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This study worked on determining the optimal parameter values in the snow-
related processes – snow cover fraction, snow albedo, and snow depth – of the
Noah LSM, using the micro-genetic algorithm and the in-situ surface obser-
vations and remotely-sensed satellite data. The study area was South Korea.
This manuscript does not have sufficient elements on the model development,
it is rather a study of applying a certain optimization algorithm to calibrate the
model parameters. I have doubts about the novelty of this manuscript and its
suitability for consideration for publication in Geoscientific Model Development.
Below are some comments which I hope could help improve the manuscript.

⇒ We really appreciate the valuable and constructive comments, which helped
us improve the quality of the manuscript. Our study is a parameter estimation
problem, which is based on the assumption that all the physical parameteriza-
tion schemes are not perfect and have uncertainties, especially in their parameter
values; thus, it is strongly and directly linked to ‘assessment of model perfor-
mance’ through parameterization schemes, which corresponds to the scope of
Geoscientific Model Development (GMD). Parameter estimation is a compan-
ion of parameterizations as it reduces the uncertainties in the parameter values
of newly-developed parameterization schemes and enhances the model perfor-
mance through the schemes; furthermore, a new method of comparing model
results with observational data is developed in our study through various fitness
functions in the course of optimization. In this sense, we believe that our study
also indirectly satisfies the scopes of GMD, described as ‘developments such as
new parameterizations’ as well as ‘developing novel ways of comparing model
results with observational data’. We have faithfully followed the reviewer’s
suggestions and included more analysis/validation to enhance the results. An
item-by-item response to the comments is provided below.

1. Short Introduction and unclear novelty of this study. The introduction is
rather short and the novelty of this study is not explicitly stated.

⇒ We appreciate the reviewer pointing this out. We have revised a para-
graph (L35-48) in Introduction by adding more statements as follows (see
blue parts):

Uncertainties in parameterized physical processes have been observed and
quantified in various numerical models (e.g., Mallet and Sportisse, 2006;
Gubler et al., 2012; Shutts and Pallarès, 2014; Folberth et al., 2019; Li
et al., 2020; Olafsson and Bao, 2020; Pathak et al., 2020; Souza et al.,
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2020). Such uncertainties can be also reduced by estimating optimal pa-
rameter values in the subgrid-scale parameterization schemes (e.g., Annan
and Hargreaves, 2004; Lee et al., 2006; Neelin et al., 2010; Yu et al., 2013;
Zhang et al., 2015; Kotsuki et al., 2018; Liet al., 2018; Chinta and Balaji,
2020). Because empirical parameters are commonly derived from the ob-
servations or theoretical calculations, their estimated values are strongly
dependent on the local characteristics of the region and period where the
observations are made. Thus, parameter estimation that fits the model
outputs to the observations is essentially required to obtain an adequate
parameter [1]. It may be done using a trial and error approach by manual,
but the optimization algorithm helps to replace enormous experiments by
automatically minimizing the difference between model and observations
[2]. For example, a global optimization tool, called the micro-genetic al-
gorithm (micro-GA), has been effectively used for estimating the optimal
parameter values (e.g., Lee et al., 2006; Yu et al., 2013) and for finding
the optimal set of parameterization schemes (e.g., Hong et al., 2014, 2015;
Park and Park, 2021).

Most snow processes in the LSMs are parameterized based on the observa-
tions in specific local regions, and hence they may not represent adequately
the situation in SK and be the source of uncertainties for numerical snow
prediction over SK. This study aims at obtaining the optimal parame-
ter values of the snow-related processes — snow cover, snow albedo, and
snow depth — in a LSM using the micro-GA, which causes better LSM
performance over SK. This study represents the first attempt to develop
a coupled system of micro-GA and Noah LSM for parameter estimation
of the snow processes. Section 2 describes the methodology, including the
snow processes of the LSM and the micro-GA optimization tool. Sec-
tion 3 explains experiment design. Results, discussion and conclusions are
provided in sections 4, 5 and 6, respectively.

2. Insufficient details on the methods/procedures. Section 2.2 and Table 2
miss necessary details on the selected parameters and settings for the dif-
ferent experiments.

