conventional GA is the population size; for example, micro-GA uses 5 individuals while the

conventional GA uses more than 30 individuals. Note that the conventional GA with a small population quickly converges

to non-optimal solutions due to insufficient information; however, micro-GA solves this problem by using elitism, which

assigns the best individual among the 5 individuals based on the fitness evaluation and carries it to the next generation — this150

guarantees to preserve the good solutions during the generations. Furthermore, micro-GA does not take mutation to achieve

diversity; instead, it uses the re-initialization which starts with a new individual whenever the diversity is lost.
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2.2.1 Coupling micro-GA with Noah LSM and parallelization

Figure 2 describes the process of parameter optimization in the micro-GA-Noah LSM coupled system: 1) Micro-GA initial-

izes the snow parameter combinations represented by the binary encoding through the random samples of the individual; 2)155

Micro-GA controls Noah LSM by editing the parameter-related files, such as GENPARM.TBL, VEGPARM.TBL, and the

Fortran code (module_sf_noahlsm.F) and prepares the forcing data for each station; 3) As recommended in Carroll (1996),

the 5 individuals configured with the different snow parameters execute the ensemble runs of Noah LSM in parallel; 4) The

performance of each Noah LSM is evaluated in comparison with the observation through a given fitness function; 5) Micro-GA

selects the highest fitness comparing a number of individuals through the tournament selection; 6) New combinations for the160

next generation are produced through the crossover using the selected ones in the previous step; 7) When the convergence

is satisfied, the other 4 individuals except the best individual marked by elitism are randomly regenerated; and 8) Micro-GA

repeats these processes until the prescribed-entire iteration converges into a global maximum of the fitness function.

Although micro-GA is computationally more efficient than the conventional GA, it still demands substantial computing

time because each individual serially executes the model. Therefore, we have developed a parallel processing system in the165

micro-GA-Noah LSM coupled system. Instead of sequentially performing each individual and calculating the fitness within

a generation, we run the model simultaneously for all populations to obtain the fitness and select the best individual when

all tasks are finished (see the dashed box in Fig. 2). This new parallel system linearly reduces the execution time, which is

proportional to the number of individuals. In addition, since the coupling system was created in a shell script, it is possible to

assign multiple cores for model execution for various stations. The new parallel processing system, created by reflecting these170

two main points, improves the computation time — making it different from the non-parallel processing of a coupled system,

e.g., the micro-GA–Noah-MP system (see Hong et al., 2014).

2.2.2 Fitness function

The fitness function is a performance index to evaluate how well potential solutions fit the objective. In the GA optimization,

the fitness function should be carefully defined because it is used for all generations and individuals. Generally, the root-mean-175

square error (RMSE) is a widely used indicator for evaluating the performance of a model (e.g., Yan et al., 2019). Since our

aim is to improve the snowfall prediction, we simultaneously evaluate all related snow variables — FSC, SA, and SD. We have

first calculated the RMSE for each snow variable as

RMSE(x) =

√√√√√ N∑
i=1

(x̂i −xi)
2

N
, (6)

where x is a vector representing the three snow variables and N is the total number of observation time. Here, x̂ is the predicted180

values in the Noah LSM while x is the observed values. The number of observations is dependent on the observational types:

the Automated Synoptic Observing System (ASOS) produces hourly data for SD while the MODerate resolution Imaging

Spectroradiometer (MODIS), a sensor onboard the polar orbiting satellite Terra, produces daily data for FSC and SA. To
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Figure 2. A flow chart of parameter optimization from the micro-GA-Noah LSM coupled system. The dashed box depicts the parallel system

for Noah LSM, running for each individual.

calculate the RMSE between the model solutions and observations, the Noah LSM simulations are made over the observation

locations. For SD, the RMSE is directly obtained on the same grid point. As the MODIS data have a coarser resolution, we use185

the observation point nearest the ASOS location (see the details in section 2.3).

We have then obtained the improvement ratio, r(x), by comparing the RMSEs from the model runs with non-optimized

parameters (say, CNTL) and optimized parameters (say, OPTM), respectively, as

r(x) =
RMSE(x)CNTL −RMSE(x)OPTM

RMSE(x)CNTL
. (7)

Lastly, we have averaged all the improvement ratios for the snow variables to define the fitness function, f(x), as190

f(x) =

M∑
j=1

r(x)jqj

M
(8)
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where M is the number of stations and q is a quality control flag (QCF) — either 0 or 1. The QCF is employed to secure

a sufficient number of snow observations. It is set to 0 (i.e., the fitness function is not accumulated) for the following cases:

1) snow events are not simulated after optimization; and 2) the number of snow observations is less than 2. Furthermore,

when the performance gets deteriorated after optimization, we give a penalty by doubling Eq. (7) to prevent degradation of the195

optimization.

