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 3 

Dear editor and reviewers, 4 

Thanks very much for taking your time to review this manuscript. We really appreciate all your 5 

comments and suggestions, which are very helpful for us to improve the manuscript. We have 6 

made a thorough revision to address the comments and questions. Please find our point-to-point 7 

responses below. 8 

 Note that line numbers in our responses are all referred to these in the revised manuscript 9 

MIDA_GMD_revised-clean.pdf (the clean version). 10 

 11 

Reviewers' Comments to the Authors:  12 

Reviewer 1 13 

1. I would like a little more detail of is contained within the “black box” placed in the SI to give 14 

those who are interested this information.  15 

Thanks for the suggestion. The black box in the manuscript refers to the execution of data 16 

assimilation, which is described in sections 2.1 and 2.4. We hope the reviewer will find the 17 

description is enough for readers to understand data assimilation. Moreover, sections 2.1 and 2.4 18 

cite papers for readers to learn more about the method. 19 

2. I wonder about the trade-offs between the usually very fast exchange of information achieved 20 

when writing an interface vs the more user friendly approach described here? Not an 21 

objection to your approach but genuinely curious. 22 

This is a great question. We appreciate it. Generally, MIDA requires longer computation time 23 

than the embedded data assimilation (DA) algorithms. The time difference depends on how to 24 

call model simulation. Taking DALEC model in the first study as an example, the time cost for 25 

the embedded algorithm is 24 mins while MIDA takes 52 mins to finish DA. Thus, we 26 



recommend the embedded algorithm for complex models with high computational demand while 27 

MIDA is more suitable for beginners of DA users with models that are less complex. We have 28 

added this information about computation efficiency of MIDA in the discussion section of the 29 

manuscript (L569-572). The added sentence is “Generally, MIDA requires longer time to run 30 

DA than the embedded DA algorithm, because MIDA calls model simulation as an external 31 

executable rather than a function embedded. Thus, we recommend MIDA for beginners of DA 32 

users with models that are less complex.” 33 

  Corresponding code is added to the Code Availability and is available in Zenodo 34 

repository (https://doi.org/10.5281/zenodo.4891319). 35 

3. What isn’t quite so clear is the details of how MIDA knows which information in the existing 36 

model output files corresponds to its observations. For example, the namelist.txt must 37 

contain information on the variable names used to describe the observations and their 38 

corresponding output variable generated by the model? These must still vary depending on 39 

the model being used? A screen shot showing the interface which is populated with an 40 

example would make this really clear.  41 

Thanks the reviewer for the great questions and suggestion. The information in the model output 42 

files that corresponds to its observations is in an output configuration file (e.g., config.txt), which 43 

notifies MIDA how to map model outputs to the observations. Users need to prepare the 44 

configuration file because, as the reviewer has mentioned, the configurations (or mapping 45 

functions) vary depending on the model being used. The output configuration file is described in 46 

L335-342. As suggested, we added a screenshot of the output configuration file in Appendix B 47 

(as shown below) and also added a link of Appendix B in L342: “An example of output 48 

configure file is available in Appendix B.”.  49 

“Appendix B: An example of output configuration file 50 

Output configuration file (e.g., config.txt) is to indicate the directories of observations and 51 

simulation output files as well as how they map to each other. Figure B1 is an example of the 52 

output configuration file. There are three blocks of functions to map simulation outputs to 53 

observed GPP, RE, and NEE. The blocks of mapping functions are separated by a blank line. 54 

Each mapping block starts with the directories of one observation, its observation variance and 55 

model outputs, which are separated by a hash key. If there is no observation variance available, 56 



users can ignore this directory. If multiple simulation outputs are used to correspond to one 57 

observation, the directories of simulation outputs are separated by a comma. The rest of the 58 

mapping block describes how to map simulation outputs to observations. The simu_map variable 59 

is simulation output after mapping. The simuList variable saves the simulation outputs specified 60 

in the first line. Taking the third mapping block in Fig. B1 as an example, simuList[0] saves 61 

contents in simuNEE_1.txt and simuList[0][0:365] saves the first 365 elements in this file.  62 

 63 

Figure B1: An example of output configuration file” 64 

4. The models need to be able to read the parameters from a file. The MIDA framework must 65 

then be able to write out the proposed parameters in a unique format for each model, is that 66 

correct?  67 

Yes, that is correct. We have described how MIDA writes new parameter values to a file 68 

‘ParameterValue.txt’, from which the model reads to execute simulations in L261-263 (“MIDA 69 

saves the new parameter values generated in the proposing phrase to “ParameterValue.txt”, from 70 

which the model reads before execution of the next model simulation.”) and L322-326 (“The 71 

model to be used in MIDA should have those to-be-estimated parameter values not fixed in 72 

model source code rather than changeable through ‘ParameterValue.txt’ file. MIDA writes new 73 

parameter values in each proposing phase during DA to the ‘ParameterValue.txt’ file, from 74 

which the model reads the parameter values to run the simulation. ”). 75 



5. L322-330: Could you add a link to further details in SI for this section? The reason I ask is 76 

that Haario et al., (2001) steps based on the weighted (e.g. beta) combination of the 77 

multivariate Gaussian and a minimum step size scaled by a value drawn from a Gaussian 78 

distribution of mean = 0, sd = 1. The multivariate Gaussian being derived from the 79 

covariance matrix for the parameters adjusted by an optimal scaling parameter (e.g. 2.38 / 80 

npars^0.5). The weighting between the two steps (beta ~0.05) and the minimum step size. So 81 

which of these variables (or something else entirely) for example is you “jump scaling”? 82 

