
CondiDiag1.0: A flexible online diagnostic tool for conditional
sampling and budget analysis in the E3SM atmosphere model
(EAM)
Hui Wan1, Kai Zhang1, Philip J. Rasch1, Vincent E. Larson1,2, Xubin Zeng3, Shixuan Zhang1, and
Ross Dixon4

1Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA
2Department of Mathematical Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin, USA
3Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, Arizona, USA
4Department of Earth and Atmospheric Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska, USA

Correspondence: Hui Wan (Hui.Wan@pnnl.gov)

Abstract. Numerical models used in weather and climate prediction take into account a comprehensive set of atmospheric

processes (i.e., phenomena) such as the resolved and unresolved fluid dynamics, radiative transfer, cloud and aerosol life cycles,

and mass or energy exchanges with the Earth’s surface. In order to identify model deficiencies and improve predictive skills,

it is important to obtain process-level understanding of the interactions between different processes. Conditional sampling and

budget analysis are powerful tools for process-oriented model evaluation, but they often require tedious ad hoc coding and large5

amounts of instantaneous model output, resulting in inefficient use of human and computing resources. This paper presents an

online diagnostic tool that addresses this challenge by monitoring model variables in a generic manner as they evolve within

the time integration cycle.

The tool is convenient to use. It allows users to select sampling conditions and specify monitored variables at run time. Both

the evolving values of the model variables and their increments caused by different atmospheric processes can be monitored10

and archived. Online calculation of vertical integrals is also supported. Multiple sampling conditions can be monitored in a

single simulation in combination with unconditional sampling. The paper explains in detail the design and implementation of

the tool in the Energy Exascale Earth System Model (E3SM) version 1. The usage is demonstrated through three examples:

a global budget analysis of dust aerosol mass concentration, a composite analysis of sea salt emission and its dependency on

surface wind speed, and a conditionally sampled relative humidity budget. The tool is expected to be easily portable to closely15

related atmospheric models that use the same or similar data structures and time integration methods.

1 Introduction

Atmospheric general circulation models (AGCMs) used in climate research and weather prediction are simplified mathematical

representations of the complex physical and chemical processes (phenomena) driving the evolution of the Earth’s atmosphere.

Despite the necessity of simplification due to the limitation in computing resources, it is highly desirable that, to the extent20

possible and practical, models should be based on first principles and robust quantitative relationships in atmospheric physics

1

and chemistry, so that the same models can reliably provide good accuracy under historically observed atmospheric conditions

as well as in the climate of the future. Many tools have been used for assessing the behavior and fidelity of the atmospheric

processes represented in numerical models. Among those, budget analyses are a useful method for quantifying relationships

between different processes, and composite analyses are useful for revealing the characteristics of atmospheric conditions and25

their changes under specific situations. Both methods have been widely used in process-oriented model evaluation to help

identify model deficiencies and improve predictive skills. Carrying out such analyses, however, often requires tedious ad hoc

coding.

Consider, for example, a model evaluation study aiming at understanding the role of various processes in influencing the

simulated atmospheric water cycle, which involves specific humidity qv as a prognostic variable of the AGCM. The typical30

way to obtain a budget of qv is to review the model source code, manually add extra lines of code and variables into subroutines

representing parameterizations and the dynamical core to save the rate of change (i.e., tendency) of qv caused by each process of

interest, and then archive those tendencies in model output. Since modern AGCMs are sophisticated, a complete budget analysis

with the finest granularity will likely involve a number of tendency terms. If a researcher wishes to obtain several different views

of the qv budget with different levels of granularity (e.g., considering all stratiform cloud processes as a single qv tendency35

term in one budget but breaking it down to evaluating condensation/evaporation and rain-formation processes separately in a

second view), then the tendencies of coarser granularity will either need to be computed from the fine-grained terms during

post-processing or be calculated online and saved in additional model variables. Modern AGCMs often include multiple water

species as prognostic variables and tens to hundreds more variables representing aerosol and gas species. Some models also

include diagnostic variables such as isotopes and tagged water or aerosol species originating from different geographical40

regions (e.g., Wang et al., 2014; Zhang et al., 2015; Singh et al., 2016; Bailey et al., 2019; Wang et al., 2020). The lines of code

and additional variables that are needed to monitor, assess, and diagnose tendency terms can quickly add up to a huge number,

increasing code complexity, computational overhead, and the potential for bugs both in the code and during post-processing.

An AGCM also often contains many diagnostic variables that are needed in the equations of a parameterization. For example,

the relative humidity with respect to ice (RHI) is often used in the prediction of formation of cloud ice crystals (cf. Sect. 6.3).45

While an AGCM might only calculate RHI once or a few times during each time step, a detailed budget analysis of RHI tracking

all mechanisms affecting the air temperature, pressure, and specific humidity can provide useful insights into the atmospheric

processes that contribute to or compete with ice cloud formation. These types of diagnostic variables appear frequently in

AGCMs, and supporting budget analyses for them would require inserting many new model variables and output, which often

leads to a dilemma in source code management: that if a user throws away the ad hoc code after their study is completed, other50

users interested in similar topics will need to reinvent the wheel or at least re-do the coding; on the other hand, if users commit

study-specific code to the model’s central repository, clutter will accumulate quickly.

Similar challenges are encountered in studies involving composite analysis, the essence of which is to define a criterion,

conditionally sample some model variables, and then analyze the stratified data to look for relationships occurring under

the specific condition. Conditional sampling in AGCM simulations is often carried out by first archiving a large amount of55

instantaneous model fields at a sufficiently high frequency and then using post-processing to produce the conditionally sampled

2

composite (see, e.g., Ghan et al., 2016; Gryspeerdt et al., 2020). This not only can lead to inefficient use of computing time

(due to I/O bottleneck) but also creates challenges in data storage and transfer. Occasionally, conditional sampling is carried

out online (i.e., during a simulation) so that only the temporal averages of model variables meeting the sampling condition need

to be archived. With this approach, ad hoc coding is often used for each combination of sampling condition and monitored60

variable, which again results in challenges in code management.

Authors of the present paper recently started an effort to identify and address numerical artifacts in the time integration

methods used by physics parameterizations and process coupling in version 1 of the atmosphere component of the Energy

Earth System Model (EAMv1, Rasch et al., 2019; Xie et al., 2018; Golaz et al., 2019). The study of Wan et al. (2021) and

its follow-up investigations have involved monitoring not only EAM’s prognostic variables but also non-standard output fields65

such as various measures of supersaturation and atmospheric instability. Those investigations constantly require the use of

composite and budget analyses, motivating our development of a new, general, and user-friendly online diagnostic tool to

facilitate the investigations. This paper presents the first version of the new tool, which we refer to as CondiDiag1.0.

Assuming the physical quantities to be monitored already exist in EAM, configuring a simulation to activate CondiDiag

will normally require only setting a small number of switches in the model’s input file (currently using Fortran namelist,70

cf. Sect. 5.2). A minimal amount of special-purpose code might be required from the user if existing model variables need

to be monitored at new locations in the model’s time loop, if the variables exist within a parameterization or the dynamical

core but need to be made available in the data structures accessible by our tool, or if a quantity of interest is not available in

the original EAM and needs to be calculated from the existing variables. The coding required in such cases will be relatively

simple. To facilitate budget analyses, the tool provides the flexibility to monitor and archive both the evolving values of model75

variables and their increments caused by different atmospheric processes. Vertical integrals are calculated online when they

are requested through namelist. Multiple sampling conditions can be used in the same simulation. Unconditional sampling and

mixtures of conditional and unconditional sampling are also supported.

The new tool was designed for and implemented in EAMv1. It has been ported to EAMv2 and also to a few code versions in

between. We expect it to be straightforward to port the tool to EAMv1’s recent predecessors, e.g., the Community Atmosphere80

Model versions 5 and 4 (CAM5 and CAM4, Neale et al., 2012, 2010), as well as their other descendants (e.g., CAM6, Craig

et al., 2021), as these models use the same Fortran derived data types for organizing information passed through the physics

parameterizations suite. Examples of such Fortran data types include the “physics state”, “physics buffer”, atmosphere “import”

and “export” variables (cf. Sect. 2.1). It is also possible to revise our tool for implementation in other models, as the underlying

design concepts are generalizable (cf. Sect. 4.4).85

The remainder of the paper is organized as follows: Section 2 introduces EAMv1’s code and data structures as well as the

features of the model’s time integration and output capability that our tool makes use of. Section 3 introduces the key concepts

and basic design of our tool. Section 4 describes the implementation of our tool in EAMv1 and Sect. 5 provides a brief user’s

guide. Section 6 presents three concrete examples to further demonstrate the usage of the tool: a global budget analysis of

dust aerosol mass concentration, a composite analysis of sea salt emissions and their dependency on surface wind speed, and a90

3

Land, ocean,
sea ice, etc.

Coupler
type cam_out_t

type physics_statetype physics_state
type physics_tend

type cam_in_t

Dry adiabatic adjustment

Convective transport and below-
cloud removal of aerosols

Shallow convection, turbulence,
and stratiform cloud

macrophysics (sub-step xx)

Turbulent mixing of aerosols and
cloud drop number; activation of

aerosols (sub-step xx)

Deep convection

Mass and energy fixers

Radiation

Stratiform cloud microphysics
(sub-step xx)

Dynamical core

Chemistry and aerosol
microphysics

Aerosol dry removal

Rayleigh friction

Gravity wave drag

Emissions

Nudging

Applying surface tracer fluxes

"Before-coupling" parameterizations
(subroutine tphysbc)

"After-coupling"
parameterizations
(subroutine typsac)

type physics_state
type physics_tend
type cam_in_t
type cam_out_t
type physics_buffer_desc

type physics_state
type physics_tend
type cam_in_t
type cam_out_t
type physics_buffer_desc

Figure 1. A schematic showing the four compartments (gray boxes) of the EAMv1 code: the dynamical core, the coupler, and two groups

of parameterizations calculated before or after the communication with the coupler, respectively. The derived data types used for passing

information among these compartments and within the two groups of parameterizations are shown in italics. The two small circles shown next

to the dynamical core and the two circles placed inside the coupler box represent transfer of information to or from data structures internal to

the dynamical core or the coupler. The white boxes with solid outlines shown in the “before-coupling” and “after-coupling” parameterization

groups are examples (not complete lists) of parameterizations and numerical treatments included in typical EAM simulations.

conditionally sampled relative humidity budget. Section 7 summarizes the paper and points out possible future improvements

and extensions of the tool.

2 Host model features

Here, “host model" refers to the AGCM in which our new tool is embedded, in this case EAMv1. We provide some background

information about EAMv1’s code structure and data structure in Sect. 2.1 to help explain the implementation and portability95

of our tool in later sections. We summarize EAMv1’s choice of method for coupling atmospheric processes in Sect. 2.2 and

4

briefly describe how model variables are archived on output files in Sect. 2.3. These features of the host mode are used by our

tool.

2.1 Data and code structures

EAMv1 is an AGCM consisting of a dynamical core describing the mesh-resolved fluid dynamics and a suite of parameteriza-100

tions describing various subgrid-scale processes. EAMv1 is also the atmosphere component of the coupled Earth system model

E3SMv1 (Golaz et al., 2019) and as such, it communicates with the coupler cpl7 (Craig et al., 2012) to exchange information

with the other components of E3SMv1 such as the ocean model, the land model, and the sea ice model, etc. Reflecting both

perspectives, the atmosphere model code can be understood as consisting of the four compartments depicted by gray shaded

boxes in Fig. 1: the dynamical core, the coupler, and two groups of parameterizations calculated before or after the communica-105

tion with the coupler, respectively. The driver subroutines for the before-coupling and after-coupling parameterization groups

are named tphysbc and tphysac, respectively (Fig. 1). tphysbc and tphysac each contains a series of subroutine calls

corresponding to various parameterizations. The white boxes with solid outlines in Fig. 1 are examples of such parameteri-

zations. tphysbc and tphysac also contain code blocks for numerical treatments (e.g., total energy fixers or mass fixers)

or for diagnosing quantities of interests. In the remainder of the paper, we refer to those subroutines and code blocks as code110

compartments, too, although these are sub-compartments of tphysbc and tphysac. The driver subroutines tphysbc and

tphysac and the code compartments therein are arguably the code units in EAM that researchers of atmospheric physics

most often work with.