We finally define the normalized fitness function, fn(x), as

fn(x) =
f(FSC)+ f(SA)+ f(SD)

3
, (9)

whose values lie in the range [−1,1]. Thus, the micro-GA finds the maximum fitness based on Eq. (9).

2.3 Data200

The land surface processes were forced by six meteorological fields from ASOS (https://data.kma.go.kr): wind speed (m s−1),

wind direction (degrees), temperature (K), relative humidity (%), surface pressure (hPa), and precipitation rate (kg m−2s−1).

When missing data exist in less than 72 hours, linear interpolation was performed except for precipitation. Stations with the

missing rate greater than 1 %, during the entire experimental period, have been excluded. For the initial and boundary condi-

tions, downward shortwave/longwave radiation (W m−2), precipitation rate (kg m−2s−1), soil temperature (K), soil moisture205

(m3 m−3), and surface temperature (K) have been obtained from the European Centre for Medium-Range Weather Forecasts

(ECMWF) — the fifth generation ECMWF reanalysis-Land (ERA5L) hourly data (Muñoz-Sabater, 2019) — having a spatial

resolution of 9 km and four soil layers with thicknesses of 7, 21, 72, and 189 cm, respectively, from top to bottom for a total

depth of 2.89 m. We have used the data at the ERA5L grid nearest point to the ASOS station.

The snow observations (i.e., SD, FSC, and SA) are used for the model verification and the fitness function calculation.210

For SD, the hourly model outputs are evaluated using the hourly ASOS data. To confirm the snow season, we have excluded

the SD observations lower than 0.1 cm. For FSC and SA, we have no ASOS observations over SK; thus, we have used the

MODIS/Terra Snow Cover Daily L3 Global 500 m SIN Grid radiance data (Hall and Riggs, 2016). They are generated from

the MODIS/Terra Snow Cover 5-Min L2 Swath 500 m data (Hall et al., 2006) by selecting the best observation based on a

scoring algorithm when they are closest to nadir with maximum coverage of the cell (Hall and Riggs, 2007). In particular,215

FSC is generated by the Normalized Difference Snow Index (NDSI). The MODIS snow data at the points nearest to the ASOS

locations were extracted and used for verification of the model-generated FSC and SA. Being a polar orbiting satellite, MODIS

contains only one observation per day; thus, we have extracted the model output for verification at 02 UTC when the satellite

(Terra) passes over SK. For the calculations, we have converted the percent values of FSC and SA to the decimal values; then,

we have excluded observational data with values below 0.05 (i.e., 5%) for both FSC and SA.220

For the optimization experiment, we have selected some stations that represent different land covers in SK, aiming at having

a representative combination of snow-related parameters over SK. We have defined a representative set of LCTs within a 2.5

km radius from the ASOS observations, excluding the water body. The LCTs have been taken from the MODIS (onboard Terra

and Aqua) Land Cover Type Yearly Climate Modeling Grid (CMG) Version 6 (Friedl and Sulla-Menashe, 2015), in which
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maps are provided from the land cover classification schemes of the International Geosphere-Biosphere Programme (IGBP),225

the University of Maryland (UMD) and the Leaf Area Index (LAI), all at a 0.05 degree spatial resolution in geographic

latitude/longitude projection (see Sulla-Menashe and Friedl, 2018), for the entire globe from 2001 to 2019. Finally, we have

compiled a set of five representative stations for each different LCT — deciduous broadleaf forest (DBF), mixed forest (MF),

woody savanna (WS), cropland (CL), and urban and built-up lands (UB) — as shown in Table 1.

3 Experimental design230

We have designed the following two GA optimization experiments: 1) OPT_5 that optimizes five snow parameters (Ps,

αmax,CofE , C, P1, and P2); and 2) OPT_W that optimizes Wmax. These parameters are all constants and do not vary with

time and space. Among the six parameters, only Wmax depends on the LCTs though it is still fixed for a given LCT; thus,

we conducted OPT_5 and OPT_W separately. Note that SK is represented by five different LCTs considering the sufficient

days of snowfall and ASOS observation (see Table 1). Because OPT_5 optimizes with more parameters and generations, we235

have selected 10 stations (i.e., 2 stations per LCT) based on snowfall amount to reduce the computation time (see Fig. 3(a)).

