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ABSTRACT 24 

Models are an important tool to predict Earth system dynamics. An accurate prediction of future 25 

states depends on not only model structures but also parameterizations. Model parameters can be 26 

constrained by data assimilation. However, applications of data assimilation to ecology are 27 

restricted by highly technical requirements such as model-dependent coding. To alleviate this 28 

technical burden, we developed a model-independent data assimilation (MIDA) module. MIDA 29 

works in three steps including data preparation, execution of data assimilation, and visualization. 30 

The first step prepares prior ranges of parameter values, a defined number of iterations, and 31 

directory paths to access files of observations and models. The execution step calibrates 32 

parameter values to best fit the observations and estimates the parameter posterior distributions. 33 

The final step automatically visualizes the calibration performance and posterior distributions. 34 

MIDA is model independent and modelers can use MIDA for an accurate and efficient data 35 

assimilation in a simple and interactive way without modification of their original models. We 36 

applied MIDA to four types of ecological models: the data assimilation linked ecosystem carbon 37 

(DALEC) model, a surrogate-based energy exascale earth system model the land component 38 

(ELM), nine phenological models and a stand-alone biome ecological strategy simulator 39 

(BiomeE). The applications indicate that MIDA can effectively solve data assimilation problems 40 

for different ecological models. Additionally, the easy implementation and model-independent 41 

feature of MIDA breaks the technical barrier of black-box applications of data-model fusion in 42 

ecology. MIDA facilitates the assimilation of various observations into models for uncertainty 43 

reduction in ecological modeling and forecasting.  44 

Keywords: 45 

Parameter uncertainty quantification, Data assimilation, Modules, Ecological models 46 
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1. Introduction 47 

Ecological models require a large number of parameters to simulate biogeophysical and 48 

biogeochemical processes (Bonan, 2019; Ciais et al., 2013; Friedlingstein et al., 2006), and 49 

specify model behaviors (Luo et al., 2016; Luo and Schuur, 2020). Parameter values in 50 

ecological models are mostly determined in some ad hoc fashions (Luo et al., 2001), leading to 51 

considerable biases in predictions (Tao et al., 2020). The situation becomes even worse when 52 

more detailed processes are incorporated into models (De Kauwe et al., 2017; Lawrence et al., 53 

2019). Data assimilation (DA), a statistically rigorous method to integrate observations and 54 

models, is gaining increasing attention for parameter estimation and uncertainty evaluation. It 55 

has been successfully applied to many ecological models (Fox et al., 2009; Keenan et al., 2012; 56 

Richardson et al., 2010; Safta et al., 2015; Wang et al., 2009; Williams et al., 2005; Zobitz et al., 57 

2011). However, almost all those DA studies require model-dependent, invasive coding. This 58 

requires a DA algorithm to be programmed for a specific model. Such model-dependent coding 59 

creates a large technical barrier for ecologists to use DA to solve prediction and uncertainty 60 

quantification problems in ecology. Thus a model-independent DA toolkit is required to facilitate 61 

the use of DA technique in ecology.  62 

DA is a powerful approach to combine models with observations and can be used to 63 

improve ecological research in several ways (Luo et al., 2011). First, DA can be used for 64 

parameter estimation (Bloom et al., 2016; Hararuk et al., 2015; Hou et al., 2019; Ise and 65 

Moorcroft, 2006; Ma et al., 2017; Ricciuto et al., 2011; Scholze et al., 2007). It enables the 66 

optimization of parameter values across sites, time and treatments (Li et al., 2018; Luo and 67 

Schuur, 2020). For example, Hararuk and his colleagues applied DA to a global land model and 68 

substantially improved the explanability of the global variation in soil organic carbon (SOC) 69 

https://doi.org/10.5194/gmd-2021-33
Preprint. Discussion started: 1 April 2021
c© Author(s) 2021. CC BY 4.0 License.



 4 

from 27% to 41% (Hararuk et al., 2014). When DA was combined with deep learning to improve 70 

spatial distributions of estimated parameter values, for example, the Community Land Model 71 

version 5 (CLM5) predicted the SOC distribution in the US continent with much higher 𝑅2 of 72 

0.62 than CLM5 with default parameters (𝑅2 = 0.32) (Tao et al., 2020). Second, DA can be used 73 

to select alternative model structures to better represent ecological processes (Liang et al., 2018; 74 

Van Oijen et al., 2011; Shi et al., 2018; Smith et al., 2013; Williams et al., 2009). DA was used 75 

to evaluate four models and a two-pool interactive model was selected after DA to best represent 76 

SOC decomposition with priming (Liang et al., 2018). Additionally, DA can be applied for data-77 

worth analysis to locate the most informative data to reduce uncertainty, thus guiding the sensor 78 

network design. (Keenan et al., 2013; Raupach et al., 2005; Shi et al., 2018; Williams et al., 79 

2005). One DA study at Harvard Forest (Keenan et al., 2013) indicated that only a few data 80 

sources contributed to the significant reduction in parameter uncertainty. Overall, DA is essential 81 

for ecological modeling and forecasting (Jiang et al., 2018) and is helpful for evaluation of 82 

different inversion methods (Fox et al., 2009).   83 

Applications of traditional DA to ecological research require highly technical skills of 84 

users. A successful DA application usually involves model-dependent coding to integrate 85 

observations into models. This requires users to have knowledge about model programing. For 86 

example, if a complex model (e.g., the community land model) is used in DA, users need to 87 

know the programming language (e.g., Fortran) of the model and its internal content to write DA 88 

algorithm into the model source code before DA can be conducted. The learning curve for model 89 

programing is steep for general ecologists. Furthermore, users often need to update the 90 

programming knowledge when a different model is used in DA. For example, scientists who 91 

implemented the DA algorithm coded in MATLAB ( Xu et al., 2006) to an ecosystem carbon 92 
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cycle model programmed in Fortran (e.g., TECO) need to understand both MATLAB and 93 

Fortran (Ma et al., 2017). Moreover, DA often involves reading observation files about a specific 94 

study site. As a result, users usually have to update the codes of model-dependent DA to read 95 

new observations from every new study site.  96 

A number of tools have been developed to facilitate DA applications (Table 1) but many 97 

of them are model dependent, such as the Carbon Cycle Data Assimilation Systems (CCDAS) 98 

(Rayner et al., 2005; Scholze et al., 2007), the Carbon Data Model Framework (CARDAMOM) 99 

(Bloom et al., 2016), and the Ecological Platform for Assimilating Data (EcoPAD) data 100 

assimilation systems (Huang et al. 2019). These tools combine DA algorithms with a specific 101 

model. For example, CCDAS specified the DA algorithm to the Biosphere Energy Transfer 102 

Hydrology (BETHY) model (Rayner et al., 2005). The hardcoding feature of aforementioned 103 

tools make them inflexible to be applied to different models. 104 

There are some model independent DA tools that are not tailored to a specific model, 105 

such as Data Assimilation Research Testbed (DART) (Anderson et al., 2009), the open Data 106 

Assimilation library (openDA) (Ridler et al., 2014), the Parallel Data Assimilation Framework 107 

(PDAF) (Nerger and Hiller, 2013) and Parameter Estimation & Uncertainty Analysis software 108 

suit (PEST) (Doherty, 2004).  109 

However, these model-independent tools suffer from some limitations for a general and 110 

flexible DA application. For example, openDA requires users to code three functions to initialize 111 

a Java class (Ridler et al., 2014) (Table 1). DART enables incorporating a new model through a 112 

range of interfaces (Anderson et al., 2009). It has been successfully applied to atmospheric and 113 

oceanic models with currently available interfaces (Anderson et al., 2009; Raeder et al., 2012) 114 

and recently to the community land model (Fox et al. 2019). It is likely that users may need to 115 
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prepare new interfaces for new ecological models to use DART. DART and PDAF adopted the 116 

Ensemble Kalman Filter (EnKF) method (Evensen, 2003), which may makes it difficult to obey 117 

mass conservation for biogeochemical models. This is because the parameter values estimated by 118 

EnKF change each time when new data sets are assimilated (Allen et al., 2003; Gao et al., 2011; 119 

Trudinger et al., 2007). The disruptive changes in estimated parameter values usually do not 120 

reflect reality of biogeochemical cycles in the real world. PEST utilizes Levenberg-Marquardt 121 

method (Levenberg, 1944) which is a local optimization method for parameter estimation. If the 122 

relationship between simulation outputs and parameters are highly nonlinear, which is common 123 

in ecological models, this method may trap into a locally optimization solution (Doherty, 2004).  124 

In this work, we developed a model-independent DA module (MIDA) to enable a general 125 

and flexible application of DA in ecology. MIDA was designed as a highly modular tool, 126 

independent of specific models, and friendly to users with limited programming skills and/or 127 

technical knowledge of DA algorithms. Additionally, MIDA implemented advanced Markov 128 

Chain Monte Carlo (MCMC) algorithms for DA analysis which can accurately quantify the 129 

parameter uncertainty with informative posterior distribution. The anticipated user community in 130 

this initial phase of MIDA development is the biogeochemical modelers who are looking for 131 

appropriate parameter estimation methods. In the following Section 2, we first introduce the 132 

development details of MIDA and its usage. In Section 3, we demonstrate the application of 133 

