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ABSTRACT 24 

Models are an important tool to predict Earth system dynamics. An accurate prediction of future 25 

states of ecosystems depends on not only model structures but also parameterizations. Model 26 

parameters can be constrained by data assimilation. However, applications of data assimilation to 27 

ecology are restricted by highly technical requirements such as model-dependent coding. To 28 

alleviate this technical burden, we developed a model-independent data assimilation (MIDA) 29 

module. MIDA works in three steps including data preparation, execution of data assimilation, 30 

and visualization. The first step prepares prior ranges of parameter values, a defined number of 31 

iterations, and directory paths to access files of observations and models. The execution step 32 

calibrates parameter values to best fit the observations and estimates the parameter posterior 33 

distributions. The final step automatically visualizes the calibration performance and posterior 34 

distributions. MIDA is model independent and modelers can use MIDA for an accurate and 35 

efficient data assimilation in a simple and interactive way without modification of their original 36 

models. We applied MIDA to four types of ecological models: the data assimilation linked 37 

ecosystem carbon (DALEC) model, a surrogate-based energy exascale earth system model: the 38 

land component (ELM), nine phenological models and a stand-alone biome ecological strategy 39 

simulator (BiomeE). The applications indicate that MIDA can effectively solve data assimilation 40 

problems for different ecological models. Additionally, the easy implementation and model-41 

independent feature of MIDA breaks the technical barrier of black-box applications of data-42 

model fusion in ecology. MIDA facilitates the assimilation of various observations into models 43 

for uncertainty reduction in ecological modeling and forecasting.  44 

Keywords: 45 
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1. Introduction 47 

Ecological models require a large number of parameters to simulate biogeophysical and 48 

biogeochemical processes (Bonan, 2019; Ciais et al., 2013; Friedlingstein et al., 2006), and 49 

specify model behaviors (Luo et al., 2016; Luo and Schuur, 2020). Parameter values in 50 

ecological models are mostly determined in some ad hoc fashions (Luo et al., 2001), leading to 51 

considerable biases in predictions (Tao et al., 2020). The situation becomes even worse when 52 

more detailed processes are incorporated into models (De Kauwe et al., 2017; Lawrence et al., 53 

2019). Data assimilation (DA), a statistically rigorous method to integrate observations and 54 

models, is gaining increasing attention for parameter estimation and uncertainty evaluation. It 55 

has been successfully applied to many ecological models (Fox et al., 2009; Keenan et al., 2012; 56 

Richardson et al., 2010; Safta et al., 2015; Wang et al., 2009; Williams et al., 2005; Zobitz et al., 57 

2011). However, almost all those DA studies require model-dependent, invasive coding (Walls et 58 

al., 2005). This requires a DA algorithm to be programmed for a specific model. Such model-59 

dependent coding creates a large technical barrier for ecologists to use DA to solve prediction 60 

and uncertainty quantification problems in ecology. Thus a model-independent DA toolkit is 61 

required to facilitate the use of DA technique in ecology.  62 

DA is a powerful approach to combine models with observations and can be used to 63 

improve ecological research in several ways (Luo et al., 2011). First, DA can be used for 64 

parameter estimation (Bloom et al., 2016; Hararuk et al., 2015; Hou et al., 2019; Ise and 65 

Moorcroft, 2006; Ma et al., 2017; Ricciuto et al., 2011; Scholze et al., 2007). It enables the 66 

optimization of parameter values across sites, time and treatments (Li et al., 2018; Luo and 67 

Schuur, 2020). For example, Hararuk and his colleagues applied DA to a global land model and 68 

substantially improved the explanability of the global variation in soil organic carbon (SOC) 69 
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from 27% to 41% (Hararuk et al., 2014). When DA was combined with deep learning to improve 70 

spatial distributions of estimated parameter values, for example, the Community Land Model 71 

version 5 (CLM5) predicted the SOC distribution in the US continent with much higher 𝑅2 of 72 

0.62 than CLM5 with default parameters (𝑅2 = 0.32) (Tao et al., 2020). Second, DA can be used 73 

to select alternative model structures to better represent ecological processes (Liang et al., 2018; 74 

Van Oijen et al., 2011; Shi et al., 2018; Smith et al., 2013; Williams et al., 2009). In the study by 75 

Liang et al. (2018), DA was used to evaluate four models. Aand a two-pool interactive model 76 

was selected after DA to best represent SOC decomposition with priming (Liang et al., 2018). 77 

Additionally, DA can be applied for data-worth analysis to locate the most informative data to 78 

reduce uncertainty, thus guiding the sensor network design. (Keenan et al., 2013; Raupach et al., 79 

2005; Shi et al., 2018; Williams et al., 2005). One DA study at Harvard Forest (Keenan et al., 80 

2013) indicated that only a few data sources contributed to the significant reduction in parameter 81 

uncertainty. In spite of powerful applications of DA to ecological research, computational cost is 82 

a major hurdle, especially with complex models. Fer et al. (2018) developed a Bayesian model 83 

emulation to reduce the time cost of DA from 112h to 6h with the simplified Photosynthesis and 84 

Evapotranspiration model.  Overall, DA is essential for ecological modeling and forecasting 85 

(Jiang et al., 2018) and is helpful for evaluation of different inversion methods (Fox et al., 2009).   86 

Applications of traditional DA to ecological research require highly technical skills of 87 

users. A successful DA application usually involves model-dependent coding to integrate 88 

observations into models. This requires users to have knowledge about model programing. For 89 

example, if a complex model (e.g., the community land model) is used in DA, users need to 90 

know the programming language (e.g., Fortran) of the model and its internal content to write DA 91 

algorithm into the model source code before DA can be conducted. The learning curve for model 92 
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programing is steep for general ecologists. Furthermore, users often need to update the 93 

programming knowledge when a different model is used in DA. For example, scientists who 94 

implemented the DA algorithm coded in MATLAB ( Xu et al., 2006) to an ecosystem carbon 95 

cycle model programmed in Fortran (e.g., TECO) need to understand both MATLAB and 96 

Fortran (Ma et al., 2017). Moreover, DA often involves reading observation files about a specific 97 

study site. As a result, users usually have to update the codes of model-dependent DA to read 98 

new observations from every new study site.  99 

A number of tools have been developed to facilitate DA applications (Table 1) but many 100 

of them are model dependent, such as the Carbon Cycle Data Assimilation Systems (CCDAS) 101 

(Rayner et al., 2005; Scholze et al., 2007), the Carbon Data Model Framework (CARDAMOM) 102 

(Bloom et al., 2016), and the Ecological Platform for Assimilating Data (EcoPAD) into model 103 

data assimilation systems (Huang et al. 2019) and Predictive Ecosystem Analyzer (PEcAn) 104 

(LeBauer et al., 2013). These tools combine DA algorithms with a specific model. For example, 105 

CCDAS specified the DA algorithm to the Biosphere Energy Transfer Hydrology (BETHY) 106 

model (Rayner et al., 2005). The hardcoding feature of aforementioned tools make them 107 

inflexible to be applied to different models. 108 

There are some model independent DA tools that are not tailored to a specific model, 109 

such as Data Assimilation Research Testbed (DART) (Anderson et al., 2009), the open Data 110 

Assimilation library (openDA) (Ridler et al., 2014), the Parallel Data Assimilation Framework 111 

(PDAF) (Nerger and Hiller, 2013) and Parameter Estimation & Uncertainty Analysis software 112 

suit (PEST) (Doherty, 2004).  113 

However, these model-independent tools suffer from some limitations for a general and 114 

flexible DA application. For example, openDA requires users to code three functions to initialize 115 
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a Java class (Ridler et al., 2014) (Table 1). DART enables incorporating a new model through a 116 

range of interfaces (Anderson et al., 2009). It has been successfully applied to atmospheric and 117 

oceanic models with currently available interfaces (Anderson et al., 2009; Raeder et al., 2012) 118 

and recently to the community land model (Fox et al., 2018). It is likely that users may need to 119 

prepare new interfaces for new ecological models to use DART. DART and PDAF adopted the 120 

Ensemble Kalman Filter (EnKF) method (Evensen, 2003), which may makes it difficult to obey 121 

mass conservation for biogeochemical models. This is because the parameter values estimated by 122 

EnKF change each time when new data sets are assimilated (Allen et al., 2003; Gao et al., 2011; 123 

Trudinger et al., 2007). The disruptive sudden changes in estimated parameter values at time 124 

points when data are assimilated by EnKF usually do not reflect reality of biogeochemical cycles 125 

in the real world. PEST utilizes Levenberg-Marquardt method (Levenberg, 1944) which is a 126 

local optimization method for parameter estimation. If the relationship between simulation 127 

outputs and parameters are highly nonlinear, which is common in ecological models, this method 128 

may trap into a locally optimization solution (Doherty, 2004).  129 

In this work, we developed a model-independent DA module (MIDA) to enable a general 130 

and flexible application of DA in ecology. MIDA was designed as a highly modular tool, 131 

independent of specific models, and friendly to users with limited programming skills and/or 132 

technical knowledge of DA algorithms. Additionally, MIDA implemented advanced Markov 133 

Chain Monte Carlo (MCMC) algorithms for DA analysis which can accurately quantify the 134 

parameter uncertainty with informative posterior distribution. The anticipated user community in 135 

this initial phase of MIDA development is the biogeochemical modelers who are looking for 136 

appropriate parameter estimation methods. In the following Section 2, we first introduce the 137 

development details of MIDA and its usage. In Section 3, we demonstrate the application of 138 
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MIDA to four different types of ecological models. In Section 4, we discuss the strengths and 139 

weaknesses of MIDA in ecological modelling and lastly we give our concluding remarks in 140 

Section 5.  141 

 142 

2. Model-independent data assimilation (MIDA) 143 

2.1 Bayes’s theorem and DA algorithm 144 

Based on Bayes’ theorem, DA is a statistical approach algorithm to constrain parameter values 145 

and estimate their posterior density distributions through assimilating observations into a model. 146 

The posterior density distributions 𝑝(𝐶|𝑍) of parameters 𝐶 for a given observation 𝑍 can be 147 

obtained from prior parameterdensity distributions 𝑝(𝐶) and the likelihood function 𝑝(𝑍|𝐶): 148 

𝑝(𝐶|𝑍) ∝ 𝑝(𝑍|𝐶)𝑝(𝐶)                                                             (1)           149 

The prior density functiondistribution 𝑝(𝐶) is assumed as a uniform distribution over the 150 

parameter range. And the likelihood function is negatively proportional to a cost function, 𝐽 as: 151 

𝑝(𝑍|𝐶) ∝ 𝑒𝑥𝑝(−𝐽)                                                            (2) 152 

The cost function measures the misfit between simulation outputs and observations and is 153 

described in more detail in section 2.4. The posterior density distributions 𝑝(𝐶|𝑍) is estimated 154 

from sampling  parameter values to maximize the likelihood function 𝑝(𝑍|𝐶) or minimize the 155 

cost function J. DA usually uses a sampling technique, such as Markov chain Monte Carlo 156 

(MCMC) in this MIDA. The MCMC algorithm successively generates a new set of parameter 157 

values from the prior parameter ranges and requires model run with these new parameter values. 158 

Then the cost function is calculated to determine whether this new set of parameter values will 159 

be accepted or not according to the Metropolis-Hastings criterion (see more description in 160 

section 2.4). All accepted parameter values are used to generate posterior distributions where the 161 
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distinctive mode indicates the parameter uncertainty is well constrained. Meanwhile, we derive 162 

maximum likelihood estimates (MLEs) of parameters from the posterior density distributions.  163 

MIDA realizes model-independent Bayesian-based DA to estimate posterior density 164 

distributions and MLEs of parameters via data exchanges between a given model and DA 165 

algorithm.  166 

This algorithm successively generates a new set of parameter values and requires model run with 167 

these new parameter values. Then the misfit between model simulation outputs and observations 168 

is calculated to determine whether this new set of parameter values will be accepted or not. The 169 

previously accepted parameter values help to generate new parameter values in the next iteration. 170 

Each iteration incorporates a model-dependent data exchange to transfer parameter values, model 171 

outputs, observations, etc. between DA algorithm and the model. Traditional DA requires 172 

implementing these data exchanges through model-specific programming into model code. As a 173 

result, a DA application inevitably involves intrusive modification of the original model. 174 

 175 

2.2 An overview of MIDA 176 

MIDA (https://github.com/Celeste-Huang/MIDA, last access: Feb 2021) is a module that allows 177 

for automatic implementation of data assimilation without intrusive modification or coding of the 178 

original model (https://doi.org/10.5281/zenodo.4762725, last access: May 2021). Its workflow 179 

includes three steps: data preparation, execution of data assimilation, and visualization (Fig. 1). 180 

Step 1 (data preparation) is to establish the standardized data exchange between DA algorithm 181 

and the model. Step 2 (execution of data assimilation) is to run DA as a black box independent of 182 

the model. Step 3 (visualization) is to diagnose parameter uncertainty after DA. The modularity 183 

of the 3-step workflow is designed to enable MIDA for a rapid DA application and adaption to a 184 

https://doi.org/10.5281/zenodo.4762725
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new model. In the following, we introduce the three-step workflows of MIDA, its technical 185 

implementation and usage in detail. 186 

 187 

2.3 Step 1: Data preparation  188 

Step 1 is designed to initialize data exchange to transfer parameter values, model outputs, 189 

observations and their variances between DA algorithm and the model to be used. Four types of 190 

information are required either from interactive input or by modifying the ‘namelist.txt’ file (Fig. 191 