To investigate the performance of snow prediction through optimized snow parameters, we have designed the following three

verification experiments for the 25 observation stations: 1) CNTL using non-optimized (i.e., default) parameters; 2) VRF_5

using the five optimized parameters obtained from OPT_5; and 3) VRF_6 using the six optimized parameters obtained from

both OPT_5 and OPT_W (see Fig. 3(b)).240

For the micro-GA optimization, we have pre-specified the following input parameters: 1) the population size, i.e., a collection

of individuals; 2) the number of parameters to be used for optimization; 3) the number of chromosomes expressing an arbitrary

solution; 4) the maximum number of generations to iterate the optimization; 5) the type of crossover operator that creates a

new structure of chromosomes through the exchange of the chromosome; and 6) the elitism to decide whether the most suitable

individual would be preserved for next generation. The micro-GA-Noah LSM coupled system has been repeatedly performed245

to find a parameter combination within the specified generations.

Table 2 describes the input parameters for micro-GA used in this study. We follow the options known as the best performance

in micro-GA; it is done with a population size of 5 and a uniform crossover (i.e., crossover operator = 1.0) with elitism (Carroll,

1996; Yu et al., 2013; Yoon et al., 2021). The uniform crossover in which each gene is selected randomly from one of the parent

chromosomes makes all populations perform a crossover at every generation to acquire the diversity (Lee et al., 2005). The250

number of parameters to be optimized is 5 for OPT_5 and 1 for OPT_W. The number of chromosomes determines the number

of cases expressed in a binary format. For example, the selected parameters — Ps, αmax,CofE , C, P1, P2, and Wmax — use

different chromosomes, i.e., 5, 5, 5, 6, 4, and 5, respectively; thus, the total number of chromosomes is 30 for OPT_5 and

5 for OPT_W. The maximum value of generations at the end of optimization is generally set to 100 (Yu et al., 2013; Yoon

et al., 2021; Zhu et al., 2019), whereas we increased generations up to 200 in OPT_5 due to larger number of parameters to be255

optimized.
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Table 1. Five representative LCTs over SK, following the IGBP classification — DBF, MF, WS, CL, and UB. For each LCT, five selected

stations are shown with the station name (abbreviation in parenthesis), location in latitude (◦N) and longitude (◦E), ratio of LCT in 2.5 km

buffer (%), soil type, and missing ratio (%). The experiment OPT_5 employs only the stations highlighted in bold while the other experiments

use all the stations.

IGBP

LCT
Station Name Latitude Longitude

Ratio of LCT

in 2.5 km Buffer
Soil Type

Missing

Ratio

DBF

Ulleungdo (UL) 37.481 130.899 82.7 Silt Loam 0.15

Taebaek (TB) 37.170 128.989 67.0 Loam 0.15

Inje (IJ) 38.060 128.167 62.7 Sandy Loam 0.07

Chupungnyeong (CP) 36.220 127.995 56.8 Silt Loam 0.04

Youngwol (YW) 37.181 128.457 42.6 Clay 0.09

MF

Bongwha (BW) 36.944 128.914 38.7 Loam 0.11

Hapcheon (HP) 35.565 128.170 32.1 Loam 0.51

Hongcheon (HC) 37.683 127.880 26.3 Silty Clay Loam 0.05

Miryang (MY) 35.491 128.744 22.5 Sandy Loam 0.16

Gumi (GM) 36.131 128.321 24.1 Sandy Loam 0.05

WS

Imsil (IS) 35.612 127.286 53.1 Sandy Loam 0.12

Andong (AD) 36.573 128.707 43.9 Loamy Sand 0.04

Boeun (BE) 36.488 127.734 41.2 Sandy Loam 0.07

Uljin(UJ) 36.992 129.413 39.2 Loam 0.19

Bukgangneong (NG) 37.805 128.855 37.5 Sandy Loam 0.04

CL

Buan(BA) 35.730 126.717 87.8 Loam 0.03

Icheon(IN) 37.264 127.484 74.6 Sandy Loam 0.16

Haenam(HN) 34.554 126.569 63.7 Sandy Loam 0.29

Boryeong (BR) 36.327 126.557 53.8 Silty Clay Loam 0.14

Jeongeup (JE) 35.563 126.839 51.7 Silt Loam 0.28

UB

Gwangju(GJ) 35.173 126.892 94.6 Loam 0.03

Seoul (SL) 37.571 126.966 90.8 Loam 0.08

Daejeon (DJ) 36.372 127.372 72.2 Sandy Loam 0.03

Suwon(SW) 37.257 126.983 71.4 Sandy Loam 0.10

Incheon (IC) 37.478 126.625 70.1 Loam 0.07

In this study, we have conducted the optimization experiments from 0000 UTC 1 May 2009 to 2300 UTC 30 April 2018.