We thank the reviewer for this suggestion. Haario et al. (2001) introduced an adapted Metropolis 83 

algorithm, in which the proposal distribution is tuned along the search according to the 84 

covariance calculated from previous samples. The Metropolis-Hasting (MH) algorithm in this 85 

study uses a fixed Gaussian proposal distribution, in which the covariance is provided from test 86 

runs. A parameter covariance is not provided, the MH algorithm uses a uniform proposal 87 

distribution instead following this equation: 𝐶𝑛𝑒𝑤 = 𝐶𝑜𝑙𝑑 + 𝑟 × (𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛)/𝐷, where 𝑟 is a 88 

random number uniformly distributed in [−0.5,0.5], 𝐶𝑚𝑎𝑥 and 𝐶𝑚𝑖𝑛 are the maximum and 89 

minimum limits of  parameters, respectively, 𝐷 is a scalar controlling the proposing step size. 90 

Users can change the value of 𝐷 in the ‘namelist.txt’ file.  91 

The above content has been described in L232-239:“The proposing phase generates a new set 92 

of parameter values based on the starting point for the first iteration or current accepted 93 

parameter values in the following iterations. If parameter covariance (𝑐𝑜𝑣𝑝𝑎𝑟𝑎𝑚) is specified in 94 

step 1 on data preparation, this proposing phase will draw new parameter values (𝐶𝑛𝑒𝑤) within 95 

the prior ranges from a Gaussian distribution 𝑁(𝐶𝑜𝑙𝑑 , 𝑐𝑜𝑣𝑝𝑎𝑟𝑎𝑚) where 𝐶𝑜𝑙𝑑 is the predecessor 96 

set of parameter values. Without parameter covariance, new set of parameter values will be 97 

generated from a uniform distribution within the prior ranges (Xu et al., 2006). ” 98 

To avoid the misleading by the citation of Haario et al. (2001), we corrected the citation to 99 

Metropolis et al. (1953) and Hastings (1970) in L230. We also added a citation of Xu et al. 100 

(2006) in L238 as Appendix B of Xu et al. (2006) explained the MH algorithm in detail.    101 

The paragraph reviewer is asking about (L343-351) mainly described how to adjust the 102 

acceptance rate, which is a critical index to assess the performance of DA. And more details can 103 



be found in Xu et al. (2006), of which we have cited. So, we believe these would be adequate for 104 

readers to understand the method. 105 

6. I like the inclusion of a screenshot of the software but I think it would be useful to have an 106 

example which has been filled in to help guide the potential user. Alternatively showing an 107 

example of the namelist.txt might be informative.  108 

Thanks for the suggestion. We added a screenshot of the namelist.txt in Appendix C for the first 109 

case study with DALEC model (as shown below). A link to the Appendix C is also provided in 110 

L321 (“Figure C1 is an example of the ‘namelist.txt’ file for a data assimilation study with the 111 

DALEC model.”).  112 

“Appendix C: An example of the namelist.txt file 113 

The Fig. C1 shows an example of the namelist.txt for the first study case with the DALEC 114 

model. Users need to prepare the namelist.txt before execution of data assimilation (DA) either 115 

manually or via GUI. Below describes the content in the namelist.txt. Detailed explanation or 116 

tutorials are available in the Zenodo repositories at the end of the appendixes.  117 

‘workpath’ is the directory where the MIDA executable are saved. ‘nsimu’ is the number 118 

of iterations in execution of data assimilation. ‘J_default’ is the default mismatch (i.e., cost 119 

function) to be compared in the first moving phase of data assimilation. ‘ProposingStepSize’ 120 

controls the jump scale in the proposing phase of data assimilation. Users can increase or 121 

decrease this value to adjust the acceptance rate to be in a range from 0.2 to 0.5. ‘paramFile’ is 122 

the directory of a csv file saving parameter-related information such as parameter range. 123 

‘obsList’ saves the directories of observations. Multiple observations are separated by semicolon. 124 

Similarly, ‘obsVarList’ saves the directories of observation variance in the same order as that of 125 

‘obsList’. ‘simuList’ saves the directories of simulation outputs corresponding to the 126 

observations. With GUI, MIDA reads directories in the output configuration file (e.g., config.txt) 127 

which users provide and assign values for ‘obsList’,‘obsVarList’, and ‘simuList’ in the 128 

namelist.txt automatically. In this case, if the directories of observations change, users only need 129 

to modify the output configuration file and generate the namelist.txt again with GUI-based 130 

MIDA.  131 

‘paramValue’ is the directory of a txt file where MIDA writes out new set of parameter 132 

values for model execution in each iteration of data assimilation. Its default value is 133 



