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ABSTRACT

Models are an important tool to predict Earth system dynamics. An accurate prediction of future
states of ecosystems depends on not only model structures but also parameterizations. Model
parameters can be constrained by data assimilation. However, applications of data assimilation to
ecology are restricted by highly technical requirements such as model-dependent coding. To
alleviate this technical burden, we developed a model-independent data assimilation (MIDA)
module. MIDA works in three steps including data preparation, execution of data assimilation,
and visualization. The first step prepares prior ranges of parameter values, a defined number of
iterations, and directory paths to access files of observations and models. The execution step
calibrates parameter values to best fit the observations and estimates the parameter posterior
distributions. The final step automatically visualizes the calibration performance and posterior
distributions. MIDA is model independent and modelers can use MIDA for an accurate and
efficient data assimilation in a simple and interactive way without modification of their original
models. We applied MIDA to four types of ecological models: the data assimilation linked
ecosystem carbon (DALEC) model, a surrogate-based energy exascale earth system model: the
land component (ELM), nine phenological models and a stand-alone biome ecological strategy
simulator (BiomeE). The applications indicate that MIDA can effectively solve data assimilation
problems for different ecological models. Additionally, the easy implementation and model-
independent feature of MIDA breaks the technical barrier of applications of data-model fusion in
ecology. MIDA facilitates the assimilation of various observations into models for uncertainty
reduction in ecological modeling and forecasting.

Keywords:

Parameter uncertainty quantification, Data assimilation, Modules, Ecological models
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1. Introduction

Ecological models require a large number of parameters to simulate biogeophysical and
biogeochemical processes (Bonan, 2019; Ciais et al., 2013; Friedlingstein et al., 2006), and
specify model behaviors (Luo et al., 2016; Luo and Schuur, 2020). Parameter values in
ecological models are mostly determined in some ad hoc fashions (Luo et al., 2001), leading to
considerable biases in predictions (Tao et al., 2020). The situation becomes even worse when
more detailed processes are incorporated into models (De Kauwe et al., 2017; Lawrence et al.,
2019). Data assimilation (DA), a statistically rigorous method to integrate observations and
models, is gaining increasing attention for parameter estimation and uncertainty evaluation. It
has been successfully applied to many ecological models (Fox et al., 2009; Keenan et al., 2012;
Richardson et al., 2010; Safta et al., 2015; Wang et al., 2009; Williams et al., 2005; Zobitz et al.,
2011). However, almost all those DA studies require model-dependent, invasive coding (Walls et
al., 2005). This requires a DA algorithm to be programmed for a specific model. Such model-
dependent coding creates a large technical barrier for ecologists to use DA to solve prediction
and uncertainty quantification problems in ecology. Thus a model-independent DA toolkit is
required to facilitate the use of DA technique in ecology.

DA is a powerful approach to combine models with observations and can be used to
improve ecological research in several ways (Luo et al., 2011). First, DA can be used for
parameter estimation (Bloom et al., 2016; Hararuk et al., 2015; Hou et al., 2019; Ise and
Moorcroft, 2006; Ma et al., 2017; Ricciuto et al., 2011; Scholze et al., 2007). It enables the
optimization of parameter values across sites, time and treatments (Li et al., 2018; Luo and
Schuur, 2020). For example, Hararuk and his colleagues applied DA to a global land model and

substantially improved the explanability of the global variation in soil organic carbon (SOC)
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from 27% to 41% (Hararuk et al., 2014). When DA was combined with deep learning to improve
spatial distributions of estimated parameter values, for example, the Community Land Model
version 5 (CLMB5) predicted the SOC distribution in the US continent with much higher R? of
0.62 than CLM5 with default parameters (R? = 0.32) (Tao et al., 2020). Second, DA can be used
to select alternative model structures to better represent ecological processes (Liang et al., 2018;
Van Oijen et al., 2011; Shi et al., 2018; Smith et al., 2013; Williams et al., 2009). In the study by
Liang et al. (2018), DA was used to evaluate four models. And a two-pool interactive model was
selected after DA to best represent SOC decomposition with priming. Additionally, DA can be
applied to locate the most informative data to reduce uncertainty, thus guiding the sensor
network design. (Keenan et al., 2013; Raupach et al., 2005; Shi et al., 2018; Williams et al.,
2005). One DA study at Harvard Forest (Keenan et al., 2013) indicated that only a few data
sources contributed to the significant reduction in parameter uncertainty. In spite of powerful
applications of DA to ecological research, computational cost is a major hurdle, especially with
complex models. Fer et al. (2018) developed a Bayesian model emulation to reduce the time cost
of DA from 112h to 6h with the simplified Photosynthesis and Evapotranspiration model.
Overall, DA is essential for ecological modeling and forecasting (Jiang et al., 2018) and is
helpful for evaluation of different inversion methods (Fox et al., 2009).

Applications of traditional DA to ecological research require highly technical skills of
users. A successful DA application usually involves model-dependent coding to integrate
observations into models. This requires users to have knowledge about model programing. For
example, if a complex model (e.g., the community land model) is used in DA, users need to
know the programming language (e.g., Fortran) of the model and its internal content to write DA

algorithm into the model source code before DA can be conducted. The learning curve for model
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programing is steep for general ecologists. Furthermore, users often need to update the
programming knowledge when a different model is used in DA. For example, scientists who
implemented the DA algorithm coded in MATLAB ( Xu et al., 2006) to an ecosystem carbon
cycle model programmed in Fortran (e.g., TECO) need to understand both MATLAB and
Fortran (Ma et al., 2017). Moreover, DA often involves reading observation files about a specific
study site. As a result, users usually have to update the codes of model-dependent DA to read
new observations from every new study site.

A number of tools have been developed to facilitate DA applications (Table 1) but many
of them are model dependent, such as the Carbon Cycle Data Assimilation Systems (CCDAS)
(Rayner et al., 2005; Scholze et al., 2007), the Carbon Data Model Framework (CARDAMOM)
(Bloom et al., 2016), the Ecological Platform for Assimilating Data (EcoPAD) into model
(Huang et al. 2019) and Predictive Ecosystem Analyzer (PEcAn) (LeBauer et al., 2013). These
tools combine DA algorithms with a specific model. For example, CCDAS specified the DA
algorithm to the Biosphere Energy Transfer Hydrology (BETHY) model (Rayner et al., 2005).
The hardcoding feature of aforementioned tools make them inflexible to be applied to different
models.

There are some model independent DA tools that are not tailored to a specific model,
such as Data Assimilation Research Testbed (DART) (Anderson et al., 2009), the open Data
Assimilation library (openDA) (Ridler et al., 2014), the Parallel Data Assimilation Framework
(PDAF) (Nerger and Hiller, 2013) and Parameter Estimation & Uncertainty Analysis software
suit (PEST) (Doherty, 2004).

However, these model-independent tools suffer from some limitations for a general and

flexible DA application. For example, openDA requires users to code three functions to initialize
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a Java class (Ridler et al., 2014) (Table 1). DART enables incorporating a new model through a
range of interfaces (Anderson et al., 2009). It has been successfully applied to atmospheric and
oceanic models with currently available interfaces (Anderson et al., 2009; Raeder et al., 2012)
and recently to the community land model (Fox et al., 2018). It is likely that users may need to
prepare new interfaces for new ecological models to use DART. DART and PDAF adopted the
Ensemble Kalman Filter (EnKF) method (Evensen, 2003), which may makes it difficult to obey
mass conservation for biogeochemical models. This is because the parameter values estimated by
EnKF change each time when new data sets are assimilated (Allen et al., 2003; Gao et al., 2011;
Trudinger et al., 2007). The sudden changes in estimated parameter values at time points when
data are assimilated by EnKF usually do not reflect reality of biogeochemical cycles in the real
world. PEST utilizes Levenberg-Marquardt method (Levenberg, 1944) which is a local
optimization method for parameter estimation. If the relationship between simulation outputs and
parameters are highly nonlinear, which is common in ecological models, this method may trap
into a locally optimization solution (Doherty, 2004).