During this 9 years period, the number of snow observations was continuously secured. Data from the first 5 months (May–Oct
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Figure 3. Stations used for the experiments (a) OPT_5 and (b) OPT_W, CNTL, VRF_5 and VRF_6. Different colors in the station acronyms

represent different LCT: DBF (black), MF (blue), WS (green), CL (yellow), and UB (red). See Table 1 for the acronyms of stations and

LCTs.

Table 2. The input parameters for micro-GA in experiments OPT_5 and OPT_W.

Input Parameter OPT_5 OPT_W

Population size 5 5

Crossover operator 1.0 1.0

Elitism on on

Number of parameters 5 1

Number of chromosomes 30 5

Maximum value of generations 200 100

in 2009) were utilized for model initialization and spin-up, thus they were not considered for the verification. Cross validation

has been conducted using the 1 year data from 0000 UTC 1 May 2018 to 2300 UTC 30 April 2019. Since they showed similar260

aspects, we only discuss the results of optimization periods having sufficient samples.
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4 Results

4.1 Spin-up analysis

Numerical prediction models generally require spin-up to reach a statistical equilibrium state where the initial conditions under

a forcing are adjusted to the model’s own physics/dynamics and numerics (Bonekamp et al., 2018). Without sufficient spin-up,265

the LSMs can generate severe bias of initial conditions (Cosgrove et al., 2003). Prior to the optimization experiments, we have

conducted a spin-up experiment in one of the stations, Seoul, to check the appropriate spin-up time. It was carried out in two

ways: 1) using a spin-up period recursive in 9 years (e.g., Jun et al., 2020); and 2) using a spin-up period that was not included

in the analysis.

First, the Noah LSM has been repeatedly executed using the atmospheric forcing for 9 years. This recursive simulation has270

been conducted from 1 May 2009 to 30 April 2018 to see whether the model was able to reach an equilibrium by setting the

repetition loop as 0, 300, 600, and 1000. Our results indicated no significant differences; thus, we concluded that repetition was

not required. Second, we have performed sensitivity tests to identify the spin-up period due to changes in the initial conditions

by adding biases (±0.1 m3 m−3 for soil moisture and ±3 K for soil temperature) to the ERA5L data. As a result, we found that

the adequate spin-up periods were about 3 months and 1 year for soil moisture and soil temperature, respectively; however,275

the snow variables were insensitive to the initial condition changes, thus requiring no spin-up period. Although the spin-up is

not necessary for this study that focuses on the snow processes, we have performed the optimization experiments starting from

May when snow is absent.

4.2 Optimal estimation of snow parameters

To optimize snow parameters specialized in SK, we have employed the micro-GA-Noah LSM coupled system using the ob-280

servations over SK. Figure 4(a) shows the evolution of the fitness function for OPT_5 in a total of 200 generations, as well as

Fig. 4(b) for OPT_W in a total of 100 generations. Since the OPT_W optimizes solely Wmax parameter, it has smaller genera-

tions. In OPT_5, the fitness function converges at 160th generation, while the fitness function of OPT_W quickly converges in

all LCTs (Fig. 4(b)). The convergence occurs at 3rd generation for DBF, 70th generation for MF, 7th generation for both WS

and CL, and 12th generation for UB.285

As a result, we have obtained the optimized six snow parameters over SK (Table 3). The OPT_5 simultaneously generates

the optimized five snow parameters (Ps, αmax,CofE , C, P1, and P2) associated with the FSC, SA, and SD while the OPT_W,

depending on the LCTs, generates the optimized Wmax associated with the FSC. The first snow parameter, Ps, is optimized

from its standard value of 2.6 to 2.7097, which results in an increase of the FSC. The second snow parameter, Wmax, is

optimized depending on each LCT. In detail, the Wmax in DBF and WS increases from 0.08 to 0.1632 and from 0.03 to290

0.0406, respectively. They lead to a decrease of the FSC due to a negative correlation. On the other hand, the Wmax in MF and

UB decreases from 0.08 to 0.0529 and from 0.04 to 0.0284, respectively, thus increasing the FSC. The optimized CL shows a

similar value from 0.04 to 0.0406, which means that the current value was proper to SK. The third snow parameter related to

the SA, αmax,CofE , decreases from 0.85 to 0.7387, inducing a decrease of SA. The fourth snow parameter, C, also shows a
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Figure 4. The fitness function for generations during the optimization of (a) five snow parameters optimization (OPT_5), and (b) Wmax

optimization (OPT_W) for DBF (black), MF (blue), WS (green), CL (yellow), and UB (red) LCTs.