1, 2). The first type is about DA configuration, including the number of sampling series in DA 192 

and the working path where the outputs of DA will be saved. The number of a sampling series is 193 

essential in a DA task to define how many times parameter values are sampled to run the model. 194 

The second type of information is about parameter ranges and their covariance. The third is the 195 

model executable file. Finally, the fourth type is an output configuration file which contains the 196 

file paths of model outputs, observations, and their variance. This file also instructs how to read 197 

model outputs and compare each output with corresponding observation.  198 

Traditional DA requires users to modify the code of model to incorporate the process of 199 

data exchange between DA algorithm and the model. Therefore, the program of data exchange in 200 

traditional DA is model-specific and users need to repeat such program when a new model 201 

comes. In MIDA, the process of data exchange calls a model executable file which hides hinders 202 

the details of model code. When applied to a new model, MIDA only requires users to provide a 203 

different model executable file in the ‘namelist.txt’ file and does not involve any additional 204 

coding in either the model or MIDA. Thus, MIDA lowers the technical barrier for general 205 

ecologists to conduct DA.  206 
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Traditional DA usually preset the number of parameters and the model outputs according 207 

to a specific model before initializing the data exchange. This is because data exchange between 208 

DA algorithm and model uses memory to transfers items such as parameter values. Instead, 209 

MIDA organizes items in data exchange using different files. Items in data exchange are decided 210 

by the data file loaded when MIDA is running. The number of parameter values, for example, 211 

will be decided after the file of parameter range is read in MIDA. Through modifying files, 212 

MIDA allows making efficient choices about the model-related items in data exchange. Thus, 213 

MIDA is highly flexible and modular for DA with different models. 214 

Traditional DA also preset observation types in the data exchange according to a specific 215 

study before the data exchange. For example, if the traditional DA uses carbon flux observation, 216 

it cannot switch to satellite remote sensing products without additional coding. MIDA uses the 217 

concepts of object-orient programming (Mitchell and Apt, 2003) and dynamic initialization 218 

(Cline et al., 1998) in computer science to provide a homogenous way to create various 219 

observation types from a unified prototype class. A prototype class includes variables to store 220 

observations and their variance and functions (e.g., read from observation files). The values in 221 

variables are dynamically decided after the observation files are loaded when MIDA is running. 222 

Different observation types derive from the prototype class with a high degree of reusability of 223 

most functions. In such way, MIDA only requires users to provide different filenames of the 224 

observations to be integrated in DA. Therefore, MIDA is highly flexible and modular for DA to 225 

assimilate various observations. 226 

 227 

2.4 Step 2: Execution of data assimilation  228 
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After the establishment of the standardized data exchange (step 1), step 2 is to run DA as a black 229 

box for users without knowledge of DA itself. Notwithstanding the black-box goal, this section 230 

provides a general description of DA below.  231 

Data assimilation as a process integrates observations into a model to constrain 232 

parameters and estimate parameter uncertainties. Data assimilation usually uses some types of 233 

sampling algorithms, such as Markov chain Monte Carlo (MCMC), to generate posterior 234 

parameter distribution under a Bayesian inference interference framework (Box and Tiao, 1992). 235 

As mentioned in section 2.1, DA with MCMC algorithm estimates the posterior densitiy 236 

distributions through sampling to maximize likelihood function 𝑝(𝑍|𝐶) or minimize the misfit 𝐽 237 

between simulation outputs and observations. This version of MIDA uses MCMC algorithm 238 

implemented by the Metropolis-Hasting (MH) sampling method (Hastings, 1970; Metropolis et 239 

al., 1953)(Harrio et al., 2001). The future version of MIDA could incorporate other data 240 

assimilation algorithms. Each iteration in the Metropolis-Hasting sampling includes a proposing 241 

phase and a moving phase. The proposing phase generates a new set of parameter values based 242 

on the starting point for the first iteration or current accepted parameter values in the following 243 

iterations. If parameter covariance (𝑐𝑜𝑣𝑝𝑎𝑟𝑎𝑚) is specified in step 1 on data preparation, this 244 

proposing phase will draw new parameter values (𝐶𝑃𝑛𝑒𝑤) within the prior ranges from a 245 

Gaussian distribution 𝑁(𝐶𝑃𝑜𝑙𝑑 , 𝑐𝑜𝑣𝑝𝑎𝑟𝑎𝑚) where 𝐶𝑃𝑜𝑙𝑑 is the predecessor set of parameter 246 

values. Without parameter covariance, new set of parameter values will be generated from a 247 

uniform distribution within the prior ranges (Xu et al., 2006).  248 

The moving phase first calculates mismatches between observations and the model 249 

simulation with the new set of parameter values as a cost function (𝐽𝑛𝑒𝑤 in Eq.13) (Xu et al. 250 

2006):    251 
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𝐽𝑛𝑒𝑤 =  ∑
∑ [𝑍𝑖(𝑡)−𝑋𝑖(𝑡)]2

𝑡∈𝑜𝑏𝑠(𝑍𝑖)

2𝜎𝑖
2

𝑛
𝑖=1                                                                           (13) 252 

Where 𝑛 is the number of observations,  𝑍𝑖(𝑡) is the ith observation at time 𝑡, 𝑋𝑖(𝑡) is the 253 

corresponding simulation, 𝜎𝑖
2  is the variance of the observations. The error is assumed to 254 

independently follow a Gaussian distribution. This new set of parameter values will be accepted 255 

if 𝐽𝑛𝑒𝑤 is smaller than 𝐽𝑜𝑙𝑑 , the cost function with the previous set of accepted parameter values, 256 

or the value, exp (−
𝐽𝑛𝑒𝑤

𝐽𝑜𝑙𝑑
), is larger than a random number selected from a uniform distribution 257 

from 0 to 1 according to the Metropolis criterion (Liang et al., 2018; Luo et al., 2011; Shi et al., 258 

2018; Xu et al., 2006). Once the new set of parameter values is accepted, 𝐽𝑛𝑒𝑤 becomes 𝐽𝑜𝑙𝑑. 259 

Those two phases of sampling will be iteratively executed until the number of sampling series set 260 

in step 1 on preparation of DA is reached. Finally, the posterior density distributions can be 261 

generated from all the accepted parameter values. 262 

MIDA realizes the execution of data assimilation according to the procedure described 263 

above. First, MIDA uses a ‘call’ function to execute model simulations to get values of 𝑋𝑖(𝑡). 264 

Observations 𝑍𝑖(𝑡) and their variance 𝜎𝑖
2 are already provided via the standardized data 265 

exchange as described in step 1. Then, MIDA calculates  𝐽𝑛𝑒𝑤 according to Eq. 3 equation 1 to 266 

decide the acceptance of the current parameter values used in this simulation. If accepted, MIDA 267 

saves this set of parameter values and associated  𝐽𝑛𝑒𝑤 values in 𝐶𝑃𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑  and 𝐽𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑  arrays 268 

respectively and triggers new proposing phrase based on this set of accepted parameter values. If 269 

not, MIDA discards this set of parameter values and generates another new set of parameter 270 

values. MIDA saves the new parameter values generated in the proposing phrase to 271 

“ParameterValue.txt”, from which the model reads before execution of the next model 272 

simulation. MIDA repeats the proposing and moving phases until the number of sampling series 273 

Formatted: Right
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is reached. At the end, MIDA selects the best parameter values through maximum likelihood 274 

estimation and run model again using this set of values to get optimized simulation outputs 275 

𝑋𝑖(𝑡).  Then MIDA saves the arrays of accepted parameters, associated errors, maximum 276 

likelihood estimates (MLEs), and optimized state variables 𝑋𝑖(𝑡) to four files, 277 

“parameter_accepted.txt”, “J_accepted.txt”, “MLE.txt”, and “OptimizedSimu.txt”, respectively. 278 

This execution of DA algorithm in MIDA enables users to conduct DA as a black box 279 

and is independent of any particular model.  280 

 281 

2.5 Step 3: Visualization 282 

Step 3 is to visualize the results of DA in step 2. The end products of DA are accepted parameter 283 

values, their associated 𝐽𝑛𝑒𝑤 values, the maximum likelihood estimates, and optimized 284 

simulation results as saved in the output files. MIDA enables visualization of parameter posterior 285 

probabilistic density distributions with a Python script. In the script, MIDA first read accepted 286 

parameter values from “parameter_accepted.txt” file. Then, MIDA generates 287 

posterior probabilistic density function (PPDF) for each parameter via ‘kdeplot’ function in the 288 

‘seaborn’ package. The maximum likelihood estimates of parameters correspond to the peaks of 289 

PPDF. The distinctive mode of PPDF indicates how well the parameter uncertainty is 290 

constrained. Finally, MIDA visualizes the PPDF for all parameters in a figure using the 291 

‘matplotlib’ package.  292 

   293 

2.6 Implementation and architecture of MIDA 294 

MIDA is equipped with a graphical user interface (GUI) and users can easily execute it through 295 

an interactive window. Users can also run MIDA as a script program without the GUI.  MIDA is 296 
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written in Python (version 3.7). For the GUI-version, all relevant Python packages used in MIDA 297 

are compiled together, thus users do not need to install them by themselves. For the non-GUI 298 

version, users need to install Python 3.7 and relevant packages (i.e., numpy, pandas, shutil, 299 

subprocess, matplotlib, math, os, and seaborn). MIDA is compatible with model source codes 300 

written in multiple programming language (e.g., Fortran, C/C++, C#, MATLAB, R, or Python). 301 

It is also independent of multiple operation systems (e.g., Windows, Linux, MacOS). In addition, 302 

MIDA is also able to run on high-performance computing (HPC) platforms via task management 303 

systems (e.g., Slurm). 304 

 The architecture of MIDA is class-based and each class is designed to describe an object 305 

(e.g., parameter, observations, etc.) with variables and operations. Five classes are defined in 306 

MIDA: parameter, observation, initialization, MCMC algorithm and the main program. The 307 

main program is the start of MIDA execution. It calls functions from all other classes to finish 308 

three-step workflow. As described in section 2.2, parameter and observation classes contain 309 

variables to be transferred in data exchanges via file I/O operations. These operations are 310 

implemented using the ‘numpy’ package. The initialization class is to read ‘namelist.txt’ in step 311 

1 on data preparation and to assign values for the variables in all other classes. Then the class of 312 

MCMC algorithm conducts DA as described in step 2. In this step, the simulation operation uses 313 

a ‘call’ function in ‘subprocess’ package to call model executable. At the start of model 314 

simulation, MIDA writes new parameter values to the ‘ParameterValue.txt’ file in the ‘working 315 

path’ directory specified in step 1 on data preparation. Then the model executable read parameter 316 

values from the ‘ParameterValue.txt’ file and run. After model simulation, DA algorithm can 317 

read the model outputs by the output filenames indicated in the output configuration file. After 318 

DA, step 3 executes an additional Python script to read accepted parameter values and plot the 319 
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posterior density distributions of parameters. The plotting operations uses ‘matplotlib’ and 320 

‘seaborn’ packages. The implementation of GUI uses pyQt5 toolkit to support interactive usage 321 

of MIDA. Users can also run MIDA in a non-interactive way with a ‘main.py’ script to trigger 322 

the three-step workflows. 323 

 324 

2.7 User information of MIDA 325 

In order to use MIDA, users need to prepare data and a model. The data to be used in MIDA are 326 

prior ranges and default values of parameters, parameter covariances, output configuration file, 327 

observations and their variances. They are organized in different files. Before running MIDA, 328 

users need to specify their filenames as suggested in step 1. When users want to use different 329 

data sets in DA, they can simply change filenames with the new data sets via GUI or in the 330 

‘namelist.txt’ file. Figure C1 is an example of the ‘namelist.txt’ file for a data assimilation study 331 

with the DALEC model. The model to be used in MIDA should have those to-be-estimated 332 

parameter values not fixed in model source code rather than changeable through 333 

‘ParameterValue.txt’ file. MIDA writes new parameter values in each proposing phase during 334 

DA to the ‘ParameterValue.txt’ file, from which the model reads the parameter values to run the 335 

simulation.  336 

To calculate the cost function, 𝐽, we have to have a one-to-one match between 337 

observations and model outputs. For example, phenology models in one of the application cases 338 

of MIDA below generate discrete dates of leaf onset, which is a one-to-one match to the 339 

observations of spring leaf onset. In this case, observation  𝑍𝑖(𝑡) and model output 𝑋𝑖(𝑡) to be 340 

used in calculation of 𝐽 is straightforward. In the application case for dynamic vegetation, the 341 

data to be used are leaf area in six layers in a forest of 302 years old whereas the model simulates 342 
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leaf areas in eight layers from 0 to 800 years. To match observation, the model generates outputs 343 

of leaf areas in six layers when simulated forest age reaches 302 years. This requires users to 344 

prepare an output configuration file to instruct MIDA to read model outputs and re-organize their 345 

outputs to match observation. The output configuration file starts with a single line listing an 346 

observation filename and its corresponding output filenames. Content after the directories in the 347 

output configuration file are instructions to map model outputs with the observation signified in 348 

the first line. Following lines are an instruction set to be operated on the output files signified 349 

above. Each instruction is to match one or continuous elements in observation with elements in 350 

outputs with the same length. A blank line means there are no further instructions. Then a new 351 

matching between another observation and model outputs starts. An example of output configure 352 

file is available in Appendix B. 353 

Once MIDA finishes the execution of data assimilation, users may need basic knowledge 354 

to assess the performance of DA. For example, the acceptance rate, which is given by MIDA, is 355 

the fraction of proposed parameter values that is accepted. Ideally, the acceptance rate should be 356 

about 230 ~ 540% (Xu et al., 2006). A very low acceptance rate indicates that many new 357 

proposed parameter values (𝐶𝑃𝑛𝑒𝑤) are rejected because 𝐶𝑃𝑛𝑒𝑤 jumps too far away from the 358 

previously accepted parameter values (Robert and Casella, 2013; Roberts et al., 1997). In this 359 

case, users are suggested to reduce a jump scale in the proposing phase. On the other hand, a 360 

very high acceptance rate is likely because 𝐶𝑃𝑛𝑒𝑤 moves slowly from the previously accepted 361 

parameter values. Users may increase the jump scale.  362 

In addition, DA usually requires a convergence test to examine whether posterior 363 

distributions from different sampling series converge or not. Convergence test requires running 364 

