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ABSTRACT 24 

Models are an important tool to predict Earth system dynamics. An accurate prediction of future 25 

states of ecosystems depends on not only model structures but also parameterizations. Model 26 

parameters can be constrained by data assimilation. However, applications of data assimilation to 27 

ecology are restricted by highly technical requirements such as model-dependent coding. To 28 

alleviate this technical burden, we developed a model-independent data assimilation (MIDA) 29 

module. MIDA works in three steps including data preparation, execution of data assimilation, 30 

and visualization. The first step prepares prior ranges of parameter values, a defined number of 31 

iterations, and directory paths to access files of observations and models. The execution step 32 

calibrates parameter values to best fit the observations and estimates the parameter posterior 33 

distributions. The final step automatically visualizes the calibration performance and posterior 34 

distributions. MIDA is model independent and modelers can use MIDA for an accurate and 35 

efficient data assimilation in a simple and interactive way without modification of their original 36 

models. We applied MIDA to four types of ecological models: the data assimilation linked 37 

ecosystem carbon (DALEC) model, a surrogate-based energy exascale earth system model: the 38 

land component (ELM), nine phenological models and a stand-alone biome ecological strategy 39 

simulator (BiomeE). The applications indicate that MIDA can effectively solve data assimilation 40 

problems for different ecological models. Additionally, the easy implementation and model-41 

independent feature of MIDA breaks the technical barrier of applications of data-model fusion in 42 

ecology. MIDA facilitates the assimilation of various observations into models for uncertainty 43 

reduction in ecological modeling and forecasting.  44 

Keywords: 45 

Parameter uncertainty quantification, Data assimilation, Modules, Ecological models 46 



 3 

1. Introduction 47 

Ecological models require a large number of parameters to simulate biogeophysical and 48 

biogeochemical processes (Bonan, 2019; Ciais et al., 2013; Friedlingstein et al., 2006), and 49 

specify model behaviors (Luo et al., 2016; Luo and Schuur, 2020). Parameter values in 50 

ecological models are mostly determined in some ad hoc fashions (Luo et al., 2001), leading to 51 

considerable biases in predictions (Tao et al., 2020). The situation becomes even worse when 52 

more detailed processes are incorporated into models (De Kauwe et al., 2017; Lawrence et al., 53 

2019). Data assimilation (DA), a statistically rigorous method to integrate observations and 54 

models, is gaining increasing attention for parameter estimation and uncertainty evaluation. It 55 

has been successfully applied to many ecological models (Fox et al., 2009; Keenan et al., 2012; 56 

Richardson et al., 2010; Safta et al., 2015; Wang et al., 2009; Williams et al., 2005; Zobitz et al., 57 

2011). However, almost all those DA studies require model-dependent, invasive coding (Walls et 58 

al., 2005). This requires a DA algorithm to be programmed for a specific model. Such model-59 

dependent coding creates a large technical barrier for ecologists to use DA to solve prediction 60 

and uncertainty quantification problems in ecology. Thus a model-independent DA toolkit is 61 

required to facilitate the use of DA technique in ecology.  62 

DA is a powerful approach to combine models with observations and can be used to 63 

improve ecological research in several ways (Luo et al., 2011). First, DA can be used for 64 

parameter estimation (Bloom et al., 2016; Hararuk et al., 2015; Hou et al., 2019; Ise and 65 

Moorcroft, 2006; Ma et al., 2017; Ricciuto et al., 2011; Scholze et al., 2007). It enables the 66 

optimization of parameter values across sites, time and treatments (Li et al., 2018; Luo and 67 

Schuur, 2020). For example, Hararuk and his colleagues applied DA to a global land model and 68 

substantially improved the explanability of the global variation in soil organic carbon (SOC) 69 
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from 27% to 41% (Hararuk et al., 2014). When DA was combined with deep learning to improve 70 

spatial distributions of estimated parameter values, for example, the Community Land Model 71 

version 5 (CLM5) predicted the SOC distribution in the US continent with much higher 𝑅2 of 72 

0.62 than CLM5 with default parameters (𝑅2 = 0.32) (Tao et al., 2020). Second, DA can be used 73 

to select alternative model structures to better represent ecological processes (Liang et al., 2018; 74 

Van Oijen et al., 2011; Shi et al., 2018; Smith et al., 2013; Williams et al., 2009). In the study by 75 

Liang et al. (2018), DA was used to evaluate four models. And a two-pool interactive model was 76 

selected after DA to best represent SOC decomposition with priming. Additionally, DA can be 77 

applied to locate the most informative data to reduce uncertainty, thus guiding the sensor 78 

network design. (Keenan et al., 2013; Raupach et al., 2005; Shi et al., 2018; Williams et al., 79 

2005). One DA study at Harvard Forest (Keenan et al., 2013) indicated that only a few data 80 

sources contributed to the significant reduction in parameter uncertainty. In spite of powerful 81 

applications of DA to ecological research, computational cost is a major hurdle, especially with 82 

complex models. Fer et al. (2018) developed a Bayesian model emulation to reduce the time cost 83 

of DA from 112h to 6h with the simplified Photosynthesis and Evapotranspiration model.  84 

Overall, DA is essential for ecological modeling and forecasting (Jiang et al., 2018) and is 85 

helpful for evaluation of different inversion methods (Fox et al., 2009).   86 

Applications of traditional DA to ecological research require highly technical skills of 87 

users. A successful DA application usually involves model-dependent coding to integrate 88 

observations into models. This requires users to have knowledge about model programing. For 89 

example, if a complex model (e.g., the community land model) is used in DA, users need to 90 

know the programming language (e.g., Fortran) of the model and its internal content to write DA 91 

algorithm into the model source code before DA can be conducted. The learning curve for model 92 



 5 

programing is steep for general ecologists. Furthermore, users often need to update the 93 

programming knowledge when a different model is used in DA. For example, scientists who 94 

implemented the DA algorithm coded in MATLAB ( Xu et al., 2006) to an ecosystem carbon 95 

cycle model programmed in Fortran (e.g., TECO) need to understand both MATLAB and 96 

Fortran (Ma et al., 2017). Moreover, DA often involves reading observation files about a specific 97 

study site. As a result, users usually have to update the codes of model-dependent DA to read 98 

new observations from every new study site.  99 

A number of tools have been developed to facilitate DA applications (Table 1) but many 100 

of them are model dependent, such as the Carbon Cycle Data Assimilation Systems (CCDAS) 101 

(Rayner et al., 2005; Scholze et al., 2007), the Carbon Data Model Framework (CARDAMOM) 102 

(Bloom et al., 2016), the Ecological Platform for Assimilating Data (EcoPAD) into model 103 

(Huang et al. 2019) and Predictive Ecosystem Analyzer (PEcAn) (LeBauer et al., 2013). These 104 

tools combine DA algorithms with a specific model. For example, CCDAS specified the DA 105 

algorithm to the Biosphere Energy Transfer Hydrology (BETHY) model (Rayner et al., 2005). 106 

The hardcoding feature of aforementioned tools make them inflexible to be applied to different 107 

models. 108 

There are some model independent DA tools that are not tailored to a specific model, 109 

such as Data Assimilation Research Testbed (DART) (Anderson et al., 2009), the open Data 110 

Assimilation library (openDA) (Ridler et al., 2014), the Parallel Data Assimilation Framework 111 

(PDAF) (Nerger and Hiller, 2013) and Parameter Estimation & Uncertainty Analysis software 112 

suit (PEST) (Doherty, 2004).  113 

However, these model-independent tools suffer from some limitations for a general and 114 

flexible DA application. For example, openDA requires users to code three functions to initialize 115 
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a Java class (Ridler et al., 2014) (Table 1). DART enables incorporating a new model through a 116 

range of interfaces (Anderson et al., 2009). It has been successfully applied to atmospheric and 117 

oceanic models with currently available interfaces (Anderson et al., 2009; Raeder et al., 2012) 118 

and recently to the community land model (Fox et al., 2018). It is likely that users may need to 119 

prepare new interfaces for new ecological models to use DART. DART and PDAF adopted the 120 

Ensemble Kalman Filter (EnKF) method (Evensen, 2003), which may makes it difficult to obey 121 

mass conservation for biogeochemical models. This is because the parameter values estimated by 122 

EnKF change each time when new data sets are assimilated (Allen et al., 2003; Gao et al., 2011; 123 

Trudinger et al., 2007). The sudden changes in estimated parameter values at time points when 124 

data are assimilated by EnKF usually do not reflect reality of biogeochemical cycles in the real 125 

world. PEST utilizes Levenberg-Marquardt method (Levenberg, 1944) which is a local 126 

optimization method for parameter estimation. If the relationship between simulation outputs and 127 

parameters are highly nonlinear, which is common in ecological models, this method may trap 128 

into a locally optimization solution (Doherty, 2004).  129 

In this work, we developed a model-independent DA module (MIDA) to enable a general 130 

and flexible application of DA in ecology. MIDA was designed as a highly modular tool, 131 

independent of specific models, and friendly to users with limited programming skills and/or 132 

technical knowledge of DA algorithms. Additionally, MIDA implemented advanced Markov 133 

Chain Monte Carlo (MCMC) algorithms for DA analysis which can accurately quantify the 134 

parameter uncertainty with informative posterior distribution. The anticipated user community in 135 

this initial phase of MIDA development is the biogeochemical modelers who are looking for 136 

appropriate parameter estimation methods. In the following Section 2, we first introduce the 137 

development details of MIDA and its usage. In Section 3, we demonstrate the application of 138 
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MIDA to four different types of ecological models. In Section 4, we discuss the strengths and 139 

weaknesses of MIDA in ecological modelling and lastly we give our concluding remarks in 140 