EAM’s dynamical core and physics driver subroutines use different data structures. The following derived data types are de-

fined to pass information among the four compartments shown in Fig. 1 and between parameterizations: The physics_state115

type contains variables describing the atmospheric state that are passed between the physics and dynamics and between pa-

rameterizations. Examples of such state variables include air temperature, zonal and meridional winds, vertical velocity, air

pressure, pressure layer thickness, geopotential height, surface pressure, and surface geopotential. The physics_tend type

contains the total tendencies of temperature and horizontal winds caused by all sub-grid processes as well as a few water and

energy fluxes that are passed from the parameterization suite to the dynamical core. The import state type cam_in_t and120

export state type cam_out_t contain the fields of physical quantities that are provided to EAM by the coupler and to the

coupler by EAM, respectively (cf. Chapter 4 in Eaton, 2015). The physics_buffer_desc type is defined for construct-

ing the physics buffer that contains fields passed between parameterizations. Dummy variables of these five derived types are

available in subroutines tphysbc and tphysac; collectively, they describe the characteristics of the model atmosphere that

vary in space and evolve with time.125

A subroutine called by tphysbc or tphysac may again be a driver for a set of closely related parameterizations and

hence calls a number of sub-subroutines. For example, the chemistry driver in tphysac has multiple levels of subroutines

that correspond to various processes related to chemical gases and aerosol microphysics. Depending on how those lower-level

subroutines are organized, EAM variables of the derived type physics_state or physics_buffer_desc etc. may be

available in those lower-level subroutines.130

5

Checkpoint E

C
heckpoint ACompartment A

- Tendency calculation
- State update

Increment A

Increment
B1In

cr
em

en
t E

Compartment B

Compartment C

- Tendency calculation
- State update

Compartment E

- Tendency calculation
- State update

Increment
B2

Checkpoint B

Checkpoint B1

Compartment B1

- Tendency calculation
- State update

Checkpoint B2

Compartment B2

- Tendency calculation
- State update

Compartment D

- Tendency calculation
- State update

Checkpoint D

C
he

ck
po

in
t C

Increment C

Figure 2. A schematic showing a time step of model simulation involving five hypothetical code compartments, A to E, either resolved or

unresolved by the model’s computational mesh, that are numerically coupled using isolated sequential splitting (cf. Sect. 2.2). Also shown

are various tags of locations (referred to as checkpoints, cf. Sect. 3.1) within a time step that are introduced to facilitate diagnostics using the

new tool. When the tool is used in a simulation, some checkpoints are activated (i.e., selected by the user and indicated in green here), and

others are inactive and indicated in gray. No information is monitored at inactive checkpoints. The green lines with a circle on one end and

an arrowhead on the other end depict how increments of model variables are defined. Further details can be found in Sects. 2.2 and 3.1.

2.2 Sequential process coupling

EAMv1 solves a set of integral-differential equations to simulate the spatial variation and temporal evolution of the state of the

atmosphere. Distinct physical and chemical processes (phenomena) are represented by different compartments of the model

code. The primary method used in EAMv1 for coupling those compartments is a method we refer to as isolated sequential

splitting (Fig. 2). In this method, a code compartment produces an estimate of the rate of change of the atmospheric state by135

considering a single or a set of closely related physical or chemical processes in isolation (i.e., ignoring all other processes

represented by other model components). The estimated tendency is used to update the atmospheric state, and then the updated

state is passed to the next code compartment. Since EAMv1 has many code compartments, the atmospheric state is updated

multiple times within one full time step. Here a full time step is defined as the smallest time integration cycle in which the

effects of all physical processes considered in a simulation have been used to update the model state at least once in advancing140

6

the solution in time. This full time step is often loosely referred to as the “physics time step” in EAMv1 and its predecessors. In

a discussion on time stepping and sub-cycling in EAMv1, Wan et al. (2021) referred to the full time steps as the “main process-

coupling time steps” and denoted their length by ∆tCPLmain. The same notation is used in this paper for consistency and clarity.

The so-called low-resolution configuration of EAMv1 (with 1 degree horizontal grid spacing) uses ∆tCPLmain = 30 min by

default. Fig. 2 provides a schematic showing a full time step consisting of five hypothetical code compartments labeled as A to145

E.

A code compartment in EAMv1 might contain sub-compartments that are also connected using the isolated sequential

splitting method, like the compartment B depicted in Fig. 2. A concrete example from EAMv1 is deep convection, which

consists of the parameterization by Zhang and McFarlane (1995) that describes impact of convective activities on temperature

and humidity and a parameterization of the convective momentum transport from Richter and Rasch (2008). These convection-150

related atmospheric processes are sequentially split within the deep convection parameterization.

Another situation that can also be depicted by the hypothetical compartment B in Fig. 2 is sub-cycling. For example, in

EAMv1, the parameterizations of turbulence, shallow convection, and stratiform cloud macrophysics and microphysics are

sub-cycled six times within each 30 min full time step. In this case, each sub-cycle can be viewed as a sub-compartment

depicted in Fig. 2 (i.e., sub-cycle 1 corresponds to compartment B1, sub-cycle 2 corresponds to compartment B2, etc.).155

2.3 History output

EAMv1 inherited from its predecessors a flexible mechanism for handling model output (see, e.g., Chapter 8 in Craig et al.,

2021). The data files that contain the temporal and spatial distribution of model-simulated physical quantities are called history

files. The model can write multiple series of history files with different write frequencies; these series are referred to as history

tapes in the source code. Different history tapes can contain different output variables (fields). Whether the values written out160

should be instantaneous, time-averaged, maximum or minimum during the output time window can be specified for each tape

on a field-by-field basis.

The software infrastructure for history output uses internal data types and functions that handle the storage of fields to be

written out and perform the calculation of required statistics (e.g., time averages). Typically, researchers focusing on physical

or computational aspects of the model do not need to care about the internal workings of this software infrastructure. Rather,165

they use a subroutine named outfld to transfer the values of a model variable to the infrastructure. To provide a context for

some descriptions in later sections, we note that while a model variable can change its value multiple times in a time step of

∆tCPLmain, the value being recorded for output is the snapshot made when the outfld subroutine is called. The location in

the time integration cycle at which the outfld subroutine is called can differ from model variable to variable.

7

3 Nomenclature and design concepts for CondiDiag170

We now introduce the key concepts and design features of the new tool. The description in this section is kept general, only

referring to EAM when necessary, as the methodology can be applied to or revised for other AGCMs. Details of the implemen-

tation in EAMv1 are provided in Sect. 4.

3.1 Checkpoints, field values, and increments

In order to discuss the implementation of our tool in the context of the sequential process splitting described in Sect. 2.2, we175

introduce the following nomenclature:

– A checkpoint is a location in the time integration cycle where a snapshot of a model variable can be obtained (cf. Fig. 2).

At a checkpoint, the value of a model variable can be retrieved from data structures introduced in Sect. 2.1. Additional

quantities can be computed from available variables. Those retrieved or computed variables at the checkpoint can be

saved in the data structure specific to our tool and be transferred to the output-handling infrastructure of the standard180

EAM (cf. Sect. 2.3). If sub-cycles with respect to ∆tCPLmain are used, then the end of each sub-cycle is considered to

be a different checkpoint.

– The value of a model variable at a checkpoint is referred to as a field value. For example, the air temperature after

compartment A in Fig. 2 is referred to as the field value of temperature at checkpoint A.

– All checkpoints are inactive by default, meaning no information is retrieved, calculated, or archived by our tool. A185

checkpoint becomes active when the user selects it at run time (through namelist, cf. Sect. 5.2.3). This flexibility allows

a user to focus only on the checkpoints relevant to their specific study; it also saves memory and disk space, as inactive

checkpoints will not consume memory or produce information in the model’s output files.

– The difference between values of the same model variable at two different checkpoints is referred to as an increment.

Since there can be inactive checkpoints, an increment calculated by our tool is the difference between the field value at190

the current checkpoint and the field value at the previous active checkpoint. For example, in Fig. 2, increment E is the

difference between checkpoints E and C, with the inactive checkpoint D ignored.

3.2 Composite analysis

For a composite analysis, our tool expects the user to specify one or more conditional sampling criteria via run time input (e.g.,

namelist parameters). The handling of multiple conditions is described later in Sect. 3.3. Here we first explain the handling of195

a single sampling condition.

During each time integration cycle of length ∆tCPLmain, values of user-selected variables at active checkpoints are obtained

and copied to a data structure internal to our tool. Increments and vertical integrals are calculated if requested. The sampling

condition is evaluated at each grid cell in the global domain. Depending on whether the condition is met, the copy of the

8

user-selected variables in our tool’s internal data structure, including their increments and integrals if requested by the user,200

is assigned either the model-computed values or a fill value, resulting in a conditionally sampled copy. This sampled copy,

together with information about the sampling condition, is then transferred to the output handling infrastructure. In the next

model time step, the sampling condition is re-evaluated and the user-selected model variables re-sampled. The details are

explained below.

3.2.1 Defining a condition205

A key element of a sampling strategy is the atmospheric condition to be used to categorize data. Necessary elements in the

definition of a condition include (1) a metric (which can be any 2D or 3D field, e.g., air temperature or surface pressure), (2)

a threshold (which is a number, e.g., -40 ◦C or 500 hPa), and (3) a comparison type (e.g., smaller than or equal to). In our

tool, a metric can be any prognostic or diagnostic variables in the host model or a quantity that can be diagnosed from existing

variables. Currently supported comparison types include (i) <, (ii) 6, (iii) >, (iv) >, and (v) equal to within a tolerance. Type210

(v) can be used to select values within a range. For example, choosing a threshold of -20◦C and a tolerance of 20 ◦C would

allow the user to sample grid cells with air temperature between -40◦C and 0 ◦C. The user’s choices of metric, threshold,

comparison type, and tolerance (if applicable) are expected to be specified through run time input.

Another key element of the definition of the sampling condition is the location in the time integration cycle at which the

sampling condition should be evaluated. As explained earlier in Sect. 2.2, the atmospheric state defined by the prognostic215

variables of EAM’s governing equations is updated multiple times within one full time step of ∆tCPLmain due to the sequential

splitting method used for process coupling. For diagnostic quantities (e.g., relative humidity), the values consistent with the

prognostic state also evolve within each time step even though the arrays in the programming language can temporarily contain

inconsistent values until the next time of calculation. Because of such evolutions within a time step, our tool requires the user

to specify at which checkpoint (cf. Sect. 3.1) a sampling condition should be evaluated. The implementation of this aspect220

in EAMv1 is discussed in more detail in Sect. 5.2.1. Also because of the evolution of model variables within a time step,

one needs to be cautious when obtaining values of diagnostic quantities for use by our diagnostic tool. This point is further

explained in Sect. 4.1.2.

3.2.2 Condition metric and field of flags

In this first version of our tool, the metric used in defining a sampling condition can be one of the following types of model225

variables:

– a 2D field that covers the entire horizontal domain of the model, such as the surface pressure or total cloud cover;

– a 3D field defined at layer mid-points or as layer averages, e.g., air temperature, cloud fraction, or the mass mixing ratio

of a tracer in EAMv1,

– a 3D field defined at the interfaces between adjacent layers, e.g, the convective mass flux predicted by the deep convection230

parameterization or the net longwave radiative flux calculated by the radiation scheme in EAMv1.

9

For each condition metric, a flag field with the same spatial dimensions is defined in the data structure internal to our tool. After

a sampling condition is evaluated at a grid cell in the 2D or 3D domain, the flag field is assigned a value of 1 if the condition

is met and a value of 0 otherwise. The flag field, when averaged over time, equals the frequency of occurrence of meeting the

sampling condition at each individual grid cell. The flags at different grid cells can be averaged in space, either over the entire235

2D or 3D domain or over a subdomain, to calculate the frequency of occurrence of the sampling condition in the corresponding

domain, but the spatial averages are expected to be done during post-processing instead of during model integration. A use

case example involving both temporal and spatial averaging can be found in Sect. 6.3.

After the sampling condition is evaluated over the entire 2D or 3D domain, the condition metric itself is sampled, meaning

that the field of values transferred to the output-handling software contains the model-computed values where the condition is240

met and a fill value of zero where the condition is not met. In other words, the masking indicated by the flag field is applied

to the condition metric as well. Recall that the output-handling infrastructure of EAM supports both instantaneous and time-

averaged model output. Since EAM is a climate model, time-averaged output is expected to be used more often. Our tool uses

a fill value of zero for archiving the condition metric and the other monitored model variables to make sure that time steps in

which the sampling condition is not met make zero contributions to the time average. Later on, during post-processing, when245

a time average of a condition metric is divided by the time average of the corresponding flag, we get the composite mean, i.e.,

the average over the time steps when the condition is met.

3.2.3 Monitored model variables

Our tool allows for multiple model variables to be monitored under the same sampling condition. To distinguish those mon-

itored variables from the condition metric, the monitored variables are referred to as the quantities of interest (QoIs) in the250

remainder of this paper and in our code. QoIs monitored under the same condition can have different vertical dimension sizes:

– When the QoI has the same dimension size as the condition metric, the masking indicated by the flag field can be applied

in a straightforward manner.

– If the metric is 2D and the QoI is 3D, then the same 2D masking is applied to all vertical layers or interfaces.

– If the metric is 3D and the QoI is 2D, then a grid cell in the 2D domain is selected if any layer midpoint or interface255

in that column is selected. For example, to quantify the shortwave cloud radiative effect (the QoI) in the presence of

ice clouds, one can choose a sampling condition of non-zero ice crystal concentration. Then, if ice crystals occur in any

layer in a grid column, then the shortwave cloud radiative effect of that grid column will be sampled.