In this work, we developed a model-independent DA module (MIDA) to enable a general
and flexible application of DA in ecology. MIDA was designed as a highly modular tool,
independent of specific models, and friendly to users with limited programming skills and/or
technical knowledge of DA algorithms. Additionally, MIDA implemented advanced Markov
Chain Monte Carlo (MCMC) algorithms for DA analysis which can accurately quantify the
parameter uncertainty with informative posterior distribution. The anticipated user community in
this initial phase of MIDA development is the biogeochemical modelers who are looking for
appropriate parameter estimation methods. In the following Section 2, we first introduce the

development details of MIDA and its usage. In Section 3, we demonstrate the application of
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MIDA to four different types of ecological models. In Section 4, we discuss the strengths and
weaknesses of MIDA in ecological modelling and lastly we give our concluding remarks in

Section 5.

2. Model-independent data assimilation (MIDA)
2.1 Bayes’s theorem and DA
Based on Bayes’ theorem, DA is a statistical approach to constrain parameter values and
estimate their posterior density distributions through assimilating observations into a model. The
posterior density distributions p(C|Z) of parameters C for a given observation Z can be obtained
from prior density distributions p(C) and the likelihood function p(Z|C):

p(C|Z) < p(Z|C)p(C) 1)
The prior density distribution p(C) is assumed as a uniform distribution over the parameter
range. And the likelihood function is negatively proportional to a cost function, J as:

p(ZIC) « exp(—)) (2)

The cost function measures the misfit between simulation outputs and observations and is
described in more detail in section 2.4. The posterior density distributions p(C|Z) is estimated
from sampling parameter values to maximize the likelihood function p(Z|C) or minimize the
cost function J. DA usually uses a sampling technique, such as Markov chain Monte Carlo
(MCMC) in this MIDA. The MCMC algorithm successively generates a new set of parameter
values from the prior parameter ranges and requires model run with these new parameter values.
Then the cost function is calculated to determine whether this new set of parameter values will
be accepted or not according to the Metropolis-Hastings criterion (see more description in

section 2.4). All accepted parameter values are used to generate posterior distributions where the
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distinctive mode indicates the parameter uncertainty is well constrained. Meanwhile, we derive

maximum likelihood estimates (MLES) of parameters from the posterior density distributions.
MIDA realizes model-independent Bayesian-based DA to estimate posterior density

distributions and MLEs of parameters via data exchanges between a given model and DA

algorithm.

2.2 An overview of MIDA

MIDA is a module that allows for automatic implementation of data assimilation without
intrusive modification or coding of the original model (https://doi.org/10.5281/zen0do.4762725,
last access: May 2021). Its workflow includes three steps: data preparation, execution of data
assimilation, and visualization (Fig. 1). Step 1 (data preparation) is to establish the standardized
data exchange between DA algorithm and the model. Step 2 (execution of data assimilation) is to
run DA as a black box independent of the model. Step 3 (visualization) is to diagnose parameter
uncertainty after DA. The modularity of the 3-step workflow is designed to enable MIDA for a
rapid DA application and adaption to a new model. In the following, we introduce the three-step

workflows of MIDA, its technical implementation and usage in detail.

2.3 Step 1: Data preparation

Step 1 is designed to initialize data exchange to transfer parameter values, model outputs,
observations and their variances between DA algorithm and the model to be used. Four types of
information are required either from interactive input or by modifying the ‘namelist.txt’ file (Fig.
1). The first type is about DA configuration, including the number of sampling series in DA and

the working path where the outputs of DA will be saved. The number of a sampling series is
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essential in a DA task to define how many times parameter values are sampled to run the model.
The second type of information is about parameter ranges and their covariance. The third is the

model executable file. Finally, the fourth type is an output configuration file which contains the
file paths of model outputs, observations, and their variance. This file also instructs how to read
model outputs and compare each output with corresponding observation.

Traditional DA requires users to modify the code of model to incorporate the process of
data exchange between DA algorithm and the model. Therefore, the program of data exchange in
traditional DA is model-specific and users need to repeat such program when a new model
comes. In MIDA, the process of data exchange calls a model executable file which hides the
details of model code. When applied to a new model, MIDA only requires users to provide a
different model executable file in the ‘namelist.txt’ file and does not involve any additional
coding in either the model or MIDA. Thus, MIDA lowers the technical barrier for general
ecologists to conduct DA.

Traditional DA usually preset the number of parameters and the model outputs according
to a specific model before initializing the data exchange. This is because data exchange between
DA algorithm and model uses memory to transfer items such as parameter values. Instead,
MIDA organizes items in data exchange using different files. Items in data exchange are decided
by the data file loaded when MIDA is running. The number of parameter values, for example,
will be decided after the file of parameter range is read in MIDA. Through modifying files,
MIDA allows making efficient choices about the model-related items in data exchange. Thus,
MIDA is highly flexible and modular for DA with different models.

Traditional DA also preset observation types in the data exchange according to a specific

study before the data exchange. For example, if the traditional DA uses carbon flux observation,
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it cannot switch to satellite remote sensing products without additional coding. MIDA uses the
concepts of object-orient programming (Mitchell and Apt, 2003) and dynamic initialization
(Cline et al., 1998) in computer science to provide a homogenous way to create various
observation types from a unified prototype class. A prototype class includes variables to store
observations and their variance and functions (e.g., read from observation files). The values in
variables are dynamically decided after the observation files are loaded when MIDA is running.
Different observation types derive from the prototype class with a high degree of reusability of
most functions. In such way, MIDA only requires users to provide different filenames of the
observations to be integrated in DA. Therefore, MIDA is highly flexible and modular for DA to

assimilate various observations.

2.4 Step 2: Execution of data assimilation

After the establishment of the standardized data exchange (step 1), step 2 is to run DA as a black
box for users without knowledge of DA itself. Notwithstanding the black-box goal, this section
provides a general description of DA below.

Data assimilation as a process integrates observations into a model to constrain
parameters and estimate parameter uncertainties. Data assimilation usually uses some types of
sampling algorithms, such as Markov chain Monte Carlo (MCMC), to generate posterior
parameter distribution under a Bayesian inference framework (Box and Tiao, 1992). As
mentioned in section 2.1, DA with MCMC algorithm estimates the posterior density distributions
through sampling to maximize likelihood function p(Z|C) or minimize the misfit J between
simulation outputs and observations. This version of MIDA uses MCMC algorithm implemented

by the Metropolis-Hasting (MH) sampling method (Hastings, 1970; Metropolis et al., 1953). The

10
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future version of MIDA could incorporate other data assimilation algorithms. Each iteration in
the Metropolis-Hasting sampling includes a proposing phase and a moving phase. The proposing
phase generates a new set of parameter values based on the starting point for the first iteration or
current accepted parameter values in the following iterations. If parameter covariance
(cOVparem) is specified in step 1 on data preparation, this proposing phase will draw new
parameter values (Cy.,,) Within the prior ranges from a Gaussian distribution N (C,;4, COVparam)
where C,;4 is the predecessor set of parameter values. Without parameter covariance, new set of
parameter values will be generated from a uniform distribution within the prior ranges (Xu et al.,
2006).

The moving phase first calculates mismatches between observations and the model
simulation with the new set of parameter values as a cost function (J,.,, in Eq.3) (Xu et al.
2006):

_ n ZtEObS(Zi)[Zi(t)_Xi(t)]z

]new - i=1 ZJiz

3)
Where n is the number of observations, Z;(t) is the i observation at time ¢, X;(¢t) is the
corresponding simulation, o7 is the variance of the observation. The error is assumed to

independently follow a Gaussian distribution. This new set of parameter values will be accepted

if J.ew 1S Smaller than J,,4, the cost function with the previous set of accepted parameter values,

_ Jnew

i ) is larger than a random number selected from a uniform distribution
old

or the value, exp (

from 0 to 1 according to the Metropolis criterion (Liang et al., 2018; Luo et al., 2011; Shi et al.,
2018; Xu et al., 2006). Once the new set of parameter values is accepted, /.., becomes J,;4.

Those two phases of sampling will be iteratively executed until the number of sampling series set
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in step 1 on preparation of DA is reached. Finally, the posterior density distributions can be
generated from all the accepted parameter values.

