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Abstract. Projections of coastal sea level (SL) changes are of great interest for coastal risk assessment and decision-making. 

SL projections are typically produced using global climate models (GCMs) which cannot fully resolve SL changes at the 10 

coast due to their coarse resolution and lack of representation of some relevant processes. To overcome these limitations and 

refine projections at regional scales, GCMs can be dynamically downscaled through the implementation of a high-resolution 

regional climate model (RCM). In this study, we developed the IBI-CCS regional ocean model based on a 1/12 ° north-

eastern Atlantic NEMO ocean model configuration to dynamically downscale CNRM-CM6-1-HR, a GCM with a ¼ ° 

resolution ocean model component developed for the Coupled Model Intercomparison Project 6th Phase (CMIP6) by the 15 

Centre National de Recherches Météorologiques (CNRM). For a more complete representation of processes driving coastal 

SL changes, tides and atmospheric surface pressure forcing are explicitly resolved in IBI-CCS in addition to the ocean 

general circulation. To limit the propagation of climate drifts and biases from the GCM into the regional simulations, several 

corrections are applied to the GCM fields used to force the RCM. The regional simulations are performed over the 1950 to 

2100 period for two climate change scenarios (SSP1-2.6 and SSP5-8.5). To validate the dynamical downscaling method, the 20 

RCM and GCM simulations are compared to reanalyses and observations over the 1993-2014 period for a selection of ocean 

variables including SL. Results indicate that large-scale performances of IBI-CCS are better than those of the GCM thanks to 

the corrections applied to the RCM. Extreme SLs are also satisfactorily represented in the IBI-CCS historical simulation. 

Comparison of the RCM and GCM 21st century projections show a limited impact of increased resolution (1/4° to 1/12°) on 

SL changes. Overall, bias corrections have a moderate impact on projected coastal SL changes projections, except in the 25 

Mediterranean Sea where GCM biases were substantial. 

1 Introduction  

Sea level (SL) changes are a major threat for coastal and low-lying regions. Higher SLs can lead to coastal flooding, erosion, 

salinization of surface waters and groundwater, degradation of coastal ecosystems such as mangroves and coral reefs, and 

permanent submergence of land and human settlements (Oppenheimer et al., 2019). Risks associated to sea level rise (SLR) 30 

are even more important because coastal regions are subject to an increasing anthropogenic pressure with 10 % of the 

world’s population living in low elevation coastal zones (McGranahan et al., 2007). In Europe, the coastal population 

represents 50 million people (Neumann et al., 2015). Without adaptation measures, the annual number of European people 

exposed to coastal flooding could reach 1.5 to 3.6 million by the end of the century and the associated expected annual 

damage could reach 90 to 960 billion euros (Vousdoukas et al., 2018a). Projections of coastal SL changes are thus of great 35 

interest for coastal risk assessment and decision-making processes.  

 

Variations of the SL at the coast result from the superposition of global mean sea level (GMSL), regional SL and local SL 

changes (e.g. Fox-Kemper et al., 2021; Oppenheimer et al., 2019; Woodworth et al., 2019). Global mean sea level rise 

(GMSLR) is driven by the ocean thermal expansion and the transfer of water mass from the cryosphere and land to the ocean 40 
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(Church et al., 2013; Slangen et al., 2017). At regional scales, SL changes spatial variations are mainly due to ocean 

circulations and the associated ocean heat, salt and mass redistribution within the ocean (Forget and Ponte, 2015; 

Meyssignac et al., 2017a). At coastal scales, variations of SL are mostly related to tides, waves and atmospheric surges (e.g. 

Melet et al., 2018; Woodworth et al., 2019). Atmospheric surges are defined here as SL changes due to surface atmospheric 

pressure and to local SLR caused by the wind called wind setup. At the coast, departures from the GMSL can therefore be 45 

substantial (Kopp et al., 2014; Meyssignac et al., 2017b; Melet et al., 2020). Local relative SL change information is thus 

required by policy makers.  

 

SL projections are typically based on global climate models (GCMs) (Oppenheimer et al., 2019; Church et al., 2013; Slangen 

et al., 2014). However, the typical CMIP5/6 (Coupled Model Intercomparison Project 5/6th Phase) model resolutions 50 

(mostly 1 °, ¼ °) do not allow to resolve fine scale processes. These coarse resolutions limit the realism of the representation 

of coastal dynamical processes influencing SL changes at the coast (Woodworth et al., 2019), potentially leading to 

substantial biases. For example, van Westen et al., 2020 demonstrated for the Caribbean Sea that adequate regional 

projections of SL changes can only be obtained with ocean models that capture mesoscale processes. In addition, GCMs do 

not explicitly resolve key processes driving SL changes at the coast (e.g. waves, tides).  55 

 

Dynamical downscaling (DD) methods can be used to refine GCM projections at regional scales by increasing the model 

spatial resolution and by explicitly including more processes. Such methods rely on the implementation of a high-resolution 

regional climate model (RCM) driven by GCM outputs. Several studies have investigated future changes in ocean 

temperature, salinity, circulation and SL thanks to DD in various regions (e.g. Mathis et al., 2013; Adloff et al., 2018, 2015; 60 

Shin and Alexander, 2020; Gomis et al., 2016; Macias et al., 2018). Some of them have focused on SL projections 

particularly (Hermans et al., 2020; Liu et al., 2016; Zhang et al., 2017; Jin et al., 2021). Hermans et al., 2020 show the 

influence of DD for dynamic sea level (DSL) projections over the twenty-first century on the north-western European shelf 

using two GCMs. For the scenario with the highest radiative forcing by the end of the century (RCP8.5), they found that the 

downscaled DSL changes can be up to 15.5 cm smaller than in the GCM simulations. These differences are found in some 65 

coastal areas owing to unresolved processes in the GCM.  For the north Pacific, Liu et al., 2016 have performed a DD with 3 

different CMIP5 GCMs. They showed that the downscaled SL changes can differ up to 10 cm from the GCM changes on 

coastal areas. Zhang et al., 2017 demonstrated the benefits of DD for Australian SL projections with a better representation 

of ocean gyre circulation and currents. Jin et al., 2021 have used the DD method with 8 different GCMs to provide a 

modeling protocol to produce climate projections at low computational cost. Their results reveal greater spatial details in the 70 

downscaled simulations with differences up to 15 cm compared to the GCM simulations.  

 

GCMs exhibit various biases when compared to observations (e.g. Flato et al., 2013). Because GCMs are used to force 

RCMs, these biases could propagate into regional simulations and be an important source of regional biases and uncertainties 

for the projections (Takayabu et al., 2016; Dosio, 2016). The DD method can be used to overcome this problem by applying 75 

corrections to the GCM outputs before using them as forcing when performing a DD (e.g. Shin and Alexander, 2020). A 

simple method for bias correction is to simply shift the GCM data by its mean bias of a reference period. This method is used 

with a seasonal bias correction on the sea surface temperature (SST) in Adloff et al., 2015 and seasonal bias correction on 

the sea surface height (SSH) in Adloff et al., 2018. The delta correction or anomaly forcing is another commonly used 

method: the GCM projected changes are added to a reference past state from a reanalysis data or a climatology (Jin et al., 80 

2021; Adloff et al., 2015). Other methods exist such as rescaling the data with a factor or adjusting different ranges of a 

distribution individually like in Macias et al., 2018 on atmospheric variables to run an ocean model. Emergent constraints 
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methods also exist to overcome model biases and reduce the uncertainties of the projections (Chen et al., 2020; Grinsted and 

Christensen, 2021; Forster et al., 2021). 

 85 

The aim of the present study is to provide projections of SL changes in the north-eastern Atlantic region bordering western 

Europe, focusing on methodological aspects. More specifically, we assess the influence on modeled regional SL changes of: 

(1) the DD i.e. the increased model resolution and a more complete representation of coastal processes driving SL changes 

and (2) bias corrections of GCM-forcing fields. To these aims, a regional DD of simulations from a high-resolution CMIP6 

GCM is performed. The high-resolution regional ocean model includes coastal processes such as tides and surface 90 

atmospheric pressure forcing in addition to the ocean general circulation (DSL). Thanks to these included processes and high 

frequency outputs of the RCM, the regional simulations will be used in a future study to investigate the projections of 

extreme SLs over the same region. In the present study, which investigates the added value of the DD and bias corrections, 

the regional simulations are compared to original GCM simulations over the historical period and the 21st century using two 

climate change scenarios. 95 

 

The paper is organized as follows: the downscaling setup, correction methods, simulations performed and description of SL 

in the simulations are presented in Sect. 2. The DD method is evaluated in Sect. 3.1. Sect. 3.2 shows the RCM and GCM 

projections over the 21st century for the SSP5-8.5 and SSP1-2.6 climate change scenarios with a focus on SL changes. In 

Sect. 3, the added value of the DD and the impact of the bias corrections applied are assessed for the simulation of past and 100 

future ocean conditions with a SL focus. The discussion and conclusions of the study are presented in Sect. 4.  

2 Methods 

The regional ocean climate model (RCM), called IBI-CCS (Iberian-Biscay-Ireland Climate Change Scenarios) is developed 

and presented in Sect. 2.1.2. In this study, IBI-CCS is forced by the CNRM-CM6-1-HR CMIP6 climate model (Sect. 2.1.1) 

using ocean and atmospheric outputs at the lateral and air-sea boundaries of the regional IBI domain (Sect. 2.2.1). Several 105 

corrections are applied to the GCM forcings to limit the propagation of climate drifts and biases into the regional simulations 

(Sect. 2.2.2).  

2.1 Model and configuration 

The ocean component of the global climate model CNRM-CM6-1-HR and the ocean regional model IBI-CCS are based on 

the 3.6 version of NEMO and rely on the Boussinesq approximation and a hydrostatic equilibrium (Madec et al., 2017). Both 110 

vertical grids contain 75 z-levels with a resolution decreasing from about 1 meter in the upper 10 meters to more than 400 

meters in the deep ocean. A partial step representation (Barnier et al., 2006) is implemented for the bottom ocean cell to 

better represent the bathymetry and the model benefits from variable volume-free sea surface. 

2.1.1 Global climate model, CNRM-CM6-1-HR 

The global climate model used to force the regional ocean model is the CNRM-CM6-1-HR ocean-atmosphere coupled 115 

model, developed jointly by the Centre National de Recherches Météorologiques (CNRM) and Centre Européen de 

Recherche et de Formation Avancée en Calcul Scientifique (CERFACS). CNRM-CM6-1-HR contributes to CMIP6. The 

ocean component grid of this GCM has a 0.25 ° horizontal nominal resolution (≈ 12-25 km at 25-65° N) with refinements in 

the equatorial band. CNRM-CM6-1-HR is a high-resolution model compared to CMIP6 typical resolution of 1 °. CNRM-

CM6-1-HR is the high-resolution version of the 1 ° resolution CNRM-CM6-1, which is described in Voldoire et al., 2019; 120 

Roehrig et al., 2020. Some comparisons of CNRM-CM6-1-HR and CNRM-CM6-1 are included in Sect. 3 to assess the 
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impact of the increased resolution between the two GCMs. A polynomial representation of the equation of state (TEOS-10, 

Roquet et al., 2015) is used but the temperature and salinity outputs are converted into the in-situ temperature and practical 

salinity needed by the RCM. The vertical mixing of tracers and momentum uses the turbulent kinetic energy scheme (Gaspar 

et al., 1990; Blanke and Delecluse, 1993) and the internal wave‐induced mixing parameterization of de Lavergne et al., 2020. 125 

Tracers advection is computed with the centered second order formulation combined with the limiter of Zalesak, 1979. The 

solar penetration is parameterized according to a four-bands scheme. The NEMO ocean model and a sea-ice scheme 

GELATO are coupled to a land-atmosphere model using the OASIS-MCT coupler. The atmospheric component is the global 

atmospheric model ARPEGE-Climat 6.3 with a horizontal resolution of 0.5 ° (≈ 24-50 km at 25-65° N) at the Equator.  

Several GCM simulations are used to prepare the forcings required to force the RCM: a historical run (1850-2014) forced by 130 

observed greenhouse gas concentrations, a preindustrial control run forced by fixed preindustrial conditions representative of 

the 1850s over 300 years and scenarios (2015-2100) based on alternative trajectories for future emissions. In this paper, we 

focus on two contrasting scenarios included in Tier1 of ScenarioMIP: SSP5-8.5 and SSP1-2.6 with respectively a very high 

and low radiative forcing by the end of the century (O’Neill et al., 2016). The SSP5-8.5 scenario relies on a fossil-fuel based 

world development leading to an Earth radiative imbalance of 8.5 W m-2 in 2100. This scenario approximatively corresponds 135 

to the CMIP5 RCP8.5 scenario. The SSP1-2.6 scenario has a 50 % chance to follow the Paris agreement of a limited 

warming below 2 °C by the end of the century and corresponds to the CMIP5 RCP2.6 scenario. 