MIDA to four different types of ecological models. In Section 4, we discuss the strengths and 134 

weaknesses of MIDA in ecological modelling and lastly we give our concluding remarks in 135 

Section 5.  136 

 137 

2. Model-independent data assimilation (MIDA) 138 
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2.1 DA algorithm 139 

DA is a statistical algorithm to constrain parameter values and estimate their posterior density 140 

distributions through assimilating observations into a model. This algorithm successively 141 

generates a new set of parameter values and requires model run with these new parameter values. 142 

Then the misfit between model simulation outputs and observations is calculated to determine 143 

whether this new set of parameter values will be accepted or not. The previously accepted 144 

parameter values help to generate new parameter values in the next iteration. Each iteration 145 

incorporates a model-dependent data exchange to transfer parameter values, model outputs, 146 

observations, etc. between DA algorithm and the model. Traditional DA requires implementing 147 

these data exchanges through model-specific programming into model code. As a result, a DA 148 

application inevitably involves intrusive modification of the original model. 149 

 150 

2.2 An overview of MIDA 151 

MIDA (https://github.com/Celeste-Huang/MIDA, last access: Feb 2021) is a module that allows 152 

for automatic implementation of data assimilation without intrusive modification or coding of the 153 

original model. Its workflow includes three steps: data preparation, data assimilation, and 154 

visualization (Fig. 1). Step 1 (data preparation) is to establish the standardized data exchange 155 

between DA algorithm and the model. Step 2 (data assimilation) is to run DA as a black box 156 

independent of the model. Step 3 (visualization) is to diagnose parameter uncertainty after DA. 157 

The modularity of the 3-step workflow is designed to enable MIDA for a rapid DA application 158 

and adaption to a new model. In the following, we introduce the three-step workflows of MIDA, 159 

its technical implementation and usage in detail. 160 

 161 
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2.3 Step 1: Data preparation  162 

Step 1 is designed to initialize data exchange to transfer parameter values, model outputs, 163 

observations and their variances between DA algorithm and the model to be used. Four types of 164 

information are required either from interactive input or by modifying the ‘namelist.txt’ file (Fig. 165 

1). The first type is about DA configuration, including the number of sampling series in DA and 166 

the working path where the outputs of DA will be saved. The number of a sampling series is 167 

essential in a DA task to define how many times parameter values are sampled to run the model. 168 

The second type of information is about parameter ranges and their covariance. The third is the 169 

model executable file. Finally, the fourth type is an output configuration file which contains the 170 

file paths of model outputs, observations, and their variance. This file also instructs how to read 171 

model outputs and compare each output with corresponding observation.  172 

Traditional DA requires users to modify the code of model to incorporate the process of 173 

data exchange between DA algorithm and the model. Therefore, the program of data exchange in 174 

traditional DA is model-specific and users need to repeat such program when a new model 175 

comes. In MIDA, the process of data exchange calls a model executable file which hinders the 176 

details of model code. When applied to a new model, MIDA only requires users to provide a 177 

different model executable file in the ‘namelist.txt’ file and does not involve any additional 178 

coding in either the model or MIDA. Thus, MIDA lowers the technical barrier for general 179 

ecologists to conduct DA.  180 

Traditional DA usually preset the number of parameters and the model outputs according 181 

to a specific model before initializing the data exchange. This is because data exchange between 182 

DA algorithm and model uses memory to transfers items such as parameter values. Instead, 183 

MIDA organize items in data exchange using different files. Items in data exchange are decided 184 
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by the data file loaded when MIDA is running. The number of parameter values, for example, 185 

will be decided after the file of parameter range is read in MIDA. Through modifying files, 186 

MIDA allows making efficient choices about the model-related items in data exchange. Thus, 187 

MIDA is highly flexible and modular for DA with different models. 188 

Traditional DA also preset observation types in the data exchange according to a specific 189 

study before the data exchange. For example, if the traditional DA uses carbon flux observation, 190 

it cannot switch to satellite remote sensing products without additional coding. MIDA uses the 191 

concepts of object-orient programming (Mitchell and Apt, 2003) and dynamic initialization 192 

(Cline et al., 1998) in computer science to provide a homogenous way to create various 193 

observation types from a unified prototype class. A prototype class includes variables to store 194 

observations and their variance and functions (e.g., read from observation files). The values in 195 

variables are dynamically decided after the observation files are loaded when MIDA is running. 196 

Different observation types derive from the prototype class with a high degree of reusability of 197 

most functions. In such way, MIDA only requires users to provide different filenames of the 198 

observations to be integrated in DA. Therefore, MIDA is highly flexible and modular for DA to 199 

assimilate various observations. 200 

 201 

2.4 Step 2: Execution of data assimilation  202 

After the establishment of the standardized data exchange (step 1), step 2 is to run DA as a black 203 

box for users without knowledge of DA itself. Notwithstanding the black-box goal, this section 204 

provides a general description of DA below.  205 

Data assimilation as a process integrates observations into a model to constrain 206 

parameters and estimate parameter uncertainties. Data assimilation usually uses some types of 207 
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sampling algorithms, such as Markov chain Monte Carlo (MCMC), to generate posterior 208 

parameter distribution under a Bayesian interference framework (Box and Tiao, 1992). This 209 

version of MIDA uses MCMC algorithm implemented by the Metropolis-Hasting (MH) 210 

sampling method (Harrio et al., 2001). The future version of MIDA could incorporate other data 211 

assimilation algorithms. Each iteration in the Metropolis-Hasting sampling includes a proposing 212 

phase and a moving phase. The proposing phase generates a new set of parameter values based 213 

on the starting point for the first iteration or current accepted parameter values in the following 214 

iterations. If parameter covariance (𝑐𝑜𝑣𝑝𝑎𝑟𝑎𝑚) is specified in step 1 on data preparation, this 215 

proposing phase will draw new parameter values (𝑃𝑛𝑒𝑤) within the prior ranges from a Gaussian 216 

distribution 𝑁(𝑃𝑜𝑙𝑑, 𝑐𝑜𝑣𝑝𝑎𝑟𝑎𝑚) where 𝑃𝑜𝑙𝑑 is the predecessor set of parameter values. Without 217 

parameter covariance, new set of parameter values will be generated from a uniform distribution 218 

within the prior ranges.  219 

The moving phase first calculates mismatches between observations and the model 220 

simulation with the new set of parameter values as a cost function (𝐽𝑛𝑒𝑤 in Eq.1) (Xu et al. 221 

2006):    222 

𝐽𝑛𝑒𝑤 =  ∑
∑ [𝑍𝑖(𝑡)−𝑋𝑖(𝑡)]2

𝑡∈𝑜𝑏𝑠(𝑍𝑖)

2𝜎𝑖
2

𝑛
𝑖=1              (1) 223 

Where 𝑛 is the number of observations,  𝑍𝑖(𝑡) is the ith observation at time 𝑡, 𝑋𝑖(𝑡) is the 224 

corresponding simulation, 𝜎𝑖
2 is the variance of the observations. The error is assumed to 225 

independently follow a Gaussian distribution. This new set of parameter values will be accepted 226 

if 𝐽𝑛𝑒𝑤 is smaller than 𝐽𝑜𝑙𝑑, the cost function with the previous set of accepted parameter values, 227 

or the value, exp (−
𝐽𝑛𝑒𝑤

𝐽𝑜𝑙𝑑
), is larger than a random number selected from a uniform distribution 228 

from 0 to 1 according to the Metropolis criterion (Liang et al., 2018; Luo et al., 2011; Shi et al., 229 
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2018; Xu et al., 2006). Once the new set of parameter values is accepted, 𝐽𝑛𝑒𝑤 becomes 𝐽𝑜𝑙𝑑. 230 

Those two phases of sampling will be iteratively executed until the number of sampling series set 231 

in step 1 on preparation of DA is reached. Finally, the posterior distribution can be generated 232 

from all the accepted parameter values. 233 

MIDA realizes the execution of data assimilation according to the procedure described 234 

above. First, MIDA uses a ‘call’ function to execute model simulations to get values of 𝑋𝑖(𝑡). 235 

Observations 𝑍𝑖(𝑡) and their variance 𝜎𝑖
2 are already provided via the standardized data 236 

exchange as described in step 1. Then, MIDA calculates  𝐽𝑛𝑒𝑤 according to equation 1 to decide 237 

the acceptance of the current parameter values used in this simulation. If accepted, MIDA saves 238 

this set of parameter values and associated  𝐽𝑛𝑒𝑤 values in 𝑃𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 and 𝐽𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 arrays 239 

respectively and triggers new proposing phrase based on this set of accepted parameter values. If 240 

not, MIDA discards this set of parameter values and generates another new set of parameter 241 

values. MIDA saves the new parameter values generated in the proposing phrase to 242 

“ParameterValue.txt”, from which the model reads before execution of the next model 243 

simulation. MIDA repeats the proposing and moving phases until the number of sampling series 244 

is reached. At the end, MIDA selects the best parameter values through maximum likelihood 245 

estimation and run model again using this set of values to get optimized simulation outputs 246 