MIDA realizes the execution of data assimilation according to the procedure described
above. First, MIDA uses a ‘call’ function to execute model simulations to get values of X;(t).
Observations Z;(t) and their variance o are already provided via the standardized data
exchange as described in step 1. Then, MIDA calculates J,,,,, according to Eg. 3 to decide the
acceptance of the current parameter values used in this simulation. If accepted, MIDA saves this
set of parameter values and associated e, values in Cyeceptea aNd Jacceptea arrays respectively
and triggers new proposing phrase based on this set of accepted parameter values. If not, MIDA
discards this set of parameter values and generates another new set of parameter values. MIDA
saves the new parameter values generated in the proposing phrase to “ParameterValue.txt”, from
which the model reads before execution of the next model simulation. MIDA repeats the
proposing and moving phases until the number of sampling series is reached. At the end, MIDA
selects the best parameter values through maximum likelihood estimation and run model again
using this set of values to get optimized simulation outputs X;(t). Then MIDA saves the arrays
of accepted parameters, associated errors, maximum likelihood estimates (MLEs), and optimized
state variables X;(t) to four files, “parameter accepted.txt”, “J_accepted.txt”, “MLE.txt”, and
“OptimizedSimu.txt”, respectively.

This execution of DA algorithm in MIDA enables users to conduct DA as a black box

and is independent of any particular model.

2.5 Step 3: Visualization
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Step 3 is to visualize the results of DA in step 2. The end products of DA are accepted parameter
values, their associated /,,,,, values, the maximum likelihood estimates, and optimized
simulation results as saved in the output files. MIDA enables visualization of parameter posterior
density distributions with a Python script. In the script, MIDA first read accepted parameter
values from “parameter accepted.txt” file. Then, MIDA generates posterior probabilistic density
function (PPDF) for each parameter via ‘kdeplot’ function in the ‘seaborn’ package. The
maximum likelihood estimates of parameters correspond to the peaks of PPDF. The distinctive
mode of PPDF indicates how well the parameter uncertainty is constrained. Finally, MIDA

visualizes the PPDF for all parameters in a figure using the ‘matplotlib’ package.

2.6 Implementation and architecture of MIDA
MIDA is equipped with a graphical user interface (GUI) and users can easily execute it through
an interactive window. Users can also run MIDA as a script program without the GUI. MIDA is
written in Python (version 3.7). For the GUI-version, all relevant Python packages used in MIDA
are compiled together, thus users do not need to install them by themselves. For the non-GUI
version, users need to install Python 3.7 and relevant packages (i.e., numpy, pandas, shutil,
subprocess, matplotlib, math, os, and seaborn). MIDA is compatible with model source codes
written in multiple programming language (e.g., Fortran, C/C++, C#, MATLAB, R, or Python).
It is also independent of multiple operation systems (e.g., Windows, Linux, MacQOS). In addition,
MIDA is also able to run on high-performance computing (HPC) platforms via task management
systems (e.g., Slurm).

The architecture of MIDA is class-based and each class is designed to describe an object

(e.g., parameter, observations, etc.) with variables and operations. Five classes are defined in
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MIDA: parameter, observation, initialization, MCMC algorithm and the main program. The
main program is the start of MIDA execution. It calls functions from all other classes to finish
three-step workflow. As described in section 2.2, parameter and observation classes contain
variables to be transferred in data exchanges via file 1/0O operations. These operations are
implemented using the ‘numpy’ package. The initialization class is to read ‘namelist.txt’ in step
1 on data preparation and to assign values for the variables in all other classes. Then the class of
MCMC algorithm conducts DA as described in step 2. In this step, the simulation operation uses
a ‘call’ function in ‘subprocess’ package to call model executable. At the start of model
simulation, MIDA writes new parameter values to the ‘ParameterValue.txt’ file in the ‘working
path’ directory specified in step 1 on data preparation. Then the model executable read parameter
values from the ‘ParameterValue.txt’ file and run. After model simulation, DA algorithm can
read the model outputs by the output filenames indicated in the output configuration file. After
DA, step 3 executes an additional Python script to read accepted parameter values and plot the
posterior density distributions of parameters. The plotting operations uses ‘matplotlib’ and
‘seaborn’ packages. The implementation of GUI uses pyQt5 toolkit to support interactive usage
of MIDA. Users can also run MIDA in a non-interactive way with a ‘main.py’ script to trigger

the three-step workflows.

2.7 User information of MIDA

In order to use MIDA, users need to prepare data and a model. The data to be used in MIDA are
prior ranges and default values of parameters, parameter covariances, output configuration file,
observations and their variances. They are organized in different files. Before running MIDA,

users need to specify their filenames as suggested in step 1. When users want to use different
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data sets in DA, they can simply change filenames with the new data sets via GUI or in the
‘namelist.txt’ file. Figure C1 is an example of the ‘namelist.txt’ file for a data assimilation study
with the DALEC model. The model to be used in MIDA should have those to-be-estimated
parameter values not fixed in model source code rather than changeable through
‘ParameterValue.txt’ file. MIDA writes new parameter values in each proposing phase during
DA to the ‘ParameterValue.txt’ file, from which the model reads the parameter values to run the
simulation.

To calculate the cost function, J, we have to have a one-to-one match between
observations and model outputs. For example, phenology models in one of the application cases
of MIDA below generate discrete dates of leaf onset, which is a one-to-one match to the
observations of spring leaf onset. In this case, observation Z;(t) and model output X;(t) to be
used in calculation of ] is straightforward. In the application case for dynamic vegetation, the
data to be used are leaf area in six layers in a forest of 302 years old whereas the model simulates
leaf areas in eight layers from 0 to 800 years. To match observation, the model generates outputs
of leaf areas in six layers when simulated forest age reaches 302 years. This requires users to
prepare an output configuration file to instruct MIDA to read model outputs and re-organize their
outputs to match observation. The output configuration file starts with a single line listing an
observation filename and its corresponding output filenames. Content after the directories in the
output configuration file are instructions to map model outputs with the observation signified in
the first line. Each instruction is to match one or continuous elements in observation with
elements in outputs with the same length. A blank line means there are no further instructions.
Then a new matching between another observation and model outputs starts. An example of

output configure file is available in Appendix B.
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Once MIDA finishes the execution of data assimilation, users may need basic knowledge
to assess the performance of DA. For example, the acceptance rate, which is given by MIDA, is
the fraction of proposed parameter values that is accepted. Ideally, the acceptance rate should be
about 20 ~ 50% (Xu et al., 2006). A very low acceptance rate indicates that many new proposed
parameter values (C,,,,,) are rejected because C,,,,, jJumps too far away from the previously
accepted parameter values (Robert and Casella, 2013; Roberts et al., 1997). In this case, users are
suggested to reduce a jJump scale in the proposing phase. On the other hand, a very high
acceptance rate is likely because C,,.,, moves slowly from the previously accepted parameter
values. Users may increase the jump scale.

In addition, DA usually requires a convergence test to examine whether posterior
distributions from different sampling series converge or not. Convergence test requires running
DA parallelly or in multiple times with different initial parameter values. MIDA provides a
Gelman-Rubin (G-R) test (Gelman and Rubin, 1992) for this purpose. To use the G-R test, users
need to prepare a file containing initial parameters values in different sampling series and
indicate its filename in the ‘namelist.txt’ file as described in step 1. If the G-R statistics
approaches one, the sampling series in DA is converged. When sampling series is converged, all
accepted parameter values are used to generate the posterior distributions.

There are three types of posterior distributions: bell-shape, edge-hitting, and flat. The
bell-shaped posterior distributions indicate that these parameters are well constrained. Their peak
values are the maximum likelihood estimates of parameter values. The flat posterior distributions
suggest that the parameters are not constrained due to the lack of relevant information in data.

The edge-hitting posterior distributions result from complex reasons, such as improper prior
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parameter range. Users may change the prior ranges to examine if those posterior distributions

can be improved or examine correlations among estimated parameters.

3. Applications of MIDA

We applied MIDA to four groups of models, which are an ecosystem carbon cycle model, a
surrogate-based land surface model, nine phenology models, and a dynamic vegetation model,
respectively. These four cases demonstrate that MIDA is effective for stand-alone DA, flexible
to be applied to different models, and efficient for multiple model comparison.