Like the archiving of the condition metric explained in Sect. 3.2.2, a QoI gets a fill value of zero at grid cells where the condition

is not met, so that the composite mean can be derived by dividing the time-averaged QoI by the time-averaged flag field.260

10

checkpoint E

C
heckpoint ACompartment A

- Tendency calculation
- State update

Compartment B

Compartment C

- Tendency calculation
- State update

Compartment E

- Tendency calculation
- State update

Checkpoint B1

Compartment B1

- Tendency calculation
- State update

Checkpoint B2

Compartment B2

- Tendency calculation
- State update

Compartment D

- Tendency calculation
- State update

Checkpoint D

C
he

ck
po

in
t C

Condition (2),
metric calculation
and flag assignment

Condition (2),
masking QoIs from all
active checkpoints

X

X

Condition (1),
metric calculation
and flag assignment

Condition (1),
masking QoIs from
all active
checkpoints

Checkpoint B

Figure 3. A schematic showing two sampling conditions indicated in brown and purple. The “-X-” marks indicate locations in the time

integration cycle where the condition metrics are evaluated. The double-bars indicate the end of validity of the evaluated sampling conditions.

More details can be found in Sect. 3.2.4. Like in Fig. 2, green tags are active checkpoints being monitored by the tool. Gray tags with dashed

borderlines are inactive checkpoints, which are ignored in the simulation.

3.2.4 Time window of validity of an evaluated condition

Our tool is designed to evaluate a sampling condition once per each ∆tCPLmain at a user-specified checkpoint X and the tool

can monitor QoIs at multiple checkpoints within ∆tCPLmain. By default, the masking resulting from a condition evaluated at

checkpoint X is applied retrospectively to all active checkpoints from X until just before the previous encounter of X (i.e., X in

the previous time step). This is illustrated by condition (1) shown in purple in Fig. 3, where the sampling condition is evaluated265

at checkpoint C and the masking is applied retrospectively to checkpoints B2, B1, A, and E.

To provide more flexibility, our tool also allows the user to specify a different checkpoint as the end-of-validity mark for

a sampling condition, which we indicate with double-bars in Fig. 3. A hypothetical example is given as condition (2) shown

in brown in the figure. There, the end-of-validity mark (brown double-bar) is placed at checkpoint A while the sampling

condition is evaluated at checkpoint E. The masking determined at E is applied to E and the subsequent checkpoint A, as well270

as retrospectively to checkpoints C, B2, and B1 before E. An example from EAMv1 showing such a usage can be found in

Sect. 6.3.

11

3.3 Multiple sampling conditions in one simulation

A single sampling condition is defined by a combination of (i) a metric, (ii) a threshold, (iii) a comparison type, (iv) a tolerance

if the comparison type is “equal to”, (v) a condition-evaluation checkpoint, and (vi) an end-of-condition-validity checkpoint.275

Changing any of these elements will result in a new sampling condition. Our tool allows for multiple conditions to be used in

a single simulation (cf. Fig. 3), and these multiple sampling conditions can use different condition metrics.

For software simplicity, the current implementation only allows one and the same set of QoIs and checkpoints to be mon-

itored under all sampling conditions. In the example illustrated in Fig. 3 where two conditions, (1) and (2), and five active

checkpoints (A, B1, B2, C, and E) are activated, let us assume the user has chosen to monitor four QoIs, T , qv , u, and v. The280

same four QoIs and five checkpoints will be monitored for both sampling conditions. The current implementation does not

allow, for example, monitoring only T and qv at checkpoint A and C under condition (1) and only u and v at checkpoints A,

B1, and B2 under condition (2), although this kind of flexibility can be considered for future versions of CondiDiag if needed.

Since the current implementation monitors the same QoIs for all sampling conditions in the same simulation, one can run

into a situation where the metric and the QoI are both 3D fields but have different numbers of vertical layers (e.g., the metric285

is the air temperature defined at layer midpoints while the QoI is the net longwave radiative flux defined at layer interfaces). In

such a case, masking will be skipped, meaning this specific QoI will be captured for output as if no conditional sampling had

happened.

3.4 Mass-weighted vertical integral of QoIs

For spatially 3D QoIs defined at layer midpoints or as cell averages, the vertical integral weighted by air mass can be calculated290

during the time integration and then conditionally sampled and written out as 2D variables. This applies to both field values

and their increments.

One note of caveat is that in EAM’s physics parameterizations, the mixing ratios of water species (vapor, cloud liquid and

ice, rain and snow) are defined relative to the mass of moist air (i.e., dry air plus water vapor) while the mixing ratios of aerosols

and chemical gases are defined with respect to dry air. Our tool expects the user to specify which kind of air mass (moist or295

dry) should be used for each QoI when vertical integrals is requested (cf. Sect. 5.2.4).

4 Implementation in EAMv1

This section explains how the design features described in Sect. 3 are implemented in EAMv1. We provide an overview of the

new Fortran modules added specifically for the tool (Sect. 4.1), introduce a general-purpose diagnostics module (Sect. 4.2), and

summarize the changes made to the original EAMv1 code (Sect. 4.3). We keep these sections brief but provide two versions300

of the EAMv1 code on Zenodo (DOI: 10.5281/zenodo.5530188) corresponding to the GitHub commits before and after the

implementation of CondiDiag1.0, so that readers can review the details of the code changes if needed. The Zenodo archive also

12

https://doi.org/10.5281/zenodo.5530188

contains a third tar ball containing only the source files that were added or revised during the implementation of CondiDiag1.0,

as well as a copy of the original version of the revised EAMv1 files.

4.1 CondiDiag-specific new modules305

Four new modules are added to define data structures and support key functionalities of our diagnostic tool. These are briefly

described below.

4.1.1 Data structure module

The module conditional_diag contains definitions of the basic data structures used by our tool and subroutines for

initializing the corresponding Fortran variables.310

A Fortran variable cnd_diag_info of the derived type cnd_diag_info_t contains the metadata that describes the

user’s conditional sampling strategy and budget analyses configuration. A namelist conditional_diag_nl (cf. Sect. 5.2)

is also defined in this module, and a subroutine cnd_diag_readnl parses the user’s namelist input and populates the

information to cnd_diag_info.

A second derived type cnd_diag_t is defined for storing the values of the metrics, flags, and the field values and in-315

crements of QoIs. The corresponding Fortran variable is an array named phys_diag; the array is defined in a different

module (explained in Sect. 4.3.1). The subroutines that allocate memory for elements of phys_diag and their components

are included in module conditional_diag.

4.1.2 Key algorithm module

The module conditional_diag_main contains the key subroutine of our tool, named cnd_diag_checkpoint,320

which obtains the values of the condition metrics and QoIs, calculates the QoI increments, evaluates the sampling condi-

tions, applies conditional sampling, and transfers the sampled fields to the output-handling infrastructure of EAM. Examples

showing how the subroutine is invoked in EAM is explained in Sect. 4.3.2.

As mentioned earlier in Sect. 3.1, the condition metrics and QoIs can be existing components of EAM’s state variable,

physics buffer, and the atmosphere import and export data structures (cf. Sect. 2.1; note that the physics_tend type is not325

used by our tool). For example, air temperature is a component of the atmosphere state variable; hence the values are retrieved

in subroutine get_values in module conditional_diag_main by

case(’T’)

arrayout(1:ncol,:) = state%t(1:ncol,:)

Condition metrics and QoIs can also be physical quantities that need to be calculated from components of EAM’s existing data330

structures. For example, the relative humidity with respect to ice is obtained by

case (’RHI’)

13

call relhum_ice_percent(&

ncol, pver, &! intent(in)

state%t(:ncol,:), &! intent(in)335

state%pmid(:ncol,:), &! intent(in)

state%q(:ncol,:,1), &! intent(in)

arrayout(:ncol,:))! intent(out)

In these examples, “T” and “RHI” need to be unique names within the module conditional_diag_main; these will

also be the metric or QoI names that the users refer to in the namelist conditional_diag_nl (cf. Sect. 5.2). The currently340

implemented metric and QoI names are listed in Table A1 in Appendix A. Additional metrics and QoIs can be added following

the existing examples. We note that some of the variable names in Table A1 coincide with EAM’s standard history variable

names but the coincidence has no significance. Because a QoI can be monitored at different checkpoints and under different

conditions, those different combinations will each correspond to a distinct variable name in the history files, as explained in

Sect. 4.1.3.345

Here, it is worth pointing out one important caveat for obtaining values of diagnostic quantities in the host model. As

mentioned in Sect. 3.2.1, the values of diagnostic quantities that are consistent with the prognostic state effectively evolves

within a full model time step but the arrays in the programing language might have only one or a few updates per full time

step and hence can temporarily have inconsistent values. Care is needed to handle the corresponding code blocks in subroutine

get_values of module conditional_diag_main. Let us assume the host model has a diagnostic quantity whose value350

is saved in the physics buffer under the name ABC.

If the user’s intention is to understand the host model’s code by tracking when the physics buffer’s component ABC is updated

within a full model time step, a code block like the following is needed:

case(’ABC’//’_PBUF’)

idx = pbuf_get_index(’ABC’)355

call pbuf_get_field(pbuf, idx, ptr2d)

arrayout(:,:) = ptr2d

If the user’s intention is to understand the physics by monitoring the values of ABC that are consistent with the evolving

prognostic state, a code block like the following is needed which recalculates the value of ABC from the state variable:

case(’ABC’//’_EVOL’)360

call calculate_abc(state, ..., arrayout)

The RHI budget example shown in Section 6.3 falls into the second category.

4.1.3 History output module

The module conditional_diag_output_utils is responsible for adding the following items to EAM’s master list of

history output variables:365

14

– the conditionally sampled metric field named with the pattern cnd<index>_<metric_name> where <index> is a

two-digit number (e.g., cnd01_T if the first sampling condition uses air temperature as the metric);

– the flag field (see Sect. 3.2.2) named cnd<index>_<metric_name>_flag;

– one output variable corresponding to each QoI at each active checkpoint under each sampling condition, named with

the pattern cnd<index>_<QOI_name>_<checkpoint_name>. For example, cnd01_CLDLIQ_DYNEND is the370

stratiform cloud liquid mixing ratio monitored at checkpoint DYNEND under condition 1. If increments of the QoI are

calculated and archived, these will be named similar to the QoIs but with a suffix _inc append, e.g.,

cnd01_CLDLIQ_DYNEND_inc for the increment of CLDLIQ at checkpoint DYNEND under condition 1.

– If the mass-weighted vertical integral is requested for a QoI, then a suffix _v will be appended to the QoI name. For

example, cnd01_CLDLIQ_v_DYNEND is the column burden of CLDLIQ at checkpoint DYNEND under condition 1375

and cnd01_CLDLIQ_v_DYNEND_inc is the corresponding increment.

We expect that users of our tool should not need to touch the conditional_diag_output_utils module unless they

want to revise the naming conventions for variables in the history files.

It is worth noting that for any of the output variables added by our tool, EAM’s standard history output functionalities apply

(cf. Sect. 2.3). For example, each variable can be added to or excluded from one or multiple history tapes and be written380

out at the user-specified frequencies. For temporal statistics, both instantaneous and time-averages can be used in the current

implementation. Maximum and minimum values etc. need to be used with care as unselected grid cells are filled with zeros. In

future versions, we will consider allowing the user to specify what missing value should be assigned to each QoI.

4.1.4 Restart module

Because our diagnostic tool uses its own data structure, new subroutines have been included to add additional contents to385

EAM’s restart files. These subroutines are placed in the module conditional_diag_restart. As long as a user does not

change the data structures defined in module conditional_diag, there should be no need to touch the restart module even

if they add new metrics and QoIs to the key algorithm modules conditional_diag_main and misc_diagostics.

4.2 General-purpose diagnostics module

We imagine a user might want to provide their own subroutines to calculate new metrics or QoIs that are not available390

in the host model or recalculate diagnostic quantities to obtain values consistent with the evolving prognostic state (like

relhum_ice_percent in the code snippet in Section 4.1.2). In such cases, we recommend those subroutines be placed

in the module misc_diagnostics rather than in conditional_diag_main, because we view those user-provided

subroutines as general-purpose diagnostic utilities that could also be used by other parts of EAM (e.g., in some parameteriza-

tions for diagnostic purposes).395

15

4.3 Other code changes in EAMv1

Apart from adding the five modules explained in Secitons 4.1 and 4.2, the implementation of our tool in EAMv1 only involved

a very small number of code changes, as described below.

4.3.1 The phys_diag array and its elements

Our tool uses its own derived data type cnd_diag_t for storing values of the condition metrics, flags, and the field values,400

increments, and vertical integrals of QoIs (cf. Sect. 4.1.1). The data storage closely follows the handling of EAM’s model state

variable.

To explain the background, we note that in order to parallelize the parameterization calculations on supercomputers, EAM’s

global domain is divided into “chunks” of grid columns. A chunk contains a compile-time configurable number of columns

that are not necessarily neighbors in the geographical sense. Each call of tphysbc or tphysac performs calculations of405

the corresponding parameterizations in a single grid chunk, while each MPI (Message Passing Interface) process on the super-

computer typically performs calculations for multiple chunks (cf. Chapter 4 in Eaton, 2015). In tphysbc and tphysac, the

dummy variable state is declared as a scalar of type physics_state, and this scalar contains data for a single grid chunk.