2.1.2 Regional ocean model IBI-CCS  

 

Figure 1: Bathymetry (m) and schematic description of main oceanographic features in the IBI domain. The main surface 140 
dynamical features shown are: the North Atlantic Current (NAC), the Azores Current (AC), the Canary Current (CaC), the 
Portugal Current (PC), the Iberian Poleward Current (IPC), the Norwegian Coastal Current (NwCC), the Liguro Provençal 
Current (LPC), the Algerian Current (AlC). Some geographical features are mentioned: the Bay of Biscay (BoB), the Armorican 
Shelf (AS), the English Channel (EC), the Irish Sea (IS), the Celtic Sea (CS), the North Sea (NS), the Faroe - Shetland Channel 
(FSC), the Kattegat (Ka), the Skagerrak (Sk), the Gulf of Cadiz (GoC), the Alboran Sea (AlS), the Gulf of Lion (GoL) and the 145 
Gibraltar Strait (GS). The star indicates the zone where a TS diagram is performed in Sect. 3.1.3. The red dots represent the tide 
gauge stations of the zone used in Sect. 3.1.6. Note that the color scale for the bathymetry is not linear. 
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The domain covered by the regional ocean model is the Iberian-Biscay-Ireland (IBI) zone, extending from 25° N to 65° N 

and 21° W to 14° E. This region includes the north-eastern Atlantic Ocean, the North Sea and the western Mediterranean Sea 150 

(Fig. 1). The IBI zone is covered in the framework of the Copernicus Marine Service (CMEMS) with a 1/36 ° real-time 

system and a 1/12 ° reanalysis IBIRYS (https://marine.copernicus.eu/about/producers/ibi-mfc). The ocean reanalysis 

IBIRYS is described in CMEMS-IBI-PUM-005-002.pdf (copernicus.eu) and validated in CMEMS-IBI-QUID-005-002.pdf 

(copernicus.eu). The configuration of this reanalysis is based on a curvilinear grid at a 1/12 ° horizontal resolution (≈ 4-8.5 

km at 25-65° N) and is used for the IBI-CCS simulations. A variety of physical oceanographic processes are found in this 155 

region (Sotillo et al., 2015; Maraldi et al., 2013). First, the zone contains strong variations of bathymetry with a wide 

continental shelf in the northern part of the domain (North Sea, English Channel) and a tight continental shelf in the southern 

part (Spain, Portugal, Morocco, Mediterranean Sea) (Fig. 1). The north-western deeper part of the IBI region is mainly 

driven by the North Atlantic Current (NAC). Along the continental slope, a poleward slope current flows from the 

Portuguese coasts to the north of Ireland with slope oceanic eddies along the northern Iberian coast. On the continental 160 

shelves, large energetic tides are particularly found in the English Channel, Celtic and Irish Seas. In the southern part of the 

domain, two main physical features are found: strong summer upwellings along the Portuguese and Moroccan coasts and 

Gibraltar Strait. At Gibraltar Strait, exchanges between the Atlantic Ocean and Mediterranean Sea occur and drive mesoscale 

eddies in the Alboran Sea (Fig. 1).  

The main added value of this configuration in comparison to the GCM (Sect. 2.1.1) is the inclusion of processes driving SL 165 

changes in the coastal ocean such as tides and atmospheric pressure forcing in addition to the ocean general circulation 

(DSL). Tides are included in the model by calculating the astronomical tidal potential and the tidal harmonic forcing as the 

sum of 11 components: diurnal components (K1, O1, P1 and Q1), semi-diurnal constituents (M2, S2, N2 and K2), long-

period-tides (Mf and Mm) and a nonlinear component M4. In addition to these high frequency processes added in the RCM, 

some physical parameterizations also differ from those of the GCM. Seawater thermodynamics uses a polynomial 170 

approximation of EOS‐80 (Fofonoff and Millard Jr, 1983). Vertical mixing is parameterized according to a k-ε model 

implemented in the generic form proposed by (Umlauf and Burchard, 2003; Reffray et al., 2015). Although tides are 

explicitly treated, the mixing induced by internal tides is not completely resolved in the RCM and the parameterization of de 

Lavergne et al., 2020 is also activated in the RCM (as in the GCM). Tracers advection is computed with the QUICKEST 

scheme developed by Leonard, 1979 combined with the limiter of Zalesak, 1979. The solar penetration parameterization is 175 

based on a five-bands exponential scheme. Finally, air-sea turbulent fluxes are calculated in the model using ECMWF-IFS 

bulk formulations (ECMWF, 2014; Brodeau et al., 2017).  

2.2 Regionally downscaled simulations 

The regionally downscaled simulations are performed over the 1950-2100 period. 1950-1970 is considered as the spin-up 

period after which surface and intermediate waters have reached a quasi-equilibrium (not shown here). The historical 180 

regional simulation therefore starts in 1970 and ends in 2014. Climate change simulations using scenarios described in Sect. 

2.1.1 are run from 2015 to 2100.  

 

The near surface atmospheric state variables from the GCM used to force the regional ocean model are the three-hourly 2m-

air temperature (t2m), 2m-specific humidity (q2m), 10m-wind, short and long wave radiations, precipitation and six-hourly 185 

atmospheric pressure at SL. The open boundary conditions (OBCs) are prescribed at the lateral boundaries of the regional 

domain each month using the GCM 3D ocean temperature, salinity, currents and 2D sea surface height (SSH). A buffer zone 

of 10 grid points (except at the eastern boundaries where 5 grid points are used) relaxes the internal regional solution to the 

prescribed boundary values. For the SSH forcing, the GCM SSH is not directly prescribed but enters in a Flather-type 
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algorithm (Flather and Davies, 1976). The RCM is initialized using temperature, salinity, currents and SSH variables. 190 

Monthly runoff from GCM are also prescribed to the RCM.  

 

Global climate models are typically subject to drift (i.e long-term change independent of internal variability or external 

forcings, especially in the deep ocean, Gupta et al., 2013) and to substantial biases (Flato et al., 2013, Fasullo, 2020). To 

prevent the regional simulations from inheriting the drift and biases of the GCM, several corrections have been applied to the 195 

GCM outputs before prescribing them to the RCM. Two different simulations are performed to assess the impact of these 

corrections (Table 1). The first one is the raw simulation referred to as IBI-CCS_raw without any correction of the GCM 

forcings (Sect. 2.2.1). The second one is referred to as IBI-CCS_corr with corrections of the GCM forcings (Sect. 2.2.2). A 

third simulation called IBI-ERAi is performed as a reference simulation to validate the IBI-CCS_raw and IBI-CCS_corr in 

Sect. 3.  200 

 

 
Atmospheric forcings Open boundary conditions 

forcings 
Initial conditions Runoff forcings 

Simulation Fields Freque
ncy 

Fields Freque
ncy 

Forcing Fields Freque
ncy 

IBI-
CCS_raw 
(1950-2100) 

CNRM-CM6-1-HR 3hours CNRM-CM6-1-HR 1 
month 

CNRM-CM6-1-HR CNRM-CM6-1-HR 
seen by the ocean 
component 

1 
month 

IBI-
CCS_corr 
(1950-2100) 

CNRM-CM6-1-HR 
drift (t2m, q2m) 
and bias (t2m, q2m, 
radiative fluxes) 
corrected 

3hours CNRM-CM6-1-HR 
drift and bias 
corrected 
(T,S,SSH)  
+ SSH setting in 
Mediterranean Sea 

1 
month 

CNRM-CM6-1-HR 
drift and bias 
corrected (T,S,SSH)  

TRIP (river routing 
model of CNRM-
CM6-1-HR) 

1 day 

IBI-ERAi 
(1993-2104) 

ERAinterim 3hours/
1 day 

GLORYS2V4 1 day GLORYS2V4 daily observations, 
simulated data and 
climatology (see 
CMEMS-IBI-PUM-
005-002.pdf 
(copernicus.eu)) 

1 day 

Table 1: Regional IBI-CCS and IBI-ERAi simulations forcings and settings and their corrections when applicable.  

2.2.1 IBI-CCS_raw simulation 

For the IBI-CCS_raw simulation, atmospheric and OBC forcings, initial conditions and runoffs are directly taken from the 

GCM outputs without any correction by extraction and interpolation on the 1/12° regional grid. The RCM is initialized using 205 

the GCM state of January 1950 for temperature, salinity, currents and SSH. The monthly runoff outputs are taken from the 

ocean component of the GCM. 

2.2.2 IBI-CCS_corr simulation 

Drift correction 

Due to its high resolution and thus high computational cost, CNRM-CM6-1-HR has a particularly short spin-up time of 250 210 

years. As a consequence, the GCM is subject to large drifts relative to coarser resolution CMIP6 class models (not shown 

here) with longer spin-up integrations. To avoid the GCM drift effect on regionally simulated long term trends, the drift is 

removed from the GCM outputs before using them to force the RCM. As shown in Irving et al., 2021, in most cases, a linear 

fit of the preindustrial control simulation is sufficient to evaluate the drift in CMIP6 models. For the CNRM-CM6-1-HR 

variables concerned by drifts, a linear fit is indeed appropriate. The CNRM-CM6-1-HR model drift is estimated at each grid 215 

https://doi.org/10.5194/gmd-2021-328
Preprint. Discussion started: 15 October 2021
c© Author(s) 2021. CC BY 4.0 License.



  

 

7 
 

point by a linear fit of the full time series of the pre-industrial control simulation. Then, the linear fit is subtracted to the 

corresponding historical simulation and projections at each time step and grid point. The drift is removed from the air 

temperature and specific humidity for atmospheric forcings, and from 3D temperature, 3D salinity and 2D SSH for ocean 

forcings (Table 1).  

 220 

Bias correction 

To limit the GCM bias propagation into the IBI-CCS_corr projections, a simple seasonal mean bias correction (Xu et al., 

2019; Adloff et al., 2015, 2018; Macias et al., 2018) is applied to the GCM outputs before using them to initialize and to 

force the RCM. Bias adjustments allow a more realistic ocean mean state representation and conserve the GCM variability in 

the regional simulations. This method relies on a stationarity hypothesis, i.e. biases do not depend on the mean state and are 225 

thus assumed to be the same in historical and scenario simulations (Krinner and Flanner, 2018).  

 

The bias corrections applied to the IBI-CCS_corr forcings are based on the oceanic reanalysis GLORYS2V4 considered as 

the reference dataset here. The GLORYS2V4 reanalysis distributed by CMEMS has been largely validated in Garric et al., 

2017; https://cmems-resources.cls.fr/documents/QUID/CMEMS-GLO-QUID-001-025-011-017.pdf. To apply these bias 230 

corrections, monthly mean differences between the GCM and GLORYS2V4 are computed over the 1993-2014 period. Then, 

the mean seasonal cycle of biases is subtracted to the GCM outputs at each time step, each grid point, for the past, present 

and future periods. This method is applied to the ocean 3D temperature, 3D salinity and 2D SSH used at the OBCs and as 

initial conditions (Table 1). The velocity field quickly adjusts to these corrections. For the GCM atmospheric outputs, the 

surface (2 m) air temperature and specific humidity as well as short and long wave radiations are seasonally bias-corrected 235 

using the ERAinterim reanalysis (Berrisford et al., 2009) as reference dataset using a similar methodology as described for 

the OBCs. The ERAinterim reanalysis was chosen to keep the consistency with the corrections applied on the ocean as 

ERAinterim was used to force the GLORYS2V4 reanalysis employed to bias-correct the ocean GCM outputs.  

 

Modification of the river forcing 240 

In CNRM-CM6-1-HR, the way river discharges are interpolated to the ocean model grid results in large errors in regional 

runoff amounts, the global water budget being conserved (Voldoire, 2020). For instance, severe overestimates are found for 

the Rhone river runoff, one of the major rivers in the IBI western Mediterranean domain, that causes a large freshwater bias 

in the GCM in this region. For the IBI-CCS_corr simulation, the river runoff forcing is thus taken directly from the daily 

runoff simulated by the river routing component of CNRM-CM6-1-HR (TRIP, Table 1) at 0.5 ° and interpolated on the 1/12 245 

° grid. Therefore, in IBI-CCS_corr, the RCM does not receive the same amount of runoff as in IBI-CCS_raw and as the 

ocean component of the GCM.  