𝑋𝑖(𝑡).  Then MIDA saves the arrays of accepted parameters, associated errors, maximum 247 

likelihood estimates (MLE), and optimized state variables 𝑋𝑖(𝑡) to four files, 248 

“parameter_accepted.txt”, “J_accepted.txt”, “MLE.txt”, and “OptimizedSimu.txt”, respectively. 249 

This execution of DA algorithm in MIDA enables users to conduct DA as a black box 250 

and is independent of any particular model.  251 

 252 
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2.5 Step 3: Visualization 253 

Step 3 is to visualize the results of DA in step 2. The end products of DA are accepted parameter 254 

values, their associated 𝐽𝑛𝑒𝑤 values, the maximum likelihood estimates, and optimized 255 

simulation results as saved in the output files. MIDA enables visualization of parameter posterior 256 

probabilistic density distributions with a Python script. In the script, MIDA first read accepted 257 

parameter values from “parameter_accepted.txt” file. Then, MIDA generates 258 

posterior probabilistic density function (PPDF) for each parameter via ‘kdeplot’ function in the 259 

‘seaborn’ package. The maximum likelihood estimates of parameters correspond to the peaks of 260 

PPDF. The distinctive mode of PPDF indicates how well the parameter uncertainty is 261 

constrained. Finally, MIDA visualizes the PPDF for all parameters in a figure using the 262 

‘matplotlib’ package.  263 

   264 

2.6 Implementation and architecture of MIDA 265 

MIDA is equipped with a graphical user interface (GUI) and users can easily execute it through 266 

an interactive window. Users can also run MIDA as a script program without the GUI.  MIDA is 267 

written in Python (version 3.7). For the GUI-version, all relevant Python packages used in MIDA 268 

are compiled together, thus users do not need to install them by themselves. For the non-GUI 269 

version, users need to install Python 3.7 and relevant packages (i.e., numpy, shutil, subprocess, 270 

matplotlib and seaborn). MIDA is compatible with model source codes written in multiple 271 

programming language (e.g., Fortran, C/C++, C#, MATLAB, R, or Python). It is also 272 

independent of multiple operation systems (e.g., Windows, Linux, MacOS). In addition, MIDA 273 

is also able to run on high-performance computing (HPC) platforms via task management 274 

systems (e.g., Slurm). 275 
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 The architecture of MIDA is class-based and each class is designed to describe an object 276 

(e.g., parameter, observations, etc.) with variables and operations. Five classes are defined in 277 

MIDA: parameter, observation, initialization, MCMC algorithm and the main program. The 278 

main program is the start of MIDA execution. It calls functions from all other classes to finish 279 

three-step workflow. As described in section 2.2, parameter and observation classes contain 280 

variables to be transferred in data exchanges via file I/O operations. These operations are 281 

implemented using the ‘numpy’ package. The initialization class is to read ‘namelist.txt’ in step 282 

1 on data preparation and to assign values for the variables in all other classes. Then the class of 283 

MCMC algorithm conducts DA as described in step 2. In this step, the simulation operation uses 284 

a ‘call’ function in ‘subprocess’ package to call model executable. At the start of model 285 

simulation, MIDA writes new parameter values to the ‘ParameterValue.txt’ file in the ‘working 286 

path’ directory specified in step 1 on data preparation. Then the model executable read parameter 287 

values from the ‘ParameterValue.txt’ file and run. After model simulation, DA algorithm can 288 

read the model outputs by the output filenames indicated in the output configuration file. After 289 

DA, step 3 executes an additional Python script to read accepted parameter values and plot the 290 

posterior distributions of parameters. The plotting operations uses ‘matplotlib’ and ‘seaborn’ 291 

packages. The implementation of GUI uses pyQt5 toolkit to support interactive usage of MIDA. 292 

Users can also run MIDA in a non-interactive way with a ‘main.py’ script to trigger the three-293 

step workflows. 294 

 295 

2.7 User information of MIDA 296 

In order to use MIDA, users need to prepare data and a model. The data to be used in MIDA are 297 

prior ranges and default values of parameters, parameter covariances, output configuration file, 298 
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observations and their variances. They are organized in different files. Before running MIDA, 299 

users need to specify their filenames as suggested in step 1. When users want to use different 300 

data sets in DA, they can simply change filenames with the new data sets via GUI or in the 301 

‘namelist.txt’ file. The model to be used in MIDA should have those to-be-estimated parameter 302 

values not fixed in model source code rather than changeable through ‘ParameterValue.txt’ file. 303 

MIDA writes new parameter values in each proposing phase during DA to the 304 

‘ParameterValue.txt’ file, from which the model reads the parameter values to run the 305 

simulation.  306 

To calculate the cost function, 𝐽, we have to have a one-to-one match between 307 

observations and model outputs. For example, phenology models in one of the application cases 308 

of MIDA below generate discrete dates of leaf onset, which is a one-to-one match to the 309 

observations of spring leaf onset. In this case, observation  𝑍𝑖(𝑡) and model output 𝑋𝑖(𝑡) to be 310 

used in calculation of 𝐽 is straightforward. In the application case for dynamic vegetation, the 311 

data to be used are leaf area in six layers in a forest of 302 years old whereas the model simulates 312 

leaf areas in eight layers from 0 to 800 years. To match observation, the model generates outputs 313 

of leaf areas in six layers when simulated forest age reaches 302 years. This requires users to 314 

prepare an output configuration file to instruct MIDA to read model outputs and re-organize their 315 

outputs to match observation. The output configuration file starts with a single line listing an 316 

observation filename and its corresponding output filenames. Following lines are an instruction 317 

set to be operated on the output files signified above. Each instruction is to match one or 318 

continuous elements in observation with elements in outputs with the same length. A blank line 319 

means there are no further instructions. Then a new matching between another observation and 320 

model outputs starts. 321 
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Once MIDA finishes the execution of data assimilation, users may need basic knowledge 322 

to assess the performance of DA. For example, the acceptance rate, which is given by MIDA, is 323 

the fraction of proposed parameter values that is accepted. Ideally, the acceptance rate should be 324 

about 30 ~ 40% (Xu et al., 2006). A very low acceptance rate indicates that many new proposed 325 

parameter values (𝑃𝑛𝑒𝑤) are rejected because 𝑃𝑛𝑒𝑤 jumps too far away from the previously 326 

accepted parameter values (Robert and Casella, 2013; Roberts et al., 1997). In this case, users are 327 

suggested to reduce a jump scale in the proposing phase. On the other hand, a very high 328 

acceptance rate is likely because 𝑃𝑛𝑒𝑤 moves slowly from the previously accepted parameter 329 

values. Users may increase the jump scale.  330 

In addition, DA usually requires a convergence test to examine whether posterior 331 

distributions from different sampling series converge or not. Convergence test requires running 332 

DA parallelly or in multiple times with different initial parameter values. MIDA provides a 333 

Gelman-Rubin (G-R) test (Gelman and Rubin, 1992) for this purpose. To use the G-R test, users 334 

need to prepare a file containing initial parameters values in different sampling series and 335 

indicate its filename in the ‘namelist.txt’ file as described in step 1. If the G-R statistics 336 

approaches one, the sampling series in DA is converged. When sampling series is converged, all 337 

accepted parameter values are used to generate the posterior distributions.  338 

There are three types of posterior distributions: bell-shape, edge-hitting, and flat. The 339 

bell-shaped posterior distributions indicate that these parameters are well constrained. Their peak 340 

values are the maximum likelihood estimates of parameter values. The flat posterior distributions 341 

suggest that the parameters are not constrained due to the lack of relevant information in data. 342 

The edge-hitting posterior distributions result from complex reasons. Users may change the prior 343 
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ranges to examine if those posterior distributions can be improved or examine correlations 344 

among estimated parameters.   345 

 346 

3. Applications of MIDA  347 

We applied MIDA to four groups of models, which are an ecosystem carbon cycle model, a 348 

surrogate-based land surface model, nine phenology models, and a dynamic vegetation model, 349 

respectively. These four cases demonstrate that MIDA is effective for stand-alone DA, flexible 350 

to be applied to different models, and efficient for multiple model comparison.   351 

3.1 Case 1: Independent data assimilation with DALEC 352 

The first case study is to demonstrate that MIDA can be effective for independent data 353 

assimilation with the data assimilation linked ecosystem carbon (DALEC) model (Williams et 354 

al., 2005). DALEC has been used for data assimilation in several studies (Bloom et al., 2016; Lu 355 

et al., 2017; Richardson et al., 2010; Safta et al., 2015; Williams et al., 2005). Previous studies all 356 

incorporated data assimilation algorithms into DALEC, which requires invasive coding. This 357 

case study is focused on reproducing the data assimilation results as in the study by Lu et al. 358 

(2017) but with MIDA.  359 

The version of DALEC used in this study is composed of six submodels (i.e., 360 

photosynthesis, phenology, autotrophic respiration, allocation, litterfall, and decomposition) to 361 

simulate the carbon exchanges among five carbon pools (i.e., leaf, stem, root, soil organic matter 362 

and litter) (Ricciuto et al., 2011). There are 21 parameters in DALEC, of which, 17 parameters 363 

are derived from the six submodels and four parameters serve to initialize the carbon pools. 364 