Table 3. Summary of optimized snow parameters related to snow variables. Minimum (Min), Default, Maximum (Max) are the ranges used

in the optimization process. Default is the empirical value used in the Noah LSM.

Snow

Variable

Snow

Parameter
LCTs Min/Default/Max

Optimized

Value

FSC Ps – 2.0/2.6/4.0 2.7097

Wmax DBF 0.01/0.08/2.00 0.1632

MF 0.01/0.08/2.00 0.0529

WS 0.01/0.03/2.00 0.0406

CL 0.01/0.04/2.00 0.0406

UB 0.01/0.04/2.00 0.0284

SA αmax,CofE – 0.10/0.85/1.00 0.7387

C – 0.1/0.5/1.0 0.5355

SD P1 – 0.00/0.05/0.10 0.0698

P2 – 0.0002/0.0017/0.003 0.0002

similar value from 0.5 to 0.5355, thus this value was proper to SK. The fifth snow parameter, P1, increases from 0.05 to 0.0698,295

resulting in a decrease of SD. The last snow parameter, P2, reduces from 0.0017 to 0.0002, leading to an increase of SD.

We have investigated the mean bias (MB) using the box plot expressing the quartile and the distribution of extreme values: it

explains how much the bias of the CNTL is reduced in optimization experiments by comparing the model with the observations.

Before optimization, the CNTL showed under-estimated FSC and SD and over-estimated SA (-0.133, -4.39 cm, and 0.0408,

respectively; see Fig. 5). However, the bias patterns in FSC and SA vary on each station owing to the lower spatial and temporal300

resolution of satellite observation. On the other hand, the SD shows an under-estimation at all stations; the increase in the SD

due to fresh snow was under-estimated, and snow melting was proceeding faster than the observation.
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Figure 5. Box plots of (a) FSC bias, (b) SA bias, and (c) SD bias (cm) for CNTL, VRF_5 and VRF_6. The maximum differences are

indicated with the black star symbol (e.g., 0.637 (CNTL), 0.643 (VRF_5), 0.570 (VRF_6) for FSC, 0.605 (CNTL), 0.563 (VRF_5), and

0.525 (VRF_6) for SA, and 34.1 cm (CNTL), 45.1 cm (VRF_5), and 46.3 cm (VRF_6) for SD). Each mean of snow variables is indicated as

a black circle (e.g., -0.133 (CNTL), -0.145 (OPT_5), and -0.149 (VRF_6) for FSC, 0.0408 (CNTL), 0.0298 (VRF_5), and 0.0281 (VRF_6)

for SA, and -4.39 cm (CNTL), -2.81 cm (VRF_5), and -2.45 cm (VRF_6) for SD).

The performance has been evaluated using the improvement ratio, which indicates how much the RMSE, MB, and coefficient

of determination (R2) of experiments using optimized parameters (i.e., VRF_5 and VRF_6) is improved compared to CNTL,

as shown in Eq. (7) (Table 4). In the VRF_5, new parameter values — Ps, αmax,CofE , C, P1, and P2 — optimized by the305

micro-GA result in an improvement of RMSE for FSC, SA and SD, such as 0.7 %, 5.4 % and 13.7 %, respectively. However,

the RMSE of FSC relatively weakly improved by about 0.7 % because the other parameter, Wmax, is not yet optimized. In

terms of MB, we anticipate that the increase of Ps overcomes the under-estimated FSC. But the VRF_5 strengthens the under-

estimation of FSC from -0.133 to -0.145, thus it deteriorates the MB by about 9.1 % (Table 4 and Fig. 5(a)). Regarding the SA,

the optimized αmax,CofE decreases the SA to solve the over-estimation in CNTL. The other parameter C has optimized to its310

default value, 0.5355: which means that this was an appropriate constant for SK snowfall prediction. Therefore, the MB of SA

is improved by 26.9 % by reducing the SA from 0.0408 to 0.0298 (Table 4 and Fig. 5(b)). Next, SD shows the greatest RMSE

improvement of 13.7 %. In fact, the Noah LSM suffers from a negative bias for SWE, especially in early spring (Sheffield

et al., 2003; Ek et al., 2003; Pan et al., 2003; Mitchell et al., 2004; Jin and Miller, 2007; Livneh et al., 2010). Because SD is

proportional to SWE, the under-estimation can be exhibited due to negative bias of SWE. However, the optimized P1 leads315

to a decrease in SD, thus it intensifies the under-estimation for SD. On the other hand, the optimized P2 increases the SD as

follows: when the air temperature is warmer than the −15 ◦C, the fresh snow density slowly increases, which quickly induces

an increase of SD following Eq. (5). Therefore, the optimization of P2 solves the under-estimated SD by about 35.9 % due to

increased SD from -4.39 cm to -2.81 cm within most of the temperature ranges (Table 4 and Fig. 5(c)). We also investigated

R2, which measures the proportion of variation for a dependent variable that can be explained by an independent variable.320

Although the R2 values are low in FSC and SA, the difference between CNTL and verification experiment (e.g., VRF_5) has
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95% statistical significance, as evaluated with a two-tailed t-test. After optimization, the R2 values in VRF_5 improve by 3.3

% and 1.5 % for FSC and SD, respectively. However, these changes are insignificant compared to the other statistics such as

RMSE and MB.