DA parallelly or in multiple times with different initial parameter values. MIDA provides a 365 
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Gelman-Rubin (G-R) test (Gelman and Rubin, 1992) for this purpose. To use the G-R test, users 366 

need to prepare a file containing initial parameters values in different sampling series and 367 

indicate its filename in the ‘namelist.txt’ file as described in step 1. If the G-R statistics 368 

approaches one, the sampling series in DA is converged. When sampling series is converged, all 369 

accepted parameter values are used to generate the posterior distributions.  370 

There are three types of posterior distributions: bell-shape, edge-hitting, and flat. The 371 

bell-shaped posterior distributions indicate that these parameters are well constrained. Their peak 372 

values are the maximum likelihood estimates of parameter values. The flat posterior distributions 373 

suggest that the parameters are not constrained due to the lack of relevant information in data. 374 

The edge-hitting posterior distributions result from complex reasons, such as improper prior 375 

parameter range. Users may change the prior ranges to examine if those posterior distributions 376 

can be improved or examine correlations among estimated parameters.   377 

 378 

3. Applications of MIDA  379 

We applied MIDA to four groups of models, which are an ecosystem carbon cycle model, a 380 

surrogate-based land surface model, nine phenology models, and a dynamic vegetation model, 381 

respectively. These four cases demonstrate that MIDA is effective for stand-alone DA, flexible 382 

to be applied to different models, and efficient for multiple model comparison.   383 

3.1 Case 1: Independent data assimilation with DALEC 384 

The first case study is to demonstrate that MIDA can be effective for independent data 385 

assimilation with the data assimilation linked ecosystem carbon (DALEC) model (Lu et al., 386 

2017) (Williams et al., 2005). DALEC has been used for data assimilation in several studies 387 

(Bloom et al., 2016; Lu et al., 2017; Richardson et al., 2010; Safta et al., 2015; Williams et al., 388 
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2005). Previous studies all incorporated data assimilation algorithms into DALEC, which 389 

requires invasive coding. This case study is focused on reproducing the data assimilation results 390 

as in the study by Lu et al. (2017) but with MIDA.  391 

The version of DALEC used in this study is composed of six submodels (i.e., 392 

photosynthesis, phenology, autotrophic respiration, allocation, litterfall, and decomposition) to 393 

simulate the carbon exchanges among five carbon pools (i.e., leaf, stem, root, soil organic matter 394 

and litter) (Ricciuto et al., 2011). There are 21 parameters in DALEC, of which, 17 parameters 395 

are derived from the six submodels and four parameters serve to initialize the carbon pools. 396 

Table 2 summarizes the names, prior ranges and nominal values of these 21 parameters. The 397 

observation is the Harvard Forest daily net ecosystem exchange (NEE) from year 1992 to 2006. 398 

DALEC is coded in Fortran. In windows system, a gfortran compiler converts the model code to 399 

an executable file (i.e., DALEC.exe).  400 

Figure 2 is the GUI window of MIDA. We first set up a DA task as described in step 1 401 

using the upper panel. In this application, the number of sampling series is set as 20,000. Once 402 

users click the ‘choose a directory’ or ‘choose a file’ button, a new dialog window will pop up 403 

and users are able to choose the directory or load files interactively. As describe in step 1 on 404 

preparation of DA, the working path is where the outputs of DA and ‘ParameterValue.txt’ are 405 

saved (e.g., C:/workingPath). After the output configuration file is loaded, the filenames of 406 

model outputs, observations and their variance will be displayed in the window automatically. 407 

This application only uses a ‘NEE.txt’ observation file. Similarly, after users load parameter 408 

range file (e.g., a file named ‘ParamRange.txt’ contains three rows which are minimum, 409 

maximum and default values of parameters), the content in this file is displayed as well. To 410 

replace the current parameter range file loaded, users can simply upload another file. In this 411 
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application, the executive model file is ‘DALEC.exe’ with Fortran compiler in windows system. 412 

Because we do not have parameter covariance information, this input is left blank. After ‘save to 413 

namelist file’ is clicked, a ‘namelist.txt’ file containing all the inputs will be generated in the 414 

working path. 415 

After the DA task set up, we load the ‘namelist.txt’ file and click the ‘run data 416 

assimilation’ button in the lower panel to trigger step 2 on execution of DA. A new dialog will 417 

pop up to show the acceptance rate information and notify the termination of DA. Then we will 418 

click the ‘generate plots’ button to visualize the posterior distributions of 21 parameters as 419 

described in step 3.  420 

Figure 3 shows that the simulation outputs using the optimized parameter values from 421 

MIDA better fit with the observations than those using default parameter values. Figure 4 depicts 422 

posterior distributions of the 21 parameters estimated from MIDA. More than half of the 423 

parameters are constrained well with a unimodal shape. 𝑋𝑠𝑡𝑒𝑚𝑖𝑛𝑖𝑡
 and 𝑋𝑟𝑜𝑜𝑡𝑖𝑛𝑖𝑡

 have a wide 424 

occupation of the prior range, indicating that the observation data does not provide useful 425 

information for them. The constrained posterior distributions in this study are similar to those 426 

from the study in Lu et al. (2017). Note that MCMC estimates have a large variance and a low 427 

convergence rate especially in high-dimensional problems, with a finite number of samples it is 428 

not expected that two simulations would give exactly the same results.  429 

 430 

3.2 Case 2: Application of MIDA to a surrogate land surface model   431 

This case study is to examine the applicability of MIDA to a surrogate-based land surface model. 432 

The original model is energy exascale earth system model: the land component (ELM) (Ricciuto 433 

et al., 2018). As ELM is computationally expensive (one forward model simulation takes more 434 

than one day), a sparse-grid (SG) surrogate system was developed to reduce the computational 435 
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time (Lu et al., 2018). The forcing data for the surrogate model is half-hourly meteorological 436 

measurements at Missouri Ozark flux site from 2006 to 2014. The observations that were used 437 

for optimization are annual sums of net ecosystem exchange (NEE), annual averages of total leaf 438 

area index and latent heat fluxes from 2006 to 2010. The eight parameters selected (Table 3) are 439 

the most important parameters for the variations in outputs (Ricciuto et al., 2018). The model is 440 

written in Python. A ‘pyinstaller’ library packages the model code into an executable file. The 441 

iteration number in MIDA is 20,000. 442 

Figure 5 shows posterior distributions of calibrated parameters. 𝑐𝑟𝑜𝑜𝑡, 𝑆𝐿𝐴𝑡𝑜𝑝,  443 

𝑡𝑙𝑒𝑎𝑓𝑓𝑎𝑙𝑙 , 𝐺𝐷𝐷𝑜𝑛𝑠𝑒𝑡  are constrained well with a unimodal distribution. However, the distribution 444 

of the rest 4 parameters (i.e., 𝑁𝑙𝑒𝑎𝑓 , 𝐶𝑁𝑟𝑜𝑜𝑡, 𝐴𝑟2𝑙 and 𝑅𝑒𝑠𝑚) cluster at near the edge. These 445 

results match well with the study by Lu et al. (2018). As shown in Figure 6, the calibrated 446 

parameters induce a performance improvement in simulating total leaf area index and NEE. For 447 

latent heat, both the default and optimized simulation obtain good agreement with the 448 

observation. These conclusions are also similar to those in Lu et al. (2018). 449 

 MIDA hides the detailed differences between models. For example, DALEC model in 450 

case 1 is a process-based model to simulate ecosystem carbon cycle while surrogate-based ELM 451 

in case 2 is an approximation of land surface model. They are also different in programming 452 

language, simulation time, forcing data, etc. MIDA is able to deal with models with so many 453 

different characteristics and hides these differences from users. Users only need to indicate the 454 

filenames of the model to be used, its parameter range, the output configuration file, etc. in the 455 

‘namelist.txt’ file. Thus, MIDA simplified the DA applications using different models.     456 

 457 

3.3 Case 3: Evaluation of multiple phenological models 458 
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This study case uses nine phenological models (Yun et al., 2017) to demonstrate the applicability 459 

of MIDA in model comparison. Five out of the nine models predict phenological events, such as 460 

the day of leaf onset, using growing degree days, which are calculated as temperature 461 

accumulation above a base temperature. The other four models consider two processes: chilling 462 

effects of cold temperature on dormancy before budburst and forcing effects of warm 463 

temperature on plant development. Each model uses different response functions to represent 464 

chilling and forcing effects. The detailed model descriptions and associated parameter 465 

information are in supplementary table.  466 

Data are from the Spruce and Peatland Responses Under Climatic and Environmental 467 

Change experiment (SPRUCE) (Hanson et al., 2017) located in northern Minnesota, USA. The 468 

experiment consists of five-level whole-ecosystem warming (i.e., +0, +2.25, +4.5, +6.75, +9°C) 469 

and two-level elevated 𝐶𝑂2 concentrations (i.e., +0, +500ppm). Dates of leaf onset were 470 

observed with PhenoCam (Richardson et al., 2018) for tree species: Picea mariana and Larix 471 

laricina. For the sake of demonstration of MIDA application, we only show DA results for Larix 472 

laricina with +9°C warming treatment and +0 ppm 𝐶𝑂2 treatment from 2016 to 2018.   473 

MIDA was used to compare performances of the nine models in reference to the same 474 

observations of leaf onset dates after DA. We as users changed filenames of model executable 475 

file (i.e., PhenoModels.exe), defined parameter ranges, and assigned the directory of working 476 

path for each model. MIDA then estimated the optimized parameters and save the corresponding 477 

best simulation outputs to the working path for each of the nine models. Figure 7 shows the best 478 

simulation output of these nine models. The simulation output of the 6th, 7th, 8th, and 9th models 479 

better fit the observation than the other models. It demonstrates that models that consider both 480 

chilling and heating effects can achieve good simulations of the leaf onset dates.  481 
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 482 

3.4 Case 4: Supporting data assimilation with a dynamic vegetation model  483 

This case study is to examine the efficiency of MIDA to integrate remote sensing data into a 484 

dynamic vegetation model. The model used in this study is Biome Ecological strategy simulator 485 

(BiomeE) (Weng et al., 2019). This model is to simulates vegetation demographic processes with 486 

individual-based competition for light, soil water, and nutrients. Individual trees in BiomeE 487 

model are represented by cohorts of trees with similar sizes. The light competition among 488 

cohorts is based on their heights and crown areas according to the rule of perfect plasticity 489 

approximation (PPA) model (Strigul et al., 2008). Each cohort has seven pools: leaves, roots, 490 

sapwood, heartwood, seeds, nonstructural carbon and nitrogen. After carbon are assimilated into 491 

plants via photosynthesis, the assimilated carbon enters to nonstructural carbon pool and is used 492 

for plant growth (i.e., diameter, height, crown area) and reproduction according to empirical 493 

allomeric equations (Weng et al., 2019). In this application, two parameters to be constrained 494 

(Table 4) are annual productivity rate and annual mortality rate of trees.  495 

Observations to be used in DA are leaf area indexes in six vertical heights (i.e., 0-5m, 6-496 

10m, 11-15m, 16-20m, 21-25m, and 26-30m) at Willow Creek study site, Wisconsin, USA. The 497 

forest at the site is an upland deciduous broadleaf forest of around 302 years old. The 498 

observations were from Global Ecosystem Dynamics Investigation (GEDI) acquired by a Light 499 

Detection and Ranging (Lidar) laser system, which is deployed on the International Space 500 

Station (ISS) by NASA in 2018 (Dubayah et al., 2020). The observations were first averaged 501 

from three footprints and then leaf area indexes in the six canopy layers were standardized to be 502 

summed up as one.  503 
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To use MIDA, we reorganized the simulation outputs to match observations as suggested 504 

in section 2.6. The BiomeE model simulates leaf areas in eight layers (i.e., 0-5m, 6-10m, 11-505 

15m, 16-20m, 21-25m, 26-30m, 31-35m, and 36-40m) from 0 to 800 years. An output 506 

configuration file was provided to post-process model outputs of leaf area indexes in six layers to 507 

match observations at the forest age of 302 years. These simulated leaf area indexes in the six 508 

canopy layers were also standardized to match standardized observations of leaf area indexes. 509 

The observations and post-processed simulation outputs were saved to ‘LAI.txt’ and 510 

‘simu_LAI.txt’ files, respectively. The two files are used in MIDA for data assimilation to 511 

generate posterior distributions of estimated two parameters as showed in figure 8. The 512 

optimized parameter values through maximum likelihood estimation are different from their 513 

default values. Figure 9 compares the simulation outputs with optimized parameters estimated by 514 