Table 2 summarizes the names, prior ranges and nominal values of these 21 parameters. The 365 

observation is the Harvard Forest daily net ecosystem exchange (NEE) from year 1992 to 2006. 366 
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DALEC is coded in Fortran. In windows system, a gfortran compiler converts the model code to 367 

an executable file (i.e., DALEC.exe).  368 

Figure 2 is the GUI window of MIDA. We first set up a DA task as described in step 1 369 

using the upper panel. In this application, the number of sampling series is set as 20,000. Once 370 

users click the ‘choose a directory’ or ‘choose a file’ button, a new dialog window will pop up 371 

and users are able to choose the directory or load files interactively. As describe in step 1 on 372 

preparation of DA, the working path is where the outputs of DA and ‘ParameterValue.txt’ are 373 

saved (e.g., C:/workingPath). After the output configuration file is loaded, the filenames of 374 

model outputs, observations and their variance will be displayed in the window automatically. 375 

This application only uses a ‘NEE.txt’ observation file. Similarly, after users load parameter 376 

range file (e.g., a file named ‘ParamRange.txt’ contains three rows which are minimum, 377 

maximum and default values of parameters), the content in this file is displayed as well. To 378 

replace the current parameter range file loaded, users can simply upload another file. In this 379 

application, the executive model file is ‘DALEC.exe’ with Fortran compiler in windows system. 380 

Because we do not have parameter covariance information, this input is left blank. After ‘save to 381 

namelist file’ is clicked, a ‘namelist.txt’ file containing all the inputs will be generated in the 382 

working path. 383 

After the DA task set up, we load the ‘namelist.txt’ file and click the ‘run data 384 

assimilation’ button in the lower panel to trigger step 2 on execution of DA. A new dialog will 385 

pop up to show the acceptance rate information and notify the termination of DA. Then we will 386 

click the ‘generate plots’ button to visualize the posterior distributions of 21 parameters as 387 

described in step 3.  388 
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Figure 3 shows that the simulation outputs using the optimized parameter values from 389 

MIDA better fit with the observations than those using default parameter values. Figure 4 depicts 390 

posterior distributions of the 21 parameters estimated from MIDA. More than half of the 391 

parameters are constrained well with a unimodal shape. 𝑋𝑠𝑡𝑒𝑚𝑖𝑛𝑖𝑡
 and 𝑋𝑟𝑜𝑜𝑡𝑖𝑛𝑖𝑡

 have a wide 392 

occupation of the prior range, indicating that the observation data does not provide useful 393 

information for them. The constrained posterior distributions in this study are similar to those 394 

from the study in Lu et al. (2017). Note that MCMC estimates have a large variance and a low 395 

convergence rate especially in high-dimensional problems, with a finite number of samples it is 396 

not expected that two simulations would give exactly the same results.  397 

 398 

3.2 Case 2: Application of MIDA to a surrogate land surface model   399 

This case study is to examine the applicability of MIDA to a surrogate-based land surface model. 400 

The original model is energy exascale earth system model the land component (ELM) (Ricciuto 401 

et al., 2018). As ELM is computationally expensive (one forward model simulation takes more 402 

than one day), a sparse-grid (SG) surrogate system was developed to reduce the computational 403 

time (Lu et al., 2018). The forcing data for the surrogate model is half-hourly meteorological 404 

measurements at Missouri Ozark flux site from 2006 to 2014. The observations that were used 405 

for optimization are annual sums of net ecosystem exchange (NEE), annual averages of total leaf 406 

area index and latent heat fluxes from 2006 to 2010. The eight parameters selected (Table 3) are 407 

the most important parameters for the variations in outputs (Ricciuto et al., 2018). The model is 408 

written in Python. A ‘pyinstaller’ library packages the model code into an executable file. The 409 

iteration number in MIDA is 20,000. 410 

Figure 5 shows posterior distributions of calibrated parameters. 𝑐𝑟𝑜𝑜𝑡, 𝑆𝐿𝐴𝑡𝑜𝑝,  411 

𝑡𝑙𝑒𝑎𝑓𝑓𝑎𝑙𝑙, 𝐺𝐷𝐷𝑜𝑛𝑠𝑒𝑡 are constrained well with a unimodal distribution. However, the distribution 412 
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of the rest 4 parameters (i.e., 𝑁𝑙𝑒𝑎𝑓, 𝐶𝑁𝑟𝑜𝑜𝑡, 𝐴𝑟2𝑙 and 𝑅𝑒𝑠𝑚) cluster at near the edge. These 413 

results match well with the study by Lu et al. (2018). As shown in Figure 6, the calibrated 414 

parameters induce a performance improvement in simulating total leaf area index and NEE. For 415 

latent heat, both the default and optimized simulation obtain good agreement with the 416 

observation. These conclusions are also similar to those in Lu et al. (2018). 417 

 MIDA hides the detailed differences between models. For example, DALEC model in 418 

case 1 is a process-based model to simulate ecosystem carbon cycle while surrogate-based ELM 419 

in case 2 is an approximation of land surface model. They are also different in programming 420 

language, simulation time, forcing data, etc. MIDA is able to deal with models with so many 421 

different characteristics and hides these differences from users. Users only need to indicate the 422 

filenames of the model to be used, its parameter range, the output configuration file, etc. in the 423 

‘namelist.txt’ file. Thus, MIDA simplified the DA applications using different models.     424 

 425 

3.3 Case 3: Evaluation of multiple phenological models 426 

This study case uses nine phenological models (Yun et al., 2017) to demonstrate the applicability 427 

of MIDA in model comparison. Five out of the nine models predict phenological events, such as 428 

the day of leaf onset, using growing degree days, which are calculated as temperature 429 

accumulation above a base temperature. The other four models consider two processes: chilling 430 

effects of cold temperature on dormancy before budburst and forcing effects of warm 431 

temperature on plant development. Each model uses different response functions to represent 432 

chilling and forcing effects. The detailed model descriptions and associated parameter 433 

information are in supplementary table.  434 
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Data are from the Spruce and Peatland Responses Under Climatic and Environmental 435 

Change experiment (SPRUCE) (Hanson et al., 2017) located in northern Minnesota, USA. The 436 

experiment consists of five-level whole-ecosystem warming (i.e., +0, +2.25, +4.5, +6.75, +9°C) 437 

and two-level elevated 𝐶𝑂2 concentrations (i.e., +0, +500ppm). Dates of leaf onset were 438 

observed with PhenoCam (Richardson et al., 2018) for tree species: Picea mariana and Larix 439 

laricina. For the sake of demonstration of MIDA application, we only show DA results for Larix 440 

laricina with +9°C warming treatment and +0 ppm 𝐶𝑂2 treatment from 2016 to 2018.   441 

MIDA was used to compare performances of the nine models in reference to the same 442 

observations of leaf onset dates after DA. We as users changed filenames of model executable 443 

file (i.e., PhenoModels.exe), defined parameter ranges, and assigned the directory of working 444 

path for each model. MIDA then estimated the optimized parameters and save the corresponding 445 

best simulation outputs to the working path for each of the nine models. Figure 7 shows the best 446 

simulation output of these nine models. The simulation output of the 6th, 7th, 8th, and 9th models 447 

better fit the observation than the other models. It demonstrates that models that consider both 448 

chilling and heating effects can achieve good simulations of the leaf onset dates.  449 

 450 

3.4 Case 4: Supporting data assimilation with a dynamic vegetation model  451 

This case study is to examine the efficiency of MIDA to integrate remote sensing data into a 452 

dynamic vegetation model. The model used in this study is Biome Ecological strategy simulator 453 

(BiomeE) (Weng et al., 2019). This model is to simulate vegetation demographic processes with 454 

individual-based competition for light, soil water, and nutrients. Individual trees in BiomeE 455 

model are represented by cohorts of trees with similar sizes. The light competition among 456 

cohorts is based on their heights and crown areas according to the rule of perfect plasticity 457 
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approximation (PPA) model (Strigul et al., 2008). Each cohort has seven pools: leaves, roots, 458 

sapwood, heartwood, seeds, nonstructural carbon and nitrogen. After carbon are assimilated into 459 

plants via photosynthesis, the assimilated carbon enters to nonstructural carbon pool and is used 460 

for plant growth (i.e., diameter, height, crown area) and reproduction according to empirical 461 

allomeric equations (Weng et al., 2019). In this application, two parameters to be constrained 462 

(Table 4) are annual productivity rate and annual mortality rate of trees.  463 

Observations to be used in DA are leaf area indexes in six vertical heights (i.e., 0-5m, 6-464 

10m, 11-15m, 16-20m, 21-25m, and 26-30m) at Willow Creek study site, Wisconsin, USA. The 465 

forest at the site is an upland deciduous broadleaf forest of around 302 years old. The 466 

observations were from Global Ecosystem Dynamics Investigation (GEDI) acquired by a Light 467 

Detection and Ranging (Lidar) laser system, which is deployed on the International Space 468 