 

Sea Surface Height tuning in the Mediterranean Sea 

In the Mediterranean Sea, the excess of evaporation over precipitation and river runoff is compensated by a net inflow of 250 

fresh Atlantic waters. These waters are transformed into denser waters and leave the Mediterranean Sea as deep currents 

through Gibraltar Strait. Therefore, realistic exchanges through the strait are of great importance for modeling volume 

transport and water mass properties. The net transport through Gibraltar Strait is directly related to the difference of pressure 

between the Atlantic Ocean and Mediterranean Sea which is linked to the difference of SSH between the two basins (Soto-

Navarro et al., 2010). The bias corrections (Sect. 2.2.2) allow to obtain the ocean mean state of GLORYS2V4 and thus a 255 

more realistic representation of the water masses than in the GCM. However, GLORYS2V4 has a mean SSH bias of 

approximately -0.1 m in the Mediterranean Sea in comparison to the Mean Dynamic Topography observations from CNES-

CLS-18 (Mulet et al., 2021). As a consequence, the bias correction applied on the SSH (Sect. 2.2.2) is not sufficient to obtain 
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a more accurate net transport through Gibraltar Strait. A supplementary tuning has been added to improve it in the IBI-

CCS_corr simulation. A SSH corrective value of +0.1 m is thus applied to the east Mediterranean boundary at each time step 260 

and boundary grid point to compensate for the GLORYS2V4 bias and to obtain a proper difference of SSH between the two 

basins. 

2.2.3 IBI-ERAi simulation 

In addition to the reference IBIRYS reanalysis provided by CMEMS (Sect. 2.1.2), another reference simulation called IBI-

ERAi, has been performed based on the same configuration. IBI-ERAi is a free simulation (no data assimilation) forced 265 

by GLORYS2V4 and ERAinterim, which are also the two reanalyses used to diagnose bias corrections in IBI-CCS_corr 

(Sect. 2.2.2). IBI-ERAi is thus considered as the best simulation to be directly compared to IBI-CCS_corr to evaluate the DD 

of the GCM. 

2.3 SL in regional simulations 

The regional simulations performed in this study are intended to be used in particular to investigate the projections of 270 

extreme SLs. As shown in Menéndez and Woodworth, 2010; Vousdoukas et al., 2018b, changes in extreme SLs are mainly 

driven by SLR. We have therefore paid particular attention to the representation of GMSLR in the RCM. 

2.3.1 Transfer of water mass from the cryosphere and land to the ocean 

Barystatic SLR (Gregory et al., 2019) is dominated by the mass loss of glaciers and ice sheets (Oppenheimer et al., 2019). 

While GCM can, to some extent, represent surface mass balance processes, they cannot account yet for dynamic mass loss. 275 

In CNRM-CM6-1-HR, the glaciers and Greenland mass losses are underestimated compared to projection assessments 

(Table 2).  

Contributions to 
GMSL (in m) 

scenario 
CNRM-CM6-1-HR Oppenheimer et al., 2019  Hock et al., 2019 

(2081-2100 relative to 1986-2005) (2081-2100 relative to 1986-2005) (2081-2100 relative to 2000) 

Antarctica 
SSP5-8.5 0.09 0.10 [0.02-0.23]   

SSP1-2.6 0.05 0.04 [0.01-0.10]   

Greenland 
SSP5-8.5 0.06 0.12 [0.07-0.21]   

SSP1-2.6 0.03 0.07 [0.04-0.10]   

Glaciers 
SSP5-8.5 0.04 0.16 [0.09-0.23] 0.14  

SSP1-2.6 0.03 0.10 [0.04-0.16] 0.09 

Total 
SSP5-8.5 0.19 0.38   

SSP1-2.6 0.11 0.21   

 
Table 2: Projected global mean changes in SL mass dominating contributions for the SSP5-8.5 and SSP1-2.6 scenarios in CNRM-
CM6-1-HR, Oppenheimer et al., 2019 and Hock et al., 2019.  280 

To estimate SLR over the IBI region due to glaciers and ice sheets mass loss, we used the fingerprints of these contributions 

to scale their global mean contribution to the regional domain. To that end, we used Grinsted et al., 2015 spatial fingerprints, 

expressed as a percentage of the GMSL contribution for the different land-ice components. The Antarctic ice sheet, 

Greenland ice sheet and glaciers’ contributions to GMSLR simulated in CNRM-CM6-1-HR and derived from Oppenheimer 

et al., 2019 and Hock et al., 2019 are given in Table 2. In CNRM-CM6-1-HR, the Antarctic contribution to GMSLR is 285 

similar to that of Oppenheimer et al. 2019 and Hock et al., 2019 (although probably not for the right reason), whereas the 
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contributions from the Greenland ice sheet and glaciers are clearly underestimated. The regional contributions obtained after 

applying the spatial fingerprint are presented in Fig. 2. The global mean contribution is weighted by a factor 120% for the 

Antarctic, 50% for the glaciers and is close to zero for Greenland (i.e. the effects of the Greenland ice mass loss on the IBI 

zone are considered null on average due to its distance to the ice sheet). As it turns out, the sum of all the regional land ice 290 

mass contributions estimated from the literature (grey solid line in Fig. 2) is very close to the CNRM-CM6-1-HR simulated 

contributions for both scenarios (grey dashed line in Fig. 2). Therefore, no corrections have ultimately been applied to the 

GCM concerning the mass change terms. 

 
Figure 2: Projected changes up to 2100 (relative to 1986-2005) of dominating barystatic SLR contributions scaled to the IBI 295 
domain using their spatial fingerprints for (a) SSP1-2.6 scenario (b) SSP5-8.5 scenario. The SL contributions evaluated here are: 
the Antarctic ice-sheet contribution (blue), the Greenland ice-sheet contribution (red), the glaciers contribution (purple), and their 
sum (grey). The dashed lines represent the initial CNRM-CM6-1-HR contributions and the solid lines the contributions based on 
Oppenheimer et al., 2019 for the Antarctic ice sheet and on Hock et al., 2019 for glaciers.   

2.3.2 Thermal expansion 300 

In Boussinesq ocean models such as NEMO CNRM-CM6-1-HR or IBI-CCS, the ocean volume evolves according to the 

mass budget but does not change globally according to ocean density changes. The global mean thermosteric sea level rise 

(GMTSLR), which corresponds to a thermal expansion of the ocean, is therefore not explicitly represented in such models. 

As the GMTSLR is a dominant contribution to the GMSLR (Oppenheimer et al. 2019, Fox-Kemper et al. 2021), it has to be 

evaluated a posteriori from the simulated ocean density field (Greatbatch, 1994; Griffies and Greatbatch, 2012). As the water 305 

column cannot expand, the GMTSLR cannot be prescribed directly to the RCM because any increase in volume can only 

result in an addition of mass. This addition of mass would be directly added at local temperature and salinity properties 

which would increase the pressure gradient and result in an acceleration of the circulation close to the boundaries. The GCM 

GMTSLR term stored in the variable “zostoga” is thus added a posteriori to the RCM modeled SL. 

2.3.3 Total SL in regional simulations  310 

Although Boussinesq models do not represent the expansion of the water column, they are able to correctly reproduce the 

local steric effect (Griffies and Greatbatch, 2012) related to changes in the local density of the water column through the 

equation of state. As non-uniform density changes create pressure gradients, the ocean circulation is dynamically adjusted 

(e.g. thermal wind balance) and spatial gradients of DSL are simulated (Griffies and Greatbatch, 2012). Therefore, we 

conclude that the only missing SL term in the regional model comes from the GMTSLR. The total SL 𝜂 in the IBI-CCS_raw 315 

and IBI-CCS_corr simulations is diagnosed by: 

 

𝜂 = GMTSLR + Sea Surface Height 

=  zostoga (GCM) (global process) + SSH (RCM) (global to coastal processes)   (1) 

 320 

where the SSH is the regional model sea surface height and includes global, regional and coastal processes:  
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 the mass variations corresponding to the freshwater balance i.e. evaporation over precipitation and river runoff 

(regional processes) and the transfer of water mass from the cryosphere and land to the ocean from the GCM (Sect. 

2.3.1).  

 the DSL which corresponds to the variable “zos” of the GCM but which also includes in the RCM tides, the 325 

barotropic effects due to SL pressure forcing. Main drivers of DSL are steric SL (ocean density related) and 

manometric SL (mass related) components (Gregory et al., 2019). The steric SL itself can be decomposed into 

thermosteric and halosteric components related to changes in density due to temperature and salinity changes, 

respectively. Following Gregory et al., 2019, the DSL is corrected by the inverse barometer (IB) effect. The latter is 

computed based on Stammer and Hüttemann, 2008 formulation. The IB effect is included in the presented SL 330 

results unless stated otherwise. 

In the following sections the term “SL” refers to the total SL 𝜂. 

3 Results 

3.1 Historical simulations and validation of the ocean regional climate model  

To validate the DD method, the IBI-CCS_raw, IBI-CCS_corr and CNRM-CM6-1-HR historical simulations are compared to 335 

the reanalysis IBIRYS, the IBI-ERAi regional simulation and observational datasets over the 1993-2014 period. The 

comparisons are performed at different time scales for a selection of ocean variables including SL. Due to the chaotic nature 

of the climate system, GCMs do not follow the real-world internal variability chronology, but they should represent a climate 

internal variability that is statistically similar to the observed one. Consequently, only the capabilities of the model to 

reproduce observed distributions are assessed. In this section, in addition to the validation of the IBI-CCS regional 340 

simulations, the added value of the DD (in terms of resolution and added physical processes) and of the bias corrections 

applied are investigated. 

https://doi.org/10.5194/gmd-2021-328
Preprint. Discussion started: 15 October 2021
c© Author(s) 2021. CC BY 4.0 License.



  

 

11 
 

3.1.1 Thermosteric, Halosteric, Steric and Manometric SL 

 

Figure 3: Thermosteric (first column), halosteric (second column), steric (third column) and manometric (last column) SL bias 345 
over 1993-2014 between (a) IBI-ERAi and IBIRYS, to show biases in the IBI-ERAi simulation, and between (b) CNRM-CM6-1-
HR and IBI-ERAi, (c) IBI-CCS_raw and IBI-ERAi, (d) IBI-CCS_corr  and IBI-ERAi. Manometric SL biases between CNRM-
CM6-1-HR and IBI-ERAi are not shown here as they mostly display the differences of bathymetry between the two models. The 
thermosteric, halosteric and steric components have been computed over 0-2000 m depth. Note the different colorbars in panel (a) 
and in panels (b), (c), (d).  350 

Figure 3 compares the main components of DSL (Sect. 2.3.3) averaged over the 1993-2014 period for the different 

simulations. As the thermosteric and halosteric SL components are depth-integrated variables, the comparisons allow to 

validate respectively the heat and salt content of the model between 0 and 2000 m. Differences between the reanalysis 

IBIRYS and IBI-ERAi highlight the biases of IBI-ERAi and do not exceed 10 cm, even in the deep ocean (Fig. 3a). Biases 
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between CNRM-CM6-1-HR and IBI-ERAi are large (Fig. 3b). Indeed, in the Atlantic Ocean, the thermosteric SL is 40 cm 355 

too low due to a large cold bias. The GCM halosteric SL is 50 cm higher than its IBI-ERAi counterpart in the Mediterranean 

Sea because of a fresh bias due to the strong positive bias in the Rhone river discharge received by the GCM ocean 

component (Sect. 2.2.2). This fresh bias seems to spread in the Atlantic Ocean through Gibraltar Strait. In the Atlantic 

Ocean, the thermosteric and halosteric biases balance each other leading to small biases on the steric SL. However, it is not 

the case in the Mediterranean Sea where the halosteric bias leads to steric biases of a larger amplitude. The large biases 360 

found in the GCM propagate into IBI-CCS_raw with the same amplitude (Fig. 3c). These biases are consistent with the cold 

sea surface temperature and fresh salinity biases provided in the Supplementary Materials (Fig. S1 and Fig. S2).  

 

In IBI-CCS_corr, runoffs are directly taken from the river routing model to avoid the regional discrepancies present in the 

GCM and subsequently in IBI-CCS_raw simulations (Sect. 2.2.2). The change of runoff results in a considerable reduction 365 

of the halosteric bias in the Mediterranean Sea. The reduction of the biases on all the different SL components in IBI-

CCS_corr (Fig. 3d) is consistent with the bias correction method used to correct the GCM forcings. Indeed, the 1993-2014 

period has been used to compute the biases between the GCM and the ocean and atmospheric reanalyses used to force IBI-

ERAi. The applied corrections have therefore been well integrated into the model as results for the 1993-2014 period are 

close to those of IBI-ERAi especially for the steric and manometric SL components. Some thermosteric and halosteric biases 370 

still exist in IBI-CCS_corr (Fig. 3d, first and second column) in the BoB (Fig. 1). These biases are related to the 

Mediterranean waters outflow which does not occur at exactly the same depth or with the same characteristics in IBI-

CCS_corr and IBI-ERAi as shown in the TS diagram in Sect. 3.1.3 (Fig. 5). 

3.1.2 Circulation 

Surface Circulation 375 
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Figure 4: Surface circulation (in m.s-1) over the 1993-2014 period in (a) IBIRYS (b) IBI-ERAi (c) CNRM-CM6-1 (d) CNRM-CM6-
1-HR (e) IBI-CCS_raw and (f) IBI-CCS_corr simulations. 