MIDA to those with default parameter values. After DA with GEDI data in MIDA, the 515 

simulation accuracy of leaf area index is substantially improved especially in middle (16~20m) 516 

and highest (26~30m) layers.  517 

 518 

4. Discussion  519 

This study introduced MIDA as a model-independent tool to facilitate the applications of data 520 

assimilation in ecology and biogeochemistry. The potential user community is ecologists with 521 

limited knowledge of model programming and technical implementation of DA algorithms. 522 

Several model-independent DA tools have already been developed, such as DART (Anderson et 523 

al., 2009), openDA (Ridler et al., 2014),  PDAF (Nerger and Hiller, 2013) and PEST (Doherty, 524 

2004), mainly for applications in research areas of hydrology, atmosphere, and remote sensing. 525 

These DA tools either use gradient descent method, such as Levenburg-Marqurdt algorithm in 526 
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PEST, or Kalman Filter methods, such as EnKF in DART, openDA, and PDAF. The Levenburg-527 

Marqurdt algorithm is a local search method, which is hard to find global optimization solution 528 

for highly nonlinear models. EnKF updates state variables and parameter values each time when 529 

observations are sequentially assimilated, resulting discrete values of estimated parameters. 530 

Jumps in estimated parameter values by EnKF make it very difficult to obey mass conservation 531 

in biogeochemical models (Gao et al., 2011). In this study, we used the MCMC method in MIDA 532 

to generates parameter values and their posterior distributions. MCMC is a widely used method 533 

in many DA studies with biogeochemical models but has been applied to individual models with 534 

invasive coding (Bloom et al., 2016; Hararuk et al., 2015; Liang et al., 2018; Luo and Schuur, 535 

2020; Ricciuto et al., 2011). Compared to the other model-independent DA tools mentioned 536 

above, MIDA is the first tool that uses the MCMC method for DA.MIDA is the first model-537 

independent tool that uses the MCMC method for DA.   538 

  Biogeochemical models are incorporating more detailed processes related to carbon and 539 

nitrogen cycles (Lawrence et al. 2020). Complex biogeochemical models yield predictions with 540 

great uncertainty (Frienlingstein et al. 2009 and 2014).  Data assimilation has been increasingly 541 

used to estimate parameter values against observations and reduce uncertainty in model 542 

prediction (Luo et al. 2016, Luo and Schuur 2020). However, current applications of DA are 543 

almost all model dependent. It requires ecologists to write code to integrate DA algorithm with 544 

models. The coding practice is a big technical challenge for ecologists with limited program 545 

ability. The distinct advantage of MIDA is to enable ecologists to conduct model independent 546 

DA. MIDA streamlines workflow of the three-step procedure for DA to enable users to conduct 547 

DA without extensive coding. Users mainly need to provide numerical and character values for 548 

data exchanges to transfer data (i.e., parameter values, simulation outputs, observations) between 549 
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the model and MIDA by a file named ‘namelist.txt’ or by interactive inputs via a GUI window 550 

(Fig. 12).  551 

We tested MIDA in four cases for its applicability to ecological models. The first case is 552 

applied to DALEC model, which has been used in several data assimilation studies (Bloom et al., 553 

2016; Lu et al., 2017; Safta et al., 2015; Williams et al., 2005). The previous DA studies all used 554 

invasive coding to incorporate DA algorithm into models. As demonstrated in this study, MIDA 555 

was applied to DALEC without invasive coding but by providing the directory to save DA 556 

results and filenames of DALEC model executable, parameter prior range, and output 557 

configuration file through the ‘namelist.txt’ file or interactive inputs in the first preparation step 558 

of the workflow. Then, MIDA run DA as a black box with DALEC before visualizing the DA 559 

results. Next, we tested the applicability of MIDA a surrogate-based ELM model and a dynamic 560 

vegetation model BiomeE. To switch the test case from DALEC to the surrogate-based ELM 561 

model and the BiomeE model, we changed the filenames of model executable, parameter prior 562 

range, and output configuration file in the ‘namelist.txt’ file for MIDA. This flexibility of MIDA 563 

in switching models for DA makes it much easier for model comparisons. We tested this 564 

capability of MIDA with nine phenological models to compare alternative model structures. 565 

Similarly, MIDA enables efficient switches of observations to be assimilated into models. Users 566 

only need to change filenames of observations in the output configuration file. This feature of 567 

MIDA makes it easier to utilize abundant traits databases such as TRY (Kattge et al., 2020), 568 

FRED (Iversen et al., 2017), etc. Moreover, this feature of MIDA also helps evaluating the 569 

relative information content of different observations for constraining model parameters and 570 

prediction (Weng and Luo, 2011). Consequently, MIDA can facilitate selection of the most 571 

informative observations and then better guide data collections in filed experiments. Ultimately, 572 
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MIDA can aid ecological forecasting and help reduce uncertainty in model predictions (Huang et 573 

al., 2018; Jiang et al., 2018).  574 

Although MIDA helps users to get rid of model detail, users may still need basic 575 

knowledge about the model outputs to prepare the output configuration file which is to match 576 

model outputs to observations one-by-one (see Section 2.6). This effort of preparing the 577 

correspondence between model outputs and observations for MIDA is not that difficult because 578 

users are reading or writing a text file and most model developers will provide reference to help 579 

understanding observations or model output files.  580 

Generally, MIDA requires longer time to run DA than the embedded DA algorithm, 581 

because MIDA calls model simulation as an external executable rather than a function 582 

embedded. Thus, we recommend MIDA for beginners of DA users with models that are less 583 

complex. Besides, tThe current version of MIDA only incorporates Metropolis-Hasting sampling 584 

approach. More MCMC methods (e.g., Hamiltonian Monte Carlo) may be incorporated into 585 

MIDA in the future.  586 

 587 

5. Conclusions 588 

We developed MIDA to facilitate data assimilation for biogeochemical models. Traditional DA 589 

studies require ecologists to program codes to integrate DA algorithms into model source codes. 590 

The easy-to-use MIDA module enables ecologists to conduct model-independent DA without 591 

extensive coding thus advancing the application of DA for ecological modeling and forecasting. 592 

We demonstrated the capability of MIDA in four cases with a total of 12 ecological models. 593 

These cases showed that MIDA is easy to perform for a variety of models and can efficiently 594 

produce accurate parameter posterior distributions. Moreover, MIDA supports flexible usage of 595 
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different models and different observations in the DA analysis and allows a quick switch from 596 

one model to another. This capability enables MIDA to serve as an efficient tool for model 597 

intercomparison projects and enhancing ecological forecasting.  598 

 599 

Appendix A: Nine phenological models 600 

1. Growing degree (GD) 601 

The growing degree (GD) model is one of the most widespread phenological model to simulate 602 

the date of leaf onset (𝐷̂). In this study, the time scale is limited to daily based on observation 603 

records. The kernel of GD is to calculate the growing degree days (GDD, ∑ ∆𝑑𝐷̂−1
𝑑=𝐷𝑠

) which is the 604 

heat accumulation above a base temperature (𝑇𝑏). For simplicity, the daily temperature (𝑇𝑑) can 605 

be approximated by the average of daily maximum and minimum temperatures. The heat 606 

accumulation starts at day 𝐷𝑠 , which is empirically estimated, and ends when GDD reaches a 607 

forcing requirement threshold (𝑅𝑑).  Two parameters to be constrained are base temperature (𝑇𝑏) 608 

and the forcing requirement (𝑅𝑑). Their default values and prior range are listed in Table A1. 609 

∆𝑑 = {
𝑇𝑑 − 𝑇𝑏

0
 𝑖𝑓 𝑇𝑑 > 𝑇𝑏

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                    (A1) 610 

∑ ∆𝑑𝐷̂−1
𝑑=𝐷𝑠

< 𝑅𝑑 ≤ ∑ ∆𝑑𝐷̂
𝑑=𝐷𝑠

                                                                  (A2) 611 

2. Sigmoid function (SF) 612 

Compared to the linear response function of GDD in GD model, the sigmoid function (SF) 613 

model provides a non-linear function to better represent the non-linearity of the growth response 614 

to heat accumulation. Three parameters to be constrained in DA are base temperature (𝑇𝑏), the 615 

forcing requirement (𝑅𝑑) and temperature sensitivity (𝑆𝑡). Their default values and prior range 616 

are listed in Table A1. 617 
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∆𝑑 =
1

1+𝑒𝑆𝑡(𝑇𝑑−𝑇𝑏)                                                               (A3) 618 

∑ ∆𝑑𝐷̂−1
𝑑=𝐷𝑠

< 𝑅𝑑 ≤ ∑ ∆𝑑𝐷̂
𝑑=𝐷𝑠

                                                  (A4) 619 

3. Beta function (BF) 620 

In reality, the plant growth rate, as described with ∆𝑑, gradually increases up to a specific 621 

temperature, then rapidly declines to a supra-optimal level. Such response can be well described 622 

by a beta function with uni-modality and non-symmetrical shape. Three parameters are involved 623 

in DA: minimum temperature (𝑇𝑛), optimal temperature (𝑇𝑜) and forcing requirement (𝑅𝑑). The 624 

other parameter values are fixed with empirical values. For example, maximum growth rate (𝑅𝑥) 625 

is set to one and maximum temperature (𝑇𝑥) is assumed to be 45. 626 

𝑟𝑑 = 𝑅𝑥(
𝑇𝑥−𝑇𝑑

𝑇𝑥−𝑇𝑜
)(

𝑇𝑑−𝑇𝑛

𝑇𝑜−𝑇𝑛
)

𝑇𝑜−𝑇𝑛
𝑇𝑥−𝑇𝑜                                                               (A5) 627 

∆𝑑 = {
𝑟𝑑

0
 𝑖𝑓 𝑟𝑑 > 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                              (A6) 628 

∑ ∆𝑑𝐷̂−1
𝑑=𝐷𝑠

< 𝑅𝑑 ≤ ∑ ∆𝑑𝐷̂
𝑑=𝐷𝑠

                                                              (A7) 629 

4. Days transferred to standard temperature (DTS) 630 

According to Arrhenius las, the relationship between growth rate and daily temperature 𝑇𝑑 can 631 

be interpolated by the equation 8 (Ono and Konno, 1999). With a factor weighted by standard 632 

temperature, the equation for DTS (Eq. A9) can better represent growth rate dependent on 633 

temperatures. Three parameters considered in DA are: temperature sensitivity rate (𝐸𝑎), standard 634 

temperature (𝑇𝑠) and forcing requirement (𝑅𝑑). 635 

𝑘 = 𝑒
−𝐸𝑎
𝑅∙𝑇𝑑                                                               (A8) 636 

∆𝑑 = 𝑒
𝐸𝑎(𝑇𝑑−𝑇𝑠)

𝑅∙𝑇𝑑∙𝑇𝑠                                                                (A9) 637 

∑ ∆𝑑𝐷̂−1
𝑑=𝐷𝑠

< 𝑅𝑑 ≤ ∑ ∆𝑑𝐷̂
𝑑=𝐷𝑠

                                                              (A10) 638 
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5. Thermal period fixed model (TP) 639 

The difference between GD and TP models are heat accumulation occurs in a fixed time period 640 

(𝐷𝑛). The day of leaf onset is the last day (𝐷𝑠̂ + 𝐷𝑛) when the accumulated heat reaches the 641 

forcing requirement. The start day (𝐷𝑠̂) of heat accumulation begins in day one and moves one 642 

day forward each time to estimate Eq. (A12). Three parameters are involved in DA: the base 643 

temperature (𝑇𝑏), the period length (𝐷𝑛) and the forcing requirement (𝑅𝑑).   644 

∆𝑑 = {
𝑇𝑑 − 𝑇𝑏

0
 𝑖𝑓 𝑇𝑑 > 𝑇𝑏

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                               (A11) 645 

𝑅𝑑 ≤ ∑ ∆𝑑
𝐷𝑠̂+𝐷𝑛

𝑑=𝐷𝑠̂
                                                              (A12) 646 

6. Chilling and forcing (CF) 647 

Compared to GD, there is another distinctive chilling period for dormancy. CF model 648 

sequentially calculates two accumulations in opposite directions: chilling accumulation and anti-649 

chilling accumulation. The start day of chilling accumulation (𝐷𝑠) is implicitly set as 273.0 650 

which is October 1st.  The end day of chilling accumulation (𝐷0) is the beginning of anti-chilling 651 

accumulation. Three parameters are considered in DA: the chilling requirement (𝑅𝑑
𝐶) and the 652 

forcing requirement (𝑅𝑑
𝐹), the temperature threshold (𝑇𝑐). 653 

∆𝑑 = {
𝑇𝑑 − 𝑇𝑐

−𝑇𝑐

 𝑖𝑓 𝑇𝑑 ≥ 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                              (A13) 654 

∆𝑑
𝐶 = {

∆𝑑
0

 𝑖𝑓 ∆𝑑 < 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                              (A14) 655 

∆𝑑
𝐹= {

∆𝑑
0

 𝑖𝑓 ∆𝑑 > 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                              (A15) 656 

∑ ∆𝑑
𝐶𝐷0−1

𝑑=𝐷𝑠
> 𝑅𝑑

𝐶 ≥ ∑ ∆𝑑
𝐶𝐷0

𝑑=𝐷𝑠
                                                              (A16) 657 

∑ ∆𝑑
𝐹𝐷̂−1

𝑑=𝐷0
< 𝑅𝑑

𝐹 ≤ ∑ ∆𝑑
𝐹𝐷̂

𝑑=𝐷0
                                                              (A17) 658 

7. Sequential model (SM) 659 
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The difference between CF and SM models is that SM used a beta function (Eq. A18) for the 660 

calculation of chilling accumulation and adopted a sigmoid function (Eq. A20) for anti-chilling 661 

accumulation. The detailed descriptions of these two functions can be referred to the 662 

introductions of BF model and CF model. The maximum temperature is empirically set as 663 