The parent routines of tphysbc and tphysac declare rank-one arrays (of type physics_state) named phys_state

for storing data for all chunks handled by the same MPI process.410

Similarly, for implementing our tool in EAMv1, rank-one arrays of type cnd_diag_t named phys_diag are declared in

parent routines of tphysbc and tphysac. The scalar variable of type cnd_diag_t in tphysbc or tphysac is named

diag.

4.3.2 Checkpoints

The checkpoints listed in Tables B1 and B2 in the Appendices have been added to tphysbc and tphysac by inserting code415

lines like

call cnd_diag_checkpoint(diag, &! inout

’DYNEND’, state, pbuf, &! in

cam_in, cam_out)! in

(These code lines are inserted after the white boxes with solid outlines shown in Fig. 1.) Here, diag is the scalar variable of420

type cnd_diag_t explained in Sect. 4.3.1; "DYNEND" is the unique string identifying this checkpoint; state, cam_in

and cam_out are scalar variables of derived types declared in the original EAM code.

As mentioned in Sect. 2.1, the EAM code has a hierarchical structure; the state, cam_in and cam_out variables as

well as the physics buff are available also in some lower-level routines called by the physics drivers tphysbc and tphysac.

Checkpoints can be added to those lower-level routines. To demonstrate this point, in CondiDiag1.0, checkpoints have been425

included in the stratiform cloud macrophysics driver subroutine clubb_tend_cam in the form of, e.g.,

16

call cnd_diag_checkpoint(diag, &! inout

’CLUBB’//char_macmic_it, &! in

state1, pbuf, cam_in, cam_out)! in

where the character string char_macmic_it labels the sub-steps within a full time step ∆tCPLmain. It is worth emphasizing430

that state1 (instead of state) is referred to in the code snippet quoted above because state1 is the atmospheric state

variable that is sequentially updated by various code blocks (compartments) in clubb_tend_cam.

4.4 Portability

Our new tool was originally developed for and implemented in version 1 of EAM and was then tested in v2 and some in-

between versions. The porting turned out to be straightforward as the basic code and data structures in EAM had not changed.435

To implement CondiDiag in models outside the EAM/CAM model families will require some significant adaptation. Some

thoughts are shared here.

We assume the host model has a few high-level driver subroutines (or one driver) that organizes code compartments corre-

sponding to various atmospheric processes. This, to our knowledge, is common in AGCMs.

Our code also makes use of the fact that the drivers use derived data types to organize a large number of model variables of440

interest for physics-oriented or numerics-focused studies. These derived data types make our code more flexible and compact,

especially for conditional sampling.

For performing budget analysis, our current algorithm assumes the sequential splitting method is used in the host model. For

models that use different coupling methods (e.g, parallel splitting or a mixture of methods), it might be possible to obtain the

budget terms directly from the tendencies saved in existing model variables.445

The four new modules CondiDiag introduces to EAM (cf. Sect. 4.1) all use some EAM-specific data structures and software

functionalities. For porting to a new model, some parts of these modules will be straightforward to port and the other parts will

need a rewrite.

The conditional_diag module has the weakest dependency on EAM. The meta-data handling part (i.e., parsing the

user’s choices of QoIs, metrics, etc.) is independent of EAM’s data structures. The module also contains a few subroutines that450

allocate memory for the derived-type arrays used for storing the QoIs, metrics, etc.. The code therein assumes a chunk-based

domain decomposition, which likely will need to be adapted to the new host’s data structure.

The conditional_diag_main module contains subroutines for retrieving field values, deriving increments, calculating

vertical integrals, and performing conditional sampling, etc. The subroutines assume all QoIs and condition metrics can be

retrieved or recalculated from EAM-specific data structures described in Sect. 2.1, hence the dummy variables and their usage455

will need to be adapted for a new host model.

Module conditional_diag_output_utils and module conditional_diag_restartwill each need a rewrite

for a new host. The key task of the subroutines therein is to do I/O for all components of the derived type cnd_diag_t. We

expect that one needs to follow the host model’s way of handling I/O for 2D and 3D variables. The rewrite will likely be

somewhat tedious but presumably not difficult.460

17

5 User’s guide

The new tool is expected to be useful for a wide range of simulations routinely performed by the model developers and users,

including debugging simulations that are a few time steps long, short few-day simulations for preliminary testing or weather

forecast style simulations for comprehensive evaluations of the model physics following protocols like Transpose-AMIP (e.g.,

Phillips et al., 2004; Williams et al., 2013; Williamson et al., 2005; Martin et al., 2010; Xie et al., 2012; Ma et al., 2013, 2014),465

as well as more traditional multi-year to multi-decade simulations.

To obtain process-level understanding of model behavior, it can be useful to use the new tool in an iterative manner. For

example, for a study like Zhang et al. (2018) where one needs to identify code compartments that result in negative values of

specific humidity, we can start by carrying out a few-day or one-month simulation with unconditional sampling, choosing a

large number of checkpoints to monitor code compartments that are expected to affect humidity or might inadvertently do so470

because of computational artifacts or code bugs. We let the tool diagnose and archive time averages of the specific humidity

and its increment at these checkpoints to get a sense of typical values of the state variable and identify sources and sinks of

moisture. In a second step of investigation, we eliminate from the previous selection any checkpoints that have been confirmed

to not show humidity change in any grid cell or time step in the few-day or one-month simulation. From the shorter list, we

can pick one or multiple code compartments as suspected culprits of negative specific humidity. If m suspects are selected475

for further investigation, then m sampling conditions can be specified in the next simulation, all using qv < 0 as the sampling

criterion but each evaluated after a different suspect. We can also select some QoIs (e.g., temperature, specific and relative

humidity, wind, total cloud fraction, cloud liquid and ice mixing ratios, etc.) to monitor both right before and right after the

code compartments that are suspected to cause negative water vapor. We can request both the field values and increments of

these QoIs to be archived, as time averages or instantaneous values, or both. This second step might provide useful clues of the480

typical meteorological conditions under which negative water vapor is predicted in the model. If pathological conditions are

identified, then we can carry out additional simulations using relevant sampling conditions to further investigate the causes of

those pathologies.

This section explains how investigations described above can be performed using our tool. We first present a typical workflow

in Sect. 5.1 to illustrate the steps that a user needs to go through when designing an analysis and setting up an EAM simulation485

using our tool. We then explain the namelist parameters of our tool in Sect. 5.2.

5.1 User workflow

The schematic in Fig. 4 summarizes the steps to take for designing a composite or budget analysis using our tool. It also points

to relevant concepts explained in earlier sections and namelist parameters explained below.

5.2 Namelist conditional_diag_nl490

Users specify their conditional sampling and budget analysis strategy via the namelist conditional_diag_nl, which

consists of five groups of parameters.

18

Is conditional
sampling needed?

Yes

No Use "ALL" for namelist parameter
metric_name. Skip other namelist
parameters in Sect. 5.2.1

NoYes

Add condition metrics
or QoIs to code, see
Sect. 4.1.2 and
following existing
code in subroutine
get_values in module
conditional_diag_main

Add checkpoints
following examples
in Sect. 4.3.2

Choose sampling conditions

Use namelist parameters in Sect.
5.2.1 to specify sampling conditions

Specify namelist parameters cnd_eval_chkpt and
cnd_end_chkpt, see Sect. 5.2.1.

Choose model variables and processes to monitor

Yes

Use namelist parameters in Sect.
5.2.2 and Sect. 5.2.4 to specify QoIs

No
Yes Yes

No

Specify namelist parameter qoi_chkpt,
see Sect. 5.2.3.

Choose history tapes for CondiDiag output, see Sect. 5.2.5

No

Decide on locations of time integration
cycle for condition evaluation and end-of-
validity, see Sects. 3.2.1 and 3.2.4

Are there checkpoints
available at these locations?

Are there checkpoints
available at these locations?

Decide on atmospheric processes to
monitor. Identify locations of time integration
cycle to monitor QoIs, see Sect. 3.1

Are all condition metrics
available in subroutine
get_values in module

conditional_diag_main?

Are all the model variables to be
monitored (i.e., all QoIs) available in

subroutine get_values in module
conditional_diag_main?

Figure 4. A schematic showing the typical steps a user needs to go through for setting up an EAM simulation with online conditional

sampling or budget analysis enabled using our tool. Dashed lines indicate places where code changes or additions are needed from the user.

5.2.1 Specifying sampling conditions

For the specification of sampling conditions, we have

– metric_name, a character array containing the names of the condition metrics to be used in a simulation;495

– metric_nver, an integer array specifying the number of vertical levels of each metric. This is meant to help distinguish

physical quantities that (1) have no vertical dimension, (2) are defined at layer mid-points, and (3) are defined at layer

19

interfaces. Valid values for metric_nver are 1, pver (e.g., 72), and pverp (e.g., 73), where pver and pverp are

EAM’s variable names for the number of vertical layers and interfaces, respectively.

– metric_cmpr_type, an integer array specifying the types of comparison to be used for each condition (one entry per500

condition): 0 for “equal to within a tolerance”, 1 for “greater than”, 2 for “greater than or equal to”, -1 for “less than”,

and -2 for “less than or equal to”;

– metric_thereshold, a double-precision floating-point array specifying the threshold values that the metrics will be

compared to (one threshold for each condition);

– metric_tolerance, a double-precision floating-point array specifying the tolerances for conditions with comparison505

type 0 (one tolerance for each condition; the value will have no effect for conditions with a non-zero comparison type);

– cnd_eval_chkpt, a character array specifying at which checkpoints the conditions will be evaluated (see Sect. 3.2.1;

one checkpoint for each condition).

– cnd_end_chkpt, a character array specifying the checkpoints defining the end of validity of an evaluated condition

(see Sect. 3.2.4; one checkpoint per condition). If not specified by user, the end-of-time-step checkpoint will be set to510

the condition-evaluation checkpoint (cnd_eval_chkpt).

5.2.2 Specifying monitored model variables

The QoIs to be monitored are specified via a character array qoi_name. The number of vertical levels of each QoI is specified

through the integer array qoi_nver. If no QoIs are specified but some sampling condition have been chosen, then conditional

sampling will only be applied to the metrics.515

The monitoring of QoI field values are turned on by the logical scalar l_output_state. A second logical scalar,

l_output_incrm, is used to turn on or off the monitoring of QoI increments. Users’ choice for the two switches will

be applied to all QoIs.

5.2.3 Choosing checkpoints

The checkpoints at which the QoIs will be monitored are specified by a character array qoi_chkpt. The sequence in which520

they are mentioned in the namelist has no significance. Note that the same checkpoints are applied to all QoIs. Also note

that if the user specifies a checkpoint name that does not match any checkpoint implemented in the code (e.g., because of a

typographical error), then our tool will act as if the wrong checkpoint is an inactive one - in the sense that it will get ignored

when the tool attempts to obtain QoI field values and calculate increments as the simulation proceeds; the history files will

contain output variables corresponding to the incorrect checkpoint name but those output variables will contain zeros.525

20

5.2.4 Turning on vertical integral

The calculation of mass-weighted vertical integrals of QoIs can be enabled by the integer array qoi_x_dp. The values are

specified in relation to qoi_name, i.e., one value of qoi_x_dp for each QoI. 0 is interpreted as no integral; the QoI will be

sampled and written out as a 3D field. If 1 (moist) or 2 (dry) are selected, the corresponding (moist or dry) air mass will be

used for vertical integral of that QoI at all active checkpoints in the simulation.530

If the user wishes to monitor both a 3D QoI and its vertical integral, they can specify the same QoI twice in qoi_name and

set one of the corresponding elements in the qoi_x_dp array to 0 and the other to an appropriate value (1 for moist and 2 for

dry) to request vertical integral. A use case example is provided in Sect. 6.1.

For budget analyses in which mass conservation error is an important topic, there are some nuances related to the fact that

the aerosol and chemical gas mixing ratios are converted from drying mixing ratios to moist mixing ratios close to the end of535

tphysac. This is further discussed in Appendix C.

5.2.5 Turning on history output

A user might want to write out multiple copies of the conditional diagnostics or budget diagnostics to different history files cor-

responding to different output frequencies or temporal averaging. To support such needs, the integer array hist_tape_with_all_output

specifies which history files will contain the full set of output variables from our tool. For example, hist_tape_with_all_output540

= 1, 3 will include the output to the h0 and h2 files. Again, we note that the standard output functionalities in EAM explained

in Sect. 2.3 still apply.

5.3 Using unconditional sampling

One of the main motivations for creating our tool is to facilitate budget analysis. If an analysis is to be carried out for the entire

computational domain and all time steps, then a special metric named ALL can be used. In such a case, the user can ignore545

(skip) the other namelist parameters in 5.2.1. When ALL is used, the condition evaluation will be skipped during the model’s

integration (see example in Sect. 6.1). Another way to use unconditional sampling is to specify a condition that will always be

fulfilled (e.g., relative humidity higher than -1%). A use case example is provided in Sect. 6.3).