The general ocean surface circulation averaged over 1993-2014 is illustrated in Fig. 4. The main regional surface dynamical 380 

features described in Maraldi et al., 2013; Sotillo et al., 2015 and captured in IBIRYS (Fig. 4a) and IBI-ERAi (Fig. 4b) are 

also represented in all GCM and RCM simulations. In the Atlantic Ocean, the NAC (Fig. 1) enters the IBI zone at 52°N on 

the western boundary and separates into several branches with the main one flowing eastward north of the United Kingdom. 

The NwCC (Fig. 1) in the North Sea and along the Norwegian coasts, the CaC (Fig. 1) along the Moroccan coasts are other 

mains currents correctly simulated by the GCMs and RCMs. The GCM CNRM-CM6-1-HR and regional simulations show 385 

the LPC (Fig. 1) flowing westward along the northern continental shelf in the Mediterranean Sea. However, owing to the 

large biases of temperature and salinity found in both GCMs in the Mediterranean Sea (Sect. 3.1.1 and Supplementary 
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Materials Fig. S1 and Fig. S2), the surface circulation cannot be considered realistic in the basin in the corresponding 

simulations (Fig. 4c,d). 

 390 

When comparing Fig. 4c and d, the impact of the increased resolution between the two GCMs is clear. Thanks to its higher 

ocean model resolution, CNRM-CM6-1-HR shows a more realistic regional circulation than the 1 ° GCM CNRM-CM6-1. 

The impact of the DD would therefore be significantly higher using a 1 ° typical CMIP resolution ocean model to force the 

RCM. However, the dynamically downscaled simulations (Fig. 4e,f) add even more spatial information compared to the 

GCM CNRM-CM6-1-HR (Fig. 4d). One of the major improvements in the IBI-CCS simulations is the emergence of an 395 

additional NAC branch at 48° N, south of the major NAC branch, as in the reference simulations (Fig. 4a,b). Another added 

value of the DD is seen with the poleward slope currents from the Iberian coasts up to Ireland which do not exist in the GCM 

simulations. Along the Iberian coasts, where the southward PC and the northward IPC (Fig. 1) co-exit (Cordeiro et al., 

2018), the GCMs show no clear feature. Conversely, both the IBI-CCS_raw and IBI-CCS_corr simulations exhibit the PC 

and IPC currents. These two currents are also found in IBI-ERAi with approximately the same amplitude, but not in the 400 

reanalysis IBIRYS for the IPC. Finally, the gyre in the AS (Fig. 1), just east of Gibraltar Strait, is represented in the 

regionally downscaled simulations but not in the GCMs.  

 

IBI-CCS_corr and IBI-CCS_raw are now compared to assess the impact of bias corrections on the surface circulation (Fig. 

4e,f). The major difference is the apparition in IBI-CCS_corr of the eastern branch of the AC (Fig. 1) at 35°N with a 405 

southward recirculation, as in the reference IBI-ERAi simulation. Another difference between IBI-CCS_corr and IBI-

CCS_raw is the strengthening of the NAC branch at 48° N in the corrected simulation leading to a current closer to IBIRYS 

and IBI-ERAi. In the Mediterranean Sea, large differences between the IBI-CCS_corr and IBI-CCS_raw simulations are also 

found with a strengthening of the circulation in IBI-CCS_corr. 

 410 

Transport through Gibraltar Strait 

 

Model/Simulation Period Inflow transport Outflow transport Net transport 

IBI-ERAi 1993-2014 1.06 Sv -0.46 Sv +0.60 Sv 

IBIRYS 1993-2014 1.13 Sv -0.50 Sv +0.63 Sv 

CNRM-CM6-1-HR 1993-2014 0.54 Sv -0.55 Sv -0.04 Sv 

IBI-CCS_raw 1993-2014 0.40 Sv -0.10 Sv +0.30 Sv 

IBI-CCS_corr 1993-2014 0.76 Sv -0.70 Sv + 0.06 Sv 

Soto‐Navarro et al., 2010 2004-2009 0.81 Sv -0.78 Sv +0.04 Sv 

Soto‐Navarro et al., 2015 2004-2007 
  

+0.05 Sv 

Adloff et al., 2015 1961-1990 0.85 Sv -0.80 Sv +0.05 Sv 

 
Table 3: Transport through Gibraltar Strait in the different simulations in comparison to previous studies. Transports are positive 
eastward. 415 
 

As explained in Sect. 2.2.2, realistic exchanges through Gibraltar Strait have a strong influence on water mass properties and 

thus on SL over the north-eastern Atlantic region. The values of net transport are presented for CNRM-CM6-1-HR and 

regional simulations in Table 3 and compared to estimates by Soto-Navarro et al., 2010, 2015; Adloff et al., 2015. Results 

must be taken with caution as the computation of the fluxes was performed offline (Soto-Navarro et al., 2020). In IBIRYS, 420 

the inflow transport (from Atlantic Ocean to Mediterranean Sea) through Gibraltar Strait is overestimated, while the outflow 

transport (from Mediterranean Sea to Atlantic Ocean) is underestimated. The resulting net transport is largely overestimated 
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(Table 3 and CMEMS-IBI-QUID-005-002.pdf (copernicus.eu)). In the GCM and IBI-CCS_raw simulations, both inflow and 

outflow transports are too weak. It is consistent with the surface circulation (Fig. 4) where the entering current at Gibraltar 

Strait in the GCM and IBI-CCS_raw simulations is weaker than in the reanalysis. The values of the net transport in the IBI-425 

CCS_raw and GCM simulations are different and are not comparable to the estimates by Soto-Navarro et al., 2010, 2015; 

Adloff et al., 2015. On the contrary, in IBI-CCS_corr, thanks to the SSH tuning applied at the Mediterranean boundary (Sect. 

2.2.2), the net transport, inflow and outflow transports are close to the estimates by Soto-Navarro et al., 2010, 2015; Adloff 

et al., 2015 with a value of +0.06 Sv for the net transport (Table 3). 

3.1.3 Water masses properties 430 

 

Figure 5: TS diagram performed at the star location of Fig. 1 over the 1993-2014 period for the CNRM-CM-1-HR, IBIRYS, IBI-
ERAi, IBI-CCS_corr, IBI-CCS_raw simulations. 

The impact of bias corrections for the representation of the Mediterranean water mass properties in the Atlantic Ocean is 

now assessed. Figure 5 compares the water mass thermohaline properties in the Atlantic Ocean west of Gibraltar Strait for 435 

the GCM, IBI-CCS_raw and IBI-CCS_corr simulations to the IBIRYS and IBI-ERAi simulations. The location of the TS 

diagram (star location of Fig. 1) has been chosen far enough from the western frontier of the domain and in an area where the 

Mediterranean Outflow Water (MOW) has spread at a depth of around 1100 m (Bozec et al., 2011). Owing to the large 

surface biases in temperature and salinity found in the GCM and IBI-CCS_raw in the Mediterranean Sea (Sect. 3.1.1 and 

Supplementary Materials Fig. S1 and Fig. S2), the water mass properties at Gibraltar Strait, and hence of the MOW, cannot 440 

be properly modeled. Indeed, large biases are found in the Atlantic Ocean at the MOW depth: biases in temperature and 

salinity at 1100 m depth reach 4.5 °C and 1.5 psu respectively (Fig. 5). On the contrary, in IBI-CCS_corr where bias 

corrections are applied, the model is able to reproduce the transformation of fresh and warm surface Atlantic waters into 

dense and salty MOW leading to a strong reduction of T/S biases (Fig. 5).  In IBI-CCS_corr, MOW spreads westward at a 

depth of 950 m, in good agreement with IBI-ERAi and IBIRYS (Fig. 5). This indicates that bias corrections could lead to a 445 

change in the TS diagram shape and water mass characteristics, particularly for the initially biased MOW and not only to a 

shift in temperature and salinity. Comparisons of 10-yr simulations with the two different river runoff forcings (Sect. 2.2.2) 

and with or without the SSH tuning in the Mediterranean Sea (Sect. 2.2.2) show that improvements in the T/S diagram are 

mostly due to the bias corrections (not shown). Thanks to the bias corrections, the water mass characteristics have been 

corrected thus controlling the influence of the Mediterranean Sea on the Atlantic Ocean and preventing the propagation of 450 

the Mediterranean biases into the Atlantic Ocean.   
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3.1.4 Mean Sea Surface Height 

 

Figure 6: Mean sea surface height over the 1993-2014 period in (a) MDT CNES-CLS-18 (b) IBI-ERAi (c) CNRM-CM6-1 (d) 
CNRM-CM6-1-HR (e) IBI-CCS_raw and (f) IBI-CCS_corr. 455 

The mean dynamic topography (MDT) gives the time mean sea surface height above the geoid due to ocean circulations. The 

dataset of reference for the MDT for the 1993-2012 period is the CNES CLS18 data set (Mulet et al., 2021). The CNES 

CLS18 MDT has a 1/8° resolution and is based on GOCE and GRACE data, altimetry and in-situ data, as well as on the 

GOCO05S geoid model. The observed MDT is comparable to the modeled time mean SL called in this section the mean sea 

surface height (MSSH).  460 

 

Figure 6 compares the CNES CLS18 MDT to the MSSH for the different simulations. In all simulations, the Atlantic MSSH 

matches well the observed MDT (Fig. 6a). Indeed, the Atlantic MSSH northwest to southeast gradient associated to the NAC 

(Fig. 1), subtropical and subpolar gyres is well reproduced in all the GCM and IBI-CCS simulations in comparison to the 
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observations and IBI-ERAi (Fig. 6). Along the NS (Fig. 1) and eastern EC (Fig. 1) coasts, all GCM and IBI-CCS simulations 465 

show elevated MSSH similar to the observations and IBI-ERAi simulation. However, in the BoB (Fig.1), GCM and IBI-CCS 

simulations show a too elevated MSSH compared to observations and IBI-ERAi simulation (Fig. 6).  

 

As for the surface circulation in Sect. 3.1.2, the impact of the increased resolution between the two GCMs (Fig. 6c,d) is 

clear, with more spatial information for the MSSH in CNRM-CM6-1-HR. Compared to CNRM-CM6-1-HR (Fig. 6d), the 470 

even higher resolution in IBI-CSS_raw (Fig. 6e) only slightly improves the MSSH in some coastal areas like the CS (Fig. 1), 

IS (Fig. 1) and western part of the EC.  

 

The bias corrections applied in IBI-CCS_corr (Fig. 6f) improve the excessively low MSSH pattern at 53° N of the western 

boundary found in CNRM-CM6-1-HR and IBI-CCS_raw (Fig. 6d,e). The bias corrections also have a large impact in the 475 

Mediterranean Sea where the GCM CNRM-CM6-1-HR and IBI-CCS_raw MSSH is overestimated. Indeed, in these 

simulations Atlantic waters flowing through Gibraltar Strait then flow northward toward the Balearic Islands and the Gulf of 

Lion, which is unrealistic according to observations and previous studies (Adloff et al., 2018). On the contrary, in IBI-

CCS_corr where bias corrections are applied, Atlantic waters are trapped in the Alboran gyre and then stick to the north 

African coast, as in the observed MDT and IBI-ERAi (Fig. 6). In the northern Mediterranean Sea, the low SL feature 480 

associated with the large gyre in the convection area of the Gulf of Lion is also well represented in IBI-CCS_corr in 

comparison to the MDT and IBI-ERAi.  

3.1.5 SL interannual variability 

 
Figure 7: SL interannual variability over the 1993-2014 period in (a) altimetry (b) IBI-ERAi (c) CNRM-CM6-1-HR and (d) IBI-485 
CCS_corr. The interannual variability is computed as the standard deviation of the detrended annual mean SL. 

Here, the CNRM-CM6-1-HR and IBI-CCS_corr simulations are compared to the global gridded reprocessed 

SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047 altimetric observation product distributed by CMEMS. The 

product is provided at a 0.25 ° resolution since 1993 and is based on the combination of measurements from different 

altimeter missions (https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-SL-QUID-008-032-062.pdf and 490 

https://catalogue.marine.copernicus.eu/documents/PUM/CMEMS-SL-PUM-008-032-062.pdf). 

 

The large SL interannual variability associated with the main currents of the zone such as the NAC, AC, AlC, LPC of Fig. 1 

is well represented in IBI-CCS_corr (Fig. 7d), as shown by comparison with the altimetry product and IBI-ERAi (Fig. 7a, b). 

On the large continental shelf, the GCM and RCM both simulate a larger interannual variability than the altimetry product 495 

except in the German Bight. Indeed, in the German Bight and north of the Netherlands, the altimetry product and IBI-ERAi 
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show a relatively large interannual variability which is not present in CNRM-CM6-1-HR and IBI-CCS_corr. In both regional 

IBI-CCS_corr and IBI-ERAi simulations, the interannual variability in the Mediterranean Sea is very large which is not the 

case in the GCM simulation and to a lesser extent in the altimetric product (Fig. 7). 