‘ParameterValue.txt’ under the workpath specified in the first line of the namelist.txt. ‘model’ 134 

saves the directory of model executable. ‘nChains_convergeTest’ indicates whether to conduct 135 

German-Rubin (G-R) convergence test or not. If G-R test is used, its values is the number of 136 

multiple MCMC chains. If not, its value is zero. ‘convergeTest_startsFile’ is the directory of a 137 

csv file saving default parameter values as the start points in multiple MCMC chains. 138 

‘outConvergenceTest’ saves the results of G-R test. If ‘nChains_ConvergeTest’ is zero, both 139 

values of ‘convergeTest_startsFile’ and ‘outConvergenceTest’ are empty. ‘DAresultsPath’ is the 140 

directory saving the results of DA whose directories are also listed in the following six lines: 141 

‘outJ’ for the accepted mismatches; ‘outC’ for the accepted parameter values; ‘outRecordNum’ 142 

for the number of accepted parameter values; ‘outBestSimu’ for the best simulation outputs with 143 

the optimal parameter values; ‘outBestC’ for the optimal parameter values. For MIDA without 144 

GUI, ‘display_plot’ indicates whether or not to visualize the posterior distributions after DA.  145 

 146 

Figure C1. An example of the ‘namelist.txt’ file. In order to use MIDA, users need to prepare 147 

data and a model and specify their file names and directories in the ‘namelist.txt’ file. ” 148 



7. This doesn’t really impact the validity of the paper but just something I noticed and wanted 149 

to raise as it should really be clarified. The DALEC model is stated as having 5 C pools but 150 

also to having a Growing Degree Days phenology model. However, the Williams et al., 151 

(2005) model doesn’t have phenology model (i.e. continuous allocation / evergreen). DALEC 152 

was split into deciduous and evergreen versions in Fox et al., (2009) as part of the reflex 153 

project adding a 6th pool and the GDD model. The example DALEC code provided on the 154 

MIDA Github shows a alternate version of the model where leaf C is not dependent on GPP 155 

(and thus the system is not mass balanced). This is a distraction from the main point of 156 

demonstrating your DA system. Please make the origin of the code clear as it doesn’t match 157 

that found in the citations given.  158 

We apologize for the inconsistence. The version of DALEC model we used in this study is the 159 

version described by Lu et al. (2017).  It origins from Williams et al. (2005) but with some 160 

structural modifications. For example, the version of DALCE model by Lu et al. (2017) 161 

incorporates the phenology submodel developed by Ricciuto et al. (2011). Compared to the 162 

version of DALEC used in Fox et al. (2009), the model used in this study works for deciduous 163 

species and the plant labile pool is removed for simplification. We corrected the citation to Lu et 164 

al. (2017) in L375.  165 

In the code for DALEC in this manuscript, GPP is first consumed in autotrophic respiration, 166 

i.e., growth respiration (RG) and maintenance respiration (EM), and then is allocated to three 167 

vegetation pools, i.e., foliage (VEG_POOLS(1)), wood (VEG_POOLS(2)), and root 168 

(VEG_POOLS(3)). The variable NPP2 in L138 in the code is NPP minus change in leaf mass 169 

(CF_DELTA) which is used to update foliage pool. NPP2 in L209-210 in the code is used to 170 

update wood and root pools. Therefore, the sum of the changes in the three vegetation pools 171 

equals to NPP. Therefore, the DALEC model in this study has C mass balance. More detailed 172 

information is in Lu et al. (2017) which we cited in L375.173 

 174 



 175 

8. L140: “DA is a statistical approach...” – there are many different algorithms for DA whether 176 

for state update or parameter estimation (in this case). I think it would be clearer refer to it 177 

as an “approach”. I can see that you are trying to talk about your specific approach so 178 

maybe "The DA approach embeded within MIDA..."  179 

We apologize for the confusion. Currently, only Metropolis Hasting algorithm is embedded in 180 

MIDA, but MIDA is open to incorporate many other DA algorithms. Therefore, it would be 181 

more appropriate to use “approach” rather than “The DA approach embedded within MIDA”. 182 

We have changed “DA is a statistical algorithm” to “DA is a statistical approach” as suggested in 183 

L145.  184 

9. L176: “hinders” or “hides”?  185 

It should be “hides”. We have corrected this typo in L193. The sentence is now “In MIDA, the 186 

process of data exchange calls a model executable file which hides the details of model code.” 187 

10. L454: “This model simulates..."  188 

We have changed as suggested in L475. The revised sentence is now “This model simulates 189 

vegetation demographic processes with individual-based competition for light, soil water, and 190 

nutrients.” 191 

 192 

Reviewer 2 193 

1. The statistical model used for model calibration in Section 2.4 “Step: Execution of data 194 

assimilation” is not well defined. It’s quite unclear to me what the authors are using for 195 

model calibration therefore it is difficult to evaluate the calibration exercises themselves. I’m 196 

not convinced that you are really showing posterior distributions in the figures because of 197 



the description of the algorithm in the methods. What is the actual statistical model used for 198 

model calibration? 199 

Thanks for the comments and the question. The statistical method for model calibration in 200 