6 Use case examples

This section demonstrates the usage of the new tool using three concrete examples:550

The first example is a global budget analysis without conditional sampling. It demonstrates how to request unconditional

sampling and how to request that increments of model variables be calculated and archived as time averages. This first example

also demonstrates that with our tool, it is convenient to obtain both vertical profiles and vertical integrals of the budget terms.

The second example is a composite analysis without budget terms. It demonstrates how to use multiple sampling conditions

in the same simulation and also shows that the tool can be used to perform a univariate probability distribution analysis.555

21

In the third example, the increment diagnosis and conditional sampling capabilities are combined to perform a conditional

budget analysis. The example demonstrates how metrics and monitored QoIs can be chosen to be physical quantities that need

to be calculated from the host model’s state variables using user-provided subroutines.

The examples shown here use 1-month simulations of October 2009 with monthly (or monthly and daily) output. All sim-

ulations were carried out with active atmosphere and land surface as well as prescribed sea surface temperature and sea ice560

concentration, at 1 degree horizontal resolution with out-of-the-box parameters and time integration configurations of EAMv1.

6.1 A global budget analysis of dust aerosol mass mixing ratio and burden

The first example is a global dust aerosol mass budget analysis without conditional sampling. The simulation is designed to

provide insight into the atmospheric processes that change the burden (vertical integrals) of dust aerosols in two size ranges

(accumulation mode and coarse mode). In particular, we are interested in dust emission, dry removal (i.e., sedimentation and565

dry deposition at the Earth’s surface), resolved-scale transport, subgrid-scale turbulent transport and activation (i.e., nucleation

scavenging), as well as the wet removal caused by precipitation collecting particles by impaction, and resuspension caused by

evaporation of precipitation.

Table 1. Namelist setup used in the dust budget analysis example in Sect. 6.1.

metric_name = ’ALL’

qoi_chkpt = ’CFLXAPP’, ’AERDRYRM’,

’PBCINI’, ’STCLD’, ’AERWETRM’

qoi_name = ’dst_a1’, ’dst_a1’, ’dst_a3’, ’dst_a3’

qoi_nver = 72, 72, 72, 72

qoi_x_dp = 0, 2, 0, 2

l_output_state = .false.

l_output_incrm = .true.

hist_tape_with_all_output = 1, 2

nhtfrq = 0, -24

mfilt = 1, 31

6.1.1 Simulation setup

The namelist setup for this study is shown in Table 1. Only one condition is specified: the special metric ALL is used to select570

the entire model domain and all time steps.

The QoI names dst_a1 and dst_a3 are EAM’s tracer names for dust mass mixing ratio in the accumulation mode and

coarse mode, respectively. Each tracer name is mentioned twice under qoi_name, with corresponding qoi_x_dp values of 0

22

Table 2. For the dust budget analysis example in Sect. 6.1: atmospheric processes corresponding to increments diagnosed at the checkpoints

selected in the namelist shown in Table 1.

Checkpoint Atmospheric processes

CFLXAPP Surface fluxes of aerosol and chemical tracers

AERDRYRM Dry removal of aerosols

PBCINI Resolved transport

STCLD Turbulent mixing and aerosol activation

AERWETRM Wet removal and resuspension of aerosols

and 2, meaning that both the vertical distribution of the tracer and its column burden are monitored. With l_output_state

set to .false. and l_output_incrm set to .true., the tool captures the dust mass mixing ratio increments caused by575

the targetted atmospheric processes but not the mixing ratios. Five checkpoints are chosen for monitoring the dust budget. The

corresponding atmospheric processes are listed in Table 2. (We remind the users that, as shown in Fig. 2, the code compartments

that contribute to increments diagnosed at a checkpoint not only depends on where this checkpoint is located in the time

integration cycle but also where the previous active checkpoint is located.)

The full set of fields tracked by our tool are sent to output files 1 (the h0 file) and 2 (the h1 file), with the h0 file containing580

monthly averages and the h1 file containing daily averages.

6.1.2 Results

Figure 5 shows a one-month mean geographical distribution of the sources and sinks of dust mass in the coarse mode (unit:

kg m−2 s−1). The values shown are the output variables cnd01_dst_a3_v_<checkpoint_name>_inc in the h0 file

divided by ∆tCPLmain = 30 min. Figure 6 shows examples of the globally averaged vertical profiles of the coarse-mode dust585

mass mixing ratio tendencies (unit: kg kg−1 s−1). The black curves are monthly averages. The colored horizontal bars indi-

cate variability of the daily averages derived from the 3D increment fields cnd01_dst_a3_<checkpoint_name>_inc

written to the h1 file.

6.2 A composite analysis of sea salt emissions in relation to surface wind speed

This example demonstrates the use of composite analysis (without budget terms) to provide insight into wind speed impacts on590

emission fluxes of sea salt aerosol in various size ranges. The intension is to examine the geographical distribution of sea salt

emission fluxes under weak, medium, and strong wind conditions and quantify their relative contributions to the total emission

fluxes.

23

Figure 5. One-month mean tendencies of the vertically integrated coarse mode dust burden (unit: kg m−2 s−1) attributed to different physical

processes in EAMv1. The expressions given in thin fonts below panel titles indicate how the presented quantities are calculated from the

model’s output variables.

24

Figure 6. Globally averaged vertical profile of the coarse mode dust mass mixing ratio tendencies (unit: kg kg−1 s−1) attributed to dry

removal (top panel), resolved transport (middle panel), as well as the turbulent mixing and activation of aerosol particles (bottom panel). The

black curves are monthly averages. The lengths of the horizontal bars correspond to twice of the standard deviation of the daily averages.

The expressions given in thin fonts below panel titles indicate how the global averages are calculated from the model’s output variables.

25

Table 3. Namelist setup used in the composite analysis presented in Sect. 6.2.

metric_name = ’U10’, ’U10’, ’U10’, ’U10’

metric_nver = 1, 1, 1, 1

metric_cmpr_type = -1, 0, 1, 1

metric_threshold = 5, 7.5, 10, -1

metric_tolerance = 0, 2.5, 0, 0

cnd_eval_chkpt = ’CHEM’,’CHEM’,’CHEM’,’CHEM’

qoi_chkpt = ’CHEM’

qoi_name = ’SFncl_a1’, ’SFncl_a2’, ’SFncl_a3’

qoi_nver = 1, 1, 1

l_output_state = .true.

l_output_incrm = .false.

hist_tape_with_all_output = 1

nhtfrq = 0

mfilt = 1

6.2.1 Simulation setup

In EAMv1, the emission of sea salt aerosol is parameterized with a scheme from Mårtensson et al. (2003) in which the emission595

flux is proportional to (U10)3.41 with U10 being the wind speed (unit: m s−1) at 10 m above sea level (Zhang et al., 2016; Liu

et al., 2012).

Four conditions are specified in the namelist setup shown in Table 3. The first three divide the possible 10 m wind speed

values into three ranges: lower than 5 m s−1, between 5 m s−1 and 10 m s−1, and higher than 10 m s−1. The fourth condition

uses the always-fulfilled criterion of U10 > -1 m s−1 to select all grid points and time steps for comparison.600

Three QoIs are monitored: SFncl_a1, SFncl_a2, SFncl_a3, which are the surface mass fluxes of sea salt aerosol in the

accumulation mode, Aitken mode, and coarse mode, respectively. These variable names are EAMv1’s standard tracer flux

names.

U10 in EAMv1 is the grid-box average provided by the coupler (checkpoint MCTCPL). The calculation of sea salt emissions

is done in the atmosphere model (checkpoint CHEMEMIS). U10 and the surface fluxes are calculated only once per time step605

∆tCPLmain and their values remain available as components of the derived-type Fortran variable called cam_in (cf. Table A1).

Therefore, as long as we select any checkpoint at or after MCTCPL for assessing U10 combined with any checkpoint at or

after CHEMEMIS, and before MCTCPL for monitoring the surface fluxes, the results will be equivalent. In Table 3, the same

checkpoint CHEM is used for both namelist parameters cnd_eval_chkpt and qoi_chkpt, as this is the checkpoint right

before the surface fluxes are used to update aerosol tracer mixing ratios.610

For output, variables from our tool are included in the h0 file as monthly averages.

26

Figure 7. Left column: geographical distributions of the frequency of occurrence of conditions 1–3 corresponding to 10 m wind speed (U10)

< 5 m s−1 (top row), between 5 m s−1 and 10 m s−1 (middle row) and > 10 m s−1 (bottom row), respectively. Right column: composite

average of U10 under each condition. White areas in the contour plots correspond to no occurrence of condition in the one-month simulation.

The expressions given in thin fonts below panel titles indicate how the presented quantities are calculated from the model’s output variables.

6.2.2 Results

Figure 7 presents geographical distributions of the frequency of occurrence of conditions 1–3 in the one-month simulation (left

column) and the corresponding composite averages of U10 (right column). While composite averages of U10 are shown for a

sanity check, the left panels indicate the different characteristic wind speed associated with different surface types (land versus615

ocean) and cloud regimes (e.g., deep convection active regions, trade cumulus regions, and storm tracks).

27

Figure 8. Left column: Composite average of coarse mode sea salt mass emission fluxes under conditions 1–3 corresponding to 10 m wind

speed < 5 m s−1 (top row), between 5 m s−1 and 10 m s−1 (middle row) and > 10 m s−1 (bottom row), respectively. Right column:

contribute of each condition (1, 2, or 3) to the total coarse mode sea salt emission (condition 4). White areas in the left panels are missing

values caused by zero frequency of occurrence of the corresponding conditions. White areas in the right panels are missing values caused

by zero total coarse mode sea salt emission. The expressions given in thin fonts below panel titles indicate how the presented quantities are

calculated from the model’s output variables.

Figure 8 shows geographical distributions of the composite mean of the coarse mode sea salt mass emission fluxes under

conditions 1–3 (left column) and the relative contribution of each condition to the total (all-condition) fluxes (right column).

Here, for demonstration purposes, we only chose three wind speed bins and monitored sea salt mass fluxes. If one refines the

wind speed ranges (e.g., use 10 to 20 bins), adds aerosol number fluxes to the QoIs, and adds the calculation of global averages620

to postprocessing, then diagrams like Fig. 5 in Zhang et al. (2012) can be created to investigate the simulated relationship be-

tween wind speed and particle size distribution of the emissions but without having to write out a large amount of instantaneous

model output.

28

6.3 A conditional budget analysis for RHI

The third example demonstrates a combined use of the budget analysis and conditional sampling capabilities using our tool.625

The example also requires the calculation of a diagnosed quantity (the relative humidity with respect to ice, RHI) that is not a

state variable, so additional routines are invoked to calculate it. This quantity would vary before and after code compartments

(e.g., atmospheric dynamics, cloud microphysics, radiation etc) that operate on the atmospheric state, so it is sensitive to how

and where it is calculated in the model, and its value can also change across the sub-cycles used for the parameterizations and

their coupling.630

Table 4. Namelist variables pertaining to the new diagnostic tool used in the conditional RHI budget analysis presented in Sect. 6.3.

metric_name = ’RHI’, ’RHI’

metric_nver = 72, 72

metric_cmpr_type = 1, 1

metric_threshold = 125, -1

cnd_eval_chkpt = ’CLDMAC01’, ’CLDMAC01’

cnd_end_chkpt = ’PBCDIAG’, ’PBCDIAG’

qoi_chkpt = ’PBCDIAG’, ’RAD’, ’PACEND’,

’DYNEND’, ’DEEPCU’,

’CLDMAC01’, ’CLDMIC01’,

’CLDMAC02’, ’CLDMIC02’,

’CLDMAC03’, ’CLDMIC03’,

’CLDMAC04’, ’CLDMIC04’,

’CLDMAC05’, ’CLDMIC05’,

’CLDMAC06’, ’CLDMIC06’

qoi_name = ’RHI’, ’Q’, ’QSATI’

qoi_nver = 72, 72, 72

l_output_state = .true.

l_output_incrm = .true.

hist_tape_with_all_output = 1

nhtfrq = 0

mfilt = 1

6.3.1 Simulation setup

The focus QoI in this example is the relative humidity with respect to ice (RHI), which directly affects the formation of new

ice crystals. In EAMv1, ice nucleation is calculated after the parameterization of turbulence, shallow convection, and large-

scale condensation represented by CLUBB (Cloud Layers Unified By Binormals, Golaz et al., 2002; Larson et al., 2002;

Larson and Golaz, 2005; Larson, 2017). CLUBB, ice nucleation, droplet nucleation, and other stratiform cloud microphysical635

29

Table 5. For the conditional RHI budget example presented in Sect. 6.3: atmospheric processes corresponding to increments diagnosed at

the checkpoints selected in Table 4.