 500 

3.1.6 Extreme SLs 

 

Figure 8: (a) Non-tidal residuals 99th percentile values over the 1993-2014 period in IBI-CCS_corr. (b) Relative error of the non-
tidal residuals 99th percentile of IBI-CCS_corr compared to GESLA TG data over the 1993-2014 period. Circles represent TG 
data at 1-hour frequency and the diamonds stand for TG data at higher frequency. (c) Scatter plot of simulated vs observed 99th 505 
percentile at TG stations in IBI-ERAi (white diamonds), IBI-CCS_raw (blue circles) and IBI-CCS_corr (red cross). The thin dark 
red dashed lines indicate the 20% error margin.  
 

For impact studies, it is even more crucial to get a good representation of SL extreme values.  Extreme SLs of the IBI-

CCS_raw and IBI-CCS_corr simulations are thus validated against tide gauge (TG) records and IBI-ERAi. The GESLA 510 

(Global Extreme Sea Level Analysis GESLAv2) dataset provides high-frequency (at least hourly) TG data records 

(Woodworth et al., 2017). The selected TG stations have a temporal data coverage of no less than 75% over the 1993-2014 

period and are marked with red dots in Fig. 1. 

 

Extreme SLs are investigated here with the 99th percentile based on hourly averaged outputs of the IBI-CCS model. GCM 515 

CNRM-CM6-1-HR did not produce sufficiently high frequency outputs to assess such SL extreme events. In addition, 

CNRM-CM6-1-HR is not able to properly represent SL extremes as these are highly related to tides which are not 

represented in this model. Therefore, the explicit representation of processes like tides is an important added value of the 

regional model. IBI-CCS and the IBIRYS reanalysis are based on the same configuration, including tides implementation 

which has been validated in CMEMS-IBI-QUID-005-002.pdf (copernicus.eu) and Maraldi et al., 2013. Thus, the comparison 520 

rather focuses here on the validation of non-tidal residuals (where tides are filtered from the SL time series). During extreme 

SL events, non-tidal residuals are dominated by atmospheric/storm surges. 

 

Figure 8 shows that the non-tidal residuals 99th percentile in IBI-CCS_raw and IBI-CCS_corr is properly represented in 

comparison to TG data. Both IBI-CCS_raw and IBI-CCS_corr show performances similar to, but slightly better than those of 525 

the reference simulation IBI-ERAi. Indeed, the error at the different TG stations rarely exceeds 20% (Fig. 8c) and the RMSE 

do not exceed 5 cm. The largest errors are found on the southern part of the domain where the 99th percentile of non-tidal 

residuals are the smallest. In conclusion, thanks to the coastal processes included and high frequency outputs of the RCM, 

the regional simulations are able to properly model extreme SLs.  
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3.2 Regional projections under climate change scenarios with a focus on SL 530 

Here, the regional projections are presented for the SSP5-8.5 and SSP1-2.6 scenarios for the different variables validated in 

the former section. Additionally, the effect of DD and of bias corrections on the projections is assessed with a focus on SL 

changes.  

3.2.1 Projected trend of regional mean total SL 

 535 

Figure 9: Time series of annual mean SL changes (in m) averaged over the IBI domain for the historical period (1970-2014), SSP5-
8.5 (solid line) and SSP1-2.6 (dashed line) scenarios (referenced to 1986-2005) for the GCM and the two regionally downscaled 
IBI-CCS_raw and IBI-CCS_corr simulations. 
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In Fig. 9, the historical and projected mean SL changes over the whole IBI domain are assessed for the SSP5-8.5 and SSP1-

2.6 scenarios for the GCM and downscaled simulations. As explained in Sect. 2.3.3, none of the GCM and regionally 540 

downscaled simulations represent the spatial mean thermosteric effect on SL. It has thus been computed and added a 

posteriori. By the end of the century, a mean SL increase of +80 cm is simulated over the IBI domain for the SSP5-8.5 

scenario (relative to 1986-2005) and +40 cm for the SSP1-2.6 scenario. These values are close to the GMSL projections of 

+71 cm (RCP8.5) and +39 cm (RCP2.6) from Oppenheimer et al., 2019 over the same period.  In Fig. 9, the consistency of 

the trend of total regional mean SL between the global and regional simulations for the two scenarios validates the DD 545 

technique employed. It assesses that bias corrections do not impact the projected mean SL trend for both scenarios. 

3.2.2 Projected changes in surface circulation  

 

Figure 10: Projected changes in surface ocean currents (in m.s-1) for the 2081-2100 period (relative to 1986-2005) under the SSP5-
8.5 scenario for (a) CNRM-CM6-1 (b) CNRM-CM6-1-HR (c) IBI-CCS_raw and (d) IBI-CCS_corr. The magnitude of surface 550 
currents changes is indicated by the color shading. 
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Figure 10 shows projected changes in ocean surface currents under the SSP5-8.5 scenario in the two GCMs, IBI-CCS_raw 

and IBI-CCS_corr simulations. Projected changes generally agree well between the GCM and RCM simulations in terms of 

patterns, except in the Mediterranean Sea. While all the simulations show a strong intensification of the PC and CaC (Fig. 1), 555 

projected changes exhibit larger amplitudes in CNRM-CM6-1-HR (Fig. 10b) and IBI-CCS (Fig. 10c,d) than in CNRM-

CM6-1 (Fig. 10a) thanks to their higher resolution. Indeed, in CNRM-CM6-1-HR and IBI-CCS, large changes are found in 

the north of the domain with a strengthening of the branch of the NAC (Fig. 1) around 48°N. The GCM also projects a 

strong decline of the NwCC and in the NAC branch flowing around the United Kingdom (Fig. 10b) which is not modeled in 

the RCM simulations (Fig. 10c,d). In both IBI-CCS simulations, the higher resolution adds more spatial information to the 560 

projections such as the decline of the poleward current from Iberia to Ireland (Fig. 10c,d). In the Mediterranean Sea, the four 

simulations show very different changes. Results have to be taken with caution as the surface circulation of the historical 

simulations are not very realistic in the Mediterranean Sea. In the Mediterranean Sea, projected changes in the surface 

circulation are small in the GCMs and IBI-CCS_raw whereas in IBI-CCS_corr, the projected changes are substantial and 

show a strong weakening of the Alboran gyre (Fig. 10d). In conclusion, both the impact of the resolution and bias 565 

corrections on the surface circulation projected changes are substantial.  

3.2.3 Water mass properties projections 

 

Figure 11: TS diagram for the SSP5-8.5 scenario for the present (1986–2005) (light line) and future (2081–2100) (dark line) periods 
for IBI-CCS_corr (red) and IBI-CCS_raw (blue) (a) in the western Mediterranean Sea (b) in the BoB. 570 

The historical and projected changes of the water mass properties east and west of Gibraltar Strait are presented with a TS 

diagram in Fig. 11. Projections of the water masses TS characteristics in the western Mediterranean Sea (Fig. 11a) are in 

close agreement with those of Soto-Navarro et al., 2020 in IBI-CCS_corr whereas projections from IBI-CCS_raw are totally 

out of the range of the 20 CMIP models used in Soto-Navarro et al., 2020. Indeed, IBI-CCS_corr displays a strong warming 

of the upper 1000 m with a general decrease in density and also an abrupt change in the TS characteristics of intermediate 575 

and deep waters. These results provide more confidence in the IBI-CCS_corr simulation.  

 

The second TS diagram (Fig. 11b) is performed in the BoB (Atlantic Ocean, at the star location of Fig. 1). IBI-CCS_corr 

projections show a general warming and freshening of the water column. MOW flowing westward in the Atlantic Ocean 

seem to be found at shallower depths at the end of the 21st century. When comparing the projections of IBI-CCS_raw and 580 

IBI-CCS_corr at a depth of 1000 m (black dots in Fig. 11b), IBI-CCS_corr exhibits a freshening whereas IBI-CCS raw does 

not show a particular change. This result confirms these of Sect. 3.1.3: bias corrections could lead to a change in the TS 

diagram shape. Although the bias corrections of temperature and salinity are stationary, the projected changes in the TS 

diagrams of the regional simulations with and without corrections are not the same and thus depend on the mean state. Bias 

corrections can therefore be important for projected water mass changes through the water column. 585 
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3.2.4 Projected changes of SL components 

 

Figure 12: Projected changes (2081-2100 vs 1986-2005) under the SSP5-8.5 (upper row) and SSP1-2.6 (lower row) scenarios in the 
IBI-CCS_corr simulation for the (a) DSL, (b) steric, (c) thermosteric (d) halosteric and (e) manometric SL components. The steric, 590 
thermosteric and halosteric SL components have been computed between 0-2000m depth. Note that the DSL mean over the IBI 
zone is 0. 

Figure 12 shows the projected changes of SL components described in Sect. 2.3 for SSP5-8.5 and SSP1-2.6 scenarios for the 

IBI-CCS_corr regional simulation. For all the SL components, spatial patterns of projected changes are quite similar under 

the two scenarios. Indeed, for the DSL changes, both scenarios exhibit an increase of the DSL in the North Sea and a 595 

decrease in the north-western part of the domain (Fig. 12a). The main difference between both scenarios is the projected 

slight fall of the DSL in the BoB under SSP5-8.5 which is not projected under the SSP1-2.6 scenario. Figure 12b shows a 

large steric SLR in the deep ocean compared to the shelf, as expected for this depth-integrated variable. This result is 

consistent with Fox-Kemper et al., 2021. The corresponding steric SL gradients are compensated by shelf mass loading 

(Richter et al., 2013). Figure 12e indeed shows a slight decrease of manometric SL in the deep ocean and a substantial 600 

manometric SLR over the shelf. In general, steric and manometric SL changes are of smaller amplitude under SSP1-2.6 than 

under SSP5-8.5. Thermosteric SL is projected to increase south of around 40°N and in the Mediterranean Sea but to decrease 

in the deep ocean north of 40°N, especially under SSP1-2.6 (Fig. 12c). This pattern is inherited from the GCM forcing at the 

boundaries. A smaller projected decrease in thermosteric SL in the north-western part of the domain has also been observed 

in Hermans et al., 2020 with the MPI-ESM-LR GCM. The projected warming in the Mediterranean Sea is consistent with 605 

Adloff et al., 2015; Soto-Navarro et al., 2020. Both scenarios exhibit an increase of halosteric SL in the Atlantic Ocean 

contrary to Hermans et al., 2020, and a decrease in the Mediterranean Sea (Fig. 12d). For the Mediterranean Sea, it seems 

there is no clear feature in salinity projected changes in the different simulations from Soto-Navarro et al., 2020. Moreover, 
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the global halosteric SL projections of Fox-Kemper et al., 2021 show a low model agreement over the IBI region based on 

17 CMIP6 GCMs. 610 

3.2.5 Impact of the resolution for the regional projections of SL 

 

Figure 13: Projected changes (2081-2100 vs 1986-2005) in (a) DSL and (b) steric SL over 0-2000 m depth under the SSP5-8.5 
scenario in CNRM-CM6-1 (first column), CNRM-CM6-1-HR (second column), IBI-CCS_raw (third column) and IBI-CCS_corr 
(last column) simulations. Note that the DSL mean over the IBI zone is 0 in the RCMs and thus, to compare the DSL between the 615 
GCMs and RCMs, the mean DSL over the IBI domain is removed from the GCMs.  

Figure 13 compares the projected changes in DSL and steric SL in both GCMs and RCMs under the SSP5-8.5 scenario to 

assess the impact of the resolution on SL projected changes. The spatial patterns of steric SL projected changes are very 

similar for all the simulations (Fig. 13b) and agree with global projections from Fox-Kemper et al., 2021 and regional 

projections from Hermans et al., 2020. For DSL changes (Fig. 13a), the different simulations agree well with a projected 620 

increase of the DSL in the North and Baltic Seas, especially off the coasts of Scandinavia. Close to the western boundary, a 

decrease in DSL is projected in all simulations north of around 50° N (Fig. 13a). In the Mediterranean Sea, each simulation 

shows different projected DSL and steric SL changes (Fig. 13a,b). Globally, the projected changes spatial pattern of steric 

SL and more importantly of DSL in CNRM-CM6-1-HR and IBI-CCS have significantly more spatial information at the 

coast compared to the lower resolution CNRM-CM6-1. In addition, the added value of the high resolution GCM and regional 625 

simulations compared to the GCM CNRM-CM6-1 appears on the steric SL changes where strong gradients of bathymetry 

are found.  
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Figure 14:  Differences of projected changes (2081-2100 vs 1986-2005) under the SSP5-8.5 (upper row) and SSP1-2.6 (lower row) 
scenarios between CNRM-CM6-1-HR and IBI-CCS_raw for the (a) DSL without IB effect, (b) steric, (c) thermosteric and (d) 630 
halosteric SL components. The steric, thermosteric and halosteric SL components have been computed between 0-2000 m depth. 
The differences have been computed on the GCM grid. A student test has been performed with a confidence interval of 95% and 
the significant differences between the two simulations have been marked with white dots.  