Station (ISS) by NASA in 2018 (Dubayah et al., 2020). The observations were first averaged 469 

from three footprints and then leaf area indexes in the six canopy layers were standardized to be 470 

summed up as one.  471 

To use MIDA, we reorganized the simulation outputs to match observations as suggested 472 

in section 2.6. The BiomeE model simulates leaf areas in eight layers (i.e., 0-5m, 6-10m, 11-473 

15m, 16-20m, 21-25m, 26-30m, 31-35m, and 36-40m) from 0 to 800 years. An output 474 

configuration file was provided to post-process model outputs of leaf area indexes in six layers to 475 

match observations at the forest age of 302 years. These simulated leaf area indexes in the six 476 

canopy layers were also standardized to match standardized observations of leaf area indexes. 477 

The observations and post-processed simulation outputs were saved to ‘LAI.txt’ and 478 

‘simu_LAI.txt’ files, respectively. The two files are used in MIDA for data assimilation to 479 

generate posterior distributions of estimated two parameters as showed in figure 8. The 480 
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optimized parameter values through maximum likelihood estimation are different from their 481 

default values. Figure 9 compares the simulation outputs with optimized parameters estimated by 482 

MIDA to those with default parameter values. After DA with GEDI data in MIDA, the 483 

simulation accuracy of leaf area index is substantially improved especially in middle (16~20m) 484 

and highest (26~30m) layers.  485 

 486 

4. Discussion  487 

This study introduced MIDA as a model-independent tool to facilitate the applications of data 488 

assimilation in ecology and biogeochemistry. The potential user community is ecologists with 489 

limited knowledge of model programming and technical implementation of DA algorithms. 490 

Several model-independent DA tools have already been developed, such as DART (Anderson et 491 

al., 2009), openDA (Ridler et al., 2014),  PDAF (Nerger and Hiller, 2013) and PEST (Doherty, 492 

2004), mainly for applications in research areas of hydrology, atmosphere, and remote sensing. 493 

These DA tools either use gradient descent method, such as Levenburg-Marqurdt algorithm in 494 

PEST, or Kalman Filter methods, such as EnKF in DART, openDA, and PDAF. The Levenburg-495 

Marqurdt algorithm is a local search method, which is hard to find global optimization solution 496 

for highly nonlinear models. EnKF updates state variables and parameter values each time when 497 

observations are sequentially assimilated, resulting discrete values of estimated parameters. 498 

Jumps in estimated parameter values by EnKF make it very difficult to obey mass conservation 499 

in biogeochemical models. In this study, we used the MCMC method in MIDA to generates 500 

parameter values and their posterior distributions. MCMC is a widely used method in many DA 501 

studies with biogeochemical models but has been applied to individual models with invasive 502 

coding (Bloom et al., 2016; Hararuk et al., 2015; Liang et al., 2018; Luo and Schuur, 2020; 503 
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Ricciuto et al., 2011). MIDA is the first model-independent tool that uses the MCMC method for 504 

DA.   505 

  Biogeochemical models are incorporating more detailed processes related to carbon and 506 

nitrogen cycles (Lawrence et al. 2020). Complex biogeochemical models yield predictions with 507 

great uncertainty (Frienlingstein et al. 2009 and 2014).  Data assimilation has been increasingly 508 

used to estimate parameter values against observations and reduce uncertainty in model 509 

prediction (Luo et al. 2016, Luo and Schuur 2020). However, current applications of DA are 510 

almost all model dependent. It requires ecologists to write code to integrate DA algorithm with 511 

models. The coding practice is a big technical challenge for ecologists with limited program 512 

ability. The distinct advantage of MIDA is to enable ecologists to conduct model independent 513 

DA. MIDA streamlines workflow of the three-step procedure for DA to enable users to conduct 514 

DA without extensive coding. Users mainly need to provide numerical and character values for 515 

data exchanges to transfer data (i.e., parameter values, simulation outputs, observations) between 516 

the model and MIDA by a file named ‘namelist.txt’ or by interactive inputs via a GUI window 517 

(Fig. 1).  518 

We tested MIDA in four cases for its applicability to ecological models. The first case is 519 

applied to DALEC model, which has been used in several data assimilation studies (Bloom et al., 520 

2016; Lu et al., 2017; Safta et al., 2015; Williams et al., 2005). The previous DA studies all used 521 

invasive coding to incorporate DA algorithm into models. As demonstrated in this study, MIDA 522 

was applied to DALEC without invasive coding but by providing the directory to save DA 523 

results and filenames of DALEC model executable, parameter prior range, and output 524 

configuration file through the ‘namelist.txt’ file or interactive inputs in the first preparation step 525 

of the workflow. Then, MIDA run DA as a black box with DALEC before visualizing the DA 526 
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results. Next, we tested the applicability of MIDA a surrogate-based ELM model and a dynamic 527 

vegetation model BiomeE. To switch the test case from DALEC to the surrogate-based ELM 528 

model and the BiomeE model, we changed the filenames of model executable, parameter prior 529 

range, and output configuration file in the ‘namelist.txt’ file for MIDA. This flexibility of MIDA 530 

in switching models for DA makes it much easier for model comparisons. We tested this 531 

capability of MIDA with nine phenological models to compare alternative model structures. 532 

Similarly, MIDA enables efficient switches of observations to be assimilated into models. Users 533 

only need to change filenames of observations in the output configuration file. This feature of 534 

MIDA makes it easier to utilize abundant traits databases such as TRY (Kattge et al., 2020), 535 

FRED (Iversen et al., 2017), etc. Moreover, this feature of MIDA also helps evaluating the 536 

relative information content of different observations for constraining model parameters and 537 

prediction (Weng and Luo, 2011). Consequently, MIDA can facilitate selection of the most 538 

informative observations and then better guide data collections in filed experiments. Ultimately, 539 

MIDA can aid ecological forecasting and help reduce uncertainty in model predictions (Huang et 540 

al., 2018; Jiang et al., 2018).  541 

Although MIDA helps users to get rid of model detail, users may still need basic 542 

knowledge about the model outputs to prepare the output configuration file which is to match 543 

model outputs to observations one-by-one (see Section 2.6). This effort of preparing the 544 

correspondence between model outputs and observations for MIDA is not that difficult because 545 

users are reading or writing a text file and most model developers will provide reference to help 546 

understanding observations or model output files.  547 
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The current version of MIDA only incorporates Metropolis-Hasting sampling approach. 548 

More MCMC methods (e.g., Hamiltonian Monte Carlo) may be incorporated into MIDA in the 549 

future.  550 

 551 

5. Conclusions 552 

We developed MIDA to facilitate data assimilation for biogeochemical models. Traditional DA 553 

studies require ecologists to program codes to integrate DA algorithms into model source codes. 554 

The easy-to-use MIDA module enables ecologists to conduct model-independent DA without 555 

extensive coding thus advancing the application of DA for ecological modeling and forecasting. 556 

We demonstrated the capability of MIDA in four cases with a total of 12 ecological models. 557 

These cases showed that MIDA is easy to perform for a variety of models and can efficiently 558 

produce accurate parameter posterior distributions. Moreover, MIDA supports flexible usage of 559 

different models and different observations in the DA analysis and allows a quick switch from 560 

one model to another. This capability enables MIDA to serve as an efficient tool for model 561 

intercomparison projects and enhancing ecological forecasting.  562 

 563 

Appendix A: Nine phenological models 564 

1. Growing degree (GD) 565 

The growing degree (GD) model is one of the most widespread phenological model to simulate 566 

the date of leaf onset (�̂�). In this study, the time scale is limited to daily based on observation 567 

records. The kernel of GD is to calculate the growing degree days (GDD, ∑ ∆𝑑�̂�−1
𝑑=𝐷𝑠

) which is the 568 

heat accumulation above a base temperature (𝑇𝑏). For simplicity, the daily temperature (𝑇𝑑) can 569 

be approximated by the average of daily maximum and minimum temperatures. The heat 570 
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accumulation starts at day 𝐷𝑠, which is empirically estimated, and ends when GDD reaches a 571 

forcing requirement threshold (𝑅𝑑).  Two parameters to be constrained are base temperature (𝑇𝑏) 572 

and the forcing requirement (𝑅𝑑). Their default values and prior range are listed in Table A1. 573 