3.1 Case 1: Independent data assimilation with DALEC

The first case study is to demonstrate that MIDA can be effective for independent data
assimilation with the data assimilation linked ecosystem carbon (DALEC) model (Lu et al.,
2017). DALEC has been used for data assimilation in several studies (Bloom et al., 2016; Lu et
al., 2017; Richardson et al., 2010; Safta et al., 2015; Williams et al., 2005). Previous studies all
incorporated data assimilation algorithms into DALEC, which requires invasive coding. This
case study is focused on reproducing the data assimilation results as in the study by Lu et al.
(2017) but with MIDA.

The version of DALEC used in this study is composed of six submodels (i.e.,
photosynthesis, phenology, autotrophic respiration, allocation, litterfall, and decomposition) to
simulate the carbon exchanges among five carbon pools (i.e., leaf, stem, root, soil organic matter
and litter) (Ricciuto et al., 2011). There are 21 parameters in DALEC, of which, 17 parameters
are derived from the six submodels and four parameters serve to initialize the carbon pools.
Table 2 summarizes the names, prior ranges and nominal values of these 21 parameters. The

observation is the Harvard Forest daily net ecosystem exchange (NEE) from year 1992 to 2006.

17



388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

DALEC is coded in Fortran. In windows system, a gfortran compiler converts the model code to
an executable file (i.e., DALEC.exe).

Figure 2 is the GUI window of MIDA. We first set up a DA task as described in step 1
using the upper panel. In this application, the number of sampling series is set as 20,000. Once
users click the ‘choose a directory’ or ‘choose a file’ button, a new dialog window will pop up
and users are able to choose the directory or load files interactively. As describe in step 1 on
preparation of DA, the working path is where the outputs of DA and ‘ParameterValue.txt’ are
saved (e.g., C:/workingPath). After the output configuration file is loaded, the filenames of
model outputs, observations and their variance will be displayed in the window automatically.
This application only uses a ‘NEE.txt’ observation file. Similarly, after users load parameter
range file (e.g., a file named ‘ParamRange.txt’ contains three rows which are minimum,
maximum and default values of parameters), the content in this file is displayed as well. To
replace the current parameter range file loaded, users can simply upload another file. In this
application, the executive model file is ‘DALEC.exe’ with Fortran compiler in windows system.
Because we do not have parameter covariance information, this input is left blank. After ‘save to
namelist file’ is clicked, a ‘namelist.txt’ file containing all the inputs will be generated in the
working path.

After the DA task set up, we load the ‘namelist.txt’ file and click the ‘run data
assimilation” button in the lower panel to trigger step 2 on execution of DA. A new dialog will
pop up to show the acceptance rate information and notify the termination of DA. Then we will
click the ‘generate plots’ button to visualize the posterior distributions of 21 parameters as

described in step 3.
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Figure 3 shows that the simulation outputs using the optimized parameter values from
MIDA better fit with the observations than those using default parameter values. Figure 4 depicts
posterior distributions of the 21 parameters estimated from MIDA. More than half of the

parameters are constrained well with a unimodal shape. Xiep, ., and X,40¢,,,, have a wide

occupation of the prior range, indicating that the observation data does not provide useful
information for them. The constrained posterior distributions in this study are similar to those
from the study in Lu et al. (2017). Note that MCMC estimates have a large variance and a low
convergence rate especially in high-dimensional problems, with a finite number of samples it is

not expected that two simulations would give exactly the same results.

3.2 Case 2: Application of MIDA to a surrogate land surface model

This case study is to examine the applicability of MIDA to a surrogate-based land surface model.
The original model is energy exascale earth system model: the land component (ELM) (Ricciuto
et al., 2018). As ELM is computationally expensive (one forward model simulation takes more
than one day), a sparse-grid (SG) surrogate system was developed to reduce the computational
time (Lu et al., 2018). The forcing data for the surrogate model is half-hourly meteorological
measurements at Missouri Ozark flux site from 2006 to 2014. The observations that were used
for optimization are annual sums of net ecosystem exchange (NEE), annual averages of total leaf
area index and latent heat fluxes from 2006 to 2010. The eight parameters selected (Table 3) are
the most important parameters for the variations in outputs (Ricciuto et al., 2018). The model is
written in Python. A ‘pyinstaller’ library packages the model code into an executable file. The
iteration number in MIDA is 20,000.

Figure 5 shows posterior distributions of calibrated parameters. c¢,¢, SLAop,

tieaffai, GDDonser are constrained well with a unimodal distribution. However, the distribution
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of the rest 4 parameters (i.e., Nigqr, CNroor, Ay and Resy,) cluster at near the edge. These

results match well with the study by Lu et al. (2018). As shown in Figure 6, the calibrated
parameters induce a performance improvement in simulating total leaf area index and NEE. For
latent heat, both the default and optimized simulation obtain good agreement with the
observation. These conclusions are also similar to those in Lu et al. (2018).

MIDA hides the detailed differences between models. For example, DALEC model in
case 1 is a process-based model to simulate ecosystem carbon cycle while surrogate-based ELM
in case 2 is an approximation of land surface model. They are also different in programming
language, simulation time, forcing data, etc. MIDA is able to deal with models with so many
different characteristics and hides these differences from users. Users only need to indicate the
filenames of the model to be used, its parameter range, the output configuration file, etc. in the

‘namelist.txt’ file. Thus, MIDA simplified the DA applications using different models.

3.3 Case 3: Evaluation of multiple phenological models

This study case uses nine phenological models (Yun et al., 2017) to demonstrate the applicability
of MIDA in model comparison. Five out of the nine models predict phenological events, such as
the day of leaf onset, using growing degree days, which are calculated as temperature
accumulation above a base temperature. The other four models consider two processes: chilling
effects of cold temperature on dormancy before budburst and forcing effects of warm
temperature on plant development. Each model uses different response functions to represent
chilling and forcing effects. The detailed model descriptions and associated parameter

information are in supplementary table.
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Data are from the Spruce and Peatland Responses Under Climatic and Environmental
Change experiment (SPRUCE) (Hanson et al., 2017) located in northern Minnesota, USA. The
experiment consists of five-level whole-ecosystem warming (i.e., +0, +2.25, +4.5, +6.75, +9°C)
and two-level elevated CO, concentrations (i.e., +0, +500ppm). Dates of leaf onset were
observed with PhenoCam (Richardson et al., 2018) for tree species: Picea mariana and Larix
laricina. For the sake of demonstration of MIDA application, we only show DA results for Larix
laricina with +9°C warming treatment and +0 ppm CO, treatment from 2016 to 2018.

MIDA was used to compare performances of the nine models in reference to the same
observations of leaf onset dates after DA. We as users changed filenames of model executable
file (i.e., PhenoModels.exe), defined parameter ranges, and assigned the directory of working
path for each model. MIDA then estimated the optimized parameters and save the corresponding
best simulation outputs to the working path for each of the nine models. Figure 7 shows the best
simulation output of these nine models. The simulation output of the 6™, 7t 8t and 9" models
better fit the observation than the other models. It demonstrates that models that consider both

chilling and heating effects can achieve good simulations of the leaf onset dates.

3.4 Case 4: Supporting data assimilation with a dynamic vegetation model

This case study is to examine the efficiency of MIDA to integrate remote sensing data into a
dynamic vegetation model. The model used in this study is Biome Ecological strategy simulator
(BiomeE) (Weng et al., 2019). This model simulates vegetation demographic processes with
individual-based competition for light, soil water, and nutrients. Individual trees in BiomeE
model are represented by cohorts of trees with similar sizes. The light competition among

cohorts is based on their heights and crown areas according to the rule of perfect plasticity
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approximation (PPA) model (Strigul et al., 2008). Each cohort has seven pools: leaves, roots,
sapwood, heartwood, seeds, nonstructural carbon and nitrogen. After carbon are assimilated into
plants via photosynthesis, the assimilated carbon enters to nonstructural carbon pool and is used
for plant growth (i.e., diameter, height, crown area) and reproduction according to empirical
allomeric equations (Weng et al., 2019). In this application, two parameters to be constrained
(Table 4) are annual productivity rate and annual mortality rate of trees.