Section 5.  141 

 142 

2. Model-independent data assimilation (MIDA) 143 

2.1 Bayes’s theorem and DA  144 

Based on Bayes’ theorem, DA is a statistical approach to constrain parameter values and 145 

estimate their posterior density distributions through assimilating observations into a model. The 146 

posterior density distributions 𝑝(𝐶|𝑍) of parameters 𝐶 for a given observation 𝑍 can be obtained 147 

from prior density distributions 𝑝(𝐶) and the likelihood function 𝑝(𝑍|𝐶): 148 

𝑝(𝐶|𝑍) ∝ 𝑝(𝑍|𝐶)𝑝(𝐶)                                                             (1)           149 

The prior density distribution 𝑝(𝐶) is assumed as a uniform distribution over the parameter 150 

range. And the likelihood function is negatively proportional to a cost function, 𝐽 as: 151 

𝑝(𝑍|𝐶) ∝ 𝑒𝑥𝑝(−𝐽)                                                            (2) 152 

The cost function measures the misfit between simulation outputs and observations and is 153 

described in more detail in section 2.4. The posterior density distributions 𝑝(𝐶|𝑍) is estimated 154 

from sampling parameter values to maximize the likelihood function 𝑝(𝑍|𝐶) or minimize the 155 

cost function J. DA usually uses a sampling technique, such as Markov chain Monte Carlo 156 

(MCMC) in this MIDA. The MCMC algorithm successively generates a new set of parameter 157 

values from the prior parameter ranges and requires model run with these new parameter values. 158 

Then the cost function is calculated to determine whether this new set of parameter values will 159 

be accepted or not according to the Metropolis-Hastings criterion (see more description in 160 

section 2.4). All accepted parameter values are used to generate posterior distributions where the 161 
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distinctive mode indicates the parameter uncertainty is well constrained. Meanwhile, we derive 162 

maximum likelihood estimates (MLEs) of parameters from the posterior density distributions.  163 

MIDA realizes model-independent Bayesian-based DA to estimate posterior density 164 

distributions and MLEs of parameters via data exchanges between a given model and DA 165 

algorithm.  166 

 167 

2.2 An overview of MIDA 168 

MIDA is a module that allows for automatic implementation of data assimilation without 169 

intrusive modification or coding of the original model (https://doi.org/10.5281/zenodo.4762725, 170 

last access: May 2021). Its workflow includes three steps: data preparation, execution of data 171 

assimilation, and visualization (Fig. 1). Step 1 (data preparation) is to establish the standardized 172 

data exchange between DA algorithm and the model. Step 2 (execution of data assimilation) is to 173 

run DA as a black box independent of the model. Step 3 (visualization) is to diagnose parameter 174 

uncertainty after DA. The modularity of the 3-step workflow is designed to enable MIDA for a 175 

rapid DA application and adaption to a new model. In the following, we introduce the three-step 176 

workflows of MIDA, its technical implementation and usage in detail. 177 

 178 

2.3 Step 1: Data preparation  179 

Step 1 is designed to initialize data exchange to transfer parameter values, model outputs, 180 

observations and their variances between DA algorithm and the model to be used. Four types of 181 

information are required either from interactive input or by modifying the ‘namelist.txt’ file (Fig. 182 

1). The first type is about DA configuration, including the number of sampling series in DA and 183 

the working path where the outputs of DA will be saved. The number of a sampling series is 184 

https://doi.org/10.5281/zenodo.4762725
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essential in a DA task to define how many times parameter values are sampled to run the model. 185 

The second type of information is about parameter ranges and their covariance. The third is the 186 

model executable file. Finally, the fourth type is an output configuration file which contains the 187 

file paths of model outputs, observations, and their variance. This file also instructs how to read 188 

model outputs and compare each output with corresponding observation.  189 

Traditional DA requires users to modify the code of model to incorporate the process of 190 

data exchange between DA algorithm and the model. Therefore, the program of data exchange in 191 

traditional DA is model-specific and users need to repeat such program when a new model 192 

comes. In MIDA, the process of data exchange calls a model executable file which hides the 193 

details of model code. When applied to a new model, MIDA only requires users to provide a 194 

different model executable file in the ‘namelist.txt’ file and does not involve any additional 195 

coding in either the model or MIDA. Thus, MIDA lowers the technical barrier for general 196 

ecologists to conduct DA.  197 

Traditional DA usually preset the number of parameters and the model outputs according 198 

to a specific model before initializing the data exchange. This is because data exchange between 199 

DA algorithm and model uses memory to transfer items such as parameter values. Instead, 200 

MIDA organizes items in data exchange using different files. Items in data exchange are decided 201 

by the data file loaded when MIDA is running. The number of parameter values, for example, 202 

will be decided after the file of parameter range is read in MIDA. Through modifying files, 203 

MIDA allows making efficient choices about the model-related items in data exchange. Thus, 204 

MIDA is highly flexible and modular for DA with different models. 205 

Traditional DA also preset observation types in the data exchange according to a specific 206 

study before the data exchange. For example, if the traditional DA uses carbon flux observation, 207 
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it cannot switch to satellite remote sensing products without additional coding. MIDA uses the 208 

concepts of object-orient programming (Mitchell and Apt, 2003) and dynamic initialization 209 

(Cline et al., 1998) in computer science to provide a homogenous way to create various 210 

observation types from a unified prototype class. A prototype class includes variables to store 211 

observations and their variance and functions (e.g., read from observation files). The values in 212 

variables are dynamically decided after the observation files are loaded when MIDA is running. 213 

Different observation types derive from the prototype class with a high degree of reusability of 214 

most functions. In such way, MIDA only requires users to provide different filenames of the 215 

observations to be integrated in DA. Therefore, MIDA is highly flexible and modular for DA to 216 

assimilate various observations. 217 

 218 

2.4 Step 2: Execution of data assimilation  219 

After the establishment of the standardized data exchange (step 1), step 2 is to run DA as a black 220 

box for users without knowledge of DA itself. Notwithstanding the black-box goal, this section 221 

provides a general description of DA below.  222 

Data assimilation as a process integrates observations into a model to constrain 223 

parameters and estimate parameter uncertainties. Data assimilation usually uses some types of 224 

sampling algorithms, such as Markov chain Monte Carlo (MCMC), to generate posterior 225 

parameter distribution under a Bayesian inference framework (Box and Tiao, 1992). As 226 

mentioned in section 2.1, DA with MCMC algorithm estimates the posterior density distributions 227 

through sampling to maximize likelihood function 𝑝(𝑍|𝐶) or minimize the misfit 𝐽 between 228 

simulation outputs and observations. This version of MIDA uses MCMC algorithm implemented 229 

by the Metropolis-Hasting (MH) sampling method (Hastings, 1970; Metropolis et al., 1953). The 230 
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future version of MIDA could incorporate other data assimilation algorithms. Each iteration in 231 

the Metropolis-Hasting sampling includes a proposing phase and a moving phase. The proposing 232 

phase generates a new set of parameter values based on the starting point for the first iteration or 233 

current accepted parameter values in the following iterations. If parameter covariance 234 

(𝑐𝑜𝑣𝑝𝑎𝑟𝑎𝑚) is specified in step 1 on data preparation, this proposing phase will draw new 235 

parameter values (𝐶𝑛𝑒𝑤) within the prior ranges from a Gaussian distribution 𝑁(𝐶𝑜𝑙𝑑 , 𝑐𝑜𝑣𝑝𝑎𝑟𝑎𝑚) 236 

where 𝐶𝑜𝑙𝑑 is the predecessor set of parameter values. Without parameter covariance, new set of 237 

parameter values will be generated from a uniform distribution within the prior ranges (Xu et al., 238 

2006).  239 

The moving phase first calculates mismatches between observations and the model 240 

simulation with the new set of parameter values as a cost function (𝐽𝑛𝑒𝑤  in Eq.3) (Xu et al. 241 

2006):    242 

𝐽𝑛𝑒𝑤 =  ∑
∑ [𝑍𝑖(𝑡)−𝑋𝑖(𝑡)]2

𝑡∈𝑜𝑏𝑠(𝑍𝑖)

2𝜎𝑖
2

𝑛
𝑖=1                                                               (3) 243 

Where 𝑛 is the number of observations,  𝑍𝑖(𝑡) is the ith observation at time 𝑡, 𝑋𝑖(𝑡) is the 244 

corresponding simulation, 𝜎𝑖
2 is the variance of the observation. The error is assumed to 245 

independently follow a Gaussian distribution. This new set of parameter values will be accepted 246 

if 𝐽𝑛𝑒𝑤  is smaller than 𝐽𝑜𝑙𝑑, the cost function with the previous set of accepted parameter values, 247 

or the value, exp (−
𝐽𝑛𝑒𝑤

𝐽𝑜𝑙𝑑
), is larger than a random number selected from a uniform distribution 248 

from 0 to 1 according to the Metropolis criterion (Liang et al., 2018; Luo et al., 2011; Shi et al., 249 

2018; Xu et al., 2006). Once the new set of parameter values is accepted, 𝐽𝑛𝑒𝑤  becomes 𝐽𝑜𝑙𝑑. 250 

Those two phases of sampling will be iteratively executed until the number of sampling series set 251 



 12 

in step 1 on preparation of DA is reached. Finally, the posterior density distributions can be 252 

generated from all the accepted parameter values. 253 

MIDA realizes the execution of data assimilation according to the procedure described 254 

above. First, MIDA uses a ‘call’ function to execute model simulations to get values of 𝑋𝑖(𝑡). 255 

Observations 𝑍𝑖(𝑡) and their variance 𝜎𝑖
2 are already provided via the standardized data 256 

exchange as described in step 1. Then, MIDA calculates  𝐽𝑛𝑒𝑤 according to Eq. 3 to decide the 257 

acceptance of the current parameter values used in this simulation. If accepted, MIDA saves this 258 

set of parameter values and associated  𝐽𝑛𝑒𝑤  values in 𝐶𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 and 𝐽𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑  arrays respectively 259 

and triggers new proposing phrase based on this set of accepted parameter values. If not, MIDA 260 

discards this set of parameter values and generates another new set of parameter values. MIDA 261 

saves the new parameter values generated in the proposing phrase to “ParameterValue.txt”, from 262 

which the model reads before execution of the next model simulation. MIDA repeats the 263 

proposing and moving phases until the number of sampling series is reached. At the end, MIDA 264 

selects the best parameter values through maximum likelihood estimation and run model again 265 

using this set of values to get optimized simulation outputs 𝑋𝑖(𝑡).  Then MIDA saves the arrays 266 

of accepted parameters, associated errors, maximum likelihood estimates (MLEs), and optimized 267 

state variables 𝑋𝑖(𝑡) to four files, “parameter_accepted.txt”, “J_accepted.txt”, “MLE.txt”, and 268 