∆𝑑 = {
𝑇𝑑 − 𝑇𝑏

0
 𝑖𝑓 𝑇𝑑 > 𝑇𝑏

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (A1) 574 

∑ ∆𝑑�̂�−1
𝑑=𝐷𝑠

< 𝑅𝑑 ≤ ∑ ∆𝑑�̂�
𝑑=𝐷𝑠

     (A2) 575 

2. Sigmoid function (SF) 576 

Compared to the linear response function of GDD in GD model, the sigmoid function (SF) 577 

model provides a non-linear function to better represent the non-linearity of the growth response 578 

to heat accumulation. Three parameters to be constrained in DA are base temperature (𝑇𝑏), the 579 

forcing requirement (𝑅𝑑) and temperature sensitivity (𝑆𝑡). Their default values and prior range 580 

are listed in Table A1. 581 

∆𝑑 =
1

1+𝑒𝑆𝑡(𝑇𝑑−𝑇𝑏)  (A3) 582 

∑ ∆𝑑�̂�−1
𝑑=𝐷𝑠

< 𝑅𝑑 ≤ ∑ ∆𝑑�̂�
𝑑=𝐷𝑠

 (A4) 583 

3. Beta function (BF) 584 

In reality, the plant growth rate, as described with ∆𝑑, gradually increases up to a specific 585 

temperature, then rapidly declines to a supra-optimal level. Such response can be well described 586 

by a beta function with uni-modality and non-symmetrical shape. Three parameters are involved 587 

in DA: minimum temperature (𝑇𝑛), optimal temperature (𝑇𝑜) and forcing requirement (𝑅𝑑). The 588 

other parameter values are fixed with empirical values. For example, maximum growth rate (𝑅𝑥) 589 

is set to one and maximum temperature (𝑇𝑥) is assumed to be 45. 590 

𝑟𝑑 = 𝑅𝑥(
𝑇𝑥−𝑇𝑑

𝑇𝑥−𝑇𝑜
)(

𝑇𝑑−𝑇𝑛

𝑇𝑜−𝑇𝑛
)

𝑇𝑜−𝑇𝑛
𝑇𝑥−𝑇𝑜  (A5) 591 

∆𝑑 = {
𝑟𝑑

0
 𝑖𝑓 𝑟𝑑 > 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (A6) 592 
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∑ ∆𝑑�̂�−1
𝑑=𝐷𝑠

< 𝑅𝑑 ≤ ∑ ∆𝑑�̂�
𝑑=𝐷𝑠

 (A7) 593 

4. Days transferred to standard temperature (DTS) 594 

According to Arrhenius las, the relationship between growth rate and daily temperature 𝑇𝑑 can 595 

be interpolated by the equation 8 (Ono and Konno, 1999). With a factor weighted by standard 596 

temperature, the equation for DTS (Eq. A9) can better represent growth rate dependent on 597 

temperatures. Three parameters considered in DA are: temperature sensitivity rate (𝐸𝑎), standard 598 

temperature (𝑇𝑠) and forcing requirement (𝑅𝑑). 599 

𝑘 = 𝑒
−𝐸𝑎
𝑅∙𝑇𝑑 (A8) 600 

∆𝑑 = 𝑒
𝐸𝑎(𝑇𝑑−𝑇𝑠)

𝑅∙𝑇𝑑∙𝑇𝑠   (A9) 601 

∑ ∆𝑑�̂�−1
𝑑=𝐷𝑠

< 𝑅𝑑 ≤ ∑ ∆𝑑�̂�
𝑑=𝐷𝑠

 (A10) 602 

5. Thermal period fixed model (TP) 603 

The difference between GD and TP models are heat accumulation occurs in a fixed time period 604 

(𝐷𝑛). The day of leaf onset is the last day (𝐷�̂� + 𝐷𝑛) when the accumulated heat reaches the 605 

forcing requirement. The start day (𝐷�̂�) of heat accumulation begins in day one and moves one 606 

day forward each time to estimate Eq. (A12). Three parameters are involved in DA: the base 607 

temperature (𝑇𝑏), the period length (𝐷𝑛) and the forcing requirement (𝑅𝑑).   608 

∆𝑑 = {
𝑇𝑑 − 𝑇𝑏

0
 𝑖𝑓 𝑇𝑑 > 𝑇𝑏

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (A11) 609 

𝑅𝑑 ≤ ∑ ∆𝑑
𝐷�̂�+𝐷𝑛

𝑑=𝐷�̂�
 (A12) 610 

6. Chilling and forcing (CF) 611 

Compared to GD, there is another distinctive chilling period for dormancy. CF model 612 

sequentially calculates two accumulations in opposite directions: chilling accumulation and anti-613 

chilling accumulation. The start day of chilling accumulation (𝐷𝑠) is implicitly set as 273.0 614 
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which is October 1st.  The end day of chilling accumulation (𝐷0) is the beginning of anti-chilling 615 

accumulation. Three parameters are considered in DA: the chilling requirement (𝑅𝑑
𝐶) and the 616 

forcing requirement (𝑅𝑑
𝐹), the temperature threshold (𝑇𝑐). 617 

∆𝑑 = {
𝑇𝑑 − 𝑇𝑐

−𝑇𝑐

 𝑖𝑓 𝑇𝑑 ≥ 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (A13) 618 

∆𝑑
𝐶= {

∆𝑑
0

 𝑖𝑓 ∆𝑑 < 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (A14) 619 

∆𝑑
𝐹= {

∆𝑑
0

 𝑖𝑓 ∆𝑑 > 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (A15) 620 

∑ ∆𝑑
𝐶𝐷0−1

𝑑=𝐷𝑠
> 𝑅𝑑

𝐶 ≥ ∑ ∆𝑑
𝐶𝐷0

𝑑=𝐷𝑠
 (A16) 621 

∑ ∆𝑑
𝐹�̂�−1

𝑑=𝐷0
< 𝑅𝑑

𝐹 ≤ ∑ ∆𝑑
𝐹�̂�

𝑑=𝐷0
 (A17) 622 

7. Sequential model (SM) 623 

The difference between CF and SM models is that SM used a beta function (Eq. A18) for the 624 

calculation of chilling accumulation and adopted a sigmoid function (Eq. A20) for anti-chilling 625 

accumulation. The detailed descriptions of these two functions can be referred to the 626 

introductions of BF model and CF model. The maximum temperature is empirically set as 627 

13.7695. Six parameters are constrained in DA: minimum temperature (𝑇𝑛), optimal temperature 628 

(𝑇𝑜), temperature sensitivity (𝑆𝑡), forcing base temperature (𝑇𝑏), chilling requirement (𝑅𝑑
𝐶), and 629 

forcing requirement (𝑅𝑑
𝐹).  630 

𝑟𝑑 = (
𝑇𝑥−𝑇𝑑

𝑇𝑥−𝑇𝑜
)(

𝑇𝑑−𝑇𝑛

𝑇𝑜−𝑇𝑛
)

𝑇𝑜−𝑇𝑛
𝑇𝑥−𝑇𝑜  (A18) 631 

∆𝑑
𝐶= {

𝑟𝑑

0
 𝑖𝑓 𝑟𝑑 < 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (A19) 632 

∆𝑑
𝐹=

1

1+𝑒𝑆𝑡(𝑇𝑑−𝑇𝑏) (A20) 633 

∑ ∆𝑑
𝐶𝐷0−1

𝑑=𝐷𝑠
> 𝑅𝑑

𝐶 ≥ ∑ ∆𝑑
𝐶𝐷0

𝑑=𝐷𝑠
 (A21) 634 

∑ ∆𝑑
𝐹�̂�−1

𝑑=𝐷0
< 𝑅𝑑

𝐹 ≤ ∑ ∆𝑑
𝐹�̂�

𝑑=𝐷0
 (A22) 635 
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8. Parallel model (PM) 636 

Critical difference between PM and above two-step models is that the chilling and anti-chilling 637 

accumulations happen simultaneously (Fu et al., 2012). In the earlier dates during chilling 638 

period, only small fraction (𝐾𝑑) of forcing (Eq. A25) will be accumulated. The maximum 639 

temperature is empirically set as 15.3.  Seven parameters will be considered in DA: minimum 640 

temperature (𝑇𝑛), optimal temperature (𝑇𝑜), temperature sensitivity (𝑆𝑡), forcing base temperature 641 

(𝑇𝑏), chilling requirement (𝑅𝑑
𝐶), forcing requirement (𝑅𝑑

𝐹), and a forcing weight coefficient (𝐾𝑚).  642 

𝑟𝑑 = (
𝑇𝑥−𝑇𝑑

𝑇𝑥−𝑇𝑜
)(

𝑇𝑑−𝑇𝑛

𝑇𝑜−𝑇𝑛
)

𝑇𝑜−𝑇𝑛
𝑇𝑥−𝑇𝑜  (A23) 643 

∆𝑑
𝐶= {

𝑟𝑑

0
 𝑖𝑓 𝑟𝑑 < 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (A24) 644 

𝐾𝑑 = {𝐾𝑚 + (1 − 𝐾𝑚)
∑ ∆𝑖

𝐶𝑑
𝑖=𝐷𝑠

𝑅𝑑
𝐶

1

  𝑖𝑓 ∑ ∆𝑑
𝐶𝐷0−1

𝑑=𝐷𝑠
> 𝑅𝑑

𝐶

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (A25) 645 

∆𝑑
𝐹=

𝐾𝑑

1+𝑒𝑆𝑡(𝑇𝑑−𝑇𝑏) (A26) 646 

∑ ∆𝑑
𝐶𝐷0−1

𝑑=𝐷𝑠
> 𝑅𝑑

𝐶 ≥ ∑ ∆𝑑
𝐶𝐷0

𝑑=𝐷𝑠
 (A27) 647 

∑ ∆𝑑
𝐹�̂�−1

𝑑=𝐷0
< 𝑅𝑑

𝐹 ≤ ∑ ∆𝑑
𝐹�̂�

𝑑=𝐷0
 (A28) 648 

9. Alternating model (AM) 649 

AM fixes the start date of chilling period (𝐷𝑠
𝐶) as November 1st and the start date of anti-chilling 650 

period (𝐷𝑠
𝐹) as January 1st.  The difference between AM and the other models above is that the 651 

forcing requirement is not a parameter value but is decided by the length of chilling days (Fu et 652 

al., 2012). Five parameters to be constrained in DA are: chilling temperature (𝑇𝑐), forcing base 653 

temperature (𝑇𝑏) and three coefficients (𝑎, 𝑏, 𝑐) in calculation of forcing requirement.  654 