To isolate the impact of resolution on the projected changes, Figure 14 shows the differences in SL drivers' projected 

changes between the regionally downscaled IBI-CCS_raw and the global CNRM-CM6-1-HR. The comparisons allow us to 635 

assess the impact of the increased model resolution for the projections of the different SL components. The consistency of 

the changes between the 2 scenarios suggests a robust climate change signal rather than a signal dominated by internal 

climate variability (Fig. 14). Differences in projected DSL changes due to a higher resolution are generally more important 

for the SSP5-8.5 than for the SSP1-2.6 scenario.  

 640 

In coastal zones, the largest differences in projected DSL are found along the Norwegian coasts, with a 5cm smaller 

projected change in the IBI-CCS_raw simulation compared to the GCM under SSP5-8.5 (Fig. 14a). This difference is related 

to the strong decrease in the surface circulation of the NwCC (Fig. 1) in the GCM but not in the RCM (Fig. 10). Substantial 

differences in projected DSL changes are also found around Iberia (Fig. 14a) and are mostly related to differences in 

halosteric SL projected changes which are partly compensated by differences in thermosteric projected changes (Fig. 14c,d). 645 

Otherwise, differences in projected changes in DSL between the GCM and IBI-CCS_raw are rather small in coastal areas, 

which is due to the relatively high resolution of the GCM and in particular of its bathymetry and land mask. This is 

consistent with the findings of Hermans et al., 2020 where a larger impact of increased resolution through dynamic 

downscaling was found as they used coarser GCMs. They have highlighted the importance of a realistic bathymetry and land 

mask for SL projections. Moreover, the impact of the higher resolution is rather small due to the peculiarities of the region as 650 

the IBI zone includes many continental shelves. In shallow regions such as continental shelves, the Rossby radius is smaller 
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than in the surrounding deep ocean which requests an even higher resolution to resolve mesoscale processes. Over the north-

western European continental shelf, a resolution of at least 1/50 ° is required for ocean models to be eddy resolving, while 

models at 1/12 ° are eddy resolving in the deep part of the Atlantic domain in IBI (Hallberg, 2013). The RCM is therefore 

eddy-resolving in the deep Atlantic part of the domain, while the GCM is only eddy-permitting. The small differences in 655 

coastal steric, thermosteric and halosteric SL projected changes are consistent with the DSL changes at the coast (Fig. 

14b,c,d). In the deep ocean and particularly in the north-western part of the domain, where the surface circulation changes 

are the most important, differences between the GCM and RCM largely exceed the differences on the shelf for both 

scenarios and for all the SL components but their spatial patterns are rather noisy (Fig. 14). 

3.2.6 Impact of bias corrections on regional projections of SL 660 

 

Figure 15: Differences of projected changes (2081-2100 vs 1986-2005) between IBI-CCS_corr and IBI-CCS_raw simulations for 
the DSL (first column), the steric (second column), thermosteric (third column) and halosteric (last column) SL components under 
the SSP5-8.5 (upper row) and SSP1-2.6 (lower row) scenarios. The steric, thermosteric and halosteric SL components have been 
computed between 0-2000 m depth. A student test has been performed with a confidence interval of 95% and the significant 665 
differences between the two simulations have been marked with white dots.  

The impact of bias corrections on SL projections are now investigated by comparing projected SL changes between IBI-

CCS_corr and IBI-CCS_raw (Table 1). The spatial patterns of the differences between the projected changes of IBI-

CCS_raw and IBI-CSS_corr are very similar for all the SL components and scenarios, except in the Mediterranean Sea (Fig. 

15). In general, large differences in projected SL changes between the two simulations are found in the deep ocean, the 670 

impact of bias corrections in coastal areas being small for both scenarios and for all the SL components.  

 

https://doi.org/10.5194/gmd-2021-328
Preprint. Discussion started: 15 October 2021
c© Author(s) 2021. CC BY 4.0 License.



  

 

26 
 

In this section, the focus is done on the DSL changes (Fig. 15a). Differences in DSL changes in the deep ocean seem to be 

independent of the climate change scenario (Fig. 15a). In the north-western part of the IBI domain where the surface 

circulation changes are the most important, the projected DSL changes are up to 10 cm smaller in IBI-CCS_corr (Fig. 15a). 675 

In the Mediterranean Sea where the bias corrections are substantial, differences in DSL changes are up to 15 cm larger in 

IBI-CCS_corr compared to IBI-CCS_raw in the Alboran Sea associated with a larger increase in the net transport through 

Gibraltar Strait (not shown here). Also, the Alboran gyre is projected to decrease in IBI-CCS_corr under both climate change 

scenarios whereas it is projected to strengthen in IBI-CCS_raw (Fig. 15a and Fig. 13a).  Impacts of bias corrections in 

coastal areas are rather small for the SSP5-8.5 scenario (except in the Mediterranean Sea) and are larger for the SSP1-2.6 680 

scenario (Fig. 15a). For instance, the projected DSL changes in the SSP1-2.6 scenario is up to 2 cm larger in IBI-CCS_corr 

compared to IBI-CCS_raw in the BoB and along the Iberian coasts, which is of similar amplitude to the projected DSL 

change in IBI-CCS_corr. Because of the stationarity of bias corrections, their impact on projected changes is larger when the 

climate change signal is smaller. 

3.2.7 Projected changes of SL interannual variability 685 

 

Figure 16: Projected changes (2081-2100 vs 1986-2005) of SL interannual variability under the SSP5-8.5 scenario for the (a) GCM 
CNRM-CM6-1-HR and (b) IBI-CCS_corr. The interannual variability is computed as the standard deviation of the detrended 
annual mean SL. A Fisher test has been performed with a confidence interval of 90% and the significant differences between the 
two simulations have been marked with white dots.  690 

Figure 16 shows the projected changes of SL interannual variability under the SSP5-8.5 scenario for the GCM CNRM-CM6-

1-HR and for the IBI-CCS_corr regional simulation. Thanks to the bias corrections method used here, the internal variability 

of the GCM is conserved which allows investigating the projected changes of the variability in the regional simulations. This 

would not have been possible with other correction methods such as the delta method i.e. mean state change projected 

anomalies added to historical forcings where the high frequency variability is unchanged between the global and regional 695 

models, by construction.  

 

Projected changes in interannual variability are consistent between the GCM and IBI-CCS_corr simulation (Fig. 16). 

Significant changes in the amplitude of interannual variability are observed where important changes in circulation are also 

projected (Sect. 3.2.2), e.g. the NAC and in the Mediterranean Sea. Projected changes are also significant in the North Sea 700 

shelf in both GCM and IBI-CCS_corr. Figure 16 displays changes in variability but it is not possible to state if these changes 

are indeed reflecting changes in interannual variability or lower frequency signals such as multi-decadal variability. 
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3.2.8 Projected changes of extreme SLs 

 

Figure 17: (a) Projected changes of the non-tidal residual 99th percentile for the SSP5-8.5 scenario between 2081-2100 and 1986-705 
2005 period in IBI-CCS_corr. (b) Differences with projected changes in IBI-CCS_raw. 

For impact studies, it is necessary to consider projected SL extreme values.  Figure 17 shows the projected changes in the 

99th percentile of non-tidal residuals under the SSP5-8.5 scenario. Note that the mean has been subtracted on both time 

slices 1986-2005 and 2081-2100 to remove SLR effect on extreme SLs and to assess changes in the remaining component 

which corresponds to the atmospheric surge. Changes in extreme SLs are therefore of a small amplitude of maximum 6 cm 710 

(Fig. 17a) as changes in extreme SLs are mainly driven by SLR (Vousdoukas et al., 2018b; Muis et al., 2020). However, 

some spatial differences are found on the atmospheric surge with an increase in extreme SLs in AS, EC, CS, IS (Fig. 1). The 

impact of the bias correction on this high-frequency diagnostic is assessed on Fig. 17b. Projected changes of 99th percentile 

of non-tidal residuals are relatively weakly affected by the bias correction except on the AS (Fig. 1) and in the Mediterranean 

Sea where the differences with IBI-CCS_raw are half the climate change signal.  715 

3.2.9 Projected changes in the M2 tidal amplitude 

 

 

Figure 18:  Projected changes of the M2 tidal amplitude for the SSP5-8.5 scenario between 2081-2100 and 1986-2005 period in IBI-
CCS_corr. 720 
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The main added value of the RCM in comparison to the GCM is the inclusion of processes driving SL changes at the coast 

such as tides (Sect. 2.1.2). Here, the projected changes of the major tidal constituent (M2) amplitude are assessed under the 

SSP5-8.5 scenario (Fig. 18). These changes in amplitude are important as tides are major drivers of extreme SLs. Projected 

tidal changes over the 21st century are mostly due to SLR (Fox-Kemper et al., 2021). However, projected changes are not 

expected to be large in IBI-CCS_corr as the tidal potential imposed at the boundaries of the domain does not change in 725 

response to climate change and as coastlines are fixed in the model (no wetting and drying, erosion etc). Nevertheless, tides 

can be impacted by the SLR on the shelf, far enough from the boundaries. Here, with a SLR of about +80 cm at the end of 

the century (Sect. 3.2.1), the M2 tidal amplitude seems to be impacted mostly in the southern part of the North Sea on the 

large continental shelf. In this region, the M2 tidal amplitude is projected to increase by 10%, which is consistent with Idier 

et al., 2017. Projected changes in M2 phase have also been assessed under the SSP5-8.5 scenario and show no difference 730 

compared to the historical simulation and no displacement of the amphidromic points (not shown here). 

4 Conclusion 

Previous dynamical downscaling studies have provided regional projections of SL based on CMIP5 GCMs (e.g. Hermans et 

al., 2020; Liu et al., 2016; Zhang et al., 2017; Gomis et al., 2016, Jin et al., 2021). The objective of this study was to provide 

projections of sea level changes in the north-eastern Atlantic region bordering western Europe, focusing on methodological 735 

aspects. To do that, a regional ocean model IBI-CCS is set up to refine the CMIP6 GCM CNRM-CM6-1-HR SL projections 

using a DD method. To limit the GCM bias propagation into the regional projections, seasonal mean bias corrections have 

been applied to the GCM outputs before using them to initialize and to force the RCM. To disentangle the respective effects 

of the pure DD and of introducing bias corrections both on the current climate and on the projected change, different 

analyses were performed.  740 

  

Comparisons between the GCM and the regional simulation without bias correction have been performed to assess the 

impact on the simulations of: (1) the higher resolution and (2) the inclusion of processes driving SL at the coast in the RCM. 

These comparisons show that the DD method conserves the GCM spatial patterns, its interannual variability and trends. Over 

the historical period, the 1/12 ° resolution of the regional model IBI-CCS allows for a better regional circulation and SL with 745 

more spatial information. However, the impact of the increased resolution on the projections is limited by the ¼ ° high 

resolution of the GCM associated with a quite realistic bathymetry and land mask. Additionally, the IBI zone concentrates 

many continental shelves where the Rossby radius is small which requires a resolution of at least 1/50 ° to be eddy resolving. 

This limits the gain to be expected over continental shelves in the IBI region from the RCM resolution of 1/12 °. We expect 

that the impact of DD would be much larger if the GCM had a more typical CMIP ocean model resolution of 1 °. The choice 750 

of the eddy-permitting high-resolution GCM allows to obtain realistic regional circulation and MSSH which would probably 

not have been the case with a 1 ° GCM as shown in the comparisons between CNRM-CM6-1-HR and CNRM-CM6-1. 

Moreover, a higher resolution is also interesting to obtain a less smooth atmospheric forcing which is very important for the 

modeling of extreme SLs. Thanks to the physical processes included in the RCM that the GCM does not have, like tides and 

atmospheric pressure forcing, the IBI-CCS simulations are able to correctly represent high-frequency SLs. The validation 755 

shown here provides some confidence on the realism of the representation of these processes and paves the way for a future 

analysis more focused on extreme SLs projected changes. 

  

Other comparisons have been performed to assess the impact of bias corrections on the simulation of ocean properties 

including SL. Thanks to the bias corrections, the large-scale performances of IBI-CCS are better than those of the GCM in 760 

terms of SL components, regional circulation and representation of water masses. For instance, the characteristics of the 
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water masses were corrected thereby controlling the influence of the initially highly biased Mediterranean Sea on the 

Atlantic Ocean. For the projected changes, in our case, the corrections have a small impact at the coast in general, except in 

the Mediterranean Sea where the biases were substantial. Additionally, due to the stationarity of the bias corrections, their 

impact on projected changes is larger for the SSP1-2.6 scenario where the climate change signal is weaker than for the SSP5-765 

8.5 scenario. This method therefore seems to be applicable to other models even with biases of strong amplitudes. Moreover, 

although the corrections were stationary, the projections in the water mass properties in the simulations with and without 

corrections of biases were different for a same depth (different TS diagram shape). Another added value of the bias 

corrections is that they allow conserving the internal variability of the GCM. The internal variability in the regional model is 

driven by that of the GCM, for the historical period and projections, therefore allowing to investigate projected changes of 770 

the variability in the regional simulations. This would not have been possible with the delta correction method where the 

GCM projected changes are added to a reference past state.  