“OptimizedSimu.txt”, respectively. 269 

This execution of DA algorithm in MIDA enables users to conduct DA as a black box 270 

and is independent of any particular model.  271 

 272 

2.5 Step 3: Visualization 273 
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Step 3 is to visualize the results of DA in step 2. The end products of DA are accepted parameter 274 

values, their associated 𝐽𝑛𝑒𝑤  values, the maximum likelihood estimates, and optimized 275 

simulation results as saved in the output files. MIDA enables visualization of parameter posterior 276 

density distributions with a Python script. In the script, MIDA first read accepted parameter 277 

values from “parameter_accepted.txt” file. Then, MIDA generates posterior probabilistic density 278 

function (PPDF) for each parameter via ‘kdeplot’ function in the ‘seaborn’ package. The 279 

maximum likelihood estimates of parameters correspond to the peaks of PPDF. The distinctive 280 

mode of PPDF indicates how well the parameter uncertainty is constrained. Finally, MIDA 281 

visualizes the PPDF for all parameters in a figure using the ‘matplotlib’ package.  282 

   283 

2.6 Implementation and architecture of MIDA 284 

MIDA is equipped with a graphical user interface (GUI) and users can easily execute it through 285 

an interactive window. Users can also run MIDA as a script program without the GUI.  MIDA is 286 

written in Python (version 3.7). For the GUI-version, all relevant Python packages used in MIDA 287 

are compiled together, thus users do not need to install them by themselves. For the non-GUI 288 

version, users need to install Python 3.7 and relevant packages (i.e., numpy, pandas, shutil, 289 

subprocess, matplotlib, math, os, and seaborn). MIDA is compatible with model source codes 290 

written in multiple programming language (e.g., Fortran, C/C++, C#, MATLAB, R, or Python). 291 

It is also independent of multiple operation systems (e.g., Windows, Linux, MacOS). In addition, 292 

MIDA is also able to run on high-performance computing (HPC) platforms via task management 293 

systems (e.g., Slurm). 294 

 The architecture of MIDA is class-based and each class is designed to describe an object 295 

(e.g., parameter, observations, etc.) with variables and operations. Five classes are defined in 296 
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MIDA: parameter, observation, initialization, MCMC algorithm and the main program. The 297 

main program is the start of MIDA execution. It calls functions from all other classes to finish 298 

three-step workflow. As described in section 2.2, parameter and observation classes contain 299 

variables to be transferred in data exchanges via file I/O operations. These operations are 300 

implemented using the ‘numpy’ package. The initialization class is to read ‘namelist.txt’ in step 301 

1 on data preparation and to assign values for the variables in all other classes. Then the class of 302 

MCMC algorithm conducts DA as described in step 2. In this step, the simulation operation uses 303 

a ‘call’ function in ‘subprocess’ package to call model executable. At the start of model 304 

simulation, MIDA writes new parameter values to the ‘ParameterValue.txt’ file in the ‘working 305 

path’ directory specified in step 1 on data preparation. Then the model executable read parameter 306 

values from the ‘ParameterValue.txt’ file and run. After model simulation, DA algorithm can 307 

read the model outputs by the output filenames indicated in the output configuration file. After 308 

DA, step 3 executes an additional Python script to read accepted parameter values and plot the 309 

posterior density distributions of parameters. The plotting operations uses ‘matplotlib’ and 310 

‘seaborn’ packages. The implementation of GUI uses pyQt5 toolkit to support interactive usage 311 

of MIDA. Users can also run MIDA in a non-interactive way with a ‘main.py’ script to trigger 312 

the three-step workflows. 313 

 314 

2.7 User information of MIDA 315 

In order to use MIDA, users need to prepare data and a model. The data to be used in MIDA are 316 

prior ranges and default values of parameters, parameter covariances, output configuration file, 317 

observations and their variances. They are organized in different files. Before running MIDA, 318 

users need to specify their filenames as suggested in step 1. When users want to use different 319 
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data sets in DA, they can simply change filenames with the new data sets via GUI or in the 320 

‘namelist.txt’ file. Figure C1 is an example of the ‘namelist.txt’ file for a data assimilation study 321 

with the DALEC model. The model to be used in MIDA should have those to-be-estimated 322 

parameter values not fixed in model source code rather than changeable through 323 

‘ParameterValue.txt’ file. MIDA writes new parameter values in each proposing phase during 324 

DA to the ‘ParameterValue.txt’ file, from which the model reads the parameter values to run the 325 

simulation.  326 

To calculate the cost function, 𝐽, we have to have a one-to-one match between 327 

observations and model outputs. For example, phenology models in one of the application cases 328 

of MIDA below generate discrete dates of leaf onset, which is a one-to-one match to the 329 

observations of spring leaf onset. In this case, observation  𝑍𝑖(𝑡) and model output 𝑋𝑖(𝑡) to be 330 

used in calculation of 𝐽 is straightforward. In the application case for dynamic vegetation, the 331 

data to be used are leaf area in six layers in a forest of 302 years old whereas the model simulates 332 

leaf areas in eight layers from 0 to 800 years. To match observation, the model generates outputs 333 

of leaf areas in six layers when simulated forest age reaches 302 years. This requires users to 334 

prepare an output configuration file to instruct MIDA to read model outputs and re-organize their 335 

outputs to match observation. The output configuration file starts with a single line listing an 336 

observation filename and its corresponding output filenames. Content after the directories in the 337 

output configuration file are instructions to map model outputs with the observation signified in 338 

the first line. Each instruction is to match one or continuous elements in observation with 339 

elements in outputs with the same length. A blank line means there are no further instructions. 340 

Then a new matching between another observation and model outputs starts. An example of 341 

output configure file is available in Appendix B. 342 
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Once MIDA finishes the execution of data assimilation, users may need basic knowledge 343 

to assess the performance of DA. For example, the acceptance rate, which is given by MIDA, is 344 

the fraction of proposed parameter values that is accepted. Ideally, the acceptance rate should be 345 

about 20 ~ 50% (Xu et al., 2006). A very low acceptance rate indicates that many new proposed 346 

parameter values (𝐶𝑛𝑒𝑤) are rejected because 𝐶𝑛𝑒𝑤 jumps too far away from the previously 347 

accepted parameter values (Robert and Casella, 2013; Roberts et al., 1997). In this case, users are 348 

suggested to reduce a jump scale in the proposing phase. On the other hand, a very high 349 

acceptance rate is likely because 𝐶𝑛𝑒𝑤 moves slowly from the previously accepted parameter 350 

values. Users may increase the jump scale.  351 

In addition, DA usually requires a convergence test to examine whether posterior 352 

distributions from different sampling series converge or not. Convergence test requires running 353 

DA parallelly or in multiple times with different initial parameter values. MIDA provides a 354 

Gelman-Rubin (G-R) test (Gelman and Rubin, 1992) for this purpose. To use the G-R test, users 355 

need to prepare a file containing initial parameters values in different sampling series and 356 

indicate its filename in the ‘namelist.txt’ file as described in step 1. If the G-R statistics 357 

approaches one, the sampling series in DA is converged. When sampling series is converged, all 358 

accepted parameter values are used to generate the posterior distributions.  359 

There are three types of posterior distributions: bell-shape, edge-hitting, and flat. The 360 

bell-shaped posterior distributions indicate that these parameters are well constrained. Their peak 361 

values are the maximum likelihood estimates of parameter values. The flat posterior distributions 362 

suggest that the parameters are not constrained due to the lack of relevant information in data. 363 

The edge-hitting posterior distributions result from complex reasons, such as improper prior 364 



 17 

parameter range. Users may change the prior ranges to examine if those posterior distributions 365 

can be improved or examine correlations among estimated parameters.   366 

 367 

3. Applications of MIDA  368 

We applied MIDA to four groups of models, which are an ecosystem carbon cycle model, a 369 

surrogate-based land surface model, nine phenology models, and a dynamic vegetation model, 370 

respectively. These four cases demonstrate that MIDA is effective for stand-alone DA, flexible 371 

to be applied to different models, and efficient for multiple model comparison.   372 

3.1 Case 1: Independent data assimilation with DALEC 373 

The first case study is to demonstrate that MIDA can be effective for independent data 374 

assimilation with the data assimilation linked ecosystem carbon (DALEC) model (Lu et al., 375 

2017). DALEC has been used for data assimilation in several studies (Bloom et al., 2016; Lu et 376 

al., 2017; Richardson et al., 2010; Safta et al., 2015; Williams et al., 2005). Previous studies all 377 

incorporated data assimilation algorithms into DALEC, which requires invasive coding. This 378 

case study is focused on reproducing the data assimilation results as in the study by Lu et al. 379 

(2017) but with MIDA.  380 

The version of DALEC used in this study is composed of six submodels (i.e., 381 

photosynthesis, phenology, autotrophic respiration, allocation, litterfall, and decomposition) to 382 

simulate the carbon exchanges among five carbon pools (i.e., leaf, stem, root, soil organic matter 383 

and litter) (Ricciuto et al., 2011). There are 21 parameters in DALEC, of which, 17 parameters 384 

are derived from the six submodels and four parameters serve to initialize the carbon pools. 385 