Observations to be used in DA are leaf area indexes in six vertical heights (i.e., 0-5m, 6-
10m, 11-15m, 16-20m, 21-25m, and 26-30m) at Willow Creek study site, Wisconsin, USA. The
forest at the site is an upland deciduous broadleaf forest of around 302 years old. The
observations were from Global Ecosystem Dynamics Investigation (GEDI) acquired by a Light
Detection and Ranging (Lidar) laser system, which is deployed on the International Space
Station (ISS) by NASA in 2018 (Dubayah et al., 2020). The observations were first averaged
from three footprints and then leaf area indexes in the six canopy layers were standardized to be
summed up as one.

To use MIDA, we reorganized the simulation outputs to match observations as suggested
in section 2.6. The BiomeE model simulates leaf areas in eight layers (i.e., 0-5m, 6-10m, 11-
15m, 16-20m, 21-25m, 26-30m, 31-35m, and 36-40m) from O to 800 years. An output
configuration file was provided to post-process model outputs of leaf area indexes in six layers to
match observations at the forest age of 302 years. These simulated leaf area indexes in the six
canopy layers were also standardized to match standardized observations of leaf area indexes.
The observations and post-processed simulation outputs were saved to ‘LALtxt” and
‘simu_LALtxt’ files, respectively. The two files are used in MIDA for data assimilation to

generate posterior distributions of estimated two parameters as showed in figure 8. The
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optimized parameter values through maximum likelihood estimation are different from their
default values. Figure 9 compares the simulation outputs with optimized parameters estimated by
MIDA to those with default parameter values. After DA with GEDI data in MIDA, the
simulation accuracy of leaf area index is substantially improved especially in middle (16~20m)

and highest (26~30m) layers.

4. Discussion

This study introduced MIDA as a model-independent tool to facilitate the applications of data
assimilation in ecology and biogeochemistry. The potential user community is ecologists with
limited knowledge of model programming and technical implementation of DA algorithms.
Several model-independent DA tools have already been developed, such as DART (Anderson et
al., 2009), openDA (Ridler et al., 2014), PDAF (Nerger and Hiller, 2013) and PEST (Doherty,
2004), mainly for applications in research areas of hydrology, atmosphere, and remote sensing.
These DA tools either use gradient descent method, such as Levenburg-Marqurdt algorithm in
PEST, or Kalman Filter methods, such as EnKF in DART, openDA, and PDAF. The Levenburg-
Marqurdt algorithm is a local search method, which is hard to find global optimization solution
for highly nonlinear models. EnKF updates state variables and parameter values each time when
observations are sequentially assimilated, resulting discrete values of estimated parameters.
Jumps in estimated parameter values by EnKF make it very difficult to obey mass conservation
in biogeochemical models (Gao et al., 2011). In this study, we used the MCMC method in MIDA
to generate parameter values and their posterior distributions. MCMC is a widely used method in
many DA studies with biogeochemical models but has been applied to individual models with

invasive coding (Bloom et al., 2016; Hararuk et al., 2015; Liang et al., 2018; Luo and Schuur,
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2020; Ricciuto et al., 2011). Compared to the other model-independent DA tools mentioned
above, MIDA is the first tool that uses the MCMC method for DA.

Biogeochemical models are incorporating more detailed processes related to carbon and
nitrogen cycles (Lawrence et al. 2020). Complex biogeochemical models yield predictions with
great uncertainty (Frienlingstein et al. 2009 and 2014). Data assimilation has been increasingly
used to estimate parameter values against observations and reduce uncertainty in model
prediction (Luo et al. 2016, Luo and Schuur 2020). However, current applications of DA are
almost all model dependent. It requires ecologists to write code to integrate DA algorithm with
models. The coding practice is a big technical challenge for ecologists with limited program
ability. The distinct advantage of MIDA is to enable ecologists to conduct model independent
DA. MIDA streamlines workflow of the three-step procedure for DA to enable users to conduct
DA without extensive coding. Users mainly need to provide numerical and character values for
data exchanges to transfer data (i.e., parameter values, simulation outputs, observations) between
the model and MIDA by a file named ‘namelist.txt” or by interactive inputs via a GUI window
(Fig. 2).

We tested MIDA in four cases for its applicability to ecological models. The first case is
applied to DALEC model, which has been used in several data assimilation studies (Bloom et al.,
2016; Lu et al., 2017; Safta et al., 2015; Williams et al., 2005). The previous DA studies all used
invasive coding to incorporate DA algorithm into models. As demonstrated in this study, MIDA
was applied to DALEC without invasive coding but by providing the directory to save DA
results and filenames of DALEC model executable, parameter prior range, and output
configuration file through the ‘namelist.txt’ file or interactive inputs in the first preparation step

of the workflow. Then, MIDA run DA as a black box with DALEC before visualizing the DA
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results. Next, we tested the applicability of MIDA a surrogate-based ELM model and a dynamic
vegetation model BiomeE. To switch the test case from DALEC to the surrogate-based ELM
model and the BiomeE model, we changed the filenames of model executable, parameter prior
range, and output configuration file in the ‘namelist.txt’ file for MIDA. This flexibility of MIDA
in switching models for DA makes it much easier for model comparisons. We tested this
capability of MIDA with nine phenological models to compare alternative model structures.
Similarly, MIDA enables efficient switches of observations to be assimilated into models. Users
only need to change filenames of observations in the output configuration file. This feature of
MIDA makes it easier to utilize abundant traits databases such as TRY (Kattge et al., 2020),
FRED (lversen et al., 2017), etc. Moreover, this feature of MIDA also helps evaluating the
relative information content of different observations for constraining model parameters and
prediction (Weng and Luo, 2011). Consequently, MIDA can facilitate selection of the most
informative observations and then better guide data collections in filed experiments. Ultimately,
MIDA can aid ecological forecasting and help reduce uncertainty in model predictions (Huang et
al., 2018; Jiang et al., 2018).

Although MIDA helps users to get rid of model detail, users may still need basic
knowledge about the model outputs to prepare the output configuration file which is to match
model outputs to observations one-by-one (see Section 2.6). This effort of preparing the
correspondence between model outputs and observations for MIDA is not that difficult because
users are reading or writing a text file and most model developers will provide reference to help
understanding observations or model output files.

Generally, MIDA requires longer time to run DA than the embedded DA algorithm,

because MIDA calls model simulation as an external executable rather than a function
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embedded. Thus, we recommend MIDA for beginners of DA users with models that are less
complex. Besides, the current version of MIDA only incorporates Metropolis-Hasting sampling
approach. More MCMC methods (e.g., Hamiltonian Monte Carlo) may be incorporated into

MIDA in the future.

5. Conclusions

We developed MIDA to facilitate data assimilation for biogeochemical models. Traditional DA
studies require ecologists to program codes to integrate DA algorithms into model source codes.
The easy-to-use MIDA module enables ecologists to conduct model-independent DA without
extensive coding thus advancing the application of DA for ecological modeling and forecasting.
We demonstrated the capability of MIDA in four cases with a total of 12 ecological models.
These cases showed that MIDA is easy to perform for a variety of models and can efficiently
produce accurate parameter posterior distributions. Moreover, MIDA supports flexible usage of
different models and different observations in the DA analysis and allows a quick switch from
one model to another. This capability enables MIDA to serve as an efficient tool for model

intercomparison projects and enhancing ecological forecasting.

Appendix A: Nine phenological models
1. Growing degree (GD)
The growing degree (GD) model is one of the most widespread phenological model to simulate

the date of leaf onset (D). In this study, the time scale is limited to daily based on observation
records. The kernel of GD is to calculate the growing degree days (GDD, Zg;},S Ad) which is the

heat accumulation above a base temperature (T, ). For simplicity, the daily temperature (T,) can
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be approximated by the average of daily maximum and minimum temperatures. The heat
accumulation starts at day D, which is empirically estimated, and ends when GDD reaches a
forcing requirement threshold (R;). Two parameters to be constrained are base temperature (T})

and the forcing requirement (R;). Their default values and prior range are listed in Table Al.

Ty—Tyif Ty >T,
Ad ={"a b 1d = 7b Al

{ 0 otherwise (A1)
%ash,Ad < Ry < 33_p,Ad (A2)

2. Sigmoid function (SF)

Compared to the linear response function of GDD in GD model, the sigmoid function (SF)
model provides a non-linear function to better represent the non-linearity of the growth response
to heat accumulation. Three parameters to be constrained in DA are base temperature (T3), the
forcing requirement (R;) and temperature sensitivity (S;). Their default values and prior range

are listed in Table A1l.