  

The use of a single forcing GCM and a single member does not allow to quantify uncertainties of the projected results. Here, 

the aim of the study was not to characterize the uncertainties or provide a likely range of projected changes over the IBI 775 

region. The objective was to use a method to produce climate projections dealing with GCM biases in order to apply the 

method to a larger number of models in forthcoming studies. More specifically, the regional configuration has been 

developed to investigate SL changes related questions in the IBI region in terms of processes, not uncertainties. To gain 

insights on the representativeness of the GCM forcing model chose here, we checked that the GCM was not an outlier of the 

CMIP6 models for a set of metrics relevant for SL changes on the IBI zone. In a way, the differences in the regional climate 780 

change projections with and without applying bias corrections are another indication of the uncertainties in downscaled 

climate simulations (Hernández-Díaz et al., 2019). 

  

When considering a large number of models, the bias corrections method used here is not systematically applicable, so it is 

preferable to select the forcing models based on one or several criteria before using them for projections. The best would be 785 

to eliminate the models that have strong difficulties in the area considered and for the key variables of the intended study. 

Emergent constraints methods were also developed to overcome model biases and better characterize the uncertainties of the 

projections (Chen et al., 2020; Grinsted and Christensen, 2021; Forster et al., 2021). 

 

As a conclusion, in this paper, the IBI-CCS regional model has been shown to be a suitable tool to investigate climate 790 

projected changes related questions over the ocean in the IBI region, especially regarding SL. For example, we will be able 

to analyze the projected changes in extreme SLs. 

 

Code availability 

The IBI-CCS model is based on the NEMO 3.6 version developed by the NEMO consortium. All specificities included in 795 

the NEMO code version 3.6 are freely available (https://www.nemo-ocean.eu/).  

Data availability 

Information on CNRM-CM6-1-HR and CNRM-CM6-1 simulations can be found at 

https://doi.org/10.22033/ESGF/CMIP6.4067 (CNRM-CM6-1-HR, historical), https://doi.org/10.22033/ESGF/CMIP6.4164 

(CNRM-CM6-1-HR, piControl),  https://doi.org/10.22033/ESGF/CMIP6.4185 (CNRM-CM6-1-HR, ssp126), 800 

https://doi.org/10.22033/ESGF/CMIP6.4225 (CNRM-CM6-1-HR, ssp585) and https://doi.org/10.22033/ESGF/CMIP6.4066 

(CNRM-CM6-1, historical). The CNRM-CM6-1-HR forcing fields are available on the ESGF website (https://esgf-
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node.ipsl.upmc.fr/projects/esgf-ipsl/). The reanalyses data and altimetric observation product were obtained from the 

Copernicus Marine Services (https://marine.copernicus.eu/). MDT CNES CLS18 was produced by CLS and distributed by 

Aviso +, with support from Cnes (https://www.aviso.altimetry.fr/). TG data records are obtained from the GESLA dataset 805 

(https://www.gesla.org/) 

Supplement link 

Author contribution:  

AM designed the study. AV performed the global simulations. GR prepared the regional model configuration. AC prepared 

the forcing files, performed the regional simulations and did the analyses. AM, AV and GR supervised the project. AC wrote 810 

the first draft of the manuscript. All author contributed to manuscript revision, read and approved the submitted version. 

Competing interests:  

All authors declare that they have no conflict of interest. 

Disclaimer 

Acknowledgements 815 

Analyses were carried out with Python. The authors thank Romain Bourdallé-Badie for his useful technical advice on 

regional modeling.  

Financial support  

The PhD thesis of AC is supported by Mercator Ocean and Météo-France.  

 820 

 

 

 

 

 825 

 

 

 

 

 830 

 

 

 

 

 835 

 

https://doi.org/10.5194/gmd-2021-328
Preprint. Discussion started: 15 October 2021
c© Author(s) 2021. CC BY 4.0 License.



  

 

31 
 

References 

Adloff, F., Somot, S., Sevault, F., Jordà, G., Aznar, R., Déqué, M., Herrmann, M., Marcos, M., Dubois, C., Padorno, E., 
Alvarez-Fanjul, E., and Gomis, D.: Mediterranean Sea response to climate change in an ensemble of twenty first century 
scenarios, Clim. Dyn., 45, 2775–2802, https://doi.org/10.1007/s00382-015-2507-3, 2015. 840 

Adloff, F., Jordà, G., Somot, S., Sevault, F., Arsouze, T., Meyssignac, B., Li, L., and Planton, S.: Improving sea level 
simulation in Mediterranean regional climate models, Clim. Dyn., 51, 1167–1178, https://doi.org/10.1007/s00382-017-3842-
3, 2018. 

Barnier, B., Madec, G., Penduff, T., Molines, J.-M., Treguier, A.-M., Le Sommer, J., Beckmann, A., Biastoch, A., Böning, 
C., Dengg, J., Derval, C., Durand, E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud, M., McClean, J., and De 845 
Cuevas, B.: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting 
resolution, Ocean Dyn., 56, 543–567, https://doi.org/10.1007/s10236-006-0082-1, 2006. 

Berrisford, P., Dee, D., Fielding, K., Fuentes, M., Kallberg, P., Kobayashi, S., and Uppala, S.: The ERA-Interim Archive, 
ERA report series, European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading, 16 pp., 2009. 

Blanke, B. and Delecluse, P.: Variability of the Tropical Atlantic Ocean Simulated by a General Circulation Model with Two 850 
Different Mixed-Layer Physics, J. Phys. Oceanogr., 23, 1363–1388, https://doi.org/10.1175/1520-
0485(1993)023<1363:VOTTAO>2.0.CO;2, 1993. 

Bozec, A., Lozier, M. S., Chassignet, E. P., and Halliwell, G. R.: On the variability of the Mediterranean Outflow Water in 
the North Atlantic from 1948 to 2006, J. Geophys. Res. Oceans, 116, https://doi.org/10.1029/2011JC007191, 2011. 

Brodeau, L., Barnier, B., Gulev, S. K., and Woods, C.: Climatologically Significant Effects of Some Approximations in the 855 
Bulk Parameterizations of Turbulent Air–Sea Fluxes, J. Phys. Oceanogr., 47, 5–28, https://doi.org/10.1175/JPO-D-16-
0169.1, 2017. 

Chen, X., Zhou, T., Wu, P., Guo, Z., and Wang, M.: Emergent constraints on future projections of the western North Pacific 
Subtropical High, Nat. Commun., 11, 2802, https://doi.org/10.1038/s41467-020-16631-9, 2020. 

Cordeiro, N. G. F., Dubert, J., Nolasco, R., and Barton, E. D.: Transient response of the Northwestern Iberian upwelling 860 
regime, PLOS ONE, 13, e0197627, https://doi.org/10.1371/journal.pone.0197627, 2018. 

Dosio, A.: Projections of climate change indices of temperature and precipitation from an ensemble of bias-adjusted high-
resolution EURO-CORDEX regional climate models, J. Geophys. Res. Atmospheres, 121, 5488–5511, 
https://doi.org/10.1002/2015JD024411, 2016. 

Fasullo, J. T.: Evaluating simulated climate patterns from the CMIP archives using satellite and reanalysis datasets using the 865 
Climate Model Assessment Tool (CMATv1), Geosci. Model Dev., 13, 3627–3642, https://doi.org/10.5194/gmd-13-3627-
2020, 2020. 

Flather, R. A. and Davies, A. M.: Note on a preliminary scheme for storm surge prediction using numerical models, Q. J. R. 
Meteorol. Soc., 102, 123–132, https://doi.org/10.1002/qj.49710243110, 1976. 

Fofonoff, N. P. and Millard Jr, R. C.: Algorithms for the computation of fundamental properties of seawater., 870 
https://doi.org/10.25607/OBP-1450, 1983. 

Forget, G. and Ponte, R. M.: The partition of regional sea level variability, Prog. Oceanogr., 137, 173–195, 
https://doi.org/10.1016/j.pocean.2015.06.002, 2015. 

Garric, G., Parent, L., Greiner, E., Drévillon, M., Hamon, M., Lellouche, J.-M., Régnier, C., Desportes, C., Le Galloudec, O., 
Bricaud, C., Drillet, Y., Hernandez, F., and Le Traon, P.-Y.: Performance and quality assessment of the global ocean eddy-875 
permitting physical reanalysis GLORYS2V4., 18776, 2017. 

Gaspar, P., Grégoris, Y., and Lefevre, J.-M.: A simple eddy kinetic energy model for simulations of the oceanic vertical 
mixing: Tests at station Papa and long-term upper ocean study site, J. Geophys. Res. Oceans, 95, 16179–16193, 
https://doi.org/10.1029/JC095iC09p16179, 1990. 

Gomis, D., Álvarez-Fanjul, E., Jordà, G., Marcos, M., Aznar, R., Rodríguez-Camino, E., Sánchez-Perrino, J. C., Rodríguez-880 
González, J. M., Martínez-Asensio, A., Llasses, J., Pérez, B., and Sotillo, M. G.: Regional marine climate scenarios in the 
NE Atlantic sector close to the Spanish shores, Sci. Mar., 80, 215–234, https://doi.org/10.3989/scimar.04328.07A, 2016. 

https://doi.org/10.5194/gmd-2021-328
Preprint. Discussion started: 15 October 2021
c© Author(s) 2021. CC BY 4.0 License.



  

 

32 
 

Greatbatch, R. J.: A note on the representation of steric sea level in models that conserve volume rather than mass, J. 
Geophys. Res. Oceans, 99, 12767–12771, https://doi.org/10.1029/94JC00847, 1994. 

Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church, J. A., Fukimori, I., Gomez, N., Kopp, R. E., Landerer, 885 
F., Cozannet, G. L., Ponte, R. M., Stammer, D., Tamisiea, M. E., and van de Wal, R. S. W.: Concepts and Terminology for 
Sea Level: Mean, Variability and Change, Both Local and Global, Surv. Geophys., 40, 1251–1289, 
https://doi.org/10.1007/s10712-019-09525-z, 2019. 

Griffies, S. M. and Greatbatch, R. J.: Physical processes that impact the evolution of global mean sea level in ocean climate 
models, Ocean Model., 51, 37–72, https://doi.org/10.1016/j.ocemod.2012.04.003, 2012. 890 

Grinsted, A. and Christensen, J. H.: The transient sensitivity of sea level rise, Ocean Sci., 17, 181–186, 
https://doi.org/10.5194/os-17-181-2021, 2021. 

Grinsted, A., Jevrejeva, S., Riva, R. E. M., and Dahl-Jensen, D.: Sea level rise projections for northern Europe under 
RCP8.5, Clim. Res., 64, 15–23, https://doi.org/10.3354/cr01309, 2015. 

Gupta, A. S., Jourdain, N. C., Brown, J. N., and Monselesan, D.: Climate Drift in the CMIP5 Models, J. Clim., 26, 8597–895 
8615, https://doi.org/10.1175/JCLI-D-12-00521.1, 2013. 

Hallberg, R.: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects, Ocean Model., 72, 
92–103, https://doi.org/10.1016/j.ocemod.2013.08.007, 2013. 

Hermans, T. H. J., Tinker, J., Palmer, M. D., Katsman, C. A., Vermeersen, B. L. A., and Slangen, A. B. A.: Improving sea-
level projections on the Northwestern European shelf using dynamical downscaling, Clim. Dyn., 54, 1987–2011, 900 
https://doi.org/10.1007/s00382-019-05104-5, 2020. 

Hernández-Díaz, L., Nikiéma, O., Laprise, R., Winger, K., and Dandoy, S.: Effect of empirical correction of sea-surface 
temperature biases on the CRCM5-simulated climate and projected climate changes over North America, Clim. Dyn., 53, 
453–476, https://doi.org/10.1007/s00382-018-4596-2, 2019. 

Hock, R., Bliss, A., Marzeion, B., Giesen, R. H., Hirabayashi, Y., Huss, M., Radić, V., and Slangen, A. B. A.: GlacierMIP – 905 
A model intercomparison of global-scale glacier mass-balance models and projections, J. Glaciol., 65, 453–467, 
https://doi.org/10.1017/jog.2019.22, 2019. 