Checkpoint Atmospheric processes

PBCDIAG Wet removal and resuspension of aerosols

RAD Radiation

PACEND Rayleigh friction and gravity wave drag

DYNEND Resolved dynamics and tracer transport

DEEPCU Deep convection

CLDMAC[01–06] Turbulence and shallow convection, sub-steps

1–6

CLDMIC[01–06] Stratiform cloud microphysics, sub-steps 1–6

processes represented by the parameterization of Gettelman and Morrison (2015) are collectively sub-cycled six times per

∆tCPLmain. Therefore in the namelist setup shown in Table 4, a checkpoint is selected before each invocation of the ice

nucleation parameterization (CLDMAC01,..., CLDMAC06) to identify sources of high RHI. Additional checkpoints are selected

after each invocation of the stratiform cloud microphysics (CLDMIC01,..., CLDMIC06) to monitor how RHI decreases due to

those processes. A few other checkpoints are also selected to evaluate the impact of atmospheric processes that are known to640

affect air temperature and specific humidity, for example large-scale dynamics, radiation, and deep convection.

In addition to monitoring RHI, we include the specific humidity (Q) and the saturation specific humidity respect to ice

(QSATI) as QoIs to help attribute the diagnosed RHI changes (cf. namelist variable qoi_name in Table 4). While Q is one

of the prognostic variables in EAMv1, RHI and QSATI need to be diagnosed at each checkpoint using three components

of the model’s prognostic state: Q, air temperature, and pressure. The diagnostic subroutines are included in the module645

misc_diagnostics.

All of the selected QoIs are 3D variables defined in 72 layers in EAMv1. Unlike in the previous example, qoi_x_dp is not

specified here; it gets the default values of zeros, therefore no vertical integrals are calculated for the QoIs.

Two sampling conditions are specified: the first one selects grid cells where RHI seen by the first invocation of the ice nu-

cleation parameterization is higher than 125%, which is a necessary although insufficient condition to trigger homogeneous650

ice nucleation. (For clarification, we note that RHI discussed here is the relative humidity calculated from the grid-box mean

specific humidity and grid-box mean air temperature. EAMv1 uses RHI > RH0 as a screening condition to determine if homo-

geneous ice nucleation can occur in a grid box. RH0 depends on air temperature but has typical values around 125%.)

The second condition effectively selects all grid cells and time steps, but we state the condition as RHI > -1% instead of using

the special metric “ALL”, and select the same condition-evaluation checkpoint as in condition one, so that the conditionally655

sampled metric cnd01_RHI and unconditionally sampled cnd02_RHI can be directly and conveniently compared. (Using

the special metric “ALL” would result in a metric variable cnd02_ALL, which is a constant field of 1.0, being written to the

output files.)

30

(a) (b) (c)

(d) (e) (f)

Figure 9. Upper row: (a) The frequency of occurrence of RHI > 125% averaged over one month and the entire globe. (b) RHI at various

checkpoints averaged over all time steps of the month and over the entire globe (i.e., RHI under condition 02 – unconditional sampling). (c)

Space-and-time mean RHI at various checkpoints under condition 01 (i.e., RHI is higher than 125% before the first ice nucleation calculation

during a time step of ∆tCPLmain = 30 min). Lower row: space-and-time mean increments of (d) RHI, (e) specific humidity, and (f) saturation

specific humidity with respect ice averaged under condition 01.

The checkpoint before the radiation parameterization is considered the end of a full model time step and hence cnd_end_chkpt

is set to PBCDIAG. Both the field values and increments of the QoIs are monitored and included in model output. The full set660

of fields tracked by our tool are sent to output tape 1 (the h0 file) which contains the monthly averages.

6.3.2 Results

Figure 9 shows various vertical profiles derived from the simulation. Defining a 2D global average as the average over all grid

cells on a sphere weighted by their spherical area, panel (a) in Fig. 9 shows the vertical profile of the 2D global average of the

31

output variable cnd01_RHI_flag, which gives the globally and temporally averaged frequency of occurrence of RHI > 125%665

in each grid layer. The other panels in the figure are global averages of different QoIs and checkpoints divided by the global

mean frequency of occurrence of the corresponding condition. Recall that our tool assigns a fill value of zero to grid cells and

time steps that are unselected for a sampling condition. The profiles in Figures 9b-f are therefore spatial and temporal averages

of the corresponding composites.

Panels (b) and (c) show RHI profiles under conditions 02 and 01, respectively. Sampling using the criterion of RHI > 125%670

helps to highlight the substantial changes related to ice cloud formation in the upper troposphere. Panel (d) shows the incre-

ments of RHI at various checkpoints, allowing for a direct comparison of the signs and magnitudes of RHI changes caused by

different physical processes. The increments of specific humidity and saturation specific humidity shown in panels (e) and (f)

can further help to understand the physical mechanisms causing the RHI changes.

7 Conclusions and outlook675

An online diagnostic tool has been designed for and implemented in the global atmospheric circulation model EAMv1. The

motivation is to introduce a systematic way to support conditional sampling and budget analysis in EAM simulations, so as to

(1) minimize the need for tedious ad hoc coding and hence save code development time and avoid clutter, and to (2) reduce the

need for instantaneous model output and hence improve the computational efficiency of EAM simulations in which composite

or budget analysis is needed.680

Building upon the sequential splitting method used by EAM’s time integration and the flexibility of the model’s output

functionalities, the new tool adds its own data structures and functionalities to allow the users to select sampling conditions and

model variables (also referred to as quantities of interest, QoIs) to monitor at desired locations of the model’s time integration

cycles. The condition metrics and QoIs can be any physical quantities that are components of EAM’s existing derived-type

data structures such as the physics state, physics buffer, and the data structures used for information exchanges between the685

atmosphere and the surface models such as land and ocean. The condition metrics and QoIs can also be any physical quantities

that can be diagnosed from components of these existing data structures. Both the evolving values of the QoIs and their

increments caused by different atmospheric processes can be monitored and written out as instantaneous or time-averaged

values in EAM’s output files (also known as history tapes). For QoIs defined at mid-points of the model’s vertical grid or as

layer averages, the tool also provides the functionality to calculate and output vertical integrals weighted by the mass of dry or690

moist air. Multiple sampling conditions can be used in a single simulation. Unconditional sampling and mixtures of conditional

and unconditional sampling are also supported.

Assuming the user-chosen conditional metrics and QoIs as well as the locations in time integration cycle to monitor these

quantities (referred to as checkpoints) are known to the tool, carrying out a composite or budget analysis using the new tool

only requires setting a small number of namelist parameters. The addition of new conditional metrics, QoIs, and checkpoints695

is straightforward if the data to be sampled can be assessed through EAM’s existing data structures.

32

The new tool has been designed for and implemented in EAMv1 and can be easily ported to EAMv1’s descendants (e.g.,

EAMv2) or predecessors (e.g., CAM5) that use similar Fortran data structures and time integration strategies. Details of the de-

sign concepts and implementation in EAMv1 are explained in the paper together with three use case examples that demonstrate

the usage of the tool.700

The development of the new tool was motivated by the need to carry out conditional budget analysis to understand sources

of time-step sensitivities and time-stepping errors related to EAMv1’s physics parameterizations. While the current version of

the tool, CondiDiag1.0, fulfills the authors’ initial needs in those investigations, we are aware of several aspects in which the

tool can be further extended or improved to benefit a wider range of EAM users:

First, if the desired condition metric or QoI is calculated by a lower-level (in software sense) subroutine and is not saved in705

EAM’s derived-type data structures (e.g., physics state, physics buffer, etc.), the most convenient way to pass data to CondiDiag

will be adding the desired physical quantity to the physics buffer. Such cases will be further assessed and alternative methods

will be explored. It is worth noting, however, that the E3SM project has been developing a brand new code base for its version

4 release. The new code uses a single “field manager” for information exchanges between the host model and any resolved

or parameterized atmospheric processes. The implementation of our tool in the new code base should make use of – and will710

benefit from – this new “field manager”.

Second, the specification of a sampling condition in CondiDiag1.0 takes the form of a logical expression involving the

comparison of a single metric with a threshold value. Section 6.2 demonstrated how the tool can be used for a univariate

probability distribution analysis. It will be useful to further extend the tool to support sampling conditions involving multiple

metrics and a series of threshold values for each metric, and hence facilitating multivariate probability distribution analysis.715

Along that line, it might be useful to support sampling conditions involving multiple metrics evaluated at different checkpoints.

This could be useful for investigating forcing-response relationships of multiple atmospheric processes and for evaluating the

behavior of sub-stepped code compartments.

Third, for simulations that involve multiple sampling conditions, the current tool monitors the same set of QoIs and check-

points under all conditions. It will be useful to provide the flexibility to select different QoIs and checkpoints for different720

conditions.

Beyond the three aspects discussed above, there are some desirable extensions of the tool that will require more substantial

revisions of the current design. For example, in CondiDiag1.0, the sampling conditions are re-evaluated (and the QoIs are

re-sampled) every model time step. We can, however, imagine cases where a user might want to evaluate a condition at some

point of a simulation and monitor the evolution of the atmospheric state in the selected grid cells for longer time periods such725

as a few hours or a few days. Supporting such use cases will require introducing an additional mechanism to specify for how

long the evaluated sampling condition is valid. Furthermore, anticipating possible modifications to the sequential splitting of

atmospheric processes in EAMv1, in particular possible future adoption of parallel splitting or hybrid methods, it will be useful

to explore how the current design of CondiDiag can be extended to accommodate other process coupling methods.

33

Code availability. The EAMv1 code, run scripts, and postprocessing scripts used in this paper can be found on Zenodo at https://zenodo.730

org/record/5530188. Two versions of the EAM maint-1.0 code are provided: one with CondiDiag1.0 implemented and one without, both of

which can be compiled and run on E3SM’s supported computer systems. The Zenodo archive also provides a third, smaller tar ball which

contains only the source files that were added or revised during the implementation of CondiDiag1.0. A copy of the corresponding EAMv1

files before the implementation is included in this third tar ball to facilitate comparison.

Appendix A: Candidate metrics and QoIs in CondiDiag1.0735

Tables A1–A3 list the currently available physical quantities that can be used as metrics for conditional sampling or be moni-

tored as QoIs.

Table A1. Candidate condition metrics and QoIs that are directly copied from EAM’s derived-type data structures. “<cnst_name>” refers to

tracer names in EAM. “SF<cnst_name>” refers to variables names of tracer surface fluxes in EAM. pver and pverp are EAM’s variable

names for the number of vertical layers and vertical interfaces, respectively. In the standard EAMv1, pver is 72 and pverp is 73. The

rightmost column explains the Fortran derived-type variables and their components from which a metric or QoI’s values are obtained. More

candidate metrics and QoIs can be added following the example shown by the first code snippet in Sect. 4.1.2.

Name Explanation Vertical dimension size Data source

<cnst_name> Advected tracers pver state%q

T Air temperature pver state%t

U Zonal wind pver state%u

V Meridional wind pver state%v

OMEGA Vertical velocity pver state%omega

PMID Pressure at layer midpoints pver state%pmid

PINT Pressure at layer interfaces pverp state%pint

ZM Geopotential height at layer midpoints pver state%zm

ZI Geopotential height at layer interfaces pverp state%zi

PS Surface pressure 1 state%ps

SF<cnst_name> Sfc. flux of advected tracers 1 cam_in%cflx

LWUP Longwave upward radiative flux from the surface 1 cam_in%lwup

LHF Latent heat flux from the surface 1 cam_in%lhf

SHF Sensible heat flux from the surface 1 cam_in%shf

WSX Surface stress (zonal) 1 cam_in%wsx

WSY Surface stress (meridional) 1 cam_in%wsy

TREF Ref. height surface air temp 1 cam_in%tref

QREF Ref. height specific humidity 1 cam_in%qref

U10 10-m wind speed 1 cam_in%u10

TS Surface temperature 1 cam_in%ts

SST Sea surface temperature 1 cam_in%sst

FLWDS Downward longwave flux at surface 1 cam_out%flwds

NETSW Downward shortwave flux at surface 1 cam_out%netsw

34

https://zenodo.org/record/5530188
https://zenodo.org/record/5530188
https://zenodo.org/record/5530188

Table A2. Candidate condition metrics and QoIs that are directly copied from EAM’s “physics buffer” data structure. pver and pverp

are EAM’s variable names for the number of vertical layers and layer interfaces, respectively. In the standard v1 model, pver is 72

and pverp is 73. More candidate metrics and QoIs can be added following existing examples in subroutine get_values in module

conditiona_diag_main.

Name Explanation Vertical dimension size Data source

PBLH Planetary boundary layer height 1 pbuf

TKE Turbulent kinetic energy pverp pbuf

UPWP Turbulent momentum flux, east-west component pverp pbuf

VPWP Turbulent momentum flux, north-south component pverp pbuf

AST Stratiform cloud fraction pver pbuf

CLD Total cloud fraction (stratiform plus convective) pver pbuf

DEI Cloud microphysics: effective radius of cloud ice for radiation pver pbuf

DES Cloud microphysics: effective radius of snow for radiation pver pbuf

MU Cloud microphysics: size distribution shape parameter for radiation pver pbuf

LAMBDAC Cloud microphysics: size distribution shape parameter for radiation pver pbuf

Table A3. Candidate condition metrics and QoIs that are diagnosed from components of EAM’s derived type data structures. pver and

pverp are EAM’s variable names for the number of vertical layers and vertical interfaces, respectively. In the standard v1 model, pver

is 72 and pverp is 73. “Subroutine name” is the name of the subroutine in module misc_diagnostics that calculates the requested

quantity. More candidates can be added following the the second code snippet in Sect. 4.1.2.