1
" 14e5tTa~Tp)

Ad (A3)

Y224 Ad < Ry < ¥B_, Ad (Ad)
3. Beta function (BF)
In reality, the plant growth rate, as described with Ad, gradually increases up to a specific
temperature, then rapidly declines to a supra-optimal level. Such response can be well described
by a beta function with uni-modality and non-symmetrical shape. Three parameters are involved
in DA: minimum temperature (T;,), optimal temperature (T,) and forcing requirement (R,;). The
other parameter values are fixed with empirical values. For example, maximum growth rate (R,,)

is set to one and maximum temperature (T,.) is assumed to be 45.

Ty—Tax T a=Tp o2t
DG (A5)

g =R, (=——
d x(Tx_To To—Tn
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rd lfT'd>0

AL
0 otherwise (A6)

ad = {

Y023 Ad < Ry < ¥B_p Ad (A7)
4. Days transferred to standard temperature (DTS)
According to Arrhenius las, the relationship between growth rate and daily temperature T, can
be interpolated by the equation 8 (Ono and Konno, 1999). With a factor weighted by standard
temperature, the equation for DTS (Eq. A9) can better represent growth rate dependent on
temperatures. Three parameters considered in DA are: temperature sensitivity rate (E,), standard

temperature (T,) and forcing requirement (R,;).

-Eq
k = eRTa (A8)
Eq(Tg-Ts)
Ad = e RTaTs (A9)
Di.Ad <Ry <¥5_, Ad (A10)

5. Thermal period fixed model (TP)

The difference between GD and TP models are heat accumulation occurs in a fixed time period
(D,)). The day of leaf onset is the last day (Ds + D,,) when the accumulated heat reaches the
forcing requirement. The start day (D,) of heat accumulation begins in day one and moves one
day forward each time to estimate Eq. (A12). Three parameters are involved in DA: the base

temperature (T}), the period length (D,,) and the forcing requirement (R ;).

Ty—Tyif Ty >T,
Ad = {'d b d b A1l
{ 0 otherwise ( )
Ry < T 5 Ad (A12)

6. Chilling and forcing (CF)
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Compared to GD, there is another distinctive chilling period for dormancy. CF model

sequentially calculates two accumulations in opposite directions: chilling accumulation and anti-

chilling accumulation. The start day of chilling accumulation (D) is implicitly set as 273.0

which is October 1%, The end day of chilling accumulation (D) is the beginning of anti-chilling

accumulation. Three parameters are considered in DA: the chilling requirement (RS) and the

forcing requirement (RY), the temperature threshold (T,).

7. Sequential model (SM)

Ta—T, if T; >0

s
—1. otherwise

AC— {Ad if Ad<O0
0 otherwise

= (B if 8> 0
27 L 0 otherwise

Do—1 AC c Dg c
d=D;g Ad > Rd = Zd:DS Ad

D—1 AF F D F
d=p, 8a < Rgq < Xa=p,Ad

(A13)

(A14)

(A15)

(A16)

(A17)

The difference between CF and SM models is that SM used a beta function (Eqg. A18) for the

calculation of chilling accumulation and adopted a sigmoid function (Eg. A20) for anti-chilling

accumulation. The detailed descriptions of these two functions can be referred to the

introductions of BF model and CF model. The maximum temperature is empirically set as

13.7695. Six parameters are constrained in DA: minimum temperature (T;,), optimal temperature

(T,), temperature sensitivity (S,), forcing base temperature (T}), chilling requirement (RS), and

forcing requirement (R5).

To-Tn
—_ TX_Td Td_TTL T+—T
ry = G Lty

AC— {rd ifry; <0
0 otherwise

29

(A18)

(A19)



657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

1

AG= 1+e5tTa—Tp) (A20)
alp AG > RG = T2 A (A21)
¥bz3 Do AR < RE <¥D_ =Dy Ag (A22)

8. Parallel model (PM)

Critical difference between PM and above two-step models is that the chilling and anti-chilling
accumulations happen simultaneously (Fu et al., 2012). In the earlier dates during chilling

period, only small fraction (K,) of forcing (Eq. A25) will be accumulated. The maximum
temperature is empirically set as 15.3. Seven parameters will be considered in DA: minimum
temperature (T,,), optimal temperature (T,), temperature sensitivity (S;), forcing base temperature

(T,), chilling requirement (RS), forcing requirement (RY), and a forcing weight coefficient (K,,).

To—Tn
ra = GG (A23)
g if rgy <0
AG=1{'d Y Ta A24
{Ootherwise (A24)
Zl DS 1. Do—=1 s C Cc
K, = |Km+ (1= Kn) if Xazp,Ad > Rd (A25)
1 otheTWLse
K
A= Tty (A26)
23";1 AG > RG 2 23‘;[,5 AG (A27)
2=p, AL < RG < X4_p, A% (A28)

9. Alternating model (AM)
AM fixes the start date of chilling period (D¢) as November 1%t and the start date of anti-chilling
period (D) as January 1. The difference between AM and the other models above is that the

forcing requirement is not a parameter value but is decided by the length of chilling days (Fu et
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al., 2012). Five parameters to be constrained in DA are: chilling temperature (T,), forcing base

temperature (T},) and three coefficients (a, b, ¢) in calculation of forcing requirement.

AC— {1 if Ty <T,
27 l0otherwise

AF = {Td —Tpif Ty >T,
0 otherwise

C_vyd aC

RG = X% e

Cc
RE=a+b-ecFRd

D-1 AF F D F
d=D5Ad < Rd S d=D£Ad
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Table Al: A summary of parameters to be calibrated in nine phenological models. Their default

parameter value and prior parameter range are shown.

Model Parameter Description Unit Default Range
GD T, Base temperature °C 10 [-5, 25]
Ry Forcing requirement °Cd 35 [0, 200]
SF T, Base temperature °C -1.5 [-10, 25]
Ry Forcing requirement °C 50 [0, 500]
T, Optimal temperature °C 15 [10, 35]
BF T, Minimum temperature °C 0 [-10, 5]
R, Forcing requirement °Cd 11 [0, 50]
E, Temperature sensitivity rate - 250 [1, 1500]
DTS T Standard temperature °C 10 [-30, 40]
Ry Forcing requirement °Cd 50 [1, 200]
T, Base temperature °C 125 [0, 30]
TP D, Period length d 25 [0, 50]
Ry Forcing requirement °Cd 20 [0, 150]
R¢ Chilling requirement °cd  -124 [-300, 0]
CF RE Forcing requirement °Cd 120 [0, 300]
T, Chilling base temperature °C 5 [0, 30]
T, Minimum temperature °C -20 [-80, 0]
T, Optimal temperature °C 0 [-26, 10]
SM St Temperature sensitivity - -1.8 [-5, 0]
T, Forcing base temperature °C 5 [-5, 35]
R¢ Chilling requirement °Cd 20 [0, 80]
RE Forcing requirement °Cd 20 [0, 80]
T, Minimum temperature °C -20 [-80, 0]
T, Optimal temperature °C 0 [-26, 10]
S; Temperature sensitivity - -0.6 [-1, 0]
PM T, Forcing base temperature °C 5 [-5, 35]
R¢ Chilling requirement °cd  11.35 [0, 80]
RE Forcing requirement °Cd 44.01 [0, 80]
K, Forcing weight coefficient - 0.2 [0, 1]
T, Chilling base temperature °C 4.6 [-10, 10]
T, Forcing base temperature °C 5 [-5, 35]
AM a Coefficient for forcing adjustment - 1151 [0.01, 15]
b Coefficient for forcing adjustment - 88 [0, 200]
C Coefficient for forcing adjustment - -0.01 [-1,-107%]
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Appendix B: An example of output configuration file