13.7695. Six parameters are constrained in DA: minimum temperature (𝑇𝑛), optimal temperature 664 

(𝑇𝑜), temperature sensitivity (𝑆𝑡), forcing base temperature (𝑇𝑏), chilling requirement (𝑅𝑑
𝐶), and 665 

forcing requirement (𝑅𝑑
𝐹).  666 

𝑟𝑑 = (
𝑇𝑥−𝑇𝑑

𝑇𝑥−𝑇𝑜
)(

𝑇𝑑−𝑇𝑛

𝑇𝑜−𝑇𝑛
)

𝑇𝑜−𝑇𝑛
𝑇𝑥−𝑇𝑜                                                               (A18) 667 

∆𝑑
𝐶 = {

𝑟𝑑

0
 𝑖𝑓 𝑟𝑑 < 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                              (A19) 668 

∆𝑑
𝐹=

1

1+𝑒𝑆𝑡(𝑇𝑑−𝑇𝑏)                                                              (A20) 669 

∑ ∆𝑑
𝐶𝐷0−1

𝑑=𝐷𝑠
> 𝑅𝑑

𝐶 ≥ ∑ ∆𝑑
𝐶𝐷0

𝑑=𝐷𝑠
                                                              (A21) 670 

∑ ∆𝑑
𝐹𝐷̂−1

𝑑=𝐷0
< 𝑅𝑑

𝐹 ≤ ∑ ∆𝑑
𝐹𝐷̂

𝑑=𝐷0
                                                              (A22) 671 

8. Parallel model (PM) 672 

Critical difference between PM and above two-step models is that the chilling and anti-chilling 673 

accumulations happen simultaneously (Fu et al., 2012). In the earlier dates during chilling 674 

period, only small fraction (𝐾𝑑) of forcing (Eq. A25) will be accumulated. The maximum 675 

temperature is empirically set as 15.3.  Seven parameters will be considered in DA: minimum 676 

temperature (𝑇𝑛), optimal temperature (𝑇𝑜), temperature sensitivity (𝑆𝑡), forcing base temperature 677 

(𝑇𝑏), chilling requirement (𝑅𝑑
𝐶), forcing requirement (𝑅𝑑

𝐹), and a forcing weight coefficient (𝐾𝑚).  678 

𝑟𝑑 = (
𝑇𝑥−𝑇𝑑

𝑇𝑥−𝑇𝑜
)(

𝑇𝑑−𝑇𝑛

𝑇𝑜−𝑇𝑛
)

𝑇𝑜−𝑇𝑛
𝑇𝑥−𝑇𝑜                                                               (A23) 679 

∆𝑑
𝐶 = {

𝑟𝑑

0
 𝑖𝑓 𝑟𝑑 < 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                              (A24) 680 
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𝐾𝑑 = {𝐾𝑚 + (1 − 𝐾𝑚)
∑ ∆𝑖

𝐶𝑑
𝑖=𝐷𝑠

𝑅𝑑
𝐶

1

  𝑖𝑓 ∑ ∆𝑑
𝐶𝐷0−1

𝑑=𝐷𝑠
> 𝑅𝑑

𝐶

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                              (A25) 681 

∆𝑑
𝐹=

𝐾𝑑

1+𝑒𝑆𝑡(𝑇𝑑−𝑇𝑏)                                                              (A26) 682 

∑ ∆𝑑
𝐶𝐷0−1

𝑑=𝐷𝑠
> 𝑅𝑑

𝐶 ≥ ∑ ∆𝑑
𝐶𝐷0

𝑑=𝐷𝑠
                                                              (A27) 683 

∑ ∆𝑑
𝐹𝐷̂−1

𝑑=𝐷0
< 𝑅𝑑

𝐹 ≤ ∑ ∆𝑑
𝐹𝐷̂

𝑑=𝐷0
                                                              (A28) 684 

9. Alternating model (AM) 685 

AM fixes the start date of chilling period (𝐷𝑠
𝐶) as November 1st and the start date of anti-chilling 686 

period (𝐷𝑠
𝐹 ) as January 1st.  The difference between AM and the other models above is that the 687 

forcing requirement is not a parameter value but is decided by the length of chilling days (Fu et 688 

al., 2012). Five parameters to be constrained in DA are: chilling temperature (𝑇𝑐), forcing base 689 

temperature (𝑇𝑏) and three coefficients (𝑎, 𝑏, 𝑐) in calculation of forcing requirement.  690 

∆𝑑
𝐶 = {

1
0

 𝑖𝑓 𝑇𝑑 ≤ 𝑇𝑐

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (𝐴29)                                                             (A29) 691 

∆𝑑
𝐹= {

𝑇𝑑 − 𝑇𝑏

0
 𝑖𝑓 𝑇𝑑 > 𝑇𝑏

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (𝐴30)                                                             (A30) 692 

𝑅𝑑
𝐶 = ∑ ∆𝑖

𝐶𝑑
𝑖=𝐷𝑠

𝐶  (𝐴31)                                                             (A31) 693 

𝑅𝑑
𝐹 = 𝑎 + 𝑏 ∙ 𝑒−𝑐∙𝑅𝑑

𝐶
 (𝐴32)                                                             (A32) 694 

∑ ∆𝑑
𝐹𝐷̂−1

𝑑=𝐷𝑠
𝐹 < 𝑅𝑑

𝐹 ≤ ∑ ∆𝑑
𝐹𝐷̂

𝑑=𝐷𝑠
𝐹  (𝐴33)                                                             (A33) 695 

696 
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Table A1: A summary of parameters to be calibrated in nine phenological models. Their default 697 

parameter value and prior parameter range are shown. 698 

Model Parameter Description Unit Default Range 

GD 
𝑇𝑏 Base temperature ℃ 10 [-5, 25] 

𝑅𝑑 Forcing requirement ℃d 35 [0, 200] 

SF 
𝑇𝑏 Base temperature ℃ -1.5 [-10, 25] 

𝑅𝑑 Forcing requirement ℃ 50 [0, 500] 

BF 

𝑇𝑜 Optimal temperature ℃ 15 [10, 35] 

𝑇𝑛 Minimum temperature ℃ 0 [-10, 5] 

𝑅𝑑 Forcing requirement ℃d 11 [0, 50] 

DTS 

𝐸𝑎 Temperature sensitivity rate - 250 [1, 1500] 

𝑇𝑠 Standard temperature ℃ 10 [-30, 40] 

𝑅𝑑 Forcing requirement ℃d 50 [1, 200] 

TP 

𝑇𝑏 Base temperature ℃ 12.5 [0, 30] 

𝐷𝑛 Period length d 25 [0, 50] 

𝑅𝑑 Forcing requirement ℃d 20 [0, 150] 

CF 

R𝑑
𝐶  Chilling requirement ℃d -124 [-300, 0] 

R𝑑
𝐹  Forcing requirement ℃d 120 [0, 300] 

𝑇𝑐 Chilling base temperature  ℃ 5 [0, 30] 

SM 

𝑇𝑛 Minimum temperature ℃ -20 [-80, 0] 

𝑇𝑜 Optimal temperature ℃ 0 [-26, 10] 

𝑆𝑡 Temperature sensitivity - -1.8 [-5, 0] 

𝑇𝑏 Forcing base temperature ℃ 5 [-5, 35] 

R𝑑
𝐶  Chilling requirement ℃d 20 [0, 80] 

R𝑑
𝐹  Forcing requirement ℃d 20 [0, 80] 

PM 

𝑇𝑛 Minimum temperature ℃ -20 [-80, 0] 

𝑇𝑜 Optimal temperature ℃ 0 [-26, 10] 

𝑆𝑡 Temperature sensitivity - -0.6 [-1, 0] 

𝑇𝑏 Forcing base temperature ℃ 5 [-5, 35] 

R𝑑
𝐶  Chilling requirement ℃d 11.35 [0, 80] 

R𝑑
𝐹  Forcing requirement ℃d 44.01 [0, 80] 

𝐾𝑚 Forcing weight coefficient - 0.2 [0, 1] 

AM 

𝑇𝑐 Chilling base temperature ℃ 4.6 [-10, 10] 

𝑇𝑏 Forcing base temperature ℃ 5 [-5, 35] 

a Coefficient for forcing adjustment - 11.51 [0.01, 15] 

b Coefficient for forcing adjustment - 88 [0, 200] 

c Coefficient for forcing adjustment - -0.01 [-1, -10−4] 

 699 

 700 
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Appendix B: An example of output configuration file 701 

Output configuration file (e.g., config.txt) is to indicate the directories of observations and their 702 

modelsimulation output files as well as how they map to each other. Figure B1 is an example of 703 

the output configuration file. There are three blocks of functions to map simulation outputs to 704 

observed GPP, RE, and NEE. The blocks of mapping functions are separated by a blank line. 705 

Each mapping block starts with the directories of one observation, its observation variance and 706 

model outputs, which are separated by a hash key. If there is no observation variance available, 707 

users can ignore this directory. If multiple simulation outputs are used to correspond to one 708 

observation, the directories of simulation outputs are separated by a comma. The rest of the 709 

mapping block describes how to map simulation outputs to observations. The simu_map variable 710 

is simulation output after mapping. The simuList variable saves the simulation outputs specified 711 

in the first line. Taking the third mapping block in Fig. B1 as an example, simuList[0] saves 712 

contents in simuNEE_1.txt and simuList[0][0:365] saves the first 365 elements in this file.  713 

 714 

Figure B1: An example of output configuration file 715 
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Appendix C: An example of the namelist.txt file 716 

The Fig. C1 shows an example of the namelist.txt for the first study case with the DALEC 717 

model. Users need to prepare the namelist.txt before execution of data assimilation (DA) either 718 

manually or via GUI. Below describes the content in the namelist.txt. Detailed explanation or 719 

tutorials are available in the Zenodo repositories at the end of the appendixes.  720 

‘workpath’ is the directory where the MIDA executable are saved. ‘nsimu’ is the number 721 

of iterations in execution of data assimilation. ‘J_default’ is the default mismatch (i.e., cost 722 

function) to be compared in the first moving phase of data assimilation. ‘ProposingStepSize’ 723 

controls the jump scale in the proposing phase of data assimilation. Users can increase or 724 

decrease this value to adjust the acceptance rate to be in a range from 0.2 to 0.5. ‘paramFile’ is 725 

the directory of a csv file saving parameter-related information such as parameter range. 726 

‘obsList’ saves the directories of observations. Multiple observations are separated by semicolon. 727 

Similarly, ‘obsVarList’ saves the directories of observation variance in the same order as that of 728 

‘obsList’. ‘simuList’ saves the directories of simulation outputs corresponding to the 729 

observations. With GUI, MIDA reads directories in the output configuration file (e.g., config.txt) 730 

which users provide and assign values for ‘obsList’,‘obsVarList’, and ‘simuList’ in the 731 

namelist.txt automatically. In this case, if the directories of observations change, users only need 732 

to modify the output configuration file and generate the namelist.txt again with GUI-based 733 

MIDA.  734 

‘paramValue’ is the directory of a txt file where MIDA writes out new set of parameter 735 

values for model execution in each iteration of data assimilation. Its default value is 736 

‘ParameterValue.txt’ under the workpath specified in the first line of the namelist.txt. ‘model’ 737 

saves the directory of model executable. ‘nChains_convergeTest’ indicates whether to conduct 738 
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German-Rubin (G-R) convergence test or not. If G-R test is used, its values is the number of 739 

multiple MCMC chains. If not, its value is zero. ‘convergeTest_startsFile’ is the directory of a 740 

txtcsv file saving default parameter values as the start points in multiple MCMC chains. 741 

‘outConvergenceTest’ saves the results of G-R test. If ‘nChains_ConvergeTest’ is zero, both 742 

values of ‘convergeTest_startsFile’ and ‘outConvergenceTest’ are empty. ‘DAresultsPath’ is the 743 

directory saving the results of DA whose directories are also listed in the following six lines: 744 

‘outJ’ for the accepted mismatches; ‘outC’ for the accepted parameter values; ‘outRecordNum’ 745 

for the number of accepted parameter values; ‘outBestSimu’ for the best simulation outputs with 746 

the optimal parameter values; ‘outBestC’ for the optimal parameter values. For MIDA without 747 

GUI, ‘display_plot’ indicates whether or not to visualize the posterior distributions after DA.  748 

 749 

Figure C1. An example of the ‘namelist.txt’ file. In order to use MIDA, users need to prepare 750 

data and a model and specify their file names and directories in the ‘namelist.txt’ file.  751 