⇒ In Section 2.2, we have focused on the GA algorithm itself and the
fitness function. Descriptions on the selected parameters and settings for
different experiments are separately provided in Section 3. We have added
more details on the parameter settings in Section 3 (after L233 in the orig-
inal manuscript) as follows:

It is known that the best performance in micro-GA is done with a popula-
tion size of 5 and a uniform crossover (i.e., crossover operator = 1.0) with
elitism [3, 4, 5]. The uniform crossover makes all populations perform a
crossover at every generation to acquire the diversity [6]. The number of
parameters to be optimized is 5 for OPT 5 and 1 for OPT W. The num-
ber of chromosomes determines the number of cases expressed in a binary
format. For example, the selected parameters — Ps, αmax,CofE , C, P1,
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P2, and Wmax — use different chromosomes, i.e., 5, 5, 5, 6, 4, and 5, re-
spectively; thus, the total number of chromosomes is 30 for OPT 5 and 5
for OPT 6. The maximum value of generations at the end of optimization
is generally set to 100 [4, 5, 7], whereas we increased generations up to
200 in OPT 5 due to larger number of parameters to be optimized.

Table R1: The input parameters for micro-GA in experiments OPT 5 and
OPT W.

Input Parameter OPT 5 OPT W
Population size 5 5
Crossover operator 1.0 1.0
Elitism on on
Number of parameters 5 1
Number of chromosomes 30 5
Maximum value of generations 200 100

3. I advise the authors to add more figures to show the comparison, via scatter
plot, time series plot to show the modelling results in different perspectives.
Besides the RMSE value, what about the performance of the model in terms
of other commonly used metrics such as R or R2 value?

⇒ Following the reviewer’s comments, we have conducted additional anal-
yses and added more figures, including scatter plots and times series.
Figure R1 (see below) represents the scatter plots of observations versus
model results along with the values of RMSD and R2. Consistent with
the statistical results in the original manuscript, OPT 6 shows improved
snow variables in the scatter plots for Ulleungdo (UL) in the deciduous
broadleaf forest (DBF). In particular, compared to CNTL, optimization
results in notable increase in the underestimated snow depth (SD; Fig R1c)
and negligible changes in fractional snow cover (FSC; Fig R1a) and snow
albedo (SA; Fig R1b). In statistical analyses, represented by RMSE and
R2, OPT 5 and OPT 6 are generally closer to observations than CNTL
while OPT 6 shows the lowest RMSE and the highest R2. We have added
the scatter diagrams and statistical analyses for other stations and land
cover types in the revised manuscript (see Fig. R1 therein). In Fig R2, we
analyzed the time series of the differences of secondary variables (e.g., soil
temperature, soil moisture, and sensible heat flux) between OPT 6 and
CNTL (i.e., OPT 6 minus CNTL). Although these variables are not di-
rectly optimized, they respond to the optimized snow parameters through
associated physical processes. For example, soil temperature in the first
soil layer (7 cm) increases as SD increases after optimization, which conse-
quently increases sensible heat flux. The residual of surface energy balance
is close to zero (not shown), implying that the surface energy balance is
well conserved even after optimization. Soil moisture depends on snow
melt, following the trend of increased snowfall in the previous winter. Ex-
treme fluctuations sometimes appear in the time series analyses due to
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nonlinear effects, but we can understand the overall tendency according
to the increased SD in the land surface. We also added R2 in Table 4 of
the original manuscript (see Table R2 below). Both FSC and SD showed
improvement in terms of RMSE and R2. The SA worsened in OPT 5 but
it showed less deterioration in OPT 6, getting closer to CNTL in terms of
R2.

Table R2: Improvement ratio (%) in RMSE, coefficient of determination (R2),
and mean bias (MB) of snow variables from CNTL to OPT 5, and OPT 6 over
the ten representative stations. The statistic values in CNTL are following:
RMSE is 0.270 for FSC, 0.155 for SA, and 10.599 for SD; R2 is 0.219 for FSC,
0.183 for SA, and 0.806 for SD; MB is -0.107 for FSC, 0.0513 for SA and -5.38 cm
for SD. The CNTL and OPTM (e.g., OPT 5 and OPT 6) experiments exhibit
statistically significant linear relationships at the 95 % significance level.

