Reply on CC1

Hui Wan (on behalf of all authors)

Thank you, Sean, for the very insightful comments, questions, and suggestions. As a long-time user of
CESM and E3SM, you already provided answers to most of the questions when making your comments.
Nevertheless, our responses are provided below.

Comment: I find this manuscript to be well-written overall, and to describe a feature that seems very
desirable as a long-time user of CESM and E3SM. There are a few comments/questions I had though:

1. I found this behavior described in the paper to be odd:

“If the metric and the Qol are both 3D but have different numbers of vertical layers (e.g., the metric is the
air temperature defined at layer midpoints while the Qol is the net longwave radiative flux defined at layer
interfaces), then masking will be skipped, meaning this specific Qol will be captured for output as if no
conditional sampling had happened.”

My first reaction to this was that the code should raise an error in this case rather than proceed without
conditional sampling, since it’s surely a user error if a Qol is listed that is incompatible with the metric
dimensions. It’s only later that the manuscript mentions that the Qols have to be the same for all conditions,
i.e. there may be multiple conditions with different metrics and the list of Qols cannot be tailored to each
condition separately. I assume that this is the reason why the code has to allow a Qol to be specified in this
way rather than raising an error, but when reading the paper in order, it’s not clear why this behavior was
chosen.

Response: You are very right that this oddity resulted from the simpler design we chose for version 1 of
CondiDiag, namely there may be multiple conditions with different metrics of different dimensions and the
list of Qols cannot yet be tailored to each condition separately. This explanation is added to the revised
manuscript at the place you quoted. Thank you.

In the conclusions section of the original manuscript, we said “the current tool monitors the same set of
Qols and checkpoints under all conditions ... we will assess the trade-off between more flexibility and the
potential risk of causing confusion for model developers and users.” In the past few months, we have already
seen multiple new use cases in our own numerics work that this simpler design can lead to a large number
of unnessary variables in the history file. So, we probably will change this in version 2 of CondiDiag.

Comment: 2. In order to better understand how portable the code is, is it true that the conditional_diag
module does not use EAM-specific data structures, but that the other three modules do to some extent?

Response: I would say all four modules use some EAM-specific data structures and software functionalities.
Some of them would be straightforward to port and some would need a rewrite:

e The conditional diag module has the weakest dependency on EAM/CAM: its meta-data handling
part (i.e., parsing the user’s choices of Qols, metrics, etc.) is independent of EAM’s data structures.
The module also (at least currently) contains a few subroutines that allocate memory for the derived-
type arrays used for storing the Qols, metrics, etc., which assume a column-chunk structure for the
horizontal grid.

e The conditional diag main module assumes all Qols and condition metrics can be retrieved or re-
calculated from EAM/CAM-specific data structures like state, pbuf, cam_in and cam_out, so this

module cannot be used in other GCMs without adaptation. On the other hand, I would say the more
important part of the module is the general algorithms used for retrieving field values, deriving in-
crements, calculating vertical integrals, and performing conditional sampling, etc. If we understand
how another GCM’s “state” and “pbuf” etc. are structured, the adaptation is likely to be relatively
straightforward.

e The conditional diag output_utils module uses EAM/CAM’s addfld and add_default subrou-
tines which define variables/fields in the history output files. The part that handles history variable
names to distinguish different sampling conditions, checkpoints, etc., can be simply taken to another
GCM.

e The conditional diag restart module is completely EAM/CAM-specific as the subroutines therein
read and write restart files. When porting to another AGCM, this module would need to be rewritten
following how restart-related I/O is done in the new host model.

Comment: Also, since the vertical coordinate must be known in order to perform averaging, is the vertical
dimension always the last array dimension in the code?

Response: I suppose you mean the vertical integral? In the tiny subroutine mass_wtd_vert_intg which
calculates the integral, it is assumed that the vertical dimension is the second dimension of the input array
(the first dimension is assumed to be column). But I think this can be easily adapted, as Fortran’s sum
function has an optional input argument for specifying which dimension to sum over. For EAM, we currently
have

! Vertical sum divided by gravit
arrayout(1:ncol,1) = sum(tmp(l:ncol,:), 2)/gravit

If a new host GCM uses, say, rank-3 arrays with dimensions (z, y, x), then we could change the code snippet
to the following:

! Vertical sum divided by gravit

arrayout(1,1:ny,1:nx) = sum(tmp(:,1:nx,1:ny), 1)/gravit

Comment: 3. For Tables B1 and B2, it may be good to mention that these order of checkpoints in the
table is the same as the actual order of the checkpoints in the code (assuming that this is the case).

Response: This is indeed the case, and the comment is added to the table captions in the revised manuscript.
Thanks for the suggestion.