Section 2.4 is Metropolis-Hasting algorithm. It is a sampling-based algorithm including a 201 

proposing step and a moving step. The proposing step (L232-239) is to generate new set of 202 

parameter values and the moving step (L240-250) is to decide whether to accept these new 203 

parameter values or not. The posterior distribution is generated from all accepted parameters 204 

(L252-253). The significant peak in the posterior distribution indicates the parameters are well 205 

constrained (L280-281, L360-366). 206 

2. My second major comment is that Fer 2018 and PEcAn were entirely left out of this 207 

manuscript but should certainly be included in several places. 208 

We appreciate this constructive comment. Including Fer 2018 and PEcAn is a great addition and 209 

We have added  PEcAn in L104 where we describe all DA workflow systems. The sentence is 210 

“A number of tools have been developed to facilitate DA applications (Table 1) but many of 211 

them are model dependent, such as the Carbon Cycle Data Assimilation Systems (CCDAS) 212 

(Rayner et al., 2005; Scholze et al., 2007), the Carbon Data Model Framework (CARDAMOM) 213 

(Bloom et al., 2016), the Ecological Platform for Assimilating Data (EcoPAD) into model 214 

(Huang et al. 2019) and Predictive Ecosystem Analyzer (PEcAn) (LeBauer et al., 2013).”. 215 

 We also cited Fer 2018 in L82-84 as an example of the advanced algorithms to boost 216 

applications of DA: “In spite of powerful applications of DA to ecological research, 217 

computational cost is a major hurdle, especially with complex models. Fer et al. (2018) 218 

developed a Bayesian model emulation to reduce the time cost of DA from 112h to 6h with the 219 

simplified Photosynthesis and Evapotranspiration model. ”. 220 

3. Line 26: what kinds of states?  221 

We are sorry for the unclear description. We changed “state” to “states of ecosystems” in L26. 222 

The sentence is now “An accurate prediction of future states of ecosystems depends on not only 223 

model structures but also parameterizations.”.  224 

4. Line 38: I think there’s a word missing “model … the land component” 225 



Thanks for your question. The Energy, Exascale, Earth System Model (E3SM) is an Earth 226 

system modeling project sponsored by the US Department of Energy (E3SM Project, 227 

2018). E3SM land model (ELM) is the land and energy component of the earth system model. 228 

To be clearer, we added a colon between ‘model’ and ‘the land component’ (“a surrogate-based 229 

energy exascale earth system model: the land component (ELM)”) in L38 and L422.  230 

5.  Line 42: Doesn’t the easy implementation potentially make this more ‘black box’?  231 

Thanks for pointing it out. We removed “black-box” to avoid misleading in L42. The updated 232 

sentence is “Additionally, the easy implementation and model-independent feature of MIDA 233 

breaks the technical barrier of applications of data-model fusion in ecology.” 234 

6. Line 58: Citation for invasive coding?  235 

Thanks for the great suggestion. Invasive coding, a concept from Java programming language, 236 

means to modify current code to incorporate new algorithms or features. In this study, invasive 237 

coding means programming the DA algorithm into the model source code. We added a citation 238 

(“Walls et al., 2005”) for invasive coding in L59.  239 

7. Line 75: Missing link sentence between “, 2009). … DA was”  240 

Yes, the link is missing. We added “In the study by Liang et al. (2018)” to better link the two 241 

sentences in L75. The sentences are modified as “Second, DA can be used to select alternative 242 

model structures to better represent ecological processes (Liang et al., 2018; Van Oijen et al., 243 

2011; Shi et al., 2018; Smith et al., 2013; Williams et al., 2009). In the study by Liang et al. 244 

(2018), DA was used to evaluate four models. And a two-pool interactive model was selected 245 

after DA to best represent SOC decomposition with priming.” 246 

8. Line 78: Not sure about “data-worth”  247 

We apologize for the vagueness. To avoid confusion, we removed the redundant phrase “for 248 

data-worth analysis” in L78. The sentence is now “Additionally, DA can be applied to locate the 249 

most informative data to reduce uncertainty, thus guiding the sensor network design. (Keenan et 250 

al., 2013; Raupach et al., 2005; Shi et al., 2018; Williams et al., 2005).” 251 

9. Line 100: Include Predictive Ecosystem Analyzer (PEcAn)  252 



This is a great suggestion. We added PEcAn in L104 where all DA workflow systems are 253 

introduced. The sentence is modified as “A number of tools have been developed to facilitate DA 254 

applications (Table 1) but many of them are model dependent, such as the Carbon Cycle Data 255 

Assimilation Systems (CCDAS) (Rayner et al., 2005; Scholze et al., 2007), the Carbon Data 256 

Model Framework (CARDAMOM) (Bloom et al., 2016), the Ecological Platform for 257 

Assimilating Data (EcoPAD) into model (Huang et al. 2019) and Predictive Ecosystem Analyzer 258 

