
Reply on RC2

Hui Wan (on behalf of all authors)

We thank the referee for the very positive assessment and the helpful questions and suggestions. Our re-
sponses to the specific comments are listed below.

Referee comment: The manuscript indicated that the version 1 of this tool has implemented in EAM
with several successful use cases. EAM is the target host model for now, but it is flexible to be used in other
AGCMs. Some possible improvement to make the paper/tool more comprehendible for the general audience:

Elaborate on terminology that is specific to EAM/CAM, just to name few: physics state, physics buffer,
cam in, cam out, tphysbc vs tphysac...

Author response: Thanks for the suggestion. A new subsection is added to Section 2, “Host model fea-
tures”, to explain the terms related to EAM/CAM-specific code structure and data structure.

Referee comment: The zenodo doi linked two versions of EAMv1 with and without CondiDiags, but it
is not straightforward to see the codes of CondiDiags and how it interfaces with EAM. Not sure about the
best approach, but I wonder if the authors can supply with an additional package with standard CondiDiags
and a template that could be used as an example for external users?

Author response: We plan to add to the Zenodo archive a third, very small tar ball which contains only the
source files that were either newly added or had to be revised during the implementation of CondiDiag1.0.
A copy of the relevant EAMv1 files before the implementation will be included in this third tar ball as well.

Referee comment: Is there a general guideline about adopting ConndiDiags with other AGCM as a host
model?

Author response: Thanks a lot for the interest. A new subsection (4.4, “Portability”) is added to the
revised manuscript to discuss this.

Referee comment: It is not explicitly indicated that if CondiDiags has already be available in EAM code
base and readily to be used for EAM developers?

Author response: We developed CondiDiag1.0 using branches in E3SM’s public GitHub repository at
https://github.com/E3SM-Project/E3SM. For example, the revised EAMv1 code shared on Zenodo corre-
sponds to a branch named huiwanpnnl/maint-1.0 cnd diag1.0rc. In recent months, some EAM developers
and users expressed interests in using the tool, so we ported it to the code versions they were using (which
were typically development versions between v1 and v2). Given the positive feedbacks from the colleagues,
we plan to discuss with E3SM’s code integrators a pathway to get CondiDiag onto the main branch of the
E3SM repository. Before that merge happens, our development branches are publicly available in the E3SM
repository, and we would be happy to help port the tool to other colleagues’ working branches.

Referee comment: Technical corrections: In session 2.1, the definition of “process” and “component” seem
ambiguous. Ln 117-119: indicate that deep convection contains two sub-components, with the parameteri-
zation of impact of convection on temperature and humidity, the parameterization of convective momentum
transport. Is process B a more frequent case than processes without sub-processes? It might be useful to
have some definition on process and component?

1

https://github.com/E3SM-Project/E3SM
https://doi.org/10.5281/zenodo.5530188
https://github.com/E3SM-Project/E3SM/tree/huiwanpnnl/maint-1.0_cnd_diag1.0rc

Author response: Thanks for the feedback and questions. Nomenclature has been a challenge not only
for this manuscript but also in our work on numerical process coupling in EAM which motivated the devel-
opment of CondiDiag. Oftentimes, we use “processes” to refer to physical phenomena and “components” to
refer to sections of the source code (for the latter, “compartment” might be a better name). Because the
EAM/CAM code is largely modularized by the simulated physics, processes and components (or compart-
ments) often have close relations. In the revised manuscript, we have added a new subsection to describe
the data and code structures in EAM. Hopefully, the new text helps to clarify that EAM has a hierarchically
modularized code structure in which we often see sub-processes or even sub-sub-processes.

Referee comment: Ln 130. Is there a relationship between the location of where outfld is called to
check-points?

Author response: This is a very insightful question. The locations of outfld calls and the checkpoints are
related to some extent, as both outfld and our cnd diag checkpoint subroutine have dummy arguments
that use data structures dependent on EAM/CAM’s column-chunk-based horizontal domain decomposition
as well as EAM/CAM’s vertical grid. A single call of outfld is designed to copy (to the history output
infrastructure) the values of a single physical quantity stored in a single integer or floating-point Fortran
array. In contrast, cnd diag checkpoint is designed to obtain values of a (runtime-specified) collection
of physical quantities using the EAM/CAM-specific derived-type variables like state and pbuf etc. From
this perspective, if the values sent to the history output infrastructure are also saved to the derived-type
variables, then one could use a single cnd diag checkpoint to replace many scattered outfld calls.

Referee comment: Is the location of outfld process-depended?

Author response: We are not quite sure what is meant by “process-depended” in this comment. If it
means every physical process has its own set of outfld calls that are placed inside the parameterization or
immediately after a parameterization is invoked, then yes, the location of outfld is process-depended.

It is perhaps useful to mention that outfld calls are seen before and after many parameterizations and in
multiple levels of subroutines. If an outfld call copies the values of a physical quantity from an array that
is local to the subroutine and these values are not saved to persistent derived-type data structures or passed
to other subroutines, then the outfld call needs to be placed in the subroutine where the physical quantity
is calculated. On the other hand, if the values being written out are saved and hence persist for a while
within a time step, then one will have more options for the location of the outfld call.

Referee comment: For the inactive checkpoint, are they off by default but can be turned on easily with
name list change?

Author response: All checkpoints are inactive by default. A checkpoint is turned on (i.e., become active)
when the user mentions its name in the namelist. Re-compilation of the model source code is not needed for
requesting different sets of checkpoints.

Referee comment: Ln 237: “If a value of 101 (moist) or 102 (dry) is used, the the. . . .” Shoud be “. . . ,
then the”?

Author response: Corrected. Thanks.

Referee comment: Session 5.2.4 The process of turning on vertical integral and assign moist/dry air mass
for mass-weighting is a little hard to comprehend. Maybe try simplifying if possible. . .

Author response: We have heard similar feedback from other colleagues and have rewritten this part.
Hopefully the new version is easier to understand.

2