 36 

Code and data availability. The code of MIDA is available at the Zenodo repository 752 

https://doi.org/10.5281/zenodo.4762725 (last access: May 2021). Data used in this study are 753 

available at https://doi.org/10.5281/zenodo.4762779. A comparison of the time cost using the 754 

embedded DA algorithm and MIDA is available at the Zenodo repository 755 

https://doi.org/10.5281/zenodo.4891319.  756 

 757 

Video supplement. Tutorial videos of how to use MIDA is available at 758 

https://doi.org/10.5281/zenodo.4762777  759 

 760 

Code and data availability. The code of MIDA is available at the GitHub repository 761 

https://github.com/Celeste-Huang/MIDA (last access: Feb 2021). Data used in this study are 762 

available at https://github.com/Celeste-Huang/MIDA/tree/main/Example.  763 

 764 

Video supplement. A tutorial video of how to use MIDA is available at 765 

https://github.com/Celeste-Huang/MIDA/tree/main/Videos  766 

 767 

Author contributions. XH, IS, and YL designed the study. XH built the workflow of MIDA and 768 

tested its capability in four cases. DL, DMR, and PJH provided data and model for the first and 769 

second test cases. XL prepared models and ADR provided observations for the third case.  EW 770 

and SN helped to prepare data and model for the fourth case. XH, LJ, EH and YL analyzed the 771 

results. All authors contributed to the preparation of the manuscript. 772 

 773 

Competing interests. The authors declare that they have no conflict of interest. 774 

https://doi.org/10.5281/zenodo.4762725


 37 

 775 

Acknowledgements. This work was funded by subcontract 4000158404 from Oak Ridge National 776 

Laboratory (ORNL) to the Northern Arizona University. ORNL is managed by UT-Battelle, 777 

LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725.  778 

 779 

References 780 

Allen, J. I., Eknes, M. and Evensen, G.: An Ensemble Kalman Filter with a complex marine 781 

ecosystem model: hindcasting phytoplankton in the Cretan Sea, Ann. Geophys., 21(1), 399–411, 782 

doi:10.5194/angeo-21-399-2003, 2003. 783 

Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R. and Avellano, A.: The data 784 

assimilation research testbed a community facility, Bull. Am. Meteorol. Soc., 90(9), 1283–1296, 785 

doi:10.1175/2009BAMS2618.1, 2009. 786 

Bloom, A. A., Exbrayat, J. F., Van Der Velde, I. R., Feng, L. and Williams, M.: The decadal state of 787 

the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence 788 

times, Proc. Natl. Acad. Sci., 113(5), 1285–1290, doi:10.1073/pnas.1515160113, 2016. 789 

Bonan, G.: Climate Change and Terrestrial Ecosystem Modeling, Cambridge University Press., 790 

2019. 791 

Box, G. E. P. and Tiao, G. C.: Bayesian Inference in Statistical Analysis, John Wiley & Sons, Inc., 792 

Hoboken, NJ, USA., 1992. 793 

Ciais, P., Chris, S., Govindasamy, B., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., Defries, R., 794 

Galloway, J. and Heimann, M.: Carbon and other biogeochemical cycles, Clim. Chang. 2013 795 

Phys. Sci. Basis, 465–570, 2013. 796 

Cline, M. P., Lomow, G. and Girou, M.: C++ FAQs, Pearson Education., 1998. 797 

Formatted: Indent: Hanging:  0.2"



 38 

Doherty, J.: PEST: Model independent parameter estimation. Fifth edition of user manual, 798 

Watermark Numer. Comput., doi:10.1016/B978-0-08-098288-5.00031-2, 2004. 799 

Evensen, G.: The Ensemble Kalman Filter: Theoretical formulation and practical implementation, 800 

Ocean Dyn., 53(4), 343–367, doi:10.1007/s10236-003-0036-9, 2003. 801 

Fer, I., Kelly, R., Moorcroft, P. R., Richardson, A. D., Cowdery, E. M. and Dietze, M. C.: Linking 802 

big models to big data: Efficient ecosystem model calibration through Bayesian model 803 

emulation, Biogeosciences, 15(19), 5801–5830, doi:10.5194/bg-15-5801-2018, 2018. 804 

Fox, A., Williams, M., Richardson, A. D., Cameron, D., Gove, J. H., Quaife, T., Ricciuto, D., 805 

Reichstein, M., Tomelleri, E., Trudinger, C. M. and Van Wijk, M. T.: The REFLEX project: 806 

Comparing different algorithms and implementations for the inversion of a terrestrial ecosystem 807 

model against eddy covariance data, Agric. For. Meteorol., 149(10), 1597–1615, 808 

doi:10.1016/j.agrformet.2009.05.002, 2009. 809 

Fox, A. M., Hoar, T. J., Anderson, J. L., Arellano, A. F., Smith, W. K., Litvak, M. E., MacBean, N., 810 

Schimel, D. S. and Moore, D. J. P.: Evaluation of a Data Assimilation System for Land Surface 811 

Models Using CLM4.5, J. Adv. Model. Earth Syst., 10(10), 2471–2494, 812 

doi:10.1029/2018MS001362, 2018. 813 

Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., Cadule, P., Doney, S., 814 

Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., 815 

Lindsay, K., Matthews, H. D., Raddatz, T., Rayner, P., Reick, C., Roeckner, E., Schnitzler, K.-816 

G., Schnur, R., Strassmann, K., Weaver, A. J., Yoshikawa, C. and Zeng, N.: Climate–Carbon 817 

Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison, J. Clim., 19(14), 818 

3337–3353, doi:10.1175/JCLI3800.1, 2006. 819 

Fu, Y. H., Campioli, M., Van Oijen, M., Deckmyn, G. and Janssens, I. A.: Bayesian comparison of 820 



 39 

six different temperature-based budburst models for four temperate tree species, Ecol. Modell., 821 

230, 92–100, doi:10.1016/j.ecolmodel.2012.01.010, 2012. 822 

Gao, C., Wang, H., Weng, E., Lakshmivarahan, S., Zhang, Y. and Luo, Y.: Assimilation of multiple 823 

data sets with the ensemble Kalman filter to improve forecasts of forest carbon dynamics, Ecol. 824 

Appl., 21(5), 1461–1473, doi:10.1890/09-1234.1, 2011. 825 

Gelman, A. and Rubin, D. B.: Inference from Iterative Simulation Using Multiple Sequences, Stat. 826 

Sci., 7(4), 457–472, doi:10.1214/SS/1177011136, 1992. 827 

Hanson, P. J., Riggs, J. S., Nettles, W. R., Phillips, J. R., Krassovski, M. B., Hook, L. A., Gu, L., 828 

Richardson, A. D., Aubrecht, D. M., Ricciuto, D. M., Warren, J. M. and Barbier, C.: Attaining 829 

whole-ecosystem warming using air and deep-soil heating methods with an elevated CO 2 830 

atmosphere, Biogeosciences, 14(4), 861–883, doi:10.5194/bg-14-861-2017, 2017. 831 

Hararuk, O., Xia, J. and Luo, Y.: Evaluation and improvement of a global land model against soil 832 

carbon data using a Bayesian Markov chain Monte Carlo method, J. Geophys. Res. 833 

Biogeosciences, 119(3), 403–417, doi:10.1002/2013JG002535, 2014. 834 

Hararuk, O., Smith, M. J. and Luo, Y.: Microbial models with data-driven parameters predict 835 

stronger soil carbon responses to climate change, Glob. Chang. Biol., 21(6), 2439–2453, 836 

doi:10.1111/gcb.12827, 2015. 837 

Hastings, W. K.: Monte carlo sampling methods using Markov chains and their applications, 838 

Biometrika, 57(1), 97–109, doi:10.1093/biomet/57.1.97, 1970. 839 

Hou, E., Lu, X., Jiang, L., Wen, D. and Luo, Y.: Quantifying Soil Phosphorus Dynamics: A Data 840 

Assimilation Approach, J. Geophys. Res. Biogeosciences, 124(7), 2159–2173, 841 

doi:10.1029/2018JG004903, 2019. 842 

Ise, T. and Moorcroft, P. R.: The global-scale temperature and moisture dependencies of soil 843 



 40 

organic carbon decomposition: An analysis using a mechanistic decomposition model, 844 

Biogeochemistry, 80(3), 217–231, doi:10.1007/s10533-006-9019-5, 2006. 845 

Iversen, C. M., McCormack, M. L., Powell, A. S., Blackwood, C. B., Freschet, G. T., Kattge, J., 846 

Roumet, C., Stover, D. B., Soudzilovskaia, N. A., Valverde-Barrantes, O. J., van Bodegom, P. 847 

M. and Violle, C.: A global Fine-Root Ecology Database to address below-ground challenges in 848 

plant ecology, New Phytol., 215(1), 15–26, doi:10.1111/nph.14486, 2017. 849 

Jiang, J., Huang, Y., Ma, S., Stacy, M., Shi, Z., Ricciuto, D. M., Hanson, P. J. and Luo, Y.: 850 

Forecasting Responses of a Northern Peatland Carbon Cycle to Elevated CO2 and a Gradient of 851 

Experimental Warming, J. Geophys. Res. Biogeosciences, 123(3), 1057–1071, 852 

doi:10.1002/2017JG004040, 2018. 853 

Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Tautenhahn, S., Werner, 854 

G. D. A., Aakala, T., Abedi, M., Acosta, A. T. R., Adamidis, G. C., Adamson, K., Aiba, M., 855 

Albert, C. H., Alcántara, J. M., Alcázar C, C., Aleixo, I., Ali, H., Amiaud, B., Ammer, C., 856 

Amoroso, M. M., Anand, M., Anderson, C., Anten, N., Antos, J., Apgaua, D. M. G., Ashman, T. 857 

L., Asmara, D. H., Asner, G. P., Aspinwall, M., Atkin, O., Aubin, I., Baastrup-Spohr, L., 858 

Bahalkeh, K., Bahn, M., Baker, T., Baker, W. J., Bakker, J. P., Baldocchi, D., Baltzer, J., 859 

Banerjee, A., Baranger, A., Barlow, J., Barneche, D. R., Baruch, Z., Bastianelli, D., Battles, J., 860 

Bauerle, W., Bauters, M., Bazzato, E., Beckmann, M., Beeckman, H., Beierkuhnlein, C., Bekker, 861 

R., Belfry, G., Belluau, M., Beloiu, M., Benavides, R., Benomar, L., Berdugo-Lattke, M. L., 862 

Berenguer, E., Bergamin, R., Bergmann, J., Bergmann Carlucci, M., Berner, L., Bernhardt-863 

Römermann, M., Bigler, C., Bjorkman, A. D., Blackman, C., Blanco, C., Blonder, B., 864 

Blumenthal, D., Bocanegra-González, K. T., Boeckx, P., Bohlman, S., Böhning-Gaese, K., 865 

Boisvert-Marsh, L., Bond, W., Bond-Lamberty, B., Boom, A., Boonman, C. C. F., Bordin, K., 866 



 41 

Boughton, E. H., Boukili, V., Bowman, D. M. J. S., Bravo, S., Brendel, M. R., Broadley, M. R., 867 

Brown, K. A., Bruelheide, H., Brumnich, F., Bruun, H. H., Bruy, D., Buchanan, S. W., Bucher, 868 

S. F., Buchmann, N., Buitenwerf, R., Bunker, D. E., et al.: TRY plant trait database – enhanced 869 

coverage and open access, Glob. Chang. Biol., 26(1), 119–188, doi:10.1111/gcb.14904, 2020. 870 

De Kauwe, M. G., Medlyn, B. E., Walker, A. P., Zaehle, S., Asao, S., Guenet, B., Harper, A. B., 871 

Hickler, T., Jain, A. K., Luo, Y., Lu, X., Luus, K., Parton, W. J., Shu, S., Wang, Y. P., Werner, 872 

C., Xia, J., Pendall, E., Morgan, J. A., Ryan, E. M., Carrillo, Y., Dijkstra, F. A., Zelikova, T. J. 873 

and Norby, R. J.: Challenging terrestrial biosphere models with data from the long-term 874 

multifactor Prairie Heating and CO2 Enrichment experiment, Glob. Chang. Biol., 23(9), 3623–875 

3645, doi:10.1111/gcb.13643, 2017. 876 

Keenan, T. F., Davidson, E., Moffat, A. M., Munger, W. and Richardson, A. D.: Using model-data 877 

fusion to interpret past trends, and quantify uncertainties in future projections, of terrestrial 878 

ecosystem carbon cycling, Glob. Chang. Biol., 18(8), 2555–2569, doi:10.1111/j.1365-879 

2486.2012.02684.x, 2012. 880 

Keenan, T. F., Davidson, E. A., Munger, J. W. and Richardson, A. D.: Rate my data: Quantifying 881 

the value of ecological data for the development of models of the terrestrial carbon cycle, Ecol. 882 

Appl., 23(1), 273–286, doi:10.1890/12-0747.1, 2013. 883 

Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., Collier, 884 

N., Ghimire, B., van Kampenhout, L., Kennedy, D., Kluzek, E., Lawrence, P. J., Li, F., Li, H., 885 

Lombardozzi, D., Riley, W. J., Sacks, W. J., Shi, M., Vertenstein, M., Wieder, W. R., Xu, C., 886 

Ali, A. A., Badger, A. M., Bisht, G., van den Broeke, M., Brunke, M. A., Burns, S. P., Buzan, J., 887 

Clark, M., Craig, A., Dahlin, K., Drewniak, B., Fisher, J. B., Flanner, M., Fox, A. M., Gentine, 888 

P., Hoffman, F., Keppel-Aleks, G., Knox, R., Kumar, S., Lenaerts, J., Leung, L. R., Lipscomb, 889 



 42 

W. H., Lu, Y., Pandey, A., Pelletier, J. D., Perket, J., Randerson, J. T., Ricciuto, D. M., 890 

Sanderson, B. M., Slater, A., Subin, Z. M., Tang, J., Thomas, R. Q., Val Martin, M. and Zeng, 891 

X.: The Community Land Model Version 5: Description of New Features, Benchmarking, and 892 