EXP OPT 5 OPT 6
Snow Variable FSC SA SD FSC SA SD

RMSE 1.3 % 6.7 % 13.8 % 6.5 % 8.5 % 17.7 %
R2 3.1 % -2.4 % 1.6 % 16.4 % -0.2 % 3.0 %
MB -31.8 % 28.5 % 40.9 % -19.6 % 32.6 % 45.1 %

4. Results need more description and particularly figures. I advise adding
more figures on the modelling results, and particularly representing the spa-
tial patterns of modeling results. The author studied South Korea, readers
are interested in the spatial distribution of model performance.

⇒ We appreciate the reviewer’s valuable comment. As the Noah LSM is a
one-dimensional column model, we should run the off-line Noah LSM over
all the grid point by point, which requires a large amount of computa-
tional time. Thus, we have sampled representative stations in this study
for effective optimization. Based on the promising optimization results
in the off-line Noah LSM, we plan to extend our study to optimize the
online mode of Noah LSM, coupled to an atmospheric model (e.g., WRF).
Then, we will be able to assess the model performance in terms of spatial
distributions, and we will do more experiments following the reviewer’s
comment in our follow-up study.

5. Discussion is completely missing. The current manuscript has no discus-
sion. I strongly advise the authors to compare their findings with existing
literature. In addition, what are the limitation of the study? And any
potential solutions for future studies? What are effects of some settings or
input on the modelling results? Lots of aspects need to be discussed.

⇒ We have included the Discussion section before the Conclusion as
follows:
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Generally, the Noah LSM tends to simulate less snow amount during the
peak winter and earlier snow melting, and consequently overestimates SA
[8]. Our experiment with no optimization (CNTL) reveals underestima-
tion of SD and FSC and overestimation of SA, compared to the in-situ or
satellite observations. We developed a coupled system of micro-GA and
Noah LSM to reduce the uncertainties in parameterized snow processes
through optimization of parameter values. Our results showed improve-
ment in all snow variables in terms of RMSE by 6.5 %, 8.5 %, and 17.7
% for FSC, SA, and SD, respectively. Furthermore, SD increased after
optimization, which lead to increases in both soil temperature and sensi-
ble heat flux due to insulating response; soil moisture also increased due
to increased SD in previous years. This implies that the optimized snow
parameters not only let the model solutions close to the observations but
also act in physically consistent manner.

The coupling system of micro-GA and Noah LSM automatically estimates
the optimal snow-related parameters by objectively comparing observa-
tions and model solutions through the fitness function. Instead of trial-
and-error procedures, it has an advantage to reduce a substantial amount
of computational time. The original micro-GA reduces the computational
time using the elitism and re-initialization methods in the small number of
individuals. We have developed a parallel system on the coupled system
to further improve the computational efficiency in this study; it enables
us to simultaneously execute multiple individuals in a one generation and
multiple Noah LSM runs in one individual.

Based on the encouraging optimization results in the off-line Noah LSM,
we plan to optimize the Noah LSM in a coupled land-atmosphere pre-
diction system. The online Noah LSM can produce spatial distribution
of model variables over the land surface, which allows two-dimensional
assessment of model performance. We anticipate the optimized snow pa-
rameters can lead to positive effects on the atmospheric variables through
the changes of heat fluxes as well as snow variables in Noah LSM. As a
result, we can identify how optimal parameters are appreciated in SK in
terms of both horizontal and vertical distributions. In addition, our cou-
pled system of micro-GA and Noah LSM can be utilized to optimize other
parameters in Nosh LSM.
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Figure R1: Scatter plots for the observation (OBS) and land surface model
(LSM) results: CNTL (red), OPT 5 (blue) and OPT 6 (green). The represen-
tative station in each land cover type are analyzed such as (a)-(c) DBF: UL,
(d)-(f) MF: GM, (g)-(i) WS: NG, (j)-(l) CL: BR, (m)-(o) UB: SL. From the left
to right panels, they are the FSC, SA, and SD (cm). Compared to observations,
the statistics (e.g., RMSE and R2) in each experiment are indicated in each
panel.
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Figure R2: Time series of difference between CNTL to OPT 6 for the UL in
DBF during the May 2009 to April 2018.: (a) SD (cm), (b) soil temperature at
the top soil layer (7 cm) (ST; K), (c) Sensible heat flux (SH; W m−2), (d) soil
moisture at the top soil layer (7 cm) (SM; m3 m−3)
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