∆𝑑
𝐶= {

1
0

 𝑖𝑓 𝑇𝑑 ≤ 𝑇𝑐

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (𝐴29) 655 

∆𝑑
𝐹= {

𝑇𝑑 − 𝑇𝑏

0
 𝑖𝑓 𝑇𝑑 > 𝑇𝑏

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (𝐴30) 656 
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𝑅𝑑
𝐶 = ∑ ∆𝑖

𝐶

𝑑

𝑖=𝐷𝑠
𝐶

 (𝐴31) 657 

𝑅𝑑
𝐹 = 𝑎 + 𝑏 ∙ 𝑒−𝑐∙𝑅𝑑

𝐶
 (𝐴32) 658 

∑ ∆𝑑
𝐹

�̂�−1

𝑑=𝐷𝑠
𝐹

< 𝑅𝑑
𝐹 ≤ ∑ ∆𝑑

𝐹

�̂�

𝑑=𝐷𝑠
𝐹

 (𝐴33) 659 
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Table A1: A summary of parameters to be calibrated in nine phenological models. Their default 661 

parameter value and prior parameter range are shown. 662 

Model Parameter Description Unit Default Range 

GD 
𝑇𝑏 Base temperature ℃ 10 [-5, 25] 

𝑅𝑑 Forcing requirement ℃d 35 [0, 200] 

SF 
𝑇𝑏 Base temperature ℃ -1.5 [-10, 25] 

𝑅𝑑 Forcing requirement ℃ 50 [0, 500] 

BF 

𝑇𝑜 Optimal temperature ℃ 15 [10, 35] 

𝑇𝑛 Minimum temperature ℃ 0 [-10, 5] 

𝑅𝑑 Forcing requirement ℃d 11 [0, 50] 

DTS 

𝐸𝑎 Temperature sensitivity rate - 250 [1, 1500] 

𝑇𝑠 Standard temperature ℃ 10 [-30, 40] 

𝑅𝑑 Forcing requirement ℃d 50 [1, 200] 

TP 

𝑇𝑏 Base temperature ℃ 12.5 [0, 30] 

𝐷𝑛 Period length d 25 [0, 50] 

𝑅𝑑 Forcing requirement ℃d 20 [0, 150] 

CF 

R𝑑
𝐶  Chilling requirement ℃d -124 [-300, 0] 

R𝑑
𝐹  Forcing requirement ℃d 120 [0, 300] 

𝑇𝑐 Chilling base temperature  ℃ 5 [0, 30] 

SM 

𝑇𝑛 Minimum temperature ℃ -20 [-80, 0] 

𝑇𝑜 Optimal temperature ℃ 0 [-26, 10] 

𝑆𝑡 Temperature sensitivity - -1.8 [-5, 0] 

𝑇𝑏 Forcing base temperature ℃ 5 [-5, 35] 

R𝑑
𝐶  Chilling requirement ℃d 20 [0, 80] 

R𝑑
𝐹  Forcing requirement ℃d 20 [0, 80] 

PM 

𝑇𝑛 Minimum temperature ℃ -20 [-80, 0] 

𝑇𝑜 Optimal temperature ℃ 0 [-26, 10] 

𝑆𝑡 Temperature sensitivity - -0.6 [-1, 0] 

𝑇𝑏 Forcing base temperature ℃ 5 [-5, 35] 

R𝑑
𝐶  Chilling requirement ℃d 11.35 [0, 80] 

R𝑑
𝐹  Forcing requirement ℃d 44.01 [0, 80] 

𝐾𝑚 Forcing weight coefficient - 0.2 [0, 1] 

AM 

𝑇𝑐 Chilling base temperature ℃ 4.6 [-10, 10] 

𝑇𝑏 Forcing base temperature ℃ 5 [-5, 35] 

a Coefficient for forcing adjustment - 11.51 [0.01, 15] 

b Coefficient for forcing adjustment - 88 [0, 200] 

c Coefficient for forcing adjustment - -0.01 [-1, -10−4] 

 663 

 664 

 665 
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Code and data availability. The code of MIDA is available at the GitHub repository 666 

https://github.com/Celeste-Huang/MIDA (last access: Feb 2021). Data used in this study are 667 

available at https://github.com/Celeste-Huang/MIDA/tree/main/Example.  668 

 669 

Video supplement. A tutorial video of how to use MIDA is available at 670 

https://github.com/Celeste-Huang/MIDA/tree/main/Videos  671 
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Table1:  Comparison among MIDA and available DA tools 

DA tool Agnostic DA algorithms Global optima 
Posterior 

distribution 
Visualization 

CCDAS No 

Automatic differentiation 

from Transformation of 

Algorithms in Fortran 

(TAF) 

No No No 

CARDAMOM No Markov Chain Monte Carlo Yes Yes No 

EcoPAD No Markov Chain Monte Carlo Yes Yes Yes 

OpenDA No 

EnKF, Ensemble Square-

Root Filter,  

Particle Filter 

Yes Yes No 

DART Yes EnKF Yes Yes No 

PDAF Yes EnKF Yes Yes No 

PEST Yes 
Levenberg-Marquardt 

method 

Rely on initial 

parameter values 
No No 

MIDA Yes Markov Chain Monte Carlo Yes Yes Yes 
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Table 2:  A summary of 21 parameters to be calibrated in DALEC model. The default parameter 

value and prior parameter range are shown. 

Parameter Description Unit Default Range 

𝐺𝐷𝐷𝑚𝑖𝑛 Growing degree day threshold 

for leaf out 
𝐶𝑜  𝑑 100 [10, 250] 

𝐺𝐷𝐷𝑚𝑎𝑥 Growing degree day threshold 

for maximum LAI 
𝐶𝑜  𝑑 200 [50, 500] 

𝐿𝐴𝐼𝑚𝑎𝑥 Seasonal maximum leaf area 

index 

- 4 [2, 7] 

𝑇𝑙𝑒𝑎𝑓𝑓𝑎𝑙𝑙 Temperature for leaf fall 𝐶𝑜  5 [0, 10] 

𝐾𝑙𝑒𝑎𝑓 Rate of leaf fall 𝑑−1 0.1 [0.03 0.95] 

𝑁𝑈𝐸 N use efficiency - 7 [1, 20] 

𝑅𝑒𝑠𝑔𝑟𝑜𝑤𝑡ℎ Growth respiration fraction - 0.2 [0.05, 0.5] 

𝑅𝑒𝑠𝑚 Base rate for maintenance 

respiration 
× 10−4 𝜇𝑚𝑜𝑙 𝑚−2𝑑−1 1 [0.1, 100] 

𝑄10𝑚𝑟
 Maintenance respiration T-

sensitivity 

- 2 [1, 4] 

𝐴𝑠𝑡𝑒𝑚 Allocation to plant stem pool - 0.7 [0.1, 0.95] 

𝜏𝑟𝑜𝑜𝑡 Root turnover time × 10−4 𝑑−1 5.48 [1.1, 27.4] 

𝜏𝑠𝑡𝑒𝑚 Stem turnover time × 10−5 𝑑−1 5.48 [1.1, 27.4] 

𝑄10ℎ𝑟
 Heterotrophic respiration T-

sensitivity 

- 2 [1, 4] 

𝜏𝑙𝑖𝑡𝑡𝑒𝑟 Base turnover for litter × 10−3 𝑢𝑚𝑜𝑙 𝑚−2𝑑−1 1.37 [0.548, 5.48] 

𝜏𝑠𝑜𝑚 Base turnover for soil organic 

matter 
× 10−4 𝑢𝑚𝑜𝑙 𝑚−2𝑑−1 9.13 [0.274, 2.74] 

𝐾𝑑𝑒𝑐𝑜𝑚𝑝 Decomposition rate × 10−3 𝑑−1 1 [0.1, 10] 

𝐿𝑀𝐴 Leaf mass per area 𝑔𝐶 𝑚−2  80 [20, 150] 

𝑋𝑠𝑡𝑒𝑚𝑖𝑛𝑖𝑡
 Initial value for stem C pool × 103 𝑔𝐶 5 [1, 15] 

𝑋𝑟𝑜𝑜𝑡𝑖𝑛𝑖𝑡
 Initial value for root C pool 𝑔𝐶 500 [100, 3000] 

𝑋𝑙𝑖𝑡𝑡𝑒𝑟𝑖𝑛𝑖𝑡
 Initial value for litter C pool 𝑔𝐶 600 [50, 1000] 

𝑋𝑠𝑜𝑚𝑖𝑛𝑖𝑡
 Initial value for soil organic C 

pool 
× 103 𝑔𝐶 7 [1, 25] 
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Table 3:  A summary of eight parameters to be calibrated in surrogate-based ELM model. The 

default parameter value and prior parameter range are shown. 