Impact of Forcing Uncertainty, J. Adv. Model. Earth Syst., 11(12), 4245–4287, 893 

doi:10.1029/2018MS001583, 2019. 894 

LeBauer, D. S., Wang, D., Richter, K. T., Davidson, C. C. and Dietze, M. C.: Facilitating feedbacks 895 

between field measurements and ecosystem models, Ecol. Monogr., 83(2), 133–154, 896 

doi:10.1890/12-0137.1, 2013. 897 

Levenberg, K.: A method for the solution of certain non-linear problems in least squares, Q. Appl. 898 

Math., 2(2), 164–168, 1944. 899 

Li, Q., Lu, X., Wang, Y., Huang, X., Cox, P. M. and Luo, Y.: Leaf area index identified as a major 900 

source of variability in modeled CO2 fertilization, Biogeosciences, 15(22), 6909–6925, 901 

doi:10.5194/bg-15-6909-2018, 2018. 902 

Liang, J., Zhou, Z., Huo, C., Shi, Z., Cole, J. R., Huang, L., Konstantinidis, K. T., Li, X., Liu, B., 903 

Luo, Z., Penton, C. R., Schuur, E. A. G., Tiedje, J. M., Wang, Y. P., Wu, L., Xia, J., Zhou, J. and 904 

Luo, Y.: More replenishment than priming loss of soil organic carbon with additional carbon 905 

input, Nat. Commun., 9(1), 1–9, doi:10.1038/s41467-018-05667-7, 2018a. 906 

Liang, J., Zhou, Z., Huo, C., Shi, Z., Cole, J. R., Huang, L., Konstantinidis, K. T., Li, X., Liu, B., 907 

Luo, Z., Penton, C. R., Schuur, E. A. G., Tiedje, J. M., Wang, Y., Wu, L. and Xia, J.: organic 908 

carbon with additional carbon input, Nat. Commun., 1–9, doi:10.1038/s41467-018-05667-7, 909 

2018b. 910 

Lu, D., Ricciuto, D., Walker, A., Safta, C. and Munger, W.: Bayesian calibration of terrestrial 911 

ecosystem models: A study of advanced Markov chain Monte Carlo methods, Biogeosciences, 912 



 43 

14(18), 4295–4314, doi:10.5194/bg-14-4295-2017, 2017. 913 

Lu, D., Ricciuto, D., Stoyanov, M. and Gu, L.: Calibration of the E3SM Land Model Using 914 

Surrogate-Based Global Optimization, J. Adv. Model. Earth Syst., 10(6), 1337–1356, 915 

doi:10.1002/2017MS001134, 2018. 916 

Luo, Y. and Schuur, E. A. G.: Model parameterization to represent processes at unresolved scales 917 

and changing properties of evolving systems, Glob. Chang. Biol., 26(3), 1109–1117, 918 

doi:10.1111/gcb.14939, 2020. 919 

Luo, Y., Wu, L., Andrews, J. A., White, L., Matamala, R., Schäfer, K. V. R. and Schlesinger, W. 920 

H.: ELEVATED CO2 DIFFERENTIATES ECOSYSTEM CARBON PROCESSES: 921 

DECONVOLUTION ANALYSIS OF DUKE FOREST FACE DATA, Ecol. Monogr., 71(3), 922 

357–376, doi:10.1890/0012-9615(2001)071[0357:ECDECP]2.0.CO;2, 2001. 923 

Luo, Y., Ogle, K., Tucker, C., Fei, S., Gao, C., LaDeau, S., Clark, J. S. and Schimel, D. S.: 924 

Ecological forecasting and data assimilation in a data-rich era, Ecol. Appl., 21(5), 1429–1442, 925 

doi:10.1890/09-1275.1, 2011. 926 

Ma, S., Jiang, J., Huang, Y., Shi, Z., Wilson, R. M., Ricciuto, D., Sebestyen, S. D., Hanson, P. J. 927 

and Luo, Y.: Data-Constrained Projections of Methane Fluxes in a Northern Minnesota Peatland 928 

in Response to Elevated CO2and Warming, J. Geophys. Res. Biogeosciences, 122(11), 2841–929 

2861, doi:10.1002/2017JG003932, 2017. 930 

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. and Teller, E.: Equation of 931 

state calculations by fast computing machines, J. Chem. Phys., 21(6), 1087–1092, 932 

doi:10.1063/1.1699114, 1953. 933 

Mitchell, J. C. and Apt, K.: Concepts in programming languages, Cambridge University Press., 934 

2003. 935 



 44 

Nerger, L. and Hiller, W.: Software for ensemble-based data assimilation systems-Implementation 936 

strategies and scalability, Comput. Geosci., 55, 110–118, doi:10.1016/j.cageo.2012.03.026, 937 

2013. 938 

Van Oijen, M., Cameron, D. R., Butterbach-Bahl, K., Farahbakhshazad, N., Jansson, P. E., Kiese, 939 

R., Rahn, K. H., Werner, C. and Yeluripati, J. B.: A Bayesian framework for model calibration, 940 

comparison and analysis: Application to four models for the biogeochemistry of a Norway 941 

spruce forest, Agric. For. Meteorol., 151(12), 1609–1621, doi:10.1016/j.agrformet.2011.06.017, 942 

2011. 943 

Ono, S. and Konno, T.: Estimation of flowering date and temperature characteristics of fruit trees by 944 

DTS method, Japan Agric. Res. Q., 33(2), 105–108, 1999. 945 

Raeder, K., Anderson, J. L., Collins, N., Hoar, T. J., Kay, J. E., Lauritzen, P. H. and Pincus, R.: 946 

DART/CAM: An ensemble data assimilation system for CESM atmospheric models, J. Clim., 947 

25(18), 6304–6317, doi:10.1175/JCLI-D-11-00395.1, 2012. 948 

Raupach, M. R., Rayner, P. J., Barrett, D. J., Defries, R. S., Heimann, M., Ojima, D. S., Quegan, S. 949 

and Schmullius, C. C.: Model-data synthesis in terrestrial carbon observation: Methods, data 950 

requirements and data uncertainty specifications, Glob. Chang. Biol., 11(3), 378–397, 951 

doi:10.1111/j.1365-2486.2005.00917.x, 2005. 952 

Rayner, P. J., Scholze, M., Knorr, W., Kaminski, T., Giering, R. and Widmann, H.: Two decades of 953 

terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS), Global 954 

Biogeochem. Cycles, 19(2), n/a-n/a, doi:10.1029/2004GB002254, 2005. 955 

Ricciuto, D., Sargsyan, K. and Thornton, P.: The Impact of Parametric Uncertainties on 956 

Biogeochemistry in the E3SM Land Model, J. Adv. Model. Earth Syst., 10(2), 297–319, 957 

doi:10.1002/2017MS000962, 2018. 958 



 45 

Ricciuto, D. M., King, A. W., Dragoni, D. and Post, W. M.: Parameter and prediction uncertainty in 959 

an optimized terrestrial carbon cycle model: Effects of constraining variables and data record 960 

length, J. Geophys. Res., 116(G1), G01033, doi:10.1029/2010JG001400, 2011. 961 

Richardson, A. D., Williams, M., Hollinger, D. Y., Moore, D. J. P., Dail, D. B., Davidson, E. A., 962 

Scott, N. A., Evans, R. S., Hughes, H., Lee, J. T., Rodrigues, C. and Savage, K.: Estimating 963 

parameters of a forest ecosystem C model with measurements of stocks and fluxes as joint 964 

constraints, Oecologia, 164(1), 25–40, doi:10.1007/s00442-010-1628-y, 2010. 965 

Richardson, A. D., Hufkens, K., Milliman, T., Aubrecht, D. M., Chen, M., Gray, J. M., Johnston, 966 

M. R., Keenan, T. F., Klosterman, S. T., Kosmala, M., Melaas, E. K., Friedl, M. A. and Frolking, 967 

S.: Tracking vegetation phenology across diverse North American biomes using PhenoCam 968 

imagery, Sci. Data, 5, 1–24, doi:10.1038/sdata.2018.28, 2018. 969 

Ridler, M. E., Van Velzen, N., Hummel, S., Sandholt, I., Falk, A. K., Heemink, A. and Madsen, H.: 970 

Data assimilation framework: Linking an open data assimilation library (OpenDA) to a widely 971 

adopted model interface (OpenMI), Environ. Model. Softw., 57, 76–89, 972 

doi:10.1016/j.envsoft.2014.02.008, 2014. 973 

Robert, C. and Casella, G.: Monte Carlo statistical methods, Springer Science & Business Media., 974 

2013. 975 

Roberts, G. O., Gelman, A. and Gilks, W. R.: Weak convergence and optimal scaling of random 976 

walk Metropolis algorithms, Ann. Appl. Probab., 7(1), 110–120, 977 

doi:10.1214/AOAP/1034625254, 1997. 978 

Safta, C., Ricciuto, D. M., Sargsyan, K., Debusschere, B., Najm, H. N., Williams, M. and Thornton, 979 

P. E.: Global sensitivity analysis, probabilistic calibration, and predictive assessment for the data 980 

assimilation linked ecosystem carbon model, Geosci. Model Dev., 8(7), 1899–1918, 981 



 46 

doi:10.5194/gmd-8-1899-2015, 2015. 982 

Scholze, M., Kaminski, T., Rayner, P., Knorr, W. and Giering, R.: Propagating uncertainty through 983 

prognostic carbon cycle data assimilation system simulations, J. Geophys. Res., 112(D17), 984 

D17305, doi:10.1029/2007JD008642, 2007. 985 

Shi, Z., Crowell, S., Luo, Y. and Moore, B.: Model structures amplify uncertainty in predicted soil 986 

carbon responses to climate change, Nat. Commun., 9(1), 1–11, doi:10.1038/s41467-018-04526-987 

9, 2018. 988 

Smith, M. J., Purves, D. W., Vanderwel, M. C., Lyutsarev, V. and Emmott, S.: The climate 989 

dependence of the terrestrial carbon cycle, including parameter and structural uncertainties, 990 

Biogeosciences, 10(1), 583–606, doi:10.5194/bg-10-583-2013, 2013. 991 

Strigul, N., Pristinski, D., Purves, D., Dushoff, J. and Pacala, S.: Scaling from trees to forests: 992 

Tractable macroscopic equations for forest dynamics, Ecol. Monogr., 78(4), 523–545, 993 

doi:10.1890/08-0082.1, 2008. 994 

Tao, F., Zhou, Z., Huang, Y., Li, Q., Lu, X., Ma, S., Huang, X., Liang, Y., Hugelius, G., Jiang, L., 995 

Doughty, R., Ren, Z. and Luo, Y.: Deep Learning Optimizes Data-Driven Representation of Soil 996 

Organic Carbon in Earth System Model Over the Conterminous United States, Front. Big Data, 997 

3(June), 1–15, doi:10.3389/fdata.2020.00017, 2020. 998 

Trudinger, C. M., Raupach, M. R., Rayner, P. J., Kattge, J., Liu, Q., Park, B., Reichstein, M., 999 

Renzullo, L., Richardson, A. D., Roxburgh, S. H., Styles, J., Wang, Y. P., Briggs, P., Barrett, D. 1000 

and Nikolova, S.: OptIC project: An intercomparison of optimization techniques for parameter 1001 

estimation in terrestrial biogeochemical models, J. Geophys. Res. Biogeosciences, 112(2), 1–17, 1002 

doi:10.1029/2006JG000367, 2007. 1003 

Wang, Y. P., Trudinger, C. M. and Enting, I. G.: A review of applications of model-data fusion to 1004 



 47 

studies of terrestrial carbon fluxes at different scales, Agric. For. Meteorol., 149(11), 1829–1842, 1005 

doi:10.1016/j.agrformet.2009.07.009, 2009. 1006 

Weng, E. and Luo, Y.: Relative information contributions of model vs. data to short- and long-term 1007 

forecasts of forest carbon dynamics, Ecol. Appl., 21(5), 1490–1505, doi:10.1890/09-1394.1, 1008 

2011. 1009 

Weng, E., Dybzinski, R., Farrior, C. E. and Pacala, S. W.: Competition alters predicted forest 1010 

carbon cycle responses to nitrogen availability and elevated CO2: simulations using an explicitly 1011 

competitive, game-theoretic vegetation demographic model, Biogeosciences Discuss., 1–35, 1012 

doi:10.5194/bg-2019-55, 2019. 1013 

Williams, M., Schwarz, P. A., Law, B. E., Irvine, J. and Kurpius, M. R.: An improved analysis of 1014 

forest carbon dynamics using data assimilation, Glob. Chang. Biol., 11(1), 89–105, 1015 

doi:10.1111/j.1365-2486.2004.00891.x, 2005. 1016 

Williams, M., Richardson, A. D., Reichstein, M., Stoy, P. C., Peylin, P., Verbeeck, H., Carvalhais, 1017 

N., Jung, M., Hollinger, D. Y., Kattge, J., Leuning, R., Luo, Y., Tomelleri, E., Trudinger, C. M. 1018 

and Wang, Y. P.: Improving land surface models with FLUXNET data, Biogeosciences, 6(7), 1019 

1341–1359, doi:10.5194/bg-6-1341-2009, 2009. 1020 

Xu, T., White, L., Hui, D. and Luo, Y.: Probabilistic inversion of a terrestrial ecosystem model: 1021 

Analysis of uncertainty in parameter estimation and model prediction, Global Biogeochem. 1022 

Cycles, 20(2), 1–15, doi:10.1029/2005GB002468, 2006. 1023 

Yun, K., Hsiao, J., Jung, M. P., Choi, I. T., Glenn, D. M., Shim, K. M. and Kim, S. H.: Can a multi-1024 

model ensemble improve phenology predictions for climate change studies?, Ecol. Modell., 362, 1025 

54–64, doi:10.1016/j.ecolmodel.2017.08.003, 2017. 1026 

Zobitz, J. M., Desai, A. R., Moore, D. J. P. and Chadwick, M. A.: A primer for data assimilation 1027 



 48 

with ecological models using Markov Chain Monte Carlo (MCMC), Oecologia, 167(3), 599–1028 

611, doi:10.1007/s00442-011-2107-9, 2011. 1029 

1030 



 49 

 

Table1:  Comparison among MIDA and available DA tools 

DA tool Agnostic DA algorithms Global optima 
Posterior 

distribution 
Visualization 

CCDAS No 

Automatic differentiation 

from Transformation of 

Algorithms in Fortran 

(TAF) 

No No No 

CARDAMOM No Markov Chain Monte Carlo Yes Yes No 

EcoPAD No Markov Chain Monte Carlo Yes Yes Yes 

OpenDA No 

EnKF, Ensemble Square-

Root Filter,  
Particle Filter 

Yes Yes No 

DART Yes EnKF Yes Yes No 

PDAF Yes EnKF Yes Yes No 

PEST Yes 
Levenberg-Marquardt 

method 

Rely on initial 

parameter values 
No No 

MIDA Yes Markov Chain Monte Carlo Yes Yes Yes 
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Table 2:  A summary of 21 parameters to be calibrated in DALEC model. The default parameter 

value and prior parameter range are shown. 