(PEcAn) (LeBauer et al., 2013).” 259 

10. Line 120-121: Not sure what is meant by this sentence  260 

Sorry for the unclear statement. This sentence is to express a point that changes in estimated 261 

parameter values by EnKF each time when a data point is assimilated usually do not reflect a 262 

reality of biogeochemical cycles in the real world. That is, parameter values of biogeochemical 263 

cycles in the real world do not suddenly change at a time point when data is assimilated by 264 

EnKF. We have modified the sentence in L124-126 to clarify this point. The sentence is revised 265 

as “The sudden changes in estimated parameter values at time points when data are assimilated 266 

by EnKF usually do not reflect reality of biogeochemical cycles in the real world.” 267 

11. Line 131: Nice!  268 

Thanks. 269 

12. Line 176: Hinders?  270 

Thanks for pointing it out. We have corrected the typo to “hides” in L193. The sentence is now 271 

“In MIDA, the process of data exchange calls a model executable file which hides the details of 272 

model code.”. 273 

13. Line 178: How does MIDA know how to write out model specific configurations?  274 

We hope we have understood your question correctly. Generally, MIDA does not write out 275 

configurations for a specific model. Instead, MIDA uses a ‘call’ function written in Python to run 276 

the model executable first and does not require model-specific forcing or other configurations 277 

(L255). Then, the data exchanges in the communication between MIDA and the model are 278 

realized by file I/O operations and MIDA does not write out model-specific configurations, 279 



either (L198-205). Taking parameter values as an example, MIDA reads the parameter range 280 

from a file “namelist.txt” that is provided by users. According to the parameter range, MIDA 281 

gets the number, maximum limit and minimum limit of the parameters. Based on this 282 

information, MIDA generates new parameter values and writes them to a file for the model 283 

executable to read. Third, all model-specific information is provided by users. For example, 284 

users need to indicate the file names of parameter range, observations, and model outputs in the 285 

“namelist.txt” or via GUI. Users also need to prepare a model-specific output configuration file 286 

to instruct how to map model outputs with each observation. Section 2.7 describes such 287 

information in details. Appendix B and Appendix C, which are listed below, provides an 288 

example of the output configuration file and an example of the namelist.txt file, respectively. 289 

“Appendix B: An example of output configuration file 290 

Output configuration file (e.g., config.txt) is to indicate the directories of observations and 291 

simulation output files as well as how they map to each other. Figure B1 is an example of the 292 

output configuration file. There are three blocks of functions to map simulation outputs to 293 

observed GPP, RE, and NEE. The blocks of mapping functions are separated by a blank line. 294 

Each mapping block starts with the directories of one observation, its observation variance and 295 

model outputs, which are separated by a hash key. If there is no observation variance available, 296 

users can ignore this directory. If multiple simulation outputs are used to correspond to one 297 

observation, the directories of simulation outputs are separated by a comma. The rest of the 298 

mapping block describes how to map simulation outputs to observations. The simu_map variable 299 

is simulation output after mapping. The simuList variable saves the simulation outputs specified 300 

in the first line. Taking the third mapping block in Fig. B1 as an example, simuList[0] saves 301 

contents in simuNEE_1.txt and simuList[0][0:365] saves the first 365 elements in this file.  302 



 303 

Figure B1: An example of output configuration file 304 
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Appendix C: An example of the namelist.txt file 

The Fig. C1 shows an example of the namelist.txt for the first study case with the DALEC 

model. Users need to prepare the namelist.txt before execution of data assimilation (DA) either 

manually or via GUI. Below describes the content in the namelist.txt. Detailed explanation or 

tutorials are available in the Zenodo repositories at the end of the appendixes.  

‘workpath’ is the directory where the MIDA executable are saved. ‘nsimu’ is the number 

of iterations in execution of data assimilation. ‘J_default’ is the default mismatch (i.e., cost 

function) to be compared in the first moving phase of data assimilation. ‘ProposingStepSize’ 

controls the jump scale in the proposing phase of data assimilation. Users can increase or 

decrease this value to adjust the acceptance rate to be in a range from 0.2 to 0.5. ‘paramFile’ is 

the directory of a csv file saving parameter-related information such as parameter range. 

‘obsList’ saves the directories of observations. Multiple observations are separated by semicolon. 

Similarly, ‘obsVarList’ saves the directories of observation variance in the same order as that of 

‘obsList’. ‘simuList’ saves the directories of simulation outputs corresponding to the 

observations. With GUI, MIDA reads directories in the output configuration file (e.g., config.txt) 

which users provide and assign values for ‘obsList’,‘obsVarList’, and ‘simuList’ in the 

namelist.txt automatically. In this case, if the directories of observations change, users only need 

to modify the output configuration file and generate the namelist.txt again with GUI-based 

MIDA.  

‘paramValue’ is the directory of a txt file where MIDA writes out new set of parameter 

values for model execution in each iteration of data assimilation. Its default value is 

‘ParameterValue.txt’ under the workpath specified in the first line of the namelist.txt. ‘model’ 

saves the directory of model executable. ‘nChains_convergeTest’ indicates whether to conduct 

German-Rubin (G-R) convergence test or not. If G-R test is used, its values is the number of 

multiple MCMC chains. If not, its value is zero. ‘convergeTest_startsFile’ is the directory of a 

csv file saving default parameter values as the start points in multiple MCMC chains. 

