Supplementary material for

Towards an improved representation of carbonaceous aerosols over the Indian monsoon region in a regional climate model, RegCM4

Sudipta Ghosh¹, *Sagnik Dey^{1,2}, Sushant Das³, Nicole Riemer⁴, Graziano Giuliani³, Dilip Ganguly¹, Chandra Venkatraman⁵, Filippo Giorgi³, Sachchida Nand Tripathi⁶, S. Ramachandran⁷, T.A. Rajesh⁷, Harish Gadhavi⁷, Atul Kumar Srivastava⁸

¹Centre for Atmospheric Sciences, Indian Institute of Technology Delhi, India
²Centre of Excellence for Research on Clean Air, Indian Institute of Technology Delhi, India
³Earth System Physics Section, ICTP, Trieste, Italy
⁴Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, IL, USA
⁵Department of Chemical Engineering, Indian Institute of Technology Bombay, India
⁶Department of Civil Engineering, Indian Institute of Technology Kanpur, India
⁷Space and Atmospheric Sciences Division, Physical Research Laboratory, Ahmedabad, India
⁸Indian Institute of Tropical Meteorology, New Delhi, India

*Correspondence: sagnik@cas.iitd.ac.in

Figure S1. Seasonal variation of the global and regional emission inventories in kg m⁻² s⁻¹ for BC (1st and 2nd rows), OC (3rd and 4th rows) and SO₂ (5th and 6th rows) used in the simulation.

Figure S2. Spatial patterns of mean seasonal surface BC concentration (μ g/m³) over India (1st column) using the default set-up and percentage differences in the (2nd and 3rd columns) modified and (4th column customized configurations relative to the default set-up.

Figure S3. Locations of the 24 cities where BC concentrations were measured during the study period and used to evaluate the customized model performance. The colour of the circles indicates the percentage increase in BC concentrations due to the implementation of the dynamic scheme and the size of the circles indicate the percentage increase in BC concentrations due to the combined impact of ageing scheme and regional inventory in the customized model.

Figure S4. Top panel - MERRA-2 BC burden (mg/m2). Middle and bottom panels - Percentage difference of BC columnar burden simulated by the model w.r.t MERRA-2 BC burden (mg/m2)

Figure S5. Top panel - MERRA-2 OC burden (mg/m2). Middle and bottom panels - Percentage difference of OC columnar burden simulated by the model w.r.t MERRA-2 OC burden (mg/m2).

Figure S6. Seasonal variation of vertically distributed mass concentration ($\mu g/m^3$) of BC over the highly polluted Indo-Gangetic Plain

Figure S7. Seasonal variation of vertically distributed mass concentration ($\mu g/m^3$) of OC over the highly polluted Indo-Gangetic Plain

Figure S8: Seasonal variation of anthropogenic AOD simulated by default and augmented model setup.

Figure S9: Evaluation between model derived surface downward shortwave flux and CERES surface shortwave flux (W/m2) for all-sky conditions for the year 2010. Black line represents 1:1 line and solid red line is the curve fitting line along with red dotted predicted bounds.

Figure S10: Evaluation between model derived surface downward shortwave flux and CERES surface shortwave flux (W/m2) for all-sky conditions for the year 2010. Black line represents 1:1 line and solid red line is the curve fitting line along with red dotted predicted bounds.