Parameter Description Unit Default Range 

𝑐𝑟𝑜𝑜𝑡 Rooting depth 

distribution parameter 
𝑚−1 2.0 [0.5, 4] 

𝑆𝐿𝐴𝑡𝑜𝑝 Specific leaf area at 

canopy top 
𝑚2𝑔𝐶−1 0.03 [0.01, 0.05] 

𝑁𝑙𝑒𝑎𝑓 Fraction of leaf N in 

RuBisCO  

- 0.1007 [0.1, 0.4] 

𝐶𝑁𝑟𝑜𝑜𝑡 Fine root C:N ratio - 42 [25, 60] 

𝐴𝑟2𝑙 Allocation ratio of fine 

root to leaf  

- 1.0 [0.3, 1.5] 

𝑅𝑒𝑠𝑚 Base rate for 

maintenance respiration 
× 10−6𝜇𝑚𝑜𝑙 𝑚−2𝑠−1 2.525 [1.5, 4] 

𝑡𝑙𝑒𝑎𝑓𝑓𝑎𝑙𝑙 Critical day length for 

senescence 
× 104 s 3.93 [3.5, 4.5] 

𝐺𝐷𝐷𝑜𝑛𝑠𝑒𝑡 Accumulated growing 

degree days for leaf out 
𝐶 𝑜 𝑑 800 [600, 1000] 
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Table 4:  A summary of two parameters to be calibrated BiomE model. The default parameter 

value and prior parameter range are shown. 

Parameter Description Unit Default Range 

𝑉𝑎𝑛𝑛𝑢𝑎𝑙 Annual productivity per 

unit leaf area 
𝑘𝑔𝐶 𝑦−1𝑚2 0.4 [0.2, 2] 

𝑀𝑐𝑎𝑛𝑜𝑝𝑦 Annual mortality rate in 

canopy layer 
𝑦−1 0.02 [0.01, 0.08] 
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Figure captions 

Figure 1: The three-step workflow of Model Independent Data Assimilation (MIDA) module. 

The workflow includes data preparation, execution of data assimilation (DA), and visualization. 

The data preparation step is to provide all the formatted essential data for DA via user input. The 

execution step is to calibrate parameter values towards a constrained posterior distribution with 

the fusion of observations. The visualization step is to diagnose the effects of DA. Rhombus in 

orange represents user-input data. Rectangle represents procedures and document/multidocument 

shape is for data files in computers. Dashed lines indicate locations of data. Solids lines indicate 

data flow pathways. With the three-step workflow, DA is agnostic to specific models and users 

will be released from technical burdens.  

Figure 2: the GUI-MIDA window includes two panels. The upper panel is to set up a data 

assimilation task. Inputs can be loaded and applied to the step 1 on data preparation for DA. The 

lower panel is to run DA as described in step 2 and visualize the posterior distributions of 

parameters in step 3.   

Figure 3: Comparison between the simulated daily net ecosystem exchange (NEE) by DALEC 

and the observed NEE at Harvard Forest from 1992 to 2006. Red circles represent modeled NEE 

with the optimized parameter values and green circles represent simulated NEE with the original 

parameter values. Simulations of DALEC are substantially improved after data assimilation in 

comparison with those before data assimilation. 

Figure 4: Comparison between posterior distributions (red line) and default values (gray dash 

line) of the 21 parameters in DALEC. The peak in posterior distribution is the constrained 

parameter value from maximum likelihood estimation. This distinctive mode and its divergence 

from the default value indicates the effects of DA. Most parameters are well constrained, and 

some are far different from the original values. 

Figure 5: Comparison between posterior distributions (red line) and default values (gray dash 

line) of the eight parameters in surrogate-based ELM. The peak in posterior distribution is the 

constrained parameter value from maximum likelihood estimation. This distinctive mode and its 

divergence from the default value indicates the effects of DA. Most parameters are well 

constrained, and some are far different from the original values. 

Figure 6: Comparison between the simulated NEE, total leaf area index, latent heat flux by 

surrogate-based ELM and the observed ones at Missouri Ozark flux site from 2006 to 2014. The 
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blue lines indicate the observations, and their 95% confidence interval is in the dashed area. The 

green and red lines indicate the simulations with default parameter values and optimized values 

respectively. Simulations are generally improved after DA for all these three variables. 

Figure 7: Comparison between the simulated growth date by 9 phenology models after DA and 

the observed growth date for Larix laricina with +9℃ treatment at SPRUCE site from 2016 to 

2018. Colored number indicates different models and shape represents different year. Overall, 

model 6,7,8,9 achieve better performance after DA. 

Figure 8: Comparison between posterior distributions (red line) and default values (gray dash 

line) of the two parameters in BiomeE. The peak in posterior distribution is the constrained 

parameter value from maximum likelihood estimation. This distinctive mode and its divergence 

from the default value indicates the effects of DA. All parameters are well constrained and 

different from their original values. 

Figure 9: Comparison between the simulated leaf area index (LAI) by BiomeE and the observed 

NEE at Willow Creek. Circles represent modeled NEE with the optimized parameter values and 

triangles represent simulated NEE with the original parameter values. Simulations of LAI are 

substantially improved after data assimilation in comparison with those before data assimilation.

https://doi.org/10.5194/gmd-2021-33
Preprint. Discussion started: 1 April 2021
c© Author(s) 2021. CC BY 4.0 License.



 50 

 

 

  

Figure 1: The three-step workflow of Model Independent Data Assimilation (MIDA) module. 

The workflow includes data preparation, execution of data assimilation (DA), and visualization. 

The data preparation step is to provide all the formatted essential data for DA via user input. The 

execution step is to calibrate parameter values towards a constrained posterior distribution with 

the fusion of observations. The visualization step is to diagnose the effects of DA. Rhombus in 

orange represents user-input data. Rectangle represents procedures and document/multidocument 

shape is for data files in computers. Dashed lines indicate locations of data. Solids lines indicate 

data flow pathways. With the three-step workflow, DA is agnostic to specific models and users 

will be released from technical burdens.  
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Figure 2: the GUI-MIDA window includes two panels. The upper panel is to set up a data 

assimilation task. Inputs can be loaded and applied to the step 1 on data preparation for DA. The 

lower panel is to run DA as described in step 2 and visualize the posterior distributions of 

parameters in step 3.   
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Figure 3: Comparison between the simulated daily net ecosystem exchange (NEE) by DALEC 

and the observed NEE at Harvard Forest from 1992 to 2006. Red circles represent modeled NEE 

with the optimized parameter values and green circles represent simulated NEE with the original 

parameter values. Simulations of DALEC are substantially improved after data assimilation in 

comparison with those before data assimilation. 

https://doi.org/10.5194/gmd-2021-33
Preprint. Discussion started: 1 April 2021
c© Author(s) 2021. CC BY 4.0 License.



 53 

 

 

 
 

 

Figure 4: Comparison between posterior distributions (red line) and default values (gray dash 

line) of the 21 parameters in DALEC. The peak in posterior distribution is the constrained 

parameter value from maximum likelihood estimation. This distinctive mode and its divergence 

from the default value indicates the effects of DA. Most parameters are well constrained, and 

some are far different from the original values. 
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Figure 5: Comparison between posterior distributions (red line) and default values (gray dash 

line) of the eight parameters in surrogate-based ELM. The peak in posterior distribution is the 

constrained parameter value from maximum likelihood estimation. This distinctive mode and its 

divergence from the default value indicates the effects of DA. Most parameters are well 

constrained, and some are far different from the original values. 
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Figure 6: Comparison between the simulated NEE, total leaf area index, latent heat flux by 

surrogate-based ELM and the observed ones at Missouri Ozark flux site from 2006 to 2014. The 

blue lines indicate the observations, and their 95% confidence interval is in the dashed area. The 

green and red lines indicate the simulations with default parameter values and optimized values 

respectively. Simulations are generally improved after DA for all these three variables. 
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Figure 7: Comparison between the simulated growth date by 9 phenology models after DA and 

the observed growth date for Larix laricina with +9℃ treatment at SPRUCE site from 2016 to 

2018. Colored number indicates different models and shape represents different year. Overall, 

model 6,7,8,9 achieve better performance after DA. 
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Figure 8: Comparison between posterior distributions (red line) and default values (gray dash 

line) of the two parameters in BiomeE. The peak in posterior distribution is the constrained 

parameter value from maximum likelihood estimation. This distinctive mode and its divergence 

from the default value indicates the effects of DA. All parameters are well constrained and 

different from their original values. 
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Figure 9: Comparison between the simulated leaf area index (LAI) by BiomeE and the observed 

NEE at Willow Creek. Circles represent modeled NEE with the optimized parameter values and 

triangles represent simulated NEE with the original parameter values. Simulations of LAI are 

substantially improved after data assimilation in comparison with those before data assimilation. 
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