‘outConvergenceTest’ saves the results of G-R test. If ‘nChains_ConvergeTest’ is zero, both 

values of ‘convergeTest_startsFile’ and ‘outConvergenceTest’ are empty. ‘DAresultsPath’ is the 

directory saving the results of DA whose directories are also listed in the following six lines: 

‘outJ’ for the accepted mismatches; ‘outC’ for the accepted parameter values; ‘outRecordNum’ 

for the number of accepted parameter values; ‘outBestSimu’ for the best simulation outputs with 
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the optimal parameter values; ‘outBestC’ for the optimal parameter values. For MIDA without 

GUI, ‘display_plot’ indicates whether or not to visualize the posterior distributions after DA.  

 

Figure C1. An example of the ‘namelist.txt’ file. In order to use MIDA, users need to prepare 

data and a model and specify their file names and directories in the ‘namelist.txt’ file. ” 

14. Line 183 transfers -> transfer  

We have corrected the typo to “transfer” in L200 as suggested. The sentence is revised as “This 

is because data exchange between DA algorithm and model uses memory to transfer items such 

as parameter values.”. 

15. Line 184: organize -> organizes  

The typo has been corrected to “organizes” in L201 as suggested. The sentence is modified as 

“Instead, MIDA organizes items in data exchange using different files.”. 

16. Line 184: So the “different files” are like lookup tables?  
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Thanks for the great question. The ‘different files’ in the L201 are to save parameter ranges, 

parameter values, simulation outputs, observations and their covariances, and an output 

configuration to match between observations and simulation outputs. Different from PEcAn, 

there are no lookup tables in MIDA. PEcAn uses a lookup table to find the right data (e.g., PFT) 

for a specific model. MIDA defines a prototype class for data (i.e., parameter, observation or 

simulation output). These classes are initialized to adapt a specific model according to the data 

files loaded when MIDA is running. These coding methods are object-orient programming and 

dynamic initialization, which are commonly used in Java programming language. All this 

information is available in L209-216.  

17. Line 194: Would be cool to have an illustration of dynamic initialization * 

Thanks for the suggestion. Object-orient programming and dynamic initialization in L209 are 

concepts from Java programming. As readers of this manuscript are most likely ecologists who 

may not have advanced knowledge about programming, it would make it easier if we avoid such 

technical details. In the manuscript, we cite two papers on these concepts in case that readers 

would like to know more about them in L209. The sentence is “MIDA uses the concepts of 

object-orient programming (Mitchell and Apt, 2003) and dynamic initialization (Cline et al., 

1998) in computer science to provide a homogenous way to create various observation types 

from a unified prototype class.”  

18.  Line 209: In think you mean “inference”  

We have corrected the typo to “inference” in L226 as suggested. The revised sentence is “Data 

assimilation usually uses some types of sampling algorithms, such as Markov chain Monte Carlo 

(MCMC), to generate posterior parameter distribution under a Bayesian inference framework 

(Box and Tiao, 1992).”. 

19. Line 210: Before talking about the sampling algorithm, it would be good for the reader to 

know about the model formulation like the likelihood, prior, etc.  

We thank the reviewer for the valuable suggestion. In Section 2.1, we introduce general concepts 

about data assimilation methods. We revised to include description of likelihood, prior, and 

posterior distribution in L145-166. The revised paragraphs are shown below. 
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“2.1 Bayes’s theorem and DA  

Based on Bayes’ theorem, DA is a statistical approach to constrain parameter values and 

estimate their posterior density distributions through assimilating observations into a model. The 

posterior density distributions 𝑝(𝐶|𝑍) of parameters 𝐶 for a given observation 𝑍 can be obtained 

from prior density distributions 𝑝(𝐶) and the likelihood function 𝑝(𝑍|𝐶): 

𝑝(𝐶|𝑍) ∝ 𝑝(𝑍|𝐶)𝑝(𝐶)                                                             (1)           

The prior density distribution 𝑝(𝐶) is assumed as a uniform distribution over the parameter 

range. And the likelihood function is negatively proportional to a cost function, 𝐽 as: 

𝑝(𝑍|𝐶) ∝ 𝑒𝑥𝑝(−𝐽)                                                            (2) 

The cost function measures the misfit between simulation outputs and observations and is 

described in more detail in section 2.4. The posterior density distributions 𝑝(𝐶|𝑍) is estimated 

from sampling parameter values to maximize the likelihood function 𝑝(𝑍|𝐶) or minimize the 

cost function J. DA usually uses a sampling technique, such as Markov chain Monte Carlo 

(MCMC) in this MIDA. The MCMC algorithm successively generates a new set of parameter 

values from the prior parameter ranges and requires model run with these new parameter values. 

Then the cost function is calculated to determine whether this new set of parameter values will 

be accepted or not according to the Metropolis-Hastings criterion (see more description in 

section 2.4). All accepted parameter values are used to generate posterior distributions where the 

distinctive mode indicates the parameter uncertainty is well constrained. Meanwhile, we derive 

maximum likelihood estimates (MLEs) of parameters from the posterior density distributions.  

