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Manuscript  

Responses to Reviewers 

 

Dear editor and reviewers, 

Thanks very much for taking your time to review this manuscript. We really appreciate all your 

comments and suggestions, which are very helpful for us to improve the manuscript. We have 

made a thorough revision to address the comments and questions. Please find our point-to-point 

responses below. 

 

Reviewers' Comments to the Authors:  

Reviewer 2 

1. The statistical model used for model calibration in Section 2.4 “Step: Execution of data 

assimilation” is not well defined. It’s quite unclear to me what the authors are using for 

model calibration therefore it is difficult to evaluate the calibration exercises themselves. I’m 

not convinced that you are really showing posterior distributions in the figures because of 

the description of the algorithm in the methods. What is the actual statistical model used for 

model calibration? 

Thanks for the comments and the question. The statistical method for model calibration in 

Section 2.4 is Metropolis-Hasting algorithm. It is a sampling-based algorithm including a 

proposing step and a moving step. The proposing step (L231-237) is to generate new set of 

parameter values and the moving step (L238-248) is to decide whether to accept these new 

parameter values or not. The posterior distribution is generated from all accepted parameters 

(L250). The significant peak in the posterior distribution indicates the parameters are well 

constrained (L360-366). 

2. My second major comment is that Fer 2018 and PEcAn were entirely left out of this 

manuscript but should certainly be included in several places. 
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We appreciate this constructive comment. Including Fer 2018 and PEcAn is a great addition and 

We have added Fer et al. (2018) and PEcAn in L101. 

3. Line 26: what kinds of states?  

We are sorry for the unclear description. We changed “state” to “states of ecosystems” in L26.  

4. Line 38: I think there’s a word missing “model … the land component” 

Thanks for your question. The Energy, Exascale, Earth System Model (E3SM) is an Earth 

system modeling project sponsored by the US Department of Energy (E3SM Project, 

2018). E3SM land model (ELM) is the land and energy component of the earth system model. 

To be clearer, we added a colon between ‘model’ and ‘the land component’ in L39.   

5.  Line 42: Doesn’t the easy implementation potentially make this more ‘black box’?  

Thanks for pointing it out. We removed “black-box” to avoid misleading in L42. 

6. Line 58: Citation for invasive coding?  

Thanks for the great suggestion. Invasive coding, a concept from Java programming language, 

means to modify current code to incorporate new algorithms or features. In this study, invasive 

coding means programming the DA algorithm into the model source code. We added a citation 

for invasive coding in L58.  

7. Line 75: Missing link sentence between “, 2009). … DA was”  

Yes, the link is missing. We added “In the study by Liang et al. (2018)” to better link the two 

sentences in L75. 

8. Line 78: Not sure about “data-worth”  

We apologize for the vagueness. To avoid confusion, we removed the redundant phrase “for 

data-worth analysis” in L78. 

9. Line 100: Include Predictive Ecosystem Analyzer (PEcAn)  

This is a great suggestion. We added PEcAn and the citation of Fer et al., (2018) in L101. 
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10. Line 120-121: Not sure what is meant by this sentence  

Sorry for the unclear statement. This sentence is to express a point that changes in estimated 

parameter values by EnKF each time when a data point is assimilated usually do not reflect a 

reality of biogeochemical cycles in the real world. That is, parameter values of biogeochemical 

cycles in the real world do not suddenly change at a time point when data is assimilated by 

EnKF.  We have modified the sentence to clarify this point. 

11. Line 131: Nice!  

Thanks. 

12. Line 176: Hinders?  

Thanks for pointing it out. We have corrected the typo to “hides” in L191. 

13. Line 178: How does MIDA know how to write out model specific configurations?  

We hope we have understood your question correctly. Generally, MIDA does not write out 

configurations for a specific model. Instead, MIDA uses a ‘call’ function written in Python to run 

the model executable first and does not require model-specific forcing or other configurations 

(L253). Then, the data exchanges in the communication between MIDA and the model are 

realized by file I/O operations and MIDA does not write out model-specific configurations, 

either (L196-203). Taking parameter values as an example, MIDA reads the parameter range 

from a file “namelist.txt” that is provided by users. According to the parameter range, MIDA 

gets the number, maximum limit and minimum limit of the parameters. Based on this 

information, MIDA generates new parameter values and writes them to a file for the model 

executable to read. Third, all model-specific information is provided by users. For example, 

users need to indicate the file names of parameter range, observations, and model outputs in the 

“namelist.txt” or via GUI. Users also need to prepare a model-specific output configuration file 

to instruct how to map model outputs with each observation. Section 2.7 describes such 

information in details. Appendix B and Appendix C provides an example of the output 

configuration file and an example of the namelist.txt file, respectively. 

14. Line 183 transfers -> transfer  
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We have corrected the typo to “transfer” in L198 as suggested.  

15. Line 184: organize -> organizes  

The typo has been corrected to “organizes” in L199 as suggested.  

16. Line 184: So the “different files” are like lookup tables?  

Thanks for the great question. The ‘different files’ in the original L184 are to save parameter 

ranges, parameter values, simulation outputs, observations and their covariances, and an output 

configuration to match between observations and simulation outputs. Different from PEcAn, 

there are no lookup tables in MIDA. PEcAn uses a lookup table to find the right  data (e.g., PFT) 

for a specific model. MIDA defines a prototype class for data (i.e., parameter, observation or 

simulation output). These classes are initialized to adapt a specific model according to the data 

files loaded when MIDA is running. These coding methods are object-orient programming and 

dynamic initialization, which are commonly used in Java programming language. All this 

information is available in L204-215.  