Name Explanation Vertical dimension size Subroutine name

QSATW Saturation specific humidity w.r.t. water pver qsat_water

QSATI Saturation specific humidity w.r.t. ice pver qsat_ice

QSSATW Supersaturation w.r.t. water given as mixing ratio pver supersat_q_water

QSSATI Supersaturation w.r.t. ice given as mixing ratio pver supersat_q_ice

RHW Relative humidity w.r.t. water in percent pver relhum_water_percent

RHI Relative humidity w.r.t. ice in percent pver relhum_ice_percent

CAPE Convective available potential energy 1 compute_cape

Appendix B: Checkpoints in CondiDiag1.0

Tables B1 and B2 list checkpoints currently implemented in EAM’s physics driver subroutines tphysbc and tphysac.

Table B3 lists the checkpoints in the interface subroutine clubb_tend_cam.740

35

Table B1. Checkpoints in the parameterization suite calculated before coupling with surface models, i.e., in the tphysbc subroutine. The

order of checkpoints in the table is the same as the actual order of the checkpoints in the code.

Model calculations after which Checkpoint

checkpoint is implemented name

Dynamical core and large-scale transport DYNEND

Mass and energy fixers PBCINI

Dry adiabatic adjustment DRYADJ

Deep convection DEEPCU

Shallow convection (EAMv0 only) SHCU

CARMA cloud microphysics CARMA

Stratiform cloud macrophysics, sub-step xx CLDMACxx

Aerosol activation and mixing, sub-step xx CLDAERxx

Stratiform cloud microphysics, sub-step xx CLDMICxx

Stratiform clouds, all substeps STCLD

Aerosol wet removal and resuspension AERWETRM

Miscellaneous diagnostics and output PBCDIAG

Radiative transfer RAD

Tropopause diagnosis;

export state preparation and output PBCEND

Table B2. Checkpoints in the parameterization suite calculated after coupling with surface models, i.e., in the tphysac subroutine. The

order of checkpoints in the table is the same as the actual order of the checkpoints in the code.

Model calculations after which Checkpoint

checkpoint is implemented name

Couling to surface models MCTCPL

Emissions of chemical species CHEMEMIS

Tracer mass fixers PACINI

Chemistry and aerosol microphysics CHEM

Obukov length and friction velocity;

Application of surface emissions CFLXAPP

Rayleigh friction RAYLEIGH

Aerosol dry deposition AERDRYRM

Gravity wave drag GWDRAG

QBO relaxation and ION drag IONDRAG

Application of nudging NDG

Dry-to-wet mixing ratio conversion DRYWET

Various diagnostics PACEND

36

Table B3. Checkpoints implemented in the “clubb_tend_cam” subroutine. The order of checkpoints in the table is the same as the actual

order of the checkpoints in the code.

Model calculations after which Checkpoint

checkpoint is implemented name

Ice saturation adjustment, sub-step xx ICEMACxx

CLUBB, sub-step xx CLUBBxx

Convective detrainment, sub-step xx CUDETxx

Miscellaneous diagnostics, sub-step xx MACDIAGxx

Appendix C: Additional notes on vertical integrals

For aerosol and chemical gases which have a dry-to-wet mixing ratio conversion close to the end of tphysac (i.e., before

the resolved dynamics and transport), a user might want to track the mixing ratios before and after the conversion as well as

at some other checkpoints. In order to inform our tool to use the appropriate air mass for the calculation of vertical integral,

an integer array chkpt_x_dp is included in the namelist conditional_diag_nl. The values of chkpt_x_dp need745

to be specified in relation to qoi_chkpt, i.e., one value of chkpt_x_dp for each checkpoint. A value of 1 tells our tool

the mass of moist air should be used while a value of 2 indicates dry air mass should be used. Any other values assigned to

chkpt_x_dp will be interpreted as no specification.

The specifications saved in chkpt_x_dp are used by our tool when the namelist parameter qoi_x_dp introduced in

Sect. 5.2.4 is assigned values larger than 100. If a value of 101 (moist) or 102 (dry) is specified for an element of the array750

qoi_x_dp, then the corresponding air mass will be used for that QoI at all active checkpoints except where chkpt_x_dp

indicates a different specification. For example, let us assume we set qoi_x_dp = 102 for the coarse mode dust mass mixing

ratio; we choose to monitor checkpoints A, B, and C and set chkpt_x_dp = 0,0,1. Then, when our tool calculates the

coarse mode dust burden, checkpoints A and B will use the dry air mass as weights (because chkpt_x_dp = 0 for these

two checkpoints means no special treatment while mod (qoi_x_dp,100) = 2 for the QoI means dry air mass should be755

used). For checkpoint C, since qoi_x_dp = 102 > 100 and since chkpt_x_dp = 1 for the checkpoint, the value 1 from

chkpt_x_dp will take precedence over mod (qoi_x_dp,100) = 2, hence the moist air mass will be used. In other words,

a value of qoi_x_dp larger than 100 means using mod (qoi_x_dp,100) in general but giving chkpt_x_dp precedence

when the latter is set to non-zero at a checkpoint.

We acknowledge that the description above is likely not easy to comprehend. For most studies involving vertical integrals760

of aerosol or chemical gases, we recommend not using the checkpoints “DRYWET" and “PACEND” listed in Table B2. By

doing that, the user will get tracer mixing ratios with consistent definitions at all checkpoints, so that only qoi_x_dp (with

values 0, 1, or 2) is needed for turning on or off vertical integral.

Last but not least, we clarify that mixing ratios of water species do not have this conversion problem.

37

Author contributions. HW designed and implemented CondiDiag in EAMv1 with feedback from the coauthors. KZ and HW designed the765

use case examples. HW carried out the simulations and processed the results. HW wrote the manuscript; all coauthors helped with the

revisions.

Competing interests. The authors declare no competing interests.

Acknowledgements. We thank the two anonymous reviewers and Dr. Sean Santos for their constrictive comments which helped to improve

the manuscript. Cecile Hannay at NCAR is thanked for her help with various versions and formats of CAM’s documentation. Computing770

resources for the initial development and testing of the new tool were provided by the National Energy Research Scientific Computing Center

(NERSC), a U.S. Department of Energy (DOE) Office of Science User Facility supported by the Office of Science of the U.S. Department

of Energy under Contract No. DE-AC02-05CH11231. Simulations shown as use case examples in this paper were carried out using the DOE

Biological and Environmental Research (BER) Earth System Modeling program’s Compy computing cluster located at Pacific Northwest

National Laboratory (PNNL). PNNL is operated by Battelle Memorial Institute for the U.S. Department of Energy under Contract DE-AC05-775

76RL01830. The EAMv1 code was obtained from the E3SM project sponsored by DOE BER (DOI: 10.11578/E3SM/dc.20180418.36).

Financial support. This research was supported by DOE BER via the Scientific Discovery through Advanced Computing (SciDAC) program

(grant no. 70276). KZ was supported by DOE BER through the E3SM project (grant no. 65814).

38

References780

Bailey, A., Singh, H. K. A., and Nusbaumer, J.: Evaluating a Moist Isentropic Framework for Poleward Moisture Transport: Implications for

Water Isotopes Over Antarctica, Geophysical Research Letters, 46, 7819–7827, https://doi.org/https://doi.org/10.1029/2019GL082965,

2019.

Craig, A. P., Vertenstein, M., and Jacob, R.: A new flexible coupler for earth system modeling developed for CCSM4 and CESM1, The

International Journal of High Performance Computing Applications, 26, 31–42, https://doi.org/10.1177/1094342011428141, 2012.785

Craig, C., Bacmeister, J., Callaghan, P., Eaton, B., Gettelman, A., Goldhaber, S. N., Hannay, C., Herrington, A., Lauritzen, P. H., McInerney,

J., Medeiros, B., Mills, M. J., Neale, R., Tilmes, S., Truesdale, J. E., Vertenstein, M., and Vitt, F. M.: CAM6.3 User’s Guide, NCAR Techni-

cal Note NCAR/TN-571+EDD, National Center for Atmospheric Research, Boulder, Colorado, USA, https://doi.org/10.5065/Z953-ZC95,

2021.

Eaton, B.: CAM Reference Manua, https://www.cesm.ucar.edu/models/cesm1.2/cam/docs/rm5_3/index.html, 2015.790

Gettelman, A. and Morrison, H.: Advanced two-moment bulk microphysics for global models, Part I: Off-line tests and comparison with

other schemes, Journal of Climate, 28, 1268–1287, https://doi.org/10.1175/JCLI-D-14-00102.1, 2015.

Ghan, S., Wang, M., Zhang, S., Ferrachat, S., Gettelman, A., Griesfeller, J., Kipling, Z., Lohmann, U., Morrison, H., Neubauer, D., et al.:

Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability, Proceed-

ings of the National Academy of Sciences, 113, 5804–5811, 2016.795

Golaz, J.-C., Larson, V., and Cotton, W.: A PDF-Based Model for Boundary Layer Clouds. Part I: Method and Model Description, J. Atmos.

Sci., 59, 3540–3551, https://doi.org/10.1175/1520-0469(2002)059<3540:APBMFB>2.0.CO;2, 2002.

Golaz, J.-C., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang, Q., Wolfe, J. D., Abeshu, G., Anantharaj, V., Asay-Davis, X. S., Bader,

D. C., Baldwin, S. A., Bisht, G., Bogenschutz, P. A., Branstetter, M., Brunke, M. A., Brus, S. R., Burrows, S. M., Cameron-Smith, P. J.,

Donahue, A. S., Deakin, M., Easter, R. C., Evans, K. J., Feng, Y., Flanner, M., Foucar, J. G., Fyke, J. G., Griffin, B. M., Hannay, C., Harrop,800

B. E., Hoffman, M. J., Hunke, E. C., Jacob, R. L., Jacobsen, D. W., Jeffery, N., Jones, P. W., Keen, N. D., Klein, S. A., Larson, V. E.,

Leung, L. R., Li, H.-Y., Lin, W., Lipscomb, W. H., Ma, P.-L., Mahajan, S., Maltrud, M. E., Mametjanov, A., McClean, J. L., McCoy, R. B.,

Neale, R. B., Price, S. F., Qian, Y., Rasch, P. J., Reeves Eyre, J. E. J., Riley, W. J., Ringler, T. D., Roberts, A. F., Roesler, E. L., Salinger,

A. G., Shaheen, Z., Shi, X., Singh, B., Tang, J., Taylor, M. A., Thornton, P. E., Turner, A. K., Veneziani, M., Wan, H., Wang, H., Wang, S.,

Williams, D. N., Wolfram, P. J., Worley, P. H., Xie, S., Yang, Y., Yoon, J.-H., Zelinka, M. D., Zender, C. S., Zeng, X., Zhang, C., Zhang, K.,805

Zhang, Y., Zheng, X., Zhou, T., and Zhu, Q.: The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution,

Journal of Advances in Modeling Earth Systems, 11, 2089–2129, https://doi.org/https://doi.org/10.1029/2018MS001603, 2019.

Gryspeerdt, E., Mülmenstädt, J., Gettelman, A., Malavelle, F. F., Morrison, H., Neubauer, D., Partridge, D. G., Stier, P., Takemura, T.,

Wang, H., Wang, M., and Zhang, K.: Surprising similarities in model and observational aerosol radiative forcing estimates, Atmospheric

Chemistry and Physics, 20, 613–623, https://doi.org/10.5194/acp-20-613-2020, 2020.810

Larson, V. E.: CLUBB-SILHS: A parameterization of subgrid variability in the atmosphere, arXiv preprint arXiv:1711.03675v3, 2017.

Larson, V. E. and Golaz, J.-C.: Using Probability Density Functions to Derive Consistent Closure Relationships among Higher-Order Mo-

ments, Monthly Weather Review, 133, 1023–1042, https://doi.org/10.1175/MWR2902.1, 2005.

Larson, V. E., Golaz, J.-C., and Cotton, W. R.: Small-Scale and Mesoscale Variability in Cloudy Boundary Layers: Joint Probability Density

Functions, Journal of the Atmospheric Sciences, 59, 3519–3539, https://doi.org/10.1175/1520-0469(2002)059<3519:SSAMVI>2.0.CO;2,815

2002.