MIDA realizes model-independent Bayesian-based DA to estimate posterior density 

distributions and MLEs of parameters via data exchanges between a given model and DA 

algorithm. ” 

20. Line 245: What kind of MLE? What’s the model formulation? What are you maximizing over 

here? Why do you get maximum likelihoods and posteriors?  

Thanks for the great questions. All these questions are related to data assimilation (DA), which is 

to estimate parameter posterior distributions and constrain parameter values through assimilating 

observations into the model. Based on Bayes’ theorem, estimating parameter posterior 

distribution is transferred to maximize the likelihood function (Eq. 1, 2), which is negatively 

proportional to the mismatch between simulation outputs and observations (Eq. 3). Meanwhile, 
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maximum likelihood estimator of Eq. 2 can also help estimate the optimal parameter values. The 

distinctive mode of the posterior distributions indicates whether the parameter uncertainty is well 

constrained. All these information has been added to L145-163 in Section 2.1 to clarify the 

relationship between likelihood, posterior, and MLE in DA as shown below.  

“2.1 Bayes’s theorem and DA  

Based on Bayes’ theorem, DA is a statistical approach to constrain parameter values and 

estimate their posterior density distributions through assimilating observations into a model. The 

posterior density distributions 𝑝(𝐶|𝑍) of parameters 𝐶 for a given observation 𝑍 can be obtained 

from prior density distributions 𝑝(𝐶) and the likelihood function 𝑝(𝑍|𝐶): 

𝑝(𝐶|𝑍) ∝ 𝑝(𝑍|𝐶)𝑝(𝐶)                                                             (1)           

The prior density distribution 𝑝(𝐶) is assumed as a uniform distribution over the parameter 

range. And the likelihood function is negatively proportional to a cost function, 𝐽 as: 

𝑝(𝑍|𝐶) ∝ 𝑒𝑥𝑝(−𝐽)                                                            (2) 

The cost function measures the misfit between simulation outputs and observations and is 

described in more detail in section 2.4. The posterior density distributions 𝑝(𝐶|𝑍) is estimated 

from sampling parameter values to maximize the likelihood function 𝑝(𝑍|𝐶) or minimize the 

cost function J. DA usually uses a sampling technique, such as Markov chain Monte Carlo 

(MCMC) in this MIDA. The MCMC algorithm successively generates a new set of parameter 

values from the prior parameter ranges and requires model run with these new parameter values. 

Then the cost function is calculated to determine whether this new set of parameter values will 

be accepted or not according to the Metropolis-Hastings criterion (see more description in 

section 2.4). All accepted parameter values are used to generate posterior distributions where the 

distinctive mode indicates the parameter uncertainty is well constrained. Meanwhile, we derive 

maximum likelihood estimates (MLEs) of parameters from the posterior density distributions.  

MIDA realizes model-independent Bayesian-based DA to estimate posterior density 

distributions and MLEs of parameters via data exchanges between a given model and DA 

algorithm.” 

21. Line 250: At this point, I’m still confused how you define your drivers and model settings in 

general? For a particular model you usually have a parameter file that gets read by the 

executable. So are you rewriting those parameter files in step 2?  
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We apologize for the confusions. For the first question, model simulation is independent of 

MIDA and MIDA uses a ‘call’ function from the subprocess package in Python to execute model 

simulation (L255). Taking DALEC model in the first case study as an example, MIDA calls 

executable file of DALEC, which has already defined the directory where forcings (i.e., 

temperature, vapor pressure deficit, carbon dioxide concentration, etc.) are read to execute. The 

data exchange between MIDA and the model is model-specific (i.e., parameter values, 

simulation outputs, observations and their variances) and users only need to provide the paths 

and names of these data files in the ‘namelist.txt’ file or via GUI. We added Appendix C, which 

is listed at the end, to show an example of a ‘namelist.txt’ file. Section 2.3 in the manuscript has 

introduced how to realize these model-specific data exchanges in MIDA. Section 2.7 has 

introduced how users prepare the ‘namelist.txt’ file.  

For the second question, MIDA reads parameter range from a file indicated in the 

‘namelist.txt’ file, which is provides by users. Based on the parameter range, MIDA repeatedly 

generates new set of parameter values during the DA and writes these parameter values to the 

‘ParameterValue.txt’ in the work path that users chose in the ‘namelist.txt’. Model executable 

needs to read this file to get new parameter values. Users can also change the name of 

‘ParameterValue.txt’ in the ‘namelist.txt’ according to the need of a specific model. L262-263 

and L322-326 described how MIDA writes parameter values to a file, from which the model 

reads these parameter values to run simulation. 

“Appendix C: An example of the namelist.txt file 

The Fig. C1 shows an example of the namelist.txt for the first study case with the DALEC 

model. Users need to prepare the namelist.txt before execution of data assimilation (DA) either 

manually or via GUI. Below describes the content in the namelist.txt. Detailed explanation or 

tutorials are available in the Zenodo repositories at the end of the appendixes.  