17. Line 194: Would be cool to have an illustration of dynamic initialization * 

Thanks for the suggestion. Object-orient programming and dynamic initialization in L207 are 

concepts from Java programming. As readers of this manuscript are most likely ecologists who 

may not have advanced knowledge about programming, it would make it easier if we avoid such 

technical details.  

18.  Line 209: In think you mean “inference”  

We have corrected the typo to “inference” in L224 as suggested.  

19. Line 210: Before talking about the sampling algorithm, it would be good for the reader to 

know about the model formulation like the likelihood, prior, etc.  

We thank the reviewer for the valuable suggestion. In Section 2.1, we introduce general concepts 

about data assimilation methods. We revised to include description of likelihood, prior, and 

posterior distribution in L141-154. 
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20. Line 245: What kind of MLE? What’s the model formulation? What are you maximizing over 

here? Why do you get maximum likelihoods and posteriors?  

Thanks for the great questions. All these questions are related to data assimilation (DA), which is 

to estimate parameter posterior distributions and constrain parameter values through assimilating 

observations into the model. Based on Bayes’ theorem, estimating parameter posterior 

distribution is transferred to maximize the likelihood function (Eq. 1,2), which is negatively 

proportional to the mismatch between simulation outputs and observations (Eq. 3). Meanwhile, 

maximum likelihood estimator of Eq. 2 can also help estimate the optimal parameter values. The 

distinctive mode of the posterior distributions indicates whether the parameter uncertainty is well 

constrained. All these information has been added to L141-154 in Section 2.1 to clarify the 

relationship between likelihood, posterior, and MLE in DA. 

21. Line 250: At this point, I’m still confused how you define your drivers and model settings in 

general? For a particular model you usually have a parameter file that gets read by the 

executable. So are you rewriting those parameter files in step 2?  

We apologize for the confusions. For the first question, model simulation is independent of 

MIDA and MIDA uses a ‘call’ function from the subprocess package in Python to execute model 

simulation. Taking DALEC model in the first case study as an example, MIDA calls executable 

file of DALEC, which has already defined the directory where forcings (i.e., temperature, vapor 

pressure deficit, carbon dioxide concentration, etc.) are read to execute. The data exchange 

between MIDA and the model is model-specific (i.e., parameter values, simulation outputs, 

observations and their variances) and users only need to provide the paths and names of these 

data files in the ‘namelist.txt’ file or via GUI. Appendix C is an example of a ‘namelist.txt’ file. 

Section 2.3 in the manuscript has introduced how to realize these model-specific data exchanges 

in MIDA. Section 2.7 has introduced how users prepare the ‘namelist.txt’ file.  

For the second question, MIDA reads parameter range from a file indicated in the 

‘namelist.txt’ file, which is provides by users. Based on the parameter range, MIDA repeatedly 

generates new set of parameter values during the DA and writes these parameter values to the 

‘ParameterValue.txt’ in the work path that users chose in the ‘namelist.txt’. Model executable 

needs to read this file to get new parameter values. Users can also change the name of 

‘ParameterValue.txt’ in the ‘namelist.txt’ according to the need of a specific model. L259-261 
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and L320-324 described how MIDA writes parameter values to a file, from which the model 

reads these parameter values to run simulation. 

22. Line 263: Make sure to cite all software packages.  

Thanks for the kind reminder. We added citations of all Python packages used in MIDA in L287.  

23. Line 314: Helpful examples. Really curious where 302 years of leaf area data come from!  

We first generated simulation results of the BiomeE model with forest ages ranging from 0 to 

800 years, then compared the simulated forest height or vertical structure to GEDI-derived 

observations and determined the forest age is 302 yrs. According to the empirical knowledge, the 

forest is around 300~350 years old and a variation of 50 years is acceptable as because forests 

are almost equilibrated.  

24. Line 343: “complex reasons” is somewhat vague  

We are sorry about the vague description. We added specific descriptions “such as improper 

prior parameter range” for the reasons leading to edge-hitting posterior distribution in L363. In 

addition, we included other possible reasons to explain the results.  

25. Line 499: Citation?  

Thanks for the suggestion. We added a citation of Gao et al. (2011) in L520. 

26. Line 504: Not sure about “first” unless you make your definition of model agnostic more 

specific  

We are sorry about the unclear statement. We changed the sentence to “Compared to the model-

independent DA tools mentioned above, MIDA is the first that uses the MCMC method for 

DA.’” in L524.  It echoes with L514-515.  

27. Figure 1: Very nice!  

Thanks. 

28. Figure 6: the Cis appear homogenous. Can MIRA deal with heteroskedasticity?  
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Thanks for your question. MIDA uses MCMC algorithms which requires homogenous variance. 

MIDA is also flexible enough to incorporate other algorithms that can deal with data of 

heteroskedasticity. 

29. Figure 7: the colors in the legend have an extra character that should be removed  

As suggested, we removed the extra character in the legend of model no. in Fig. 7. 

30. Figure 4, 5, and 8: these posterior distributions do not look converged to me. Could you also 

include the mcmc chains as well here or in the supplements? 

Thanks for your question. These cases study are to repeat published DA results to demonstrate 

the capability of MIDA. Taking Fig. 4 as an example, the constrained posterior distributions are 

similar to those from the original study in Lu et al. (2017). In addition, MIDA has already 

incorporated algorithms to support Gelman-Robin convergence test of multiple MCMC chains as 

described in L335.  

 

 

 

 