To supplement insufficient improvement in the FSC, we have additionally optimized Wmax in function of LCT (OPT_W)325

using the optimized values of five parameters from OPT_5. Here, we have only used the FSC to define the fitness function,

not considering SA and SD; thus, the fitness function is defined using Eq. (8) where the FSC is the only element of x, and

the normalized process with Eq. (9) is not necessary. As a result, the OPT_W further improves the RMSE of FSC in VRF_6

compared to VRF_5 in most stations: the significant decreases in Wmax over MF and UB leads to an increase in the FSC,

possibly alleviating the underestimation problem of FSC in VRF_5.330

Finally, all six parameters related to the snow variables have been verified in VRF_6 having the same 25 stations used in the

CNTL. When the optimized five parameters are used except the Wmax (VRF_5), SA and SD are improved, and FSC shows

a weakly improvement in RMSE performance (Table 4). However, when the optimized Wmax depending on the LCTs from

the OPT_W is used (VRF_6), the FSC appears in a larger positive impact with other variables. As a result, an improvement

of RMSE for the FSC, SA, and SD is 3.3, 6.2, and 17.0 %, respectively. However, the MB for the FSC strengthens from 9.1335

% to 11.9 % in VRF_6 (Table 4 and Fig. 5(a)) due to larger negative bias especially in the DBF. On the other hand, SA and

SD reduce the MB against the CNTL and enhance the improvement ratio from 26.9 % to 31.0 % and from 35.9 % to 44.2 %,

respectively (Table 4 and Fig. 5(b)-(c)). Like the RMSE, the R2 of FSC and SD also improved in VRF_5 and VRF_6. The SA

worsened in VRF_5 was a bit more severe in VRF_6. However, they are still small impacts compared to RMSE and MB.

To understand more details of the improvements due to the optimization, we analyzed the scatter plots that compare the340

observations and the model results in Figure 6 and listed their RMSE and R2 in Table 5. Since the observation patterns are

different for different stations, we selected the representative station for each LCT. For FSC, it is relatively hard to recognize

the explicit bias patterns, as shown in Fig. 6 (left panels); however, compared to CNTL, the RMSE decreased in VRF_5 and

further reduced in VRF_6 (see Table 5). The VRF_6 revealed the largest R2 values over most LCTs, except WS (station NG)

and CL (station BR). In particular, VRF_6 produced the highest FSC over MF (station GM) (see Fig. 6(d)) with the smallest345

RMSE and the largest R2, which significantly alleviated the underestimation problem. For SA, its overestimation in CNTL

has been prominently reduced in both VRF_5 and VRF_6 — see Fig. 6 (middle panels). For instance, SA decreased over

DBF (station UL) in both VRF_5 and VRF_6, with a larger decrease VRF_6 (Fig. 6(b)). The performance statistics of both

VRF_5 and VRF_6 demonstrated improvements over most LCTs except UB (station SL) (see Table 5). For SD, the parameter

optimization brought about remarkable improvement compared to FSC and SA — see Fig. 6 (right panels). Note that SD350

is optimized using the hourly in-situ observations (i.e., larger amount of data) while both FSC and SA are optimized using

the daily satellite observations. For example, VRF_6 with DBF produced notably large SD values (Fig. 6(c)) with the lowest

RMSE and the highest R2 (Table 5), diminishing the underestimation problem in CNTL. It is hard to say which verification

experiment gives the best results (i.e., VRF_5 versus VRF_6), but the performance with optimized parameters is usually better

than CNTL in terms of RMSE (e.g., for most LCTs such as DBF, MF, WS, UB) and R2 (e.g., for LCTs including DBF, MF,355
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Figure 6. Scatter plots of observations (OBS) and model results (LSM) for snow variables FSC (left panels), SA (middle panels), and SD (in

cm; right panels) from the verification experiments — CNTL (black dots), VRF_5 (blue dots), and VRF_6 (orange dots), which are evaluated

over different LCTs; (a–c) DBF represented by the station UL, (d–f) MF by GM, (g–i) WS by NG, (j–l) CL by BR, and (m–o) UB by SL.

and CL). Overall, both VRF_5 and VRF_6 produced snow variables that are closer to observations than CNTL for most LCTs

(i.e., stations), and VRF_6 generally showed the lowest RMSE and the highest R2 in all the snow variables.