‘workpath’ is the directory where the MIDA executable are saved. ‘nsimu’ is the number 

of iterations in execution of data assimilation. ‘J_default’ is the default mismatch (i.e., cost 

function) to be compared in the first moving phase of data assimilation. ‘ProposingStepSize’ 

controls the jump scale in the proposing phase of data assimilation. Users can increase or 

decrease this value to adjust the acceptance rate to be in a range from 0.2 to 0.5. ‘paramFile’ is 

the directory of a csv file saving parameter-related information such as parameter range. 

‘obsList’ saves the directories of observations. Multiple observations are separated by semicolon. 
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Similarly, ‘obsVarList’ saves the directories of observation variance in the same order as that of 

‘obsList’. ‘simuList’ saves the directories of simulation outputs corresponding to the 

observations. With GUI, MIDA reads directories in the output configuration file (e.g., config.txt) 

which users provide and assign values for ‘obsList’,‘obsVarList’, and ‘simuList’ in the 

namelist.txt automatically. In this case, if the directories of observations change, users only need 

to modify the output configuration file and generate the namelist.txt again with GUI-based 

MIDA.  

‘paramValue’ is the directory of a txt file where MIDA writes out new set of parameter 

values for model execution in each iteration of data assimilation. Its default value is 

‘ParameterValue.txt’ under the workpath specified in the first line of the namelist.txt. ‘model’ 

saves the directory of model executable. ‘nChains_convergeTest’ indicates whether to conduct 

German-Rubin (G-R) convergence test or not. If G-R test is used, its values is the number of 

multiple MCMC chains. If not, its value is zero. ‘convergeTest_startsFile’ is the directory of a 

csv file saving default parameter values as the start points in multiple MCMC chains. 

‘outConvergenceTest’ saves the results of G-R test. If ‘nChains_ConvergeTest’ is zero, both 

values of ‘convergeTest_startsFile’ and ‘outConvergenceTest’ are empty. ‘DAresultsPath’ is the 

directory saving the results of DA whose directories are also listed in the following six lines: 

‘outJ’ for the accepted mismatches; ‘outC’ for the accepted parameter values; ‘outRecordNum’ 

for the number of accepted parameter values; ‘outBestSimu’ for the best simulation outputs with 

the optimal parameter values; ‘outBestC’ for the optimal parameter values. For MIDA without 

GUI, ‘display_plot’ indicates whether or not to visualize the posterior distributions after DA.  
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Figure C1. An example of the ‘namelist.txt’ file. In order to use MIDA, users need to prepare 

data and a model and specify their file names and directories in the ‘namelist.txt’ file. ” 

22. Line 263: Make sure to cite all software packages.  

Thanks for the kind reminder. We added citations of all Python packages used in MIDA in L289. 

The updated sentence is “For the non-GUI version, users need to install Python 3.7 and relevant 

packages (i.e., numpy, pandas, shutil, subprocess, matplotlib, math, os, and seaborn).”  

23. Line 314: Helpful examples. Really curious where 302 years of leaf area data come from!  

We first generated simulation results of the BiomeE model with forest ages ranging from 0 to 

800 years, then compared the simulated forest height or vertical structure to GEDI-derived 

observations and determined the forest age is 302 yrs. According to the empirical knowledge, the 

forest is around 300~350 years old and a variation of 50 years is acceptable as because forests 

are almost equilibrated.  

24. Line 343: “complex reasons” is somewhat vague  
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We are sorry about the vague description. We added specific descriptions “such as improper 

prior parameter range” for the reasons leading to edge-hitting posterior distribution in L364. In 

addition, we included other possible reasons to explain the results. The sentences are revised as 

“The edge-hitting posterior distributions result from complex reasons, such as improper prior 

parameter range. Users may change the prior ranges to examine if those posterior distributions 

can be improved or examine correlations among estimated parameters. ” 

25. Line 499: Citation?  

Thanks for the suggestion. We added a citation of Gao et al. (2011) in L521. 

26. Line 504: Not sure about “first” unless you make your definition of model agnostic more 

specific  

We are sorry about the unclear statement. We changed the sentence to “Compared to the model-

independent DA tools mentioned above, MIDA is the first that uses the MCMC method for 

DA.’” in L526.  It echoes with L512-516. 

27. Figure 1: Very nice!  

Thanks. 

28. Figure 6: the Cis appear homogenous. Can MIRA deal with heteroskedasticity?  

Thanks for your question. MIDA uses MCMC algorithms which requires homogenous variance. 

MIDA is also flexible enough to incorporate other algorithms that can deal with data of 

heteroskedasticity. 

29. Figure 7: the colors in the legend have an extra character that should be removed  

As suggested, we removed the extra character in the legend of model no. in Fig. 7 as shown 

below. 
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30. Figure 4, 5, and 8: these posterior distributions do not look converged to me. Could you also 

include the mcmc chains as well here or in the supplements? 

Thanks for your question. These cases study are to repeat published DA results to demonstrate 

the capability of MIDA. Taking Fig. 4 as an example, the constrained posterior distributions are 

similar to those from the original study in Lu et al. (2017). In addition, MIDA has incorporated 

algorithms to support Gelman-Robin convergence test of multiple MCMC chains as described in 

L354-359. 
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