Table 2 summarizes the names, prior ranges and nominal values of these 21 parameters. The 386 

observation is the Harvard Forest daily net ecosystem exchange (NEE) from year 1992 to 2006. 387 
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DALEC is coded in Fortran. In windows system, a gfortran compiler converts the model code to 388 

an executable file (i.e., DALEC.exe).  389 

Figure 2 is the GUI window of MIDA. We first set up a DA task as described in step 1 390 

using the upper panel. In this application, the number of sampling series is set as 20,000. Once 391 

users click the ‘choose a directory’ or ‘choose a file’ button, a new dialog window will pop up 392 

and users are able to choose the directory or load files interactively. As describe in step 1 on 393 

preparation of DA, the working path is where the outputs of DA and ‘ParameterValue.txt’ are 394 

saved (e.g., C:/workingPath). After the output configuration file is loaded, the filenames of 395 

model outputs, observations and their variance will be displayed in the window automatically. 396 

This application only uses a ‘NEE.txt’ observation file. Similarly, after users load parameter 397 

range file (e.g., a file named ‘ParamRange.txt’ contains three rows which are minimum, 398 

maximum and default values of parameters), the content in this file is displayed as well. To 399 

replace the current parameter range file loaded, users can simply upload another file. In this 400 

application, the executive model file is ‘DALEC.exe’ with Fortran compiler in windows system. 401 

Because we do not have parameter covariance information, this input is left blank. After ‘save to 402 

namelist file’ is clicked, a ‘namelist.txt’ file containing all the inputs will be generated in the 403 

working path. 404 

After the DA task set up, we load the ‘namelist.txt’ file and click the ‘run data 405 

assimilation’ button in the lower panel to trigger step 2 on execution of DA. A new dialog will 406 

pop up to show the acceptance rate information and notify the termination of DA. Then we will 407 

click the ‘generate plots’ button to visualize the posterior distributions of 21 parameters as 408 

described in step 3.  409 
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Figure 3 shows that the simulation outputs using the optimized parameter values from 410 

MIDA better fit with the observations than those using default parameter values. Figure 4 depicts 411 

posterior distributions of the 21 parameters estimated from MIDA. More than half of the 412 

parameters are constrained well with a unimodal shape. 𝑋𝑠𝑡𝑒𝑚𝑖𝑛𝑖𝑡
 and 𝑋𝑟𝑜𝑜𝑡𝑖𝑛𝑖𝑡

 have a wide 413 

occupation of the prior range, indicating that the observation data does not provide useful 414 

information for them. The constrained posterior distributions in this study are similar to those 415 

from the study in Lu et al. (2017). Note that MCMC estimates have a large variance and a low 416 

convergence rate especially in high-dimensional problems, with a finite number of samples it is 417 

not expected that two simulations would give exactly the same results.  418 

 419 

3.2 Case 2: Application of MIDA to a surrogate land surface model   420 

This case study is to examine the applicability of MIDA to a surrogate-based land surface model. 421 

The original model is energy exascale earth system model: the land component (ELM) (Ricciuto 422 

et al., 2018). As ELM is computationally expensive (one forward model simulation takes more 423 

than one day), a sparse-grid (SG) surrogate system was developed to reduce the computational 424 

time (Lu et al., 2018). The forcing data for the surrogate model is half-hourly meteorological 425 

measurements at Missouri Ozark flux site from 2006 to 2014. The observations that were used 426 

for optimization are annual sums of net ecosystem exchange (NEE), annual averages of total leaf 427 

area index and latent heat fluxes from 2006 to 2010. The eight parameters selected (Table 3) are 428 

the most important parameters for the variations in outputs (Ricciuto et al., 2018). The model is 429 

written in Python. A ‘pyinstaller’ library packages the model code into an executable file. The 430 

iteration number in MIDA is 20,000. 431 

Figure 5 shows posterior distributions of calibrated parameters. 𝑐𝑟𝑜𝑜𝑡, 𝑆𝐿𝐴𝑡𝑜𝑝,  432 

𝑡𝑙𝑒𝑎𝑓𝑓𝑎𝑙𝑙 , 𝐺𝐷𝐷𝑜𝑛𝑠𝑒𝑡  are constrained well with a unimodal distribution. However, the distribution 433 
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of the rest 4 parameters (i.e., 𝑁𝑙𝑒𝑎𝑓, 𝐶𝑁𝑟𝑜𝑜𝑡, 𝐴𝑟2𝑙 and 𝑅𝑒𝑠𝑚) cluster at near the edge. These 434 

results match well with the study by Lu et al. (2018). As shown in Figure 6, the calibrated 435 

parameters induce a performance improvement in simulating total leaf area index and NEE. For 436 

latent heat, both the default and optimized simulation obtain good agreement with the 437 

observation. These conclusions are also similar to those in Lu et al. (2018). 438 

 MIDA hides the detailed differences between models. For example, DALEC model in 439 

case 1 is a process-based model to simulate ecosystem carbon cycle while surrogate-based ELM 440 

in case 2 is an approximation of land surface model. They are also different in programming 441 

language, simulation time, forcing data, etc. MIDA is able to deal with models with so many 442 

different characteristics and hides these differences from users. Users only need to indicate the 443 

filenames of the model to be used, its parameter range, the output configuration file, etc. in the 444 

‘namelist.txt’ file. Thus, MIDA simplified the DA applications using different models.     445 

 446 

3.3 Case 3: Evaluation of multiple phenological models 447 

This study case uses nine phenological models (Yun et al., 2017) to demonstrate the applicability 448 

of MIDA in model comparison. Five out of the nine models predict phenological events, such as 449 

the day of leaf onset, using growing degree days, which are calculated as temperature 450 

accumulation above a base temperature. The other four models consider two processes: chilling 451 

effects of cold temperature on dormancy before budburst and forcing effects of warm 452 

temperature on plant development. Each model uses different response functions to represent 453 

chilling and forcing effects. The detailed model descriptions and associated parameter 454 

information are in supplementary table.  455 
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Data are from the Spruce and Peatland Responses Under Climatic and Environmental 456 

Change experiment (SPRUCE) (Hanson et al., 2017) located in northern Minnesota, USA. The 457 

experiment consists of five-level whole-ecosystem warming (i.e., +0, +2.25, +4.5, +6.75, +9°C) 458 

and two-level elevated 𝐶𝑂2 concentrations (i.e., +0, +500ppm). Dates of leaf onset were 459 

observed with PhenoCam (Richardson et al., 2018) for tree species: Picea mariana and Larix 460 

laricina. For the sake of demonstration of MIDA application, we only show DA results for Larix 461 

laricina with +9°C warming treatment and +0 ppm 𝐶𝑂2 treatment from 2016 to 2018.   462 

MIDA was used to compare performances of the nine models in reference to the same 463 

observations of leaf onset dates after DA. We as users changed filenames of model executable 464 

file (i.e., PhenoModels.exe), defined parameter ranges, and assigned the directory of working 465 

path for each model. MIDA then estimated the optimized parameters and save the corresponding 466 

best simulation outputs to the working path for each of the nine models. Figure 7 shows the best 467 

simulation output of these nine models. The simulation output of the 6th, 7th, 8th, and 9th models 468 

better fit the observation than the other models. It demonstrates that models that consider both 469 

chilling and heating effects can achieve good simulations of the leaf onset dates.  470 

 471 

3.4 Case 4: Supporting data assimilation with a dynamic vegetation model  472 

This case study is to examine the efficiency of MIDA to integrate remote sensing data into a 473 

dynamic vegetation model. The model used in this study is Biome Ecological strategy simulator 474 

(BiomeE) (Weng et al., 2019). This model simulates vegetation demographic processes with 475 

individual-based competition for light, soil water, and nutrients. Individual trees in BiomeE 476 

model are represented by cohorts of trees with similar sizes. The light competition among 477 

cohorts is based on their heights and crown areas according to the rule of perfect plasticity 478 
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approximation (PPA) model (Strigul et al., 2008). Each cohort has seven pools: leaves, roots, 479 

sapwood, heartwood, seeds, nonstructural carbon and nitrogen. After carbon are assimilated into 480 

plants via photosynthesis, the assimilated carbon enters to nonstructural carbon pool and is used 481 

for plant growth (i.e., diameter, height, crown area) and reproduction according to empirical 482 

allomeric equations (Weng et al., 2019). In this application, two parameters to be constrained 483 

(Table 4) are annual productivity rate and annual mortality rate of trees.  484 

Observations to be used in DA are leaf area indexes in six vertical heights (i.e., 0-5m, 6-485 

10m, 11-15m, 16-20m, 21-25m, and 26-30m) at Willow Creek study site, Wisconsin, USA. The 486 

forest at the site is an upland deciduous broadleaf forest of around 302 years old. The 487 

observations were from Global Ecosystem Dynamics Investigation (GEDI) acquired by a Light 488 

Detection and Ranging (Lidar) laser system, which is deployed on the International Space 489 

Station (ISS) by NASA in 2018 (Dubayah et al., 2020). The observations were first averaged 490 

from three footprints and then leaf area indexes in the six canopy layers were standardized to be 491 

summed up as one.  492 

To use MIDA, we reorganized the simulation outputs to match observations as suggested 493 

in section 2.6. The BiomeE model simulates leaf areas in eight layers (i.e., 0-5m, 6-10m, 11-494 

15m, 16-20m, 21-25m, 26-30m, 31-35m, and 36-40m) from 0 to 800 years. An output 495 

configuration file was provided to post-process model outputs of leaf area indexes in six layers to 496 

match observations at the forest age of 302 years. These simulated leaf area indexes in the six 497 

canopy layers were also standardized to match standardized observations of leaf area indexes. 498 

The observations and post-processed simulation outputs were saved to ‘LAI.txt’ and 499 

‘simu_LAI.txt’ files, respectively. The two files are used in MIDA for data assimilation to 500 

generate posterior distributions of estimated two parameters as showed in figure 8. The 501 
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optimized parameter values through maximum likelihood estimation are different from their 502 

default values. Figure 9 compares the simulation outputs with optimized parameters estimated by 503 