Output configuration file (e.g., config.txt) is to indicate the directories of observations and
simulation output files as well as how they map to each other. Figure B1 is an example of the
output configuration file. There are three blocks of functions to map simulation outputs to
observed GPP, RE, and NEE. The blocks of mapping functions are separated by a blank line.
Each mapping block starts with the directories of one observation, its observation variance and
model outputs, which are separated by a hash key. If there is no observation variance available,
users can ignore this directory. If multiple simulation outputs are used to correspond to one
observation, the directories of simulation outputs are separated by a comma. The rest of the
mapping block describes how to map simulation outputs to observations. The simu_map variable
is simulation output after mapping. The simuList variable saves the simulation outputs specified
in the first line. Taking the third mapping block in Fig. B1 as an example, simuL.ist[0] saves

contents in simuNEE_ 1.txt and simuL.ist[0][0:365] saves the first 365 elements in this file.

| config.xt - Notepad - O et

File Edit Format View Help

#D:\MIDAN\examplehobsGPP. txt#D:\MIDA\exampleYobsVarGPP . txt#0: \MIDA\examplelsimuGPP . txt
simu_map[@:365]=simulist[B][@:365]

#D:\MIDANexamplehobsRE. txt#HD: \MIDA\exampletsimuRE. txt
simu_map[@:365]=simulist[B][8:365]

#D:\MIDANexamplehobsNEE . txt#HD : \MIDA\examplesimulNEE_1.txt,D:\MIDA \examplehsimuNEE_2.txt
simu_map[@:365]=(simulist[@][0:365]+simulist[2][@:365])/2

Ln 8, Col 58 100%  Unix (LF) UTF-8

Figure B1: An example of output configuration file
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Appendix C: An example of the namelist.txt file

The Fig. C1 shows an example of the namelist.txt for the first study case with the DALEC
model. Users need to prepare the namelist.txt before execution of data assimilation (DA) either
manually or via GUI. Below describes the content in the namelist.txt. Detailed explanation or
tutorials are available in the Zenodo repositories at the end of the appendixes.

‘workpath’ is the directory where the MIDA executable are saved. ‘nsimu’ is the number
of iterations in execution of data assimilation. ‘J_default’ is the default mismatch (i.e., cost
function) to be compared in the first moving phase of data assimilation. ‘ProposingStepSize’
controls the jump scale in the proposing phase of data assimilation. Users can increase or
decrease this value to adjust the acceptance rate to be in a range from 0.2 to 0.5. ‘paramFile’ is
the directory of a csv file saving parameter-related information such as parameter range.
‘obsList’ saves the directories of observations. Multiple observations are separated by semicolon.
Similarly, ‘obsVarList’ saves the directories of observation variance in the same order as that of
‘obsList’. ‘simuList’ saves the directories of simulation outputs corresponding to the
observations. With GUI, MIDA reads directories in the output configuration file (e.g., config.txt)
which users provide and assign values for ‘obsList’,‘obsVarList’, and ‘simulList’ in the
namelist.txt automatically. In this case, if the directories of observations change, users only need
to modify the output configuration file and generate the namelist.txt again with GUI-based
MIDA.

‘paramValue’ is the directory of a txt file where MIDA writes out new set of parameter
values for model execution in each iteration of data assimilation. Its default value is
‘ParameterValue.txt’ under the workpath specified in the first line of the namelist.txt. ‘model’

saves the directory of model executable. ‘nChains_convergeTest’ indicates whether to conduct
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728

729

730

731

732

733

734

735

736

737
738

739

German-Rubin (G-R) convergence test or not. If G-R test is used, its values is the number of
multiple MCMC chains. If not, its value is zero. ‘convergeTest startsFile’ is the directory of a
csv file saving default parameter values as the start points in multiple MCMC chains.
‘outConvergenceTest’ saves the results of G-R test. If ‘nChains_ConvergeTest’ is zero, both
values of ‘convergeTest startsFile’ and ‘outConvergenceTest’ are empty. ‘DAresultsPath’ is the
directory saving the results of DA whose directories are also listed in the following six lines:
‘out)’ for the accepted mismatches; ‘outC’ for the accepted parameter values; ‘outRecordNum’
for the number of accepted parameter values; ‘outBestSimu’ for the best simulation outputs with
the optimal parameter values; ‘outBestC’ for the optimal parameter values. For MIDA without

GUI, “display plot’ indicates whether or not to visualize the posterior distributions after DA.

=
File Edit Format Wiew Help
workPath="D:\MIDA" h

nsimu=20808

1_default=1608800

ProposingStepSize=58
paramFile="D:\MIDA\param.csv'
paramCovFile=""
obsList="D:\MIDA\obsNEE.txt"'
obsVarlList=""
simulist="D:\MIDA\simuMEE.txt"
paramValueFile="D:\MIDA\paramValue.txt"’
model="D:\MIDA\testdalec.exe"’
nChains_ConvergeTest=0

convergelest startsFile=""
outputConfigurefFile="D:\MIDA\config.txt’
DAresultsPath="0D:\MIDA\DAresultsy'
outJ="mismatch_accepted.csv’
outC="parameter_ accepted.csv’
outRecordNum="acceptedum.csv’ {
outBestSimu="BestSimu/" '
outBest(="bestParameterValues.csv’
outConvergenceTest=""

display_plot=8

|
hd ]

Figure C1. An example of the ‘namelist.txt’ file. In order to use MIDA, users need to prepare

data and a model and specify their file names and directories in the ‘namelist.txt’ file.
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Code and data availability. The code of MIDA is available at the Zenodo repository
https://doi.org/10.5281/zenodo.4762725 (last access: May 2021). Data used in this study are
available at https://doi.org/10.5281/zenodo.4762779. A comparison of the time cost using the
embedded DA algorithm and MIDA is available at the Zenodo repository

https://doi.org/10.5281/zenod0.4891319.

Video supplement. Tutorial videos of how to use MIDA is available at

https://doi.org/10.5281/zenodo.4762777
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Tablel: Comparison among MIDA and available DA tools

Posterior

DA tool Agnostic DA algorithms Global optima distributi Visualization
istribution
Automatic differentiation
CCDAS No from T_ransfo_rmation of No No No
Algorithms in Fortran
(TAF)
CARDAMOM No Markov Chain Monte Carlo Yes Yes No
EcoPAD No Markov Chain Monte Carlo Yes Yes Yes
EnKF, Ensemble Square-
OpenDA No Root Filter, Yes Yes No
Particle Filter
DART Yes EnKF Yes Yes No
PDAF Yes EnKF Yes Yes No
PEST Yes Levenberg-Marquardt Rely on initial No No
method parameter values
MIDA Yes Markov Chain Monte Carlo Yes Yes Yes
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Table 2: A summary of 21 parameters to be calibrated in DALEC model. The default parameter

value and prior parameter range are shown.

Parameter Description Unit Default Range
GDD,,;, Growing degree day threshold °cd 100 [10, 250]
for leaf out
GDD,,,, Growing degree day threshold °cd 200 [50, 500]
for maximum LAl
LAl,,,, Seasonal maximum leaf area - 4 [2, 7]
index
Tiearrau  Temperature for leaf fall °c 5 [0, 10]
Kieqr  Rate of leaf fall d-! 0.1 [0.03 0.95]
NUE N use efficiency - 7 [1, 20]
Resgrowen, Growth respiration fraction - 0.2 [0.05, 0.5]
Res,,  Base rate for maintenance x 10™* ymol m=2d ! 1 [0.1,100]
respiration
Q10,,  Maintenance respiration T- - 2 [1, 4]
sensitivity
Agtem  Allocation to plant stem pool - 0.7 [0.1, 0.95]
Troor  ROOtturnover time X 1074 d1 5.48 [1.1,27.4]
Toeem  Stem turnover time x 1075 d~1 5.48 [1.1,27.4]
Qq0,,  Heterotrophic respiration T- - 2 [1, 4]
sensitivity
Tuerer ~ Base turnover for litter x 1073 umolm=2d~! 137  [0.548,5.48]
Tsom  Baseturnover for soil organic X 10™*umolm=2d~1 9.13  [0.274,2.74]
matter
Kgecomp Decomposition rate x1073d71 1 [0.1,10]
LMA Leaf mass per area gCm2 80 [20, 150]
Xstem;,;  INitial value for stem C pool x 103 gC 5 [1,15]
root;n,  INitial value for root C pool gC 500 [100, 3000]
Xiitter;n;, INitial value for litter C pool gC 600 [50, 1000]
Xsom;,;;  Initial value for soil organic C x 103 gC 7 [1, 25]

pool
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Table 3: A summary of eight parameters to be calibrated in surrogate-based ELM model. The

default parameter value and prior parameter range are shown.