Parameter Description Unit Default Range 

𝐺𝐷𝐷𝑚𝑖𝑛  Growing degree day threshold 

for leaf out 
𝐶𝑜  𝑑 100 [10, 250] 

𝐺𝐷𝐷𝑚𝑎𝑥  Growing degree day threshold 

for maximum LAI 
𝐶𝑜  𝑑 200 [50, 500] 

𝐿𝐴𝐼𝑚𝑎𝑥  Seasonal maximum leaf area 

index 

- 4 [2, 7] 

𝑇𝑙𝑒𝑎𝑓𝑓𝑎𝑙𝑙 Temperature for leaf fall 𝐶𝑜  5 [0, 10] 

𝐾𝑙𝑒𝑎𝑓 Rate of leaf fall 𝑑−1 0.1 [0.03 0.95] 

𝑁𝑈𝐸 N use efficiency - 7 [1, 20] 

𝑅𝑒𝑠𝑔𝑟𝑜𝑤𝑡ℎ  Growth respiration fraction - 0.2 [0.05, 0.5] 

𝑅𝑒𝑠𝑚 Base rate for maintenance 

respiration 
× 10−4 𝜇𝑚𝑜𝑙 𝑚−2𝑑−1 1 [0.1, 100] 

𝑄10𝑚𝑟
 Maintenance respiration T-

sensitivity 

- 2 [1, 4] 

𝐴𝑠𝑡𝑒𝑚 Allocation to plant stem pool - 0.7 [0.1, 0.95] 

𝜏𝑟𝑜𝑜𝑡 Root turnover time × 10−4 𝑑−1 5.48 [1.1, 27.4] 

𝜏𝑠𝑡𝑒𝑚  Stem turnover time × 10−5 𝑑−1 5.48 [1.1, 27.4] 

𝑄10ℎ𝑟
 Heterotrophic respiration T-

sensitivity 

- 2 [1, 4] 

𝜏𝑙𝑖𝑡𝑡𝑒𝑟  Base turnover for litter × 10−3 𝑢𝑚𝑜𝑙 𝑚−2𝑑−1 1.37 [0.548, 5.48] 

𝜏𝑠𝑜𝑚  Base turnover for soil organic 

matter 
× 10−4 𝑢𝑚𝑜𝑙 𝑚−2𝑑−1 9.13 [0.274, 2.74] 

𝐾𝑑𝑒𝑐𝑜𝑚𝑝 Decomposition rate × 10−3 𝑑−1 1 [0.1, 10] 

𝐿𝑀𝐴 Leaf mass per area 𝑔𝐶 𝑚−2  80 [20, 150] 

𝑋𝑠𝑡𝑒𝑚𝑖𝑛𝑖𝑡
 Initial value for stem C pool × 103  𝑔𝐶 5 [1, 15] 

𝑋𝑟𝑜𝑜𝑡𝑖𝑛𝑖𝑡
 Initial value for root C pool 𝑔𝐶 500 [100, 3000] 

𝑋𝑙𝑖𝑡𝑡𝑒𝑟𝑖𝑛𝑖𝑡
 Initial value for litter C pool 𝑔𝐶 600 [50, 1000] 

𝑋𝑠𝑜𝑚𝑖𝑛𝑖𝑡
 Initial value for soil organic C 

pool 
× 103  𝑔𝐶 7 [1, 25] 
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Table 3:  A summary of eight parameters to be calibrated in surrogate-based ELM model. The 

default parameter value and prior parameter range are shown. 

Parameter Description Unit Default Range 

𝑐𝑟𝑜𝑜𝑡 Rooting depth 

distribution parameter 
𝑚−1 2.0 [0.5, 4] 

𝑆𝐿𝐴𝑡𝑜𝑝 Specific leaf area at 

canopy top 
𝑚2𝑔𝐶−1 0.03 [0.01, 0.05] 

𝑁𝑙𝑒𝑎𝑓  Fraction of leaf N in 

RuBisCO  

- 0.1007 [0.1, 0.4] 

𝐶𝑁𝑟𝑜𝑜𝑡 Fine root C:N ratio - 42 [25, 60] 

𝐴𝑟2𝑙 Allocation ratio of fine 

root to leaf  

- 1.0 [0.3, 1.5] 

𝑅𝑒𝑠𝑚 Base rate for 

maintenance respiration 
× 10−6𝜇𝑚𝑜𝑙 𝑚−2𝑠−1 2.525 [1.5, 4] 

𝑡𝑙𝑒𝑎𝑓𝑓𝑎𝑙𝑙  Critical day length for 

senescence 
× 104  s 3.93 [3.5, 4.5] 

𝐺𝐷𝐷𝑜𝑛𝑠𝑒𝑡  Accumulated growing 

degree days for leaf out 
𝐶 𝑜 𝑑 800 [600, 1000] 
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Table 4:  A summary of two parameters to be calibrated in the BiomE model. The default 

parameter value and prior parameter range are shown. 

Parameter Description Unit Default Range 

𝑉𝑎𝑛𝑛𝑢𝑎𝑙  Annual productivity per 

unit leaf area 
𝑘𝑔𝐶 𝑦−1𝑚2 0.4 [0.2, 2] 

𝑀𝑐𝑎𝑛𝑜𝑝𝑦 Annual mortality rate in 

canopy layer 
𝑦−1 0.02 [0.01, 0.08] 
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Figure captions 

Figure 1: The three-step workflow of Model Independent Data Assimilation (MIDA) module. 

The workflow includes data preparation, execution of data assimilation (DA), and visualization. 

The data preparation step is to provide all the formatted essential data for DA via user input. The 

execution step is to calibrate parameter values towards a constrained posterior distribution with 

the fusion of observations. The visualization step is to diagnose the effects of DA. Rhombus in 

orange represents user-input data. Rectangle represents procedures and document/multidocument 

shape is for data files in computers. Dashed lines indicate locations of data. Solids lines indicate 

data flow pathways. With the three-step workflow, DA is agnostic to specific models and users 

will be released from technical burdens.  

Figure 2: the GUI-MIDA window includes two panels. The upper panel is to set up a data 

assimilation task. Inputs can be loaded and applied to the step 1 on data preparation for DA. The 

lower panel is to run DA as described in step 2 and visualize the posterior distributions of 

parameters in step 3.   

Figure 3: Comparison between the simulated daily net ecosystem exchange (NEE) by DALEC 

and the observed NEE at Harvard Forest from 1992 to 2006. Red circles represent modeled NEE 

with the optimized parameter values and green circles represent simulated NEE with the original 

parameter values. Simulations of DALEC are substantially improved after data assimilation in 

comparison with those before data assimilation. 

Figure 4: Comparison between posterior distributions (red line) and default values (gray dash 

line) of the 21 parameters in DALEC. The peak in posterior distribution is the constrained 

parameter value from maximum likelihood estimation. This distinctive mode and its divergence 

from the default value indicates the effects of DA. Most parameters are well constrained, and 

some are far different from the original values. 

Figure 5: Comparison between posterior distributions (red line) and default values (gray dash 

line) of the eight parameters in surrogate-based ELM. The peak in posterior distribution is the 

constrained parameter value from maximum likelihood estimation. This distinctive mode and its 

divergence from the default value indicates the effects of DA. Most parameters are well 

constrained, and some are far different from the original values. 

Figure 6: Comparison between the simulated NEE, total leaf area index, latent heat flux by 

surrogate-based ELM and the observed ones at Missouri Ozark flux site from 2006 to 2014. The 
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blue lines indicate the observations, and their 95% confidence interval is in the dashed area. The 

green and red lines indicate the simulations with default parameter values and optimized values 

respectively. Simulations are generally improved after DA for all these three variables. 

Figure 7: Comparison between the simulated growth date by 9 phenology models after DA and 

the observed growth date for Larix laricina with +9℃ treatment at SPRUCE site from 2016 to 

2018. Colored number indicates different models and shape represents different year. Overall, 

model 6,7,8,9 achieve better performance after DA. 

Figure 8: Comparison between posterior distributions (red line) and default values (gray dash 

line) of the two parameters in BiomeE. The peak in posterior distribution is the constrained 

parameter value from maximum likelihood estimation. This distinctive mode and its divergence 

from the default value indicates the effects of DA. All parameters are well constrained and 

different from their original values. 

Figure 9: Comparison between the simulated leaf area index (LAI) by BiomeE and the observed 

NEE at Willow Creek. Circles represent modeled NEE with the optimized parameter values and 

triangles represent simulated NEE with the original parameter values. Simulations of LAI are 

substantially improved after data assimilation in comparison with those before data assimilation.



 55 

 

 

  

Figure 1: The three-step workflow of Model Independent Data Assimilation (MIDA) module. 

The workflow includes data preparation, execution of data assimilation (DA), and visualization. 

The data preparation step is to provide all the formatted essential data for DA via user input. The 

execution step is to calibrate parameter values towards a constrained posterior distribution with 

the fusion of observations. The visualization step is to diagnose the effects of DA. Rhombus in 

orange represents user-input data. Rectangle represents procedures and document/multidocument 

shape is for data files in computers. Dashed lines indicate locations of data. Solids lines indicate 

data flow pathways. With the three-step workflow, DA is agnostic to specific models and users 

will be released from technical burdens.  
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Figure 2: the GUI-MIDA window includes two panels. The upper panel is to set up a data 

assimilation task. Inputs can be loaded and applied to the step 1 on data preparation for DA. The 

lower panel is to run DA as described in step 2 and visualize the posterior distributions of 

parameters in step 3.   
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Figure 3: Comparison between the simulated daily net ecosystem exchange (NEE) by DALEC 

and the observed NEE at Harvard Forest from 1992 to 2006. Red circles represent modeled NEE 

with the optimized parameter values and green circles represent simulated NEE with the original 

parameter values. Simulations of DALEC are substantially improved after data assimilation in 

comparison with those before data assimilation. 
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Figure 4: Comparison between posterior distributions (red line) and default values (gray dash 

line) of the 21 parameters in DALEC. The peak in posterior distribution is the constrained 

parameter value from maximum likelihood estimation. This distinctive mode and its divergence 

from the default value indicates the effects of DA. Most parameters are well constrained, and 

some are far different from the original values. 
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Figure 5: Comparison between posterior distributions (red line) and default values (gray dash 

line) of the eight parameters in surrogate-based ELM. The peak in posterior distribution is the 

constrained parameter value from maximum likelihood estimation. This distinctive mode and its 

divergence from the default value indicates the effects of DA. Most parameters are well 

constrained, and some are far different from the original values. 
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Figure 6: Comparison between the simulated NEE, total leaf area index, latent heat flux by 

surrogate-based ELM and the observed ones at Missouri Ozark flux site from 2006 to 2014. The 

blue lines indicate the observations, and their 95% confidence interval is in the dashed area. The 

green and red lines indicate the simulations with default parameter values and optimized values 

respectively. Simulations are generally improved after DA for all these three variables. 



 61 

 

 

 



 62 

Figure 7: Comparison between the simulated growth date by 9 phenology models after DA and 

the observed growth date for Larix laricina with +9℃ treatment at SPRUCE site from 2016 to 

2018. Colored number indicates different models and shape represents different year. Overall, 

model 6,7,8,9 achieve better performance after DA. 
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Figure 8: Comparison between posterior distributions (red line) and default values (gray dash 

line) of the two parameters in BiomeE. The peak in posterior distribution is the constrained 

parameter value from maximum likelihood estimation. This distinctive mode and its divergence 

from the default value indicates the effects of DA. All parameters are well constrained and 

different from their original values. 



 64 

 

 

Figure 9: Comparison between the simulated leaf area index (LAI) by BiomeE and the observed 

NEE at Willow Creek. Circles represent modeled NEE with the optimized parameter values and 

triangles represent simulated NEE with the original parameter values. Simulations of LAI are 

substantially improved after data assimilation in comparison with those before data assimilation. 

 