39

https://doi.org/https://doi.org/10.1029/2019GL082965
https://doi.org/10.1177/1094342011428141
https://doi.org/10.5065/Z953-ZC95
https://www.cesm.ucar.edu/models/cesm1.2/cam/docs/rm5_3/index.html
https://doi.org/10.1175/JCLI-D-14-00102.1
https://doi.org/10.1175/1520-0469(2002)059%3C3540:APBMFB%3E2.0.CO;2
https://doi.org/https://doi.org/10.1029/2018MS001603
https://doi.org/10.5194/acp-20-613-2020
https://doi.org/10.1175/MWR2902.1
https://doi.org/10.1175/1520-0469(2002)059%3C3519:SSAMVI%3E2.0.CO;2

Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., Lamarque, J.-F., Gettelman, A., Morrison, H., Vitt, F., Conley, A., Park,

S., Neale, R., Hannay, C., Ekman, A. M. L., Hess, P., Mahowald, N., Collins, W., Iacono, M. J., Bretherton, C. S., Flanner, M. G., and

Mitchell, D.: Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere

Model CAM5, Geoscientific Model Development, 5, 709–739, https://doi.org/10.5194/gmd-5-709-2012, 2012.820

Ma, H.-Y., Xie, S., Boyle, J. S., Klein, S. A., and Zhang, Y.: Metrics and Diagnostics for Precipitation-Related Processes in Climate Model

Short-Range Hindcasts, J. Clim., 26, 1516–1534, https://doi.org/doi:10.1175/JCLI-D-12-00235.1, 2013.

Ma, H.-Y., Xie, S., Klein, S. A., Williams, K. D., Boyle, J. S., Bony, S., Douville, H., Fermepin, S., Medeiros, B., Tyteca, S., Watanabe,

M., and Williamson, D.: On the Correspondence between Mean Forecast Errors and Climate Errors in CMIP5 Models, J. Clim., 27,

1781–1798, https://doi.org/doi:10.1175/JCLI-D-13-00474.1, 2014.825

Martin, G., Milton, S., Senior, C., Brooks, M., Ineson, S., Reichler, T., and Kim, J.: Analysis and Reduction of Systematic Errors through a

Seamless Approach to Modeling Weather and Climate, J. Clim., 23, 5933–5957, https://doi.org/10.1175/2010JCLI3541.1, 2010.

Mårtensson, E. M., Nilsson, E. D., de Leeuw, G., Cohen, L. H., and Hansson, H.-C.: Laboratory simulations and

parameterization of the primary marine aerosol production, Journal of Geophysical Research: Atmospheres, 108,

https://doi.org/https://doi.org/10.1029/2002JD002263, 2003.830

Neale, R. B., Richter, J. H., Conley, A. J., Park, S., Lauritzen, P. H., Gettelman, A., Williamson, D. L., Rasch, P. J., Vavrus, S. J., Taylor, M. A.,

Collins, W. D., Zhang, M., and Lin, S.-J.: Description of the NCAR Community Atmosphere Model (CAM4.0), NCAR Technical Note

NCAR/TN-485+STR, National Center for Atmospheric Research, Boulder, Colorado, USA, http://www.cesm.ucar.edu/models/ccsm4.0/

cam/docs/description/cam4_desc.pdf, 2010.

Neale, R. B., Chen, C. C., Gettelman, A., Lauritzen, P. H., Park, S., Williamson, D. L., Conley, A. J., Garcia, R., Kinnison, D., Lamarque,835

J. F., Marsh, D., Mills, M., Smith, A. K., Tilmes, S., Vitt, F., Morrison, H., Cameron-Smith, P., Collins, W. D., Iacono, M. J., Easter, R. C.,

Ghan, S. J., Liu, X. H., Rasch, P. J., and Taylor, M. A.: Description of the NCAR Community Atmosphere Model (CAM5.0), NCAR

Technical Note NCAR/TN-486+STR, National Center for Atmospheric Research, Boulder, Colorado, USA, http://www.cesm.ucar.edu/

models/cesm1.0/cam/, 2012.

Phillips, T. J., Potter, G. L., Williamson, D. L., Cederwall, R. T., Boyle, J. S., Fiorino, M., Hnilo, J. J., Olson, J. G., Xie, S., and Yio, J. J.:840

Evaluating Parameterizations in General Circulation Models:Climate Simulation Meets Weather Prediction, Bull. Amer. Meteor. Soc., 85,

1903–1916, https://doi.org/10.1175/BAMS-85-12-1903, 2004.

Rasch, P. J., Xie, S., Ma, P.-L., Lin, W., Wang, H., Tang, Q., Burrows, S. M., Caldwell, P., Zhang, K., Easter, R. C., Cameron-Smith, P.,

Singh, B., Wan, H., Golaz, J.-C., Harrop, B. E., Roesler, E., Bacmeister, J., Larson, V. E., Evans, K. J., Qian, Y., Taylor, M., Leung, L. R.,

Zhang, Y., Brent, L., Branstetter, M., Hannay, C., Mahajan, S., Mametjanov, A., Neale, R., Richter, J. H., Yoon, J.-H., Zender, C. S., Bader,845

D., Flanner, M., Foucar, J. G., Jacob, R., Keen, N., Klein, S. A., Liu, X., Salinger, A., Shrivastava, M., and Yang, Y.: An Overview of the

Atmospheric Component of the Energy Exascale Earth System Model, Journal of Advances in Modeling Earth Systems, 11, 2377–2411,

https://doi.org/10.1029/2019MS001629, 2019.

Richter, J. H. and Rasch, P. J.: Effects of Convective Momentum Transport on the Atmospheric Circulation in the Community Atmosphere

Model, Version 3, J. Clim., 21, 1487–1499, https://doi.org/10.5194/gmd-10-2221-2017, 2008.850

Santos, S. P., Caldwell, P. M., and Bretherton, C. S.: Numerically Relevant Timescales in the MG2 Microphysics Model, Journal of

Advances in Modeling Earth Systems, 12, e2019MS001 972, https://doi.org/https://doi.org/10.1029/2019MS001972, e2019MS001972

10.1029/2019MS001972, 2020.

40

https://doi.org/10.5194/gmd-5-709-2012
https://doi.org/doi:10.1175/JCLI-D-12-00235.1
https://doi.org/doi:10.1175/JCLI-D-13-00474.1
https://doi.org/10.1175/2010JCLI3541.1
https://doi.org/https://doi.org/10.1029/2002JD002263
http://www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf
http://www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf
http://www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf
http://www.cesm.ucar.edu/models/cesm1.0/cam/
http://www.cesm.ucar.edu/models/cesm1.0/cam/
http://www.cesm.ucar.edu/models/cesm1.0/cam/
https://doi.org/10.1175/BAMS-85-12-1903
https://doi.org/10.1029/2019MS001629
https://doi.org/10.5194/gmd-10-2221-2017
https://doi.org/https://doi.org/10.1029/2019MS001972

Santos, S. P., Caldwell, P. M., and Bretherton, C. S.: Cloud Process Coupling and Time Integration in the E3SM Atmosphere Model, Journal

of Advances in Modeling Earth Systems, 13, e2020MS002 359, https://doi.org/https://doi.org/10.1029/2020MS002359, e2020MS002359855

2020MS002359, 2021.

Singh, H. A., Bitz, C. M., Nusbaumer, J., and Noone, D. C.: A mathematical framework for analysis of water tracers: Part 1: De-

velopment of theory and application to the preindustrial mean state, Journal of Advances in Modeling Earth Systems, 8, 991–1013,

https://doi.org/https://doi.org/10.1002/2016MS000649, 2016.

Wan, H., Zhang, S., Rasch, P. J., Larson, V. E., Zeng, X., and Yan, H.: Quantifying and attributing time step sensitivities in present-day860

climate simulations conducted with EAMv1, Geoscientific Model Development, 14, 1921–1948, https://doi.org/10.5194/gmd-14-1921-

2021, 2021.

Wang, H., Rasch, P. J., Easter, R. C., Singh, B., Zhang, R., Ma, P.-L., Qian, Y., Ghan, S. J., and Beagley, N.: Using an explicit emission tagging

method in global modeling of source-receptor relationships for black carbon in the Arctic: Variations, sources, and transport pathways,

Journal of Geophysical Research: Atmospheres, 119, 12,888–12,909, https://doi.org/https://doi.org/10.1002/2014JD022297, 2014.865

Wang, H., Fyke, J. G., Lenaerts, J. T. M., Nusbaumer, J. M., Singh, H., Noone, D., Rasch, P. J., and Zhang, R.: Influence of sea-ice

anomalies on Antarctic precipitation using source attribution in the Community Earth System Model, The Cryosphere, 14, 429–444,

https://doi.org/10.5194/tc-14-429-2020, 2020.

Williams, K. D., Bodas-Salcedo, A., Déqué, M., Fermepin, S., Medeiros, B., Watanabe, M., Jakob, C., Klein, S. A., Senior, C. A., and

Williamson, D. L.: The Transpose-AMIP II Experiment and Its Application to the Understanding of Southern Ocean Cloud Biases in870

Climate Models, Journal of Climate, 26, 3258 – 3274, https://doi.org/10.1175/JCLI-D-12-00429.1, 2013.

Williamson, D. L., Boyle, J., Cederwall, R., Fiorino, M., Hnilo, J., Olson, J., Phillips, T., Potter, G., and Xie, S. C.: Moisture and temperature

balances at the Atmospheric Radiation Measurement Southern Great Plains Site in forecasts with the Community Atmosphere Model

(CAM2), J. Geophys. Res., 110, 1–17, https://doi.org/10.1029/2004JD005109, 2005.

Xie, S., Ma, H.-Y., Boyle, J. S., Klein, S. A., and Zhang, Y.: On the Correspondence between Short- and Long-Time-Scale Systematic Errors875

in CAM4/CAM5 for the Year of Tropical Convection, Journal of Climate, 25, 7937–7955, https://doi.org/10.1175/JCLI-D-12-00134.1,

2012.

Xie, S., Lin, W., Rasch, P. J., Ma, P., Neale, R., Larson, V. E., Qian, Y., Bogenschutz, P. A., Caldwell, P., Cameron?Smith, P., Golaz, J., Maha-

jan, S., Singh, B., Tang, Q., Wang, H., Yoon, J., Zhang, K., and Zhang, Y.: Understanding cloud and convective characteristics in version 1

of the E3SM atmosphere model, J. Adv. Model. Earth Syst., 10, 2618–2644, https://doi.org/https://doi.org/10.1029/2018MS001350, 2018.880

Zhang, G. J. and McFarlane, N. A.: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate

Centre general circulation model, Atmos. Ocean, 33, 407–446, https://doi.org/10.1080/07055900.1995.9649539, 1995.

Zhang, K., O’Donnell, D., Kazil, J., Stier, P., Kinne, S., Lohmann, U., Ferrachat, S., Croft, B., Quaas, J., Wan, H., Rast, S., and Feichter,

J.: The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations, Atmospheric

Chemistry and Physics, 12, 8911–8949, https://doi.org/10.5194/acp-12-8911-2012, 2012.885

Zhang, K., Zhao, C., Wan, H., Qian, Y., Easter, R. C., Ghan, S. J., Sakaguchi, K., and Liu, X.: Quantifying the impact of sub-grid surface

wind variability on sea salt and dust emissions in CAM5, Geoscientific Model Development, 9, 607–632, https://doi.org/10.5194/gmd-9-

607-2016, 2016.

Zhang, K., Rasch, P. J., Taylor, M. A., Wan, H., Leung, R., Ma, P.-L., Golaz, J.-C., Wolfe, J., Lin, W., Singh, B., Burrows, S., Yoon, J.-H.,

Wang, H., Qian, Y., Tang, Q., Caldwell, P., and Xie, S.: Impact of numerical choices on water conservation in the E3SM Atmosphere890

Model version 1 (EAMv1), Geosci. Model Dev., 11, 1971–1988, https://doi.org/10.5194/gmd-11-1971-2018, 2018.

41

https://doi.org/https://doi.org/10.1029/2020MS002359
https://doi.org/https://doi.org/10.1002/2016MS000649
https://doi.org/10.5194/gmd-14-1921-2021
https://doi.org/10.5194/gmd-14-1921-2021
https://doi.org/10.5194/gmd-14-1921-2021
https://doi.org/https://doi.org/10.1002/2014JD022297
https://doi.org/10.5194/tc-14-429-2020
https://doi.org/10.1175/JCLI-D-12-00429.1
https://doi.org/10.1029/2004JD005109
https://doi.org/10.1175/JCLI-D-12-00134.1
https://doi.org/https://doi.org/10.1029/2018MS001350
https://doi.org/10.1080/07055900.1995.9649539
https://doi.org/10.5194/acp-12-8911-2012
https://doi.org/10.5194/gmd-9-607-2016
https://doi.org/10.5194/gmd-9-607-2016
https://doi.org/10.5194/gmd-9-607-2016
https://doi.org/10.5194/gmd-11-1971-2018

Zhang, R., Wang, H., Hegg, D. A., Qian, Y., Doherty, S. J., Dang, C., Ma, P.-L., Rasch, P. J., and Fu, Q.: Quantifying sources of black carbon

in western North America using observationally based analysis and an emission tagging technique in the Community Atmosphere Model,

Atmospheric Chemistry and Physics, 15, 12 805–12 822, https://doi.org/10.5194/acp-15-12805-2015, 2015.

42

https://doi.org/10.5194/acp-15-12805-2015