Parameter Description Unit Default Range
Croot Rooting depth m~1 2.0 [0.5,4]
distribution parameter
SLAy,,  Specific leaf area at m2gC~1 0.03 [0.01,0.05]
canopy top
Nieas Fraction of leaf N in - 0.1007 [0.1,0.4]
RuBisCO
CN,,,  Fineroot C:N ratio - 42 [25,60]
Ao Allocation ratio of fine - 1.0 [0.3,1.5]
root to leaf
Res,, Base rate for X 10~umolm=2s~1  2.525 [1.5,4]
maintenance respiration
tiearrau  Critical day length for x 10*s 3.93 [3.5,4.5]
senescence
GDD,,..: Accumulated growing °Cd 800 [600,1000]

degree days for leaf out
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Table 4: A summary of two parameters to be calibrated in the BiomE model. The default

parameter value and prior parameter range are shown.

Parameter Description Unit Default Range

Annual productivity per kgC y~im? 0.4 [0.2,2]

unit leaf area
Annual mortality rate in y~ 1 0.02 [0.01,0.08]

canopy layer

Vannual

M canopy
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Figure captions

Figure 1: The three-step workflow of Model Independent Data Assimilation (MIDA) module.
The workflow includes data preparation, execution of data assimilation (DA), and visualization.
The data preparation step is to provide all the formatted essential data for DA via user input. The
execution step is to calibrate parameter values towards a constrained posterior distribution with
the fusion of observations. The visualization step is to diagnose the effects of DA. Rhombus in
orange represents user-input data. Rectangle represents procedures and document/multidocument
shape is for data files in computers. Dashed lines indicate locations of data. Solids lines indicate
data flow pathways. With the three-step workflow, DA is agnostic to specific models and users
will be released from technical burdens.

Figure 2: the GUI-MIDA window includes two panels. The upper panel is to set up a data
assimilation task. Inputs can be loaded and applied to the step 1 on data preparation for DA. The
lower panel is to run DA as described in step 2 and visualize the posterior distributions of
parameters in step 3.

Figure 3: Comparison between the simulated daily net ecosystem exchange (NEE) by DALEC
and the observed NEE at Harvard Forest from 1992 to 2006. Red circles represent modeled NEE
with the optimized parameter values and green circles represent simulated NEE with the original
parameter values. Simulations of DALEC are substantially improved after data assimilation in
comparison with those before data assimilation.

Figure 4: Comparison between posterior distributions (red line) and default values (gray dash
line) of the 21 parameters in DALEC. The peak in posterior distribution is the constrained
parameter value from maximum likelihood estimation. This distinctive mode and its divergence
from the default value indicates the effects of DA. Most parameters are well constrained, and
some are far different from the original values.

Figure 5: Comparison between posterior distributions (red line) and default values (gray dash
line) of the eight parameters in surrogate-based ELM. The peak in posterior distribution is the
constrained parameter value from maximum likelihood estimation. This distinctive mode and its
divergence from the default value indicates the effects of DA. Most parameters are well
constrained, and some are far different from the original values.

Figure 6: Comparison between the simulated NEE, total leaf area index, latent heat flux by
surrogate-based ELM and the observed ones at Missouri Ozark flux site from 2006 to 2014. The

52



blue lines indicate the observations, and their 95% confidence interval is in the dashed area. The
green and red lines indicate the simulations with default parameter values and optimized values
respectively. Simulations are generally improved after DA for all these three variables.

Figure 7: Comparison between the simulated growth date by 9 phenology models after DA and
the observed growth date for Larix laricina with +9°C treatment at SPRUCE site from 2016 to
2018. Colored number indicates different models and shape represents different year. Overall,
model 6,7,8,9 achieve better performance after DA.

Figure 8: Comparison between posterior distributions (red line) and default values (gray dash
line) of the two parameters in BiomeE. The peak in posterior distribution is the constrained
parameter value from maximum likelihood estimation. This distinctive mode and its divergence
from the default value indicates the effects of DA. All parameters are well constrained and
different from their original values.

Figure 9: Comparison between the simulated leaf area index (LAI) by BiomeE and the observed
NEE at Willow Creek. Circles represent modeled NEE with the optimized parameter values and
triangles represent simulated NEE with the original parameter values. Simulations of LAI are

substantially improved after data assimilation in comparison with those before data assimilation.
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Figure 1: The three-step workflow of Model Independent Data Assimilation (MIDA) module.
The workflow includes data preparation, execution of data assimilation (DA), and visualization.
The data preparation step is to provide all the formatted essential data for DA via user input. The
execution step is to calibrate parameter values towards a constrained posterior distribution with
the fusion of observations. The visualization step is to diagnose the effects of DA. Rhombus in
orange represents user-input data. Rectangle represents procedures and document/multidocument
shape is for data files in computers. Dashed lines indicate locations of data. Solids lines indicate
data flow pathways. With the three-step workflow, DA is agnostic to specific models and users

will be released from technical burdens.
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B DAmodule - A Generic Module for Data Assimilation — O *
Help

Preparation of Data Assimilation
The number of simulations | Select Work Path Choose A Directory

Load Parameter Range
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Load Files:
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Figure 2: the GUI-MIDA window includes two panels. The upper panel is to set up a data
assimilation task. Inputs can be loaded and applied to the step 1 on data preparation for DA. The

lower panel is to run DA as described in step 2 and visualize the posterior distributions of

parameters in step 3.
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with the optimized parameter values and green circles represent simulated NEE with the original

parameter values. Simulations of DALEC are substantially improved after data assimilation in
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Figure 4: Comparison between posterior distributions (red line) and default values (gray dash

line) of the 21 parameters in DALEC. The peak in posterior distribution is the constrained

parameter value from maximum likelihood estimation. This distinctive mode and its divergence

from the default value indicates the effects of DA. Most parameters are well constrained, and

some are far different from the original values.
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Figure 5: Comparison between posterior distributions (red line) and default values (gray dash
line) of the eight parameters in surrogate-based ELM. The peak in posterior distribution is the

constrained parameter value from maximum likelihood estimation. This distinctive mode and its

divergence from the default value indicates the effects of DA. Most parameters are well

constrained, and some are far different from the original values.

58



95% Cl of Obs. + Default + Obs. + Optimized

—

250- % §
< ol 25 —_—— g 75
5 == | ¢ =65
5 -250° 0. % 55-
o) ,/\’_\_./_. © 2 45
u'-”_[ 500 =2 —— ——+—* “
=z o c 35-

7500 ] £ 95

2006 2007 2008 2009 2010 & 2006 2007 2008 2009 2010 — 2006 2007 2008 2009 2010
Years = Years Years

Figure 6: Comparison between the simulated NEE, total leaf area index, latent heat flux by
surrogate-based ELM and the observed ones at Missouri Ozark flux site from 2006 to 2014. The
blue lines indicate the observations, and their 95% confidence interval is in the dashed area. The
green and red lines indicate the simulations with default parameter values and optimized values

respectively. Simulations are generally improved after DA for all these three variables.
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Figure 7: Comparison between the simulated growth date by 9 phenology models after DA and
the observed growth date for Larix laricina with +9°C treatment at SPRUCE site from 2016 to
2018. Colored number indicates different models and shape represents different year. Overall,
model 6,7,8,9 achieve better performance after DA.
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Figure 8: Comparison between posterior distributions (red line) and default values (gray dash

line) of the two parameters in BiomeE. The peak in posterior distribution is the constrained

parameter value from maximum likelihood estimation. This distinctive mode and its divergence

from the default value indicates the effects of DA. All parameters are well constrained and

different from their original values.
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Figure 9: Comparison between the simulated leaf area index (LAI) by BiomeE and the observed
NEE at Willow Creek. Circles represent modeled NEE with the optimized parameter values and

triangles represent simulated NEE with the original parameter values. Simulations of LAI are

substantially improved after data assimilation in comparison with those before data assimilation.
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