MIDA to those with default parameter values. After DA with GEDI data in MIDA, the 504 

simulation accuracy of leaf area index is substantially improved especially in middle (16~20m) 505 

and highest (26~30m) layers.  506 

 507 

4. Discussion  508 

This study introduced MIDA as a model-independent tool to facilitate the applications of data 509 

assimilation in ecology and biogeochemistry. The potential user community is ecologists with 510 

limited knowledge of model programming and technical implementation of DA algorithms. 511 

Several model-independent DA tools have already been developed, such as DART (Anderson et 512 

al., 2009), openDA (Ridler et al., 2014),  PDAF (Nerger and Hiller, 2013) and PEST (Doherty, 513 

2004), mainly for applications in research areas of hydrology, atmosphere, and remote sensing. 514 

These DA tools either use gradient descent method, such as Levenburg-Marqurdt algorithm in 515 

PEST, or Kalman Filter methods, such as EnKF in DART, openDA, and PDAF. The Levenburg-516 

Marqurdt algorithm is a local search method, which is hard to find global optimization solution 517 

for highly nonlinear models. EnKF updates state variables and parameter values each time when 518 

observations are sequentially assimilated, resulting discrete values of estimated parameters. 519 

Jumps in estimated parameter values by EnKF make it very difficult to obey mass conservation 520 

in biogeochemical models (Gao et al., 2011). In this study, we used the MCMC method in MIDA 521 

to generate parameter values and their posterior distributions. MCMC is a widely used method in 522 

many DA studies with biogeochemical models but has been applied to individual models with 523 

invasive coding (Bloom et al., 2016; Hararuk et al., 2015; Liang et al., 2018; Luo and Schuur, 524 
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2020; Ricciuto et al., 2011). Compared to the other model-independent DA tools mentioned 525 

above, MIDA is the first tool that uses the MCMC method for DA.  526 

  Biogeochemical models are incorporating more detailed processes related to carbon and 527 

nitrogen cycles (Lawrence et al. 2020). Complex biogeochemical models yield predictions with 528 

great uncertainty (Frienlingstein et al. 2009 and 2014).  Data assimilation has been increasingly 529 

used to estimate parameter values against observations and reduce uncertainty in model 530 

prediction (Luo et al. 2016, Luo and Schuur 2020). However, current applications of DA are 531 

almost all model dependent. It requires ecologists to write code to integrate DA algorithm with 532 

models. The coding practice is a big technical challenge for ecologists with limited program 533 

ability. The distinct advantage of MIDA is to enable ecologists to conduct model independent 534 

DA. MIDA streamlines workflow of the three-step procedure for DA to enable users to conduct 535 

DA without extensive coding. Users mainly need to provide numerical and character values for 536 

data exchanges to transfer data (i.e., parameter values, simulation outputs, observations) between 537 

the model and MIDA by a file named ‘namelist.txt’ or by interactive inputs via a GUI window 538 

(Fig. 2).  539 

We tested MIDA in four cases for its applicability to ecological models. The first case is 540 

applied to DALEC model, which has been used in several data assimilation studies (Bloom et al., 541 

2016; Lu et al., 2017; Safta et al., 2015; Williams et al., 2005). The previous DA studies all used 542 

invasive coding to incorporate DA algorithm into models. As demonstrated in this study, MIDA 543 

was applied to DALEC without invasive coding but by providing the directory to save DA 544 

results and filenames of DALEC model executable, parameter prior range, and output 545 

configuration file through the ‘namelist.txt’ file or interactive inputs in the first preparation step 546 

of the workflow. Then, MIDA run DA as a black box with DALEC before visualizing the DA 547 
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results. Next, we tested the applicability of MIDA a surrogate-based ELM model and a dynamic 548 

vegetation model BiomeE. To switch the test case from DALEC to the surrogate-based ELM 549 

model and the BiomeE model, we changed the filenames of model executable, parameter prior 550 

range, and output configuration file in the ‘namelist.txt’ file for MIDA. This flexibility of MIDA 551 

in switching models for DA makes it much easier for model comparisons. We tested this 552 

capability of MIDA with nine phenological models to compare alternative model structures. 553 

Similarly, MIDA enables efficient switches of observations to be assimilated into models. Users 554 

only need to change filenames of observations in the output configuration file. This feature of 555 

MIDA makes it easier to utilize abundant traits databases such as TRY (Kattge et al., 2020), 556 

FRED (Iversen et al., 2017), etc. Moreover, this feature of MIDA also helps evaluating the 557 

relative information content of different observations for constraining model parameters and 558 

prediction (Weng and Luo, 2011). Consequently, MIDA can facilitate selection of the most 559 

informative observations and then better guide data collections in filed experiments. Ultimately, 560 

MIDA can aid ecological forecasting and help reduce uncertainty in model predictions (Huang et 561 

al., 2018; Jiang et al., 2018).  562 

Although MIDA helps users to get rid of model detail, users may still need basic 563 

knowledge about the model outputs to prepare the output configuration file which is to match 564 

model outputs to observations one-by-one (see Section 2.6). This effort of preparing the 565 

correspondence between model outputs and observations for MIDA is not that difficult because 566 

users are reading or writing a text file and most model developers will provide reference to help 567 

understanding observations or model output files.  568 

Generally, MIDA requires longer time to run DA than the embedded DA algorithm, 569 

because MIDA calls model simulation as an external executable rather than a function 570 
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embedded. Thus, we recommend MIDA for beginners of DA users with models that are less 571 

complex. Besides, the current version of MIDA only incorporates Metropolis-Hasting sampling 572 

approach. More MCMC methods (e.g., Hamiltonian Monte Carlo) may be incorporated into 573 

MIDA in the future.  574 

 575 

5. Conclusions 576 

We developed MIDA to facilitate data assimilation for biogeochemical models. Traditional DA 577 

studies require ecologists to program codes to integrate DA algorithms into model source codes. 578 

The easy-to-use MIDA module enables ecologists to conduct model-independent DA without 579 

extensive coding thus advancing the application of DA for ecological modeling and forecasting. 580 

We demonstrated the capability of MIDA in four cases with a total of 12 ecological models. 581 

These cases showed that MIDA is easy to perform for a variety of models and can efficiently 582 

produce accurate parameter posterior distributions. Moreover, MIDA supports flexible usage of 583 

different models and different observations in the DA analysis and allows a quick switch from 584 

one model to another. This capability enables MIDA to serve as an efficient tool for model 585 

intercomparison projects and enhancing ecological forecasting.  586 

 587 

Appendix A: Nine phenological models 588 

1. Growing degree (GD) 589 

The growing degree (GD) model is one of the most widespread phenological model to simulate 590 

the date of leaf onset (𝐷̂). In this study, the time scale is limited to daily based on observation 591 

records. The kernel of GD is to calculate the growing degree days (GDD, ∑ ∆𝑑𝐷̂−1
𝑑=𝐷𝑠

) which is the 592 

heat accumulation above a base temperature (𝑇𝑏). For simplicity, the daily temperature (𝑇𝑑) can 593 
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be approximated by the average of daily maximum and minimum temperatures. The heat 594 

accumulation starts at day 𝐷𝑠 , which is empirically estimated, and ends when GDD reaches a 595 

forcing requirement threshold (𝑅𝑑).  Two parameters to be constrained are base temperature (𝑇𝑏) 596 

and the forcing requirement (𝑅𝑑). Their default values and prior range are listed in Table A1. 597 

∆𝑑 = {
𝑇𝑑 − 𝑇𝑏

0
 𝑖𝑓 𝑇𝑑 > 𝑇𝑏

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                              (A1) 598 

∑ ∆𝑑𝐷̂−1
𝑑=𝐷𝑠

< 𝑅𝑑 ≤ ∑ ∆𝑑𝐷̂
𝑑=𝐷𝑠

                                                             (A2) 599 

2. Sigmoid function (SF) 600 

Compared to the linear response function of GDD in GD model, the sigmoid function (SF) 601 

model provides a non-linear function to better represent the non-linearity of the growth response 602 

to heat accumulation. Three parameters to be constrained in DA are base temperature (𝑇𝑏), the 603 

forcing requirement (𝑅𝑑) and temperature sensitivity (𝑆𝑡). Their default values and prior range 604 

are listed in Table A1. 605 

∆𝑑 =
1

1+𝑒𝑆𝑡(𝑇𝑑−𝑇𝑏)                                                              (A3) 606 

∑ ∆𝑑𝐷̂−1
𝑑=𝐷𝑠

< 𝑅𝑑 ≤ ∑ ∆𝑑𝐷̂
𝑑=𝐷𝑠

                                                 (A4) 607 

3. Beta function (BF) 608 

In reality, the plant growth rate, as described with ∆𝑑, gradually increases up to a specific 609 

temperature, then rapidly declines to a supra-optimal level. Such response can be well described 610 

by a beta function with uni-modality and non-symmetrical shape. Three parameters are involved 611 

in DA: minimum temperature (𝑇𝑛), optimal temperature (𝑇𝑜) and forcing requirement (𝑅𝑑). The 612 

other parameter values are fixed with empirical values. For example, maximum growth rate (𝑅𝑥) 613 

is set to one and maximum temperature (𝑇𝑥) is assumed to be 45. 614 

𝑟𝑑 = 𝑅𝑥(
𝑇𝑥−𝑇𝑑

𝑇𝑥−𝑇𝑜
)(

𝑇𝑑−𝑇𝑛

𝑇𝑜−𝑇𝑛
)

𝑇𝑜−𝑇𝑛
𝑇𝑥−𝑇𝑜                                                               (A5) 615 
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∆𝑑 = {
𝑟𝑑

0
 𝑖𝑓 𝑟𝑑 > 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                              (A6) 616 