Figure 7 shows temporal changes in the snow variables after parameter optimization by comparing their time series of the

observations and the model simulations (CNTL versus VRF_6) for DBF represented by UL. The CNTL shows positive or
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Table 5. Statistics of model performance using non-optimized parameters (CNTL) and optimized parameters (VRF_5 and VRF_6) over

different LCTs represented by different stations — DBF represented by UL, MF by GM, WS by NG, CL by BR, and UB by SL. The RMSEs

and R2 values are shown for three snow variables — FSC, SA, and SD.

Statistics RMSE R2

LCT Snow Variable CNTL VRF_5 VRF_6 CNTL VRF_5 VRF_6

DBF (UL)

FSC 0.328 0.327 0.252 0.248 0.215 0.256

SA 0.218 0.197 0.159 0.157 0.157 0.176

SD 15.763 13.640 12.616 0.764 0.781 0.796

MF (GM)

FSC 0.208 0.206 0.178 0.388 0.408 0.520

SA 0.105 0.103 0.103 0.411 0.421 0.460

SD 1.789 1.526 1.542 0.435 0.502 0.493

WS (NG)

FSC 0.279 0.269 0.249 0.354 0.333 0.341

SA 0.196 0.160 0.156 0.314 0.328 0.324

SD 9.836 8.231 8.009 0.895 0.887 0.888

CL (BR)

FSC 0.163 0.160 0.160 0.363 0.385 0.384

SA 0.132 0.122 0.122 0.443 0.457 0.456

SD 2.542 2.583 2.590 0.478 0.540 0.539

UB (SL)

FSC 0.255 0.252 0.242 0.184 0.195 0.195

SA 0.071 0.070 0.073 0.150 0.148 0.124

SD 4.790 4.286 4.699 0.484 0.449 0.385

negative biases in FSC, positive bias (overestimation) in SA, and negative bias (underestimation) in SD: these biases are all360

reduced down in VRF_6. The bias patterns in Fig. 7 are consistent with those in Fig. 6(a)-(c).

Lastly, we have investigated how the optimized snow parameters can affect the other variables in LSM. Figure 8 depicts the

time series of the differences of LSM variables (soil temperature, sensible heat flux, and soil moisture) between VRF_6 and

CNTL (i.e., VRF_6 minus CNTL) following the changes in SD. Although the LSM variables here are not directly optimized,

they respond to the optimized snow parameters through associated physical processes. Note that the underestimation of SD365

in CNTL has been alleviated in VRF_6 by using the optimized snow parameters (see Fig. 7(c) and Fig. 8(a)). Next, soil

temperature in the first soil layer (7 cm) increases as SD increases after optimization, which consequently increases sensible

heat flux. The residual of surface energy balance is close to zero, implying that the surface energy balance is well conserved

even after optimization. Soil moisture depends on snow melt, following the trend of increased snowfall in the previous winter.

Extreme fluctuations sometimes appear in the time series analyses due to nonlinear effects, but we can understand the overall370

tendency according to the increased SD in the land surface.
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Figure 7. Time series of the snow variables for DBF (e.g., UL) from May 2009 to April 2018: (a) FSC, (b) SA, and (c) SD (in cm).

Observations are in gray dots and model results are in black dots for CNTL and in orange dots for VRF_6.

5 Conclusions and Outlook

The Noah Land Surface Model (Noah LSM) generally underestimates snow amount during the peak winter and shows earlier

snow melting in spring, whereas it overestimates snow albedo (SA) over Eurasia, mainly due to uncertain parameterzation

processes (Saha et al., 2017). Our experiment with no optimization (CNTL) reveals underestimation of snow depth (SD) and375

fractional snow cover (FSC) and overestimation of SA compared to the in-situ or satellite observations. Therefore, we have

developed a coupled system of micro-genetic algorithm (micro-GA) and Noah LSM to reduce the uncertainties in parameter-

ized snow processes through optimization of parameter values. This parameter estimation is an effort to further improve the
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Figure 8. Time series of difference between CNTL to VRF_6 for the UL in DBF during the May 2009 to April 2018: (a) SD (cm), (b) soil

temperature at the top soil layer (7 cm) (ST; K), (c) sensible heat flux (SH; W m−2), (d) soil moisture at the top soil layer (7 cm) (SM; m3

m−3).

model performance by reducing uncertainty in pre-existing parameterization schemes by optimizing the parameter values in-

side the schemes based on the observational data that reflect local characteristics to improve snow simulation. If the employed380

parameterization scheme has less uncertainty, improvement by parameter estimation on that scheme may not be significant;

if the scheme has large uncertainty in parameter values, parameter estimation may bring about prominent improvement in the

scheme’s performance.