∑ ∆𝑑𝐷̂−1
𝑑=𝐷𝑠

< 𝑅𝑑 ≤ ∑ ∆𝑑𝐷̂
𝑑=𝐷𝑠

                                                              (A7) 617 

4. Days transferred to standard temperature (DTS) 618 

According to Arrhenius las, the relationship between growth rate and daily temperature 𝑇𝑑 can 619 

be interpolated by the equation 8 (Ono and Konno, 1999). With a factor weighted by standard 620 

temperature, the equation for DTS (Eq. A9) can better represent growth rate dependent on 621 

temperatures. Three parameters considered in DA are: temperature sensitivity rate (𝐸𝑎), standard 622 

temperature (𝑇𝑠) and forcing requirement (𝑅𝑑). 623 

𝑘 = 𝑒
−𝐸𝑎
𝑅∙𝑇𝑑                                                              (A8) 624 

∆𝑑 = 𝑒
𝐸𝑎(𝑇𝑑−𝑇𝑠)

𝑅∙𝑇𝑑∙𝑇𝑠                                                                (A9) 625 

∑ ∆𝑑𝐷̂−1
𝑑=𝐷𝑠

< 𝑅𝑑 ≤ ∑ ∆𝑑𝐷̂
𝑑=𝐷𝑠

                                                              (A10) 626 

5. Thermal period fixed model (TP) 627 

The difference between GD and TP models are heat accumulation occurs in a fixed time period 628 

(𝐷𝑛). The day of leaf onset is the last day (𝐷𝑠̂ + 𝐷𝑛) when the accumulated heat reaches the 629 

forcing requirement. The start day (𝐷𝑠̂) of heat accumulation begins in day one and moves one 630 

day forward each time to estimate Eq. (A12). Three parameters are involved in DA: the base 631 

temperature (𝑇𝑏), the period length (𝐷𝑛) and the forcing requirement (𝑅𝑑).   632 

∆𝑑 = {
𝑇𝑑 − 𝑇𝑏

0
 𝑖𝑓 𝑇𝑑 > 𝑇𝑏

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                               (A11) 633 

𝑅𝑑 ≤ ∑ ∆𝑑
𝐷𝑠̂+𝐷𝑛
𝑑=𝐷𝑠̂

                                                              (A12) 634 

6. Chilling and forcing (CF) 635 
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Compared to GD, there is another distinctive chilling period for dormancy. CF model 636 

sequentially calculates two accumulations in opposite directions: chilling accumulation and anti-637 

chilling accumulation. The start day of chilling accumulation (𝐷𝑠) is implicitly set as 273.0 638 

which is October 1st.  The end day of chilling accumulation (𝐷0) is the beginning of anti-chilling 639 

accumulation. Three parameters are considered in DA: the chilling requirement (𝑅𝑑
𝐶) and the 640 

forcing requirement (𝑅𝑑
𝐹), the temperature threshold (𝑇𝑐). 641 

∆𝑑 = {
𝑇𝑑 − 𝑇𝑐

−𝑇𝑐

 𝑖𝑓 𝑇𝑑 ≥ 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                              (A13) 642 

∆𝑑
𝐶 = {

∆𝑑
0

 𝑖𝑓 ∆𝑑 < 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                              (A14) 643 

∆𝑑
𝐹= {

∆𝑑
0

 𝑖𝑓 ∆𝑑 > 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                              (A15) 644 

∑ ∆𝑑
𝐶𝐷0−1

𝑑=𝐷𝑠
> 𝑅𝑑

𝐶 ≥ ∑ ∆𝑑
𝐶𝐷0

𝑑=𝐷𝑠
                                                              (A16) 645 

∑ ∆𝑑
𝐹𝐷̂−1

𝑑=𝐷0
< 𝑅𝑑

𝐹 ≤ ∑ ∆𝑑
𝐹𝐷̂

𝑑=𝐷0
                                                              (A17) 646 

7. Sequential model (SM) 647 

The difference between CF and SM models is that SM used a beta function (Eq. A18) for the 648 

calculation of chilling accumulation and adopted a sigmoid function (Eq. A20) for anti-chilling 649 

accumulation. The detailed descriptions of these two functions can be referred to the 650 

introductions of BF model and CF model. The maximum temperature is empirically set as 651 

13.7695. Six parameters are constrained in DA: minimum temperature (𝑇𝑛), optimal temperature 652 

(𝑇𝑜), temperature sensitivity (𝑆𝑡), forcing base temperature (𝑇𝑏), chilling requirement (𝑅𝑑
𝐶), and 653 

forcing requirement (𝑅𝑑
𝐹).  654 

𝑟𝑑 = (
𝑇𝑥−𝑇𝑑

𝑇𝑥−𝑇𝑜
)(

𝑇𝑑−𝑇𝑛

𝑇𝑜−𝑇𝑛
)

𝑇𝑜−𝑇𝑛
𝑇𝑥−𝑇𝑜                                                               (A18) 655 

∆𝑑
𝐶= {

𝑟𝑑

0
 𝑖𝑓 𝑟𝑑 < 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                              (A19) 656 
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∆𝑑
𝐹=

1

1+𝑒𝑆𝑡(𝑇𝑑−𝑇𝑏)                                                              (A20) 657 

∑ ∆𝑑
𝐶𝐷0−1

𝑑=𝐷𝑠
> 𝑅𝑑

𝐶 ≥ ∑ ∆𝑑
𝐶𝐷0

𝑑=𝐷𝑠
                                                              (A21) 658 

∑ ∆𝑑
𝐹𝐷̂−1

𝑑=𝐷0
< 𝑅𝑑

𝐹 ≤ ∑ ∆𝑑
𝐹𝐷̂

𝑑=𝐷0
                                                              (A22) 659 

8. Parallel model (PM) 660 

Critical difference between PM and above two-step models is that the chilling and anti-chilling 661 

accumulations happen simultaneously (Fu et al., 2012). In the earlier dates during chilling 662 

period, only small fraction (𝐾𝑑) of forcing (Eq. A25) will be accumulated. The maximum 663 

temperature is empirically set as 15.3.  Seven parameters will be considered in DA: minimum 664 

temperature (𝑇𝑛), optimal temperature (𝑇𝑜), temperature sensitivity (𝑆𝑡), forcing base temperature 665 

(𝑇𝑏), chilling requirement (𝑅𝑑
𝐶), forcing requirement (𝑅𝑑

𝐹), and a forcing weight coefficient (𝐾𝑚).  666 

𝑟𝑑 = (
𝑇𝑥−𝑇𝑑

𝑇𝑥−𝑇𝑜
)(

𝑇𝑑−𝑇𝑛

𝑇𝑜−𝑇𝑛
)

𝑇𝑜−𝑇𝑛
𝑇𝑥−𝑇𝑜                                                               (A23) 667 

∆𝑑
𝐶= {

𝑟𝑑

0
 𝑖𝑓 𝑟𝑑 < 0

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                              (A24) 668 

𝐾𝑑 = {𝐾𝑚 + (1 − 𝐾𝑚)
∑ ∆𝑖

𝐶𝑑
𝑖=𝐷𝑠

𝑅𝑑
𝐶

1

  𝑖𝑓 ∑ ∆𝑑
𝐶𝐷0−1

𝑑=𝐷𝑠
> 𝑅𝑑

𝐶

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                              (A25) 669 

∆𝑑
𝐹=

𝐾𝑑

1+𝑒𝑆𝑡(𝑇𝑑−𝑇𝑏)                                                              (A26) 670 

∑ ∆𝑑
𝐶𝐷0−1

𝑑=𝐷𝑠
> 𝑅𝑑

𝐶 ≥ ∑ ∆𝑑
𝐶𝐷0

𝑑=𝐷𝑠
                                                              (A27) 671 

∑ ∆𝑑
𝐹𝐷̂−1

𝑑=𝐷0
< 𝑅𝑑

𝐹 ≤ ∑ ∆𝑑
𝐹𝐷̂

𝑑=𝐷0
                                                              (A28) 672 

9. Alternating model (AM) 673 

AM fixes the start date of chilling period (𝐷𝑠
𝐶) as November 1st and the start date of anti-chilling 674 

period (𝐷𝑠
𝐹) as January 1st.  The difference between AM and the other models above is that the 675 

forcing requirement is not a parameter value but is decided by the length of chilling days (Fu et 676 
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al., 2012). Five parameters to be constrained in DA are: chilling temperature (𝑇𝑐), forcing base 677 

temperature (𝑇𝑏) and three coefficients (𝑎, 𝑏, 𝑐) in calculation of forcing requirement.  678 

∆𝑑
𝐶= {

1
0

 𝑖𝑓 𝑇𝑑 ≤ 𝑇𝑐

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                              (A29) 679 

∆𝑑
𝐹= {

𝑇𝑑 − 𝑇𝑏

0
 𝑖𝑓 𝑇𝑑 > 𝑇𝑏

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                              (A30) 680 

𝑅𝑑
𝐶 = ∑ ∆𝑖

𝐶𝑑
𝑖=𝐷𝑠

𝐶                                                              (A31) 681 

𝑅𝑑
𝐹 = 𝑎 + 𝑏 ∙ 𝑒−𝑐∙𝑅𝑑

𝐶
                                                             (A32) 682 

∑ ∆𝑑
𝐹𝐷̂−1

𝑑=𝐷𝑠
𝐹 < 𝑅𝑑

𝐹 ≤ ∑ ∆𝑑
𝐹𝐷̂

𝑑=𝐷𝑠
𝐹                                                              (A33) 683 

684 
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Table A1: A summary of parameters to be calibrated in nine phenological models. Their default 685 

parameter value and prior parameter range are shown. 686 

Model Parameter Description Unit Default Range 

GD 
𝑇𝑏 Base temperature ℃ 10 [-5, 25] 

𝑅𝑑 Forcing requirement ℃d 35 [0, 200] 

SF 
𝑇𝑏 Base temperature ℃ -1.5 [-10, 25] 

𝑅𝑑 Forcing requirement ℃ 50 [0, 500] 

BF 

𝑇𝑜 Optimal temperature ℃ 15 [10, 35] 

𝑇𝑛 Minimum temperature ℃ 0 [-10, 5] 

𝑅𝑑 Forcing requirement ℃d 11 [0, 50] 

DTS 

𝐸𝑎 Temperature sensitivity rate - 250 [1, 1500] 

𝑇𝑠 Standard temperature ℃ 10 [-30, 40] 

𝑅𝑑 Forcing requirement ℃d 50 [1, 200] 

TP 

𝑇𝑏 Base temperature ℃ 12.5 [0, 30] 

𝐷𝑛 Period length d 25 [0, 50] 

𝑅𝑑 Forcing requirement ℃d 20 [0, 150] 

CF 

R𝑑
𝐶  Chilling requirement ℃d -124 [-300, 0] 

R𝑑
𝐹  Forcing requirement ℃d 120 [0, 300] 

𝑇𝑐 Chilling base temperature  ℃ 5 [0, 30] 

SM 

𝑇𝑛 Minimum temperature ℃ -20 [-80, 0] 

𝑇𝑜 Optimal temperature ℃ 0 [-26, 10] 

𝑆𝑡 Temperature sensitivity - -1.8 [-5, 0] 

𝑇𝑏 Forcing base temperature ℃ 5 [-5, 35] 

R𝑑
𝐶  Chilling requirement ℃d 20 [0, 80] 

R𝑑
𝐹  Forcing requirement ℃d 20 [0, 80] 

PM 

𝑇𝑛 Minimum temperature ℃ -20 [-80, 0] 

𝑇𝑜 Optimal temperature ℃ 0 [-26, 10] 

𝑆𝑡 Temperature sensitivity - -0.6 [-1, 0] 

𝑇𝑏 Forcing base temperature ℃ 5 [-5, 35] 

R𝑑
𝐶  Chilling requirement ℃d 11.35 [0, 80] 

R𝑑
𝐹  Forcing requirement ℃d 44.01 [0, 80] 

𝐾𝑚 Forcing weight coefficient - 0.2 [0, 1] 

AM 

𝑇𝑐 Chilling base temperature ℃ 4.6 [-10, 10] 

𝑇𝑏 Forcing base temperature ℃ 5 [-5, 35] 

a Coefficient for forcing adjustment - 11.51 [0.01, 15] 

b Coefficient for forcing adjustment - 88 [0, 200] 

c Coefficient for forcing adjustment - -0.01 [-1, -10−4] 

 687 

 688 
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Appendix B: An example of output configuration file 689 

Output configuration file (e.g., config.txt) is to indicate the directories of observations and 690 

simulation output files as well as how they map to each other. Figure B1 is an example of the 691 

output configuration file. There are three blocks of functions to map simulation outputs to 692 

observed GPP, RE, and NEE. The blocks of mapping functions are separated by a blank line. 693 

Each mapping block starts with the directories of one observation, its observation variance and 694 

model outputs, which are separated by a hash key. If there is no observation variance available, 695 

users can ignore this directory. If multiple simulation outputs are used to correspond to one 696 

observation, the directories of simulation outputs are separated by a comma. The rest of the 697 

mapping block describes how to map simulation outputs to observations. The simu_map variable 698 

is simulation output after mapping. The simuList variable saves the simulation outputs specified 699 

in the first line. Taking the third mapping block in Fig. B1 as an example, simuList[0] saves 700 

contents in simuNEE_1.txt and simuList[0][0:365] saves the first 365 elements in this file.  701 

 702 

Figure B1: An example of output configuration file 703 
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Appendix C: An example of the namelist.txt file 704 

The Fig. C1 shows an example of the namelist.txt for the first study case with the DALEC 705 

model. Users need to prepare the namelist.txt before execution of data assimilation (DA) either 706 

manually or via GUI. Below describes the content in the namelist.txt. Detailed explanation or 707 

tutorials are available in the Zenodo repositories at the end of the appendixes.  708 

‘workpath’ is the directory where the MIDA executable are saved. ‘nsimu’ is the number 709 

of iterations in execution of data assimilation. ‘J_default’ is the default mismatch (i.e., cost 710 

function) to be compared in the first moving phase of data assimilation. ‘ProposingStepSize’ 711 

controls the jump scale in the proposing phase of data assimilation. Users can increase or 712 

decrease this value to adjust the acceptance rate to be in a range from 0.2 to 0.5. ‘paramFile’ is 713 

the directory of a csv file saving parameter-related information such as parameter range. 714 

‘obsList’ saves the directories of observations. Multiple observations are separated by semicolon. 715 

Similarly, ‘obsVarList’ saves the directories of observation variance in the same order as that of 716 

‘obsList’. ‘simuList’ saves the directories of simulation outputs corresponding to the 717 

observations. With GUI, MIDA reads directories in the output configuration file (e.g., config.txt) 718 

which users provide and assign values for ‘obsList’,‘obsVarList’, and ‘simuList’ in the 719 

namelist.txt automatically. In this case, if the directories of observations change, users only need 720 

to modify the output configuration file and generate the namelist.txt again with GUI-based 721 

MIDA.  722 

‘paramValue’ is the directory of a txt file where MIDA writes out new set of parameter 723 

values for model execution in each iteration of data assimilation. Its default value is 724 

‘ParameterValue.txt’ under the workpath specified in the first line of the namelist.txt. ‘model’ 725 

saves the directory of model executable. ‘nChains_convergeTest’ indicates whether to conduct 726 



 35 

German-Rubin (G-R) convergence test or not. If G-R test is used, its values is the number of 727 

multiple MCMC chains. If not, its value is zero. ‘convergeTest_startsFile’ is the directory of a 728 

csv file saving default parameter values as the start points in multiple MCMC chains. 729 

‘outConvergenceTest’ saves the results of G-R test. If ‘nChains_ConvergeTest’ is zero, both 730 

values of ‘convergeTest_startsFile’ and ‘outConvergenceTest’ are empty. ‘DAresultsPath’ is the 731 

directory saving the results of DA whose directories are also listed in the following six lines: 732 

‘outJ’ for the accepted mismatches; ‘outC’ for the accepted parameter values; ‘outRecordNum’ 733 

for the number of accepted parameter values; ‘outBestSimu’ for the best simulation outputs with 734 

the optimal parameter values; ‘outBestC’ for the optimal parameter values. For MIDA without 735 

GUI, ‘display_plot’ indicates whether or not to visualize the posterior distributions after DA.  736 

 737 

Figure C1. An example of the ‘namelist.txt’ file. In order to use MIDA, users need to prepare 738 

data and a model and specify their file names and directories in the ‘namelist.txt’ file.  739 
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Code and data availability. The code of MIDA is available at the Zenodo repository 740 

https://doi.org/10.5281/zenodo.4762725 (last access: May 2021). Data used in this study are 741 

available at https://doi.org/10.5281/zenodo.4762779. A comparison of the time cost using the 742 

embedded DA algorithm and MIDA is available at the Zenodo repository 743 

https://doi.org/10.5281/zenodo.4891319.  744 

 745 

Video supplement. Tutorial videos of how to use MIDA is available at 746 

https://doi.org/10.5281/zenodo.4762777  747 
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Table1:  Comparison among MIDA and available DA tools 

DA tool Agnostic DA algorithms Global optima 
Posterior 

distribution 
Visualization 

CCDAS No 

Automatic differentiation 

from Transformation of 

Algorithms in Fortran 

(TAF) 

No No No 

CARDAMOM No Markov Chain Monte Carlo Yes Yes No 

EcoPAD No Markov Chain Monte Carlo Yes Yes Yes 

OpenDA No 

EnKF, Ensemble Square-

Root Filter,  

Particle Filter 

Yes Yes No 

DART Yes EnKF Yes Yes No 

PDAF Yes EnKF Yes Yes No 

PEST Yes 
Levenberg-Marquardt 

method 

Rely on initial 

parameter values 
No No 

MIDA Yes Markov Chain Monte Carlo Yes Yes Yes 
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Table 2:  A summary of 21 parameters to be calibrated in DALEC model. The default parameter 

value and prior parameter range are shown. 

Parameter Description Unit Default Range 

𝐺𝐷𝐷𝑚𝑖𝑛 Growing degree day threshold 

for leaf out 
𝐶𝑜  𝑑 100 [10, 250] 

𝐺𝐷𝐷𝑚𝑎𝑥  Growing degree day threshold 

for maximum LAI 

𝐶𝑜  𝑑 200 [50, 500] 

𝐿𝐴𝐼𝑚𝑎𝑥 Seasonal maximum leaf area 

index 

- 4 [2, 7] 

𝑇𝑙𝑒𝑎𝑓𝑓𝑎𝑙𝑙  Temperature for leaf fall 𝐶𝑜  5 [0, 10] 

𝐾𝑙𝑒𝑎𝑓 Rate of leaf fall 𝑑−1 0.1 [0.03 0.95] 

𝑁𝑈𝐸 N use efficiency - 7 [1, 20] 

𝑅𝑒𝑠𝑔𝑟𝑜𝑤𝑡ℎ Growth respiration fraction - 0.2 [0.05, 0.5] 

𝑅𝑒𝑠𝑚 Base rate for maintenance 

respiration 

× 10−4 𝜇𝑚𝑜𝑙 𝑚−2𝑑−1 1 [0.1, 100] 

𝑄10𝑚𝑟
 Maintenance respiration T-

sensitivity 

- 2 [1, 4] 

𝐴𝑠𝑡𝑒𝑚  Allocation to plant stem pool - 0.7 [0.1, 0.95] 

𝜏𝑟𝑜𝑜𝑡 Root turnover time × 10−4 𝑑−1 5.48 [1.1, 27.4] 

𝜏𝑠𝑡𝑒𝑚 Stem turnover time × 10−5 𝑑−1 5.48 [1.1, 27.4] 

𝑄10ℎ𝑟
 Heterotrophic respiration T-

sensitivity 

- 2 [1, 4] 

𝜏𝑙𝑖𝑡𝑡𝑒𝑟 Base turnover for litter × 10−3 𝑢𝑚𝑜𝑙 𝑚−2𝑑−1 1.37 [0.548, 5.48] 

𝜏𝑠𝑜𝑚 Base turnover for soil organic 

matter 

× 10−4 𝑢𝑚𝑜𝑙 𝑚−2𝑑−1 9.13 [0.274, 2.74] 

𝐾𝑑𝑒𝑐𝑜𝑚𝑝 Decomposition rate × 10−3 𝑑−1 1 [0.1, 10] 

𝐿𝑀𝐴 Leaf mass per area 𝑔𝐶 𝑚−2  80 [20, 150] 

𝑋𝑠𝑡𝑒𝑚𝑖𝑛𝑖𝑡
 Initial value for stem C pool × 103 𝑔𝐶 5 [1, 15] 

𝑋𝑟𝑜𝑜𝑡𝑖𝑛𝑖𝑡
 Initial value for root C pool 𝑔𝐶 500 [100, 3000] 

𝑋𝑙𝑖𝑡𝑡𝑒𝑟𝑖𝑛𝑖𝑡
 Initial value for litter C pool 𝑔𝐶 600 [50, 1000] 

𝑋𝑠𝑜𝑚𝑖𝑛𝑖𝑡
 Initial value for soil organic C 

pool 
× 103 𝑔𝐶 7 [1, 25] 
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Table 3:  A summary of eight parameters to be calibrated in surrogate-based ELM model. The 

default parameter value and prior parameter range are shown. 