The coupling system of micro-GA and Noah LSM automatically estimates the optimal snow-related parameters by objec-

tively comparing observations and model solutions through the fitness function. Instead of trial-and-error procedures, it has an385

advantage to reduce a substantial amount of computational time. The original micro-GA reduces the computational time using

the elitism and re-initialization methods in the small number of individuals. However, we have developed a parallel system

on the coupled system to further improve the computational efficiency in this study; it enables us to simultaneously execute

multiple individuals in one generation and multiple Noah LSM runs in one individual.

Six parameters included in the snow processes in Noah LSM have been optimized by using a micro-GA during the period390

2009-2018 in South Korea (SK). The first parameter is the distribution shape parameter that participates in the FSC calculation

and shows a positive correlation with the FSC: the optimized value is expected to increase the FSC, but it is not sufficient to

alleviate its underestimation problems. The second parameter is snow water equivalent threshold value that implies 100 % snow

cover and also is used in the FSC calculation depends on the land cover type: its optimized value improves the FSC in terms of

RMSE and mean bias over some stations. The third parameter is the maximum SA coefficient: its optimized (decreased) value395

improves the RMSE by reducing the overestimation of SA. The fourth parameter is the coefficient in the maximum albedo

of fresh snow, and its optimized value was similar to the default one. The other two parameters are related to the fresh snow
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density used for the SD calculation. In particular, the sixth parameter depends on air temperature and its optimization brings

about the largest improvement in SD: the optimized (reduced) value remarkably reduces the RMSE, which ameliorates the

underestimation problem of SD. This significant improvement of SD is due to the high spatial and temporal resolutions of400

observations.

The best combinations of snow parameters optimized for SK can be used to improve the snowfall prediction. Our results

showed improvement in all snow variables in terms of RMSE by 3.3 %, 6.2 %, and 17.0 % for FSC, SA, and SD, respectively.

Furthermore, SD increased after optimization, which lead to increases in both soil temperature and sensible heat flux via

insulating response; soil moisture also increased due to increased SD in previous years. This implies that the optimized snow405

parameters not only let the model solutions close to the observations but also act in a physically consistent manner. Satellite

observations proved to be effective in the optimization; however, their coarse resolution as well as insufficient number of

stations used for optimization often restrict improvement of the snow variables, as shown in some discouraging statistics

including the mean bias and the coefficient of determination (R2).

Based on the encouraging optimization results in the off-line Noah LSM, we plan to optimize the Noah LSM in a coupled410

land-atmosphere prediction system. The online Noah LSM can produce a spatial distribution of model variables over the land

surface, which allows a two-dimensional assessment of model performance and a three-dimensional extension through various

interactions between the land surface and the atmosphere. We anticipate the optimized snow parameters can lead to positive

effects on the atmospheric variables through the changes of heat fluxes as well as snow variables in Noah LSM. As a result, we

can identify how optimal parameters are appreciated in SK in terms of both horizontal and vertical distributions. Furthermore,415

the micro-GA-Noah LSM coupled system can be utilized to optimize other parameters in Noah-LSM, including the ones that

indirectly affect the snow processes.

Code availability. The current version of the Noah LSM is available from the website: https://ral.ucar.edu/solutions/products/unified-noah-

lsm (last access: 4 April 2022). The current version of the GA is available from the website: https://cuaerospace.com/products-services/genetic-

algorithm/ga-drive-free-download (last access: 4 April 2022). The exact version of Noah LSM and GA used in this study are archived at:420

https://doi.org/10.5281/zenodo.6873384 (Lim et al., 2021). It also contains the forcing data and output files of Noah LSM and micro-GA-

Noah LSM coupled system and the scripts to plot the same figures as in this manuscript.

Data availability. The 1-hourly forcing data for Noah LSM are obtained from Open MET Data Portal, which is available at https://data.kma.go.kr

(last access: 4 April 2022) and ERA5-Land, which is available at https://cds.climate.copernicus.eu (last access: 4 April 2022). The snow depth

is also obtained from Open MET Data Portal. The daily fractional snow cover and snow albedo from MODIS/Terra Snow Cover Daily L3425

Global 500 m SIN Grid, Version 61, is available at https://nsidc.org/data/MOD10A1 (last access: 4 April 2022).
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