Parameter Description Unit Default Range 

𝑐𝑟𝑜𝑜𝑡 Rooting depth 

distribution parameter 

𝑚−1 2.0 [0.5, 4] 

𝑆𝐿𝐴𝑡𝑜𝑝 Specific leaf area at 

canopy top 
𝑚2𝑔𝐶−1 0.03 [0.01, 0.05] 

𝑁𝑙𝑒𝑎𝑓 Fraction of leaf N in 

RuBisCO  

- 0.1007 [0.1, 0.4] 

𝐶𝑁𝑟𝑜𝑜𝑡 Fine root C:N ratio - 42 [25, 60] 

𝐴𝑟2𝑙 Allocation ratio of fine 

root to leaf  

- 1.0 [0.3, 1.5] 

𝑅𝑒𝑠𝑚 Base rate for 

maintenance respiration 
× 10−6𝜇𝑚𝑜𝑙 𝑚−2𝑠−1 2.525 [1.5, 4] 

𝑡𝑙𝑒𝑎𝑓𝑓𝑎𝑙𝑙  Critical day length for 

senescence 

× 104 s 3.93 [3.5, 4.5] 

𝐺𝐷𝐷𝑜𝑛𝑠𝑒𝑡  Accumulated growing 

degree days for leaf out 

𝐶 𝑜 𝑑 800 [600, 1000] 

 



 51 

 

Table 4:  A summary of two parameters to be calibrated in the BiomE model. The default 

parameter value and prior parameter range are shown. 

Parameter Description Unit Default Range 

𝑉𝑎𝑛𝑛𝑢𝑎𝑙 Annual productivity per 

unit leaf area 

𝑘𝑔𝐶 𝑦−1𝑚2 0.4 [0.2, 2] 

𝑀𝑐𝑎𝑛𝑜𝑝𝑦 Annual mortality rate in 

canopy layer 

𝑦−1 0.02 [0.01, 0.08] 
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Figure captions 

Figure 1: The three-step workflow of Model Independent Data Assimilation (MIDA) module. 

The workflow includes data preparation, execution of data assimilation (DA), and visualization. 

The data preparation step is to provide all the formatted essential data for DA via user input. The 

execution step is to calibrate parameter values towards a constrained posterior distribution with 

the fusion of observations. The visualization step is to diagnose the effects of DA. Rhombus in 

orange represents user-input data. Rectangle represents procedures and document/multidocument 

shape is for data files in computers. Dashed lines indicate locations of data. Solids lines indicate 

data flow pathways. With the three-step workflow, DA is agnostic to specific models and users 

will be released from technical burdens.  

Figure 2: the GUI-MIDA window includes two panels. The upper panel is to set up a data 

assimilation task. Inputs can be loaded and applied to the step 1 on data preparation for DA. The 

lower panel is to run DA as described in step 2 and visualize the posterior distributions of 

parameters in step 3.   

Figure 3: Comparison between the simulated daily net ecosystem exchange (NEE) by DALEC 

and the observed NEE at Harvard Forest from 1992 to 2006. Red circles represent modeled NEE 

with the optimized parameter values and green circles represent simulated NEE with the original 

parameter values. Simulations of DALEC are substantially improved after data assimilation in 

comparison with those before data assimilation. 

Figure 4: Comparison between posterior distributions (red line) and default values (gray dash 

line) of the 21 parameters in DALEC. The peak in posterior distribution is the constrained 

parameter value from maximum likelihood estimation. This distinctive mode and its divergence 

from the default value indicates the effects of DA. Most parameters are well constrained, and 

some are far different from the original values. 

Figure 5: Comparison between posterior distributions (red line) and default values (gray dash 

line) of the eight parameters in surrogate-based ELM. The peak in posterior distribution is the 

constrained parameter value from maximum likelihood estimation. This distinctive mode and its 

divergence from the default value indicates the effects of DA. Most parameters are well 

constrained, and some are far different from the original values. 

Figure 6: Comparison between the simulated NEE, total leaf area index, latent heat flux by 

surrogate-based ELM and the observed ones at Missouri Ozark flux site from 2006 to 2014. The 
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blue lines indicate the observations, and their 95% confidence interval is in the dashed area. The 

green and red lines indicate the simulations with default parameter values and optimized values 

respectively. Simulations are generally improved after DA for all these three variables. 

Figure 7: Comparison between the simulated growth date by 9 phenology models after DA and 

the observed growth date for Larix laricina with +9℃ treatment at SPRUCE site from 2016 to 

2018. Colored number indicates different models and shape represents different year. Overall, 

model 6,7,8,9 achieve better performance after DA. 

Figure 8: Comparison between posterior distributions (red line) and default values (gray dash 

line) of the two parameters in BiomeE. The peak in posterior distribution is the constrained 

parameter value from maximum likelihood estimation. This distinctive mode and its divergence 

from the default value indicates the effects of DA. All parameters are well constrained and 

different from their original values. 

Figure 9: Comparison between the simulated leaf area index (LAI) by BiomeE and the observed 

NEE at Willow Creek. Circles represent modeled NEE with the optimized parameter values and 

triangles represent simulated NEE with the original parameter values. Simulations of LAI are 

substantially improved after data assimilation in comparison with those before data assimilation.
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Figure 1: The three-step workflow of Model Independent Data Assimilation (MIDA) module. 

The workflow includes data preparation, execution of data assimilation (DA), and visualization. 

The data preparation step is to provide all the formatted essential data for DA via user input. The 

execution step is to calibrate parameter values towards a constrained posterior distribution with 

the fusion of observations. The visualization step is to diagnose the effects of DA. Rhombus in 

orange represents user-input data. Rectangle represents procedures and document/multidocument 

shape is for data files in computers. Dashed lines indicate locations of data. Solids lines indicate 

data flow pathways. With the three-step workflow, DA is agnostic to specific models and users 

will be released from technical burdens.  
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Figure 2: the GUI-MIDA window includes two panels. The upper panel is to set up a data 

assimilation task. Inputs can be loaded and applied to the step 1 on data preparation for DA. The 

lower panel is to run DA as described in step 2 and visualize the posterior distributions of 

parameters in step 3.   
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Figure 3: Comparison between the simulated daily net ecosystem exchange (NEE) by DALEC 

and the observed NEE at Harvard Forest from 1992 to 2006. Red circles represent modeled NEE 

with the optimized parameter values and green circles represent simulated NEE with the original 

parameter values. Simulations of DALEC are substantially improved after data assimilation in 

comparison with those before data assimilation. 
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Figure 4: Comparison between posterior distributions (red line) and default values (gray dash 

line) of the 21 parameters in DALEC. The peak in posterior distribution is the constrained 

parameter value from maximum likelihood estimation. This distinctive mode and its divergence 

from the default value indicates the effects of DA. Most parameters are well constrained, and 

some are far different from the original values. 
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Figure 5: Comparison between posterior distributions (red line) and default values (gray dash 

line) of the eight parameters in surrogate-based ELM. The peak in posterior distribution is the 

constrained parameter value from maximum likelihood estimation. This distinctive mode and its 

divergence from the default value indicates the effects of DA. Most parameters are well 

constrained, and some are far different from the original values. 
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Figure 6: Comparison between the simulated NEE, total leaf area index, latent heat flux by 

surrogate-based ELM and the observed ones at Missouri Ozark flux site from 2006 to 2014. The 

blue lines indicate the observations, and their 95% confidence interval is in the dashed area. The 

green and red lines indicate the simulations with default parameter values and optimized values 

respectively. Simulations are generally improved after DA for all these three variables. 



 60 

 

 
 

Figure 7: Comparison between the simulated growth date by 9 phenology models after DA and 

the observed growth date for Larix laricina with +9℃ treatment at SPRUCE site from 2016 to 

2018. Colored number indicates different models and shape represents different year. Overall, 

model 6,7,8,9 achieve better performance after DA. 
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Figure 8: Comparison between posterior distributions (red line) and default values (gray dash 

line) of the two parameters in BiomeE. The peak in posterior distribution is the constrained 

parameter value from maximum likelihood estimation. This distinctive mode and its divergence 

from the default value indicates the effects of DA. All parameters are well constrained and 

different from their original values. 
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Figure 9: Comparison between the simulated leaf area index (LAI) by BiomeE and the observed 

NEE at Willow Creek. Circles represent modeled NEE with the optimized parameter values and 

triangles represent simulated NEE with the original parameter values. Simulations of LAI are 

substantially improved after data assimilation in comparison with those before data assimilation. 
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