Idier, D., Paris, F., Cozannet, G. L., Boulahya, F., and Dumas, F.: Sea-level rise impacts on the tides of the European Shelf, 
Cont. Shelf Res., 137, 56–71, https://doi.org/10.1016/j.csr.2017.01.007, 2017. 

Irving, D., Hobbs, W., Church, J., and Zika, J.: A Mass and Energy Conservation Analysis of Drift in the CMIP6 Ensemble, 910 
J. Clim., 34, 3157–3170, https://doi.org/10.1175/JCLI-D-20-0281.1, 2021. 

Jin, Y., Zhang, X., Church, J. A., and Bao, X.: Projected Sea Level Changes in the Marginal Seas near China Based on 
Dynamical Downscaling, J. Clim., 34, 7037–7055, https://doi.org/10.1175/JCLI-D-20-0796.1, 2021. 

Kopp, R. E., Horton, R. M., Little, C. M., Mitrovica, J. X., Oppenheimer, M., Rasmussen, D. J., Strauss, B. H., and Tebaldi, 
C.: Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites, Earths Future, 2, 383–915 
406, https://doi.org/10.1002/2014EF000239, 2014. 

Krinner, G. and Flanner, M. G.: Striking stationarity of large-scale climate model bias patterns under strong climate change, 
Proc. Natl. Acad. Sci. U. S. A., 115, 9462–9466, https://doi.org/10.1073/pnas.1807912115, 2018. 

Lavergne, C. de, Vic, C., Madec, G., Roquet, F., Waterhouse, A. F., Whalen, C. B., Cuypers, Y., Bouruet-Aubertot, P., 
Ferron, B., and Hibiya, T.: A Parameterization of Local and Remote Tidal Mixing, J. Adv. Model. Earth Syst., 12, 920 
e2020MS002065, https://doi.org/10.1029/2020MS002065, 2020. 

Leonard, B. P.: A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comput. 
Methods Appl. Mech. Eng., 19, 59–98, https://doi.org/10.1016/0045-7825(79)90034-3, 1979. 

Liu, Z.-J., Minobe, S., Sasaki, Y. N., and Terada, M.: Dynamical downscaling of future sea level change in the western 
North Pacific using ROMS, J. Oceanogr., 72, 905–922, https://doi.org/10.1007/s10872-016-0390-0, 2016. 925 

https://doi.org/10.5194/gmd-2021-328
Preprint. Discussion started: 15 October 2021
c© Author(s) 2021. CC BY 4.0 License.



  

 

33 
 

Macias, D., Garcia-Gorriz, E., Dosio, A., Stips, A., and Keuler, K.: Obtaining the correct sea surface temperature: bias 
correction of regional climate model data for the Mediterranean Sea, Clim. Dyn., 51, 1095–1117, 
https://doi.org/10.1007/s00382-016-3049-z, 2018. 

Madec, G., Bourdallé-Badie, R., Bouttier, P.-A., Bricaud, C., Bruciaferri, D., Calvert, D., Chanut, J., Clementi, E., Coward, 
A., Delrosso, D., Ethé, C., Flavoni, S., Graham, T., Harle, J., Iovino, D., Lea, D., Lévy, C., Lovato, T., Martin, N., Masson, 930 
S., Mocavero, S., Paul, J., Rousset, C., Storkey, D., Storto, A., and Vancoppenolle, M.: NEMO ocean engine, 
https://doi.org/10.5281/zenodo.3248739, 2017. 

Maraldi, C., Chanut, J., Levier, B., Ayoub, N., De Mey, P., Reffray, G., Lyard, F., Cailleau, S., Drévillon, M., Fanjul, E. A., 
Sotillo, M. G., and Marsaleix, P.: NEMO on the shelf: assessment of the Iberia-Biscay-Ireland configuration, All 
Depths/Operational Oceanography/All Geographic Regions/Temperature, Salinity and Density Fields, 935 
https://doi.org/10.5194/osd-10-83-2013, 2013. 

Mathis, M., Mayer, B., and Pohlmann, T.: An uncoupled dynamical downscaling for the North Sea: Method and evaluation, 
Ocean Model., 72, 153–166, https://doi.org/10.1016/j.ocemod.2013.09.004, 2013. 

McGranahan, G., Balk, D., and Anderson, B.: The rising tide: assessing the risks of climate change and human settlements in 
low elevation coastal zones, Environ. Urban., 19, 17–37, https://doi.org/10.1177/0956247807076960, 2007. 940 

Melet, A., Meyssignac, B., Almar, R., and Le Cozannet, G.: Under-estimated wave contribution to coastal sea-level rise, Nat. 
Clim. Change, 8, 234–239, https://doi.org/10.1038/s41558-018-0088-y, 2018. 

Melet, A., Almar, R., Hemer, M., Cozannet, G. L., Meyssignac, B., and Ruggiero, P.: Contribution of Wave Setup to 
Projected Coastal Sea Level Changes, J. Geophys. Res. Oceans, 125, e2020JC016078, 
https://doi.org/10.1029/2020JC016078, 2020. 945 

Menéndez, M. and Woodworth, P. L.: Changes in extreme high water levels based on a quasi-global tide-gauge data set, J. 
Geophys. Res. Oceans, 115, https://doi.org/10.1029/2009JC005997, 2010. 

Meyssignac, B., Piecuch, C. G., Merchant, C. J., Racault, M.-F., Palanisamy, H., MacIntosh, C., Sathyendranath, S., and 
Brewin, R.: Causes of the Regional Variability in Observed Sea Level, Sea Surface Temperature and Ocean Colour Over the 
Period 1993–2011, Surv. Geophys., 38, 187–215, https://doi.org/10.1007/s10712-016-9383-1, 2017a. 950 

Meyssignac, B., Slangen, A. B. A., Melet, A., Church, J. A., Fettweis, X., Marzeion, B., Agosta, C., Ligtenberg, S. R. M., 
Spada, G., Richter, K., Palmer, M. D., Roberts, C. D., and Champollion, N.: Evaluating Model Simulations of Twentieth-
Century Sea-Level Rise. Part II: Regional Sea-Level Changes, J. Clim., 30, 8565–8593, https://doi.org/10.1175/JCLI-D-17-
0112.1, 2017b. 

Muis, S., Apecechea, M. I., Dullaart, J., de Lima Rego, J., Madsen, K. S., Su, J., Yan, K., and Verlaan, M.: A High-955 
Resolution Global Dataset of Extreme Sea Levels, Tides, and Storm Surges, Including Future Projections, Front. Mar. Sci., 
7, 263, https://doi.org/10.3389/fmars.2020.00263, 2020. 

Mulet, S., Rio, M.-H., Etienne, H., Artana, C., Cancet, M., Dibarboure, G., Feng, H., Husson, R., Picot, N., Provost, C., and 
Strub, P. T.: The new CNES-CLS18 global mean dynamic topography, Ocean Sci., 17, 789–808, https://doi.org/10.5194/os-
17-789-2021, 2021. 960 

Neumann, B., Vafeidis, A. T., Zimmermann, J., and Nicholls, R. J.: Future Coastal Population Growth and Exposure to Sea-
Level Rise and Coastal Flooding - A Global Assessment, PLOS ONE, 10, e0118571, 
https://doi.org/10.1371/journal.pone.0118571, 2015. 

O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J.-
F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., and Sanderson, B. M.: The Scenario Model Intercomparison Project 965 
(ScenarioMIP) for CMIP6, Geosci. Model Dev., 9, 3461–3482, https://doi.org/10.5194/gmd-9-3461-2016, 2016. 

Reffray, G., Bourdalle-Badie, R., and Calone, C.: Modelling turbulent vertical mixing sensitivity using a 1-D version of 
NEMO, Geosci. Model Dev., 8, 69–86, https://doi.org/10.5194/gmd-8-69-2015, 2015. 

Richter, K., Riva, R. E. M., and Drange, H.: Impact of self-attraction and loading effects induced by shelf mass loading on 
projected regional sea level rise, Geophys. Res. Lett., 40, 1144–1148, https://doi.org/10.1002/grl.50265, 2013. 970 

Roehrig, R., Beau, I., Saint-Martin, D., Alias, A., Decharme, B., Guérémy, J.-F., Voldoire, A., Abdel-Lathif, A. Y., Bazile, 
E., Belamari, S., Blein, S., Bouniol, D., Bouteloup, Y., Cattiaux, J., Chauvin, F., Chevallier, M., Colin, J., Douville, H., 

https://doi.org/10.5194/gmd-2021-328
Preprint. Discussion started: 15 October 2021
c© Author(s) 2021. CC BY 4.0 License.



  

 

34 
 

Marquet, P., Michou, M., Nabat, P., Oudar, T., Peyrillé, P., Piriou, J.-M., Salas y Mélia, D., Séférian, R., and Sénési, S.: The 
CNRM Global Atmosphere Model ARPEGE-Climat 6.3: Description and Evaluation, J. Adv. Model. Earth Syst., 12, 
e2020MS002075, https://doi.org/10.1029/2020MS002075, 2020. 975 

Roquet, F., Madec, G., Brodeau, L., and Nycander, J.: Defining a Simplified Yet “Realistic” Equation of State for Seawater, 
J. Phys. Oceanogr., 45, 2564–2579, https://doi.org/10.1175/JPO-D-15-0080.1, 2015. 

Shin, S.-I. and Alexander, M. A.: Dynamical Downscaling of Future Hydrographic Changes over the Northwest Atlantic 
Ocean, J. Clim., 33, 2871–2890, https://doi.org/10.1175/JCLI-D-19-0483.1, 2020. 

Slangen, A. B. A., Carson, M., Katsman, C. A., van de Wal, R. S. W., Köhl, A., Vermeersen, L. L. A., and Stammer, D.: 980 
Projecting twenty-first century regional sea-level changes, Clim. Change, 124, 317–332, https://doi.org/10.1007/s10584-014-
1080-9, 2014. 

Slangen, A. B. A., Meyssignac, B., Agosta, C., Champollion, N., Church, J. A., Fettweis, X., Ligtenberg, S. R. M., 
Marzeion, B., Melet, A., Palmer, M. D., Richter, K., Roberts, C. D., and Spada, G.: Evaluating Model Simulations of 
Twentieth-Century Sea Level Rise. Part I: Global Mean Sea Level Change, J. Clim., 30, 8539–8563, 985 
https://doi.org/10.1175/JCLI-D-17-0110.1, 2017. 

Sotillo, M. G., Cailleau, S., Lorente, P., Levier, B., Aznar, R., Reffray, G., Amo-Baladrón, A., Chanut, J., Benkiran, M., and 
Alvarez-Fanjul, E.: The MyOcean IBI Ocean Forecast and Reanalysis Systems: operational products and roadmap to the 
future Copernicus Service, J. Oper. Oceanogr., 8, 63–79, https://doi.org/10.1080/1755876X.2015.1014663, 2015. 

Soto-Navarro, J., Criado-Aldeanueva, F., García-Lafuente, J., and Sánchez-Román, A.: Estimation of the Atlantic inflow 990 
through the Strait of Gibraltar from climatological and in situ data, J. Geophys. Res. Oceans, 115, 
https://doi.org/10.1029/2010JC006302, 2010. 

Soto-Navarro, J., Somot, S., Sevault, F., Beuvier, J., Criado-Aldeanueva, F., García-Lafuente, J., and Béranger, K.: 
Evaluation of regional ocean circulation models for the Mediterranean Sea at the Strait of Gibraltar: volume transport and 
thermohaline properties of the outflow, Clim. Dyn., 44, 1277–1292, https://doi.org/10.1007/s00382-014-2179-4, 2015. 995 

Soto-Navarro, J., Jordá, G., Amores, A., Cabos, W., Somot, S., Sevault, F., Macías, D., Djurdjevic, V., Sannino, G., Li, L., 
and Sein, D.: Evolution of Mediterranean Sea water properties under climate change scenarios in the Med-CORDEX 
ensemble, Clim. Dyn., 54, 2135–2165, https://doi.org/10.1007/s00382-019-05105-4, 2020. 

Stammer, D. and Hüttemann, S.: Response of Regional Sea Level to Atmospheric Pressure Loading in a Climate Change 
Scenario, J. Clim., 21, 2093–2101, https://doi.org/10.1175/2007JCLI1803.1, 2008. 1000 

Takayabu, I., Kanamaru, H., Dairaku, K., Benestad, R., Storch, H. von, and Christensen, J. H.: Reconsidering the Quality 
and Utility of Downscaling, J. Meteorol. Soc. Jpn. Ser II, 94A, 31–45, https://doi.org/10.2151/jmsj.2015-042, 2016. 

Umlauf, L. and Burchard, H.: A generic length-scale equation for geophysical turbulence models, J. Mar. Res., 61, 235–265, 
https://doi.org/10.1357/002224003322005087, 2003. 

Voldoire, A.: River to ocean models interpolation, report, CNRM, Université de Toulouse, Météo-France, CNRS, 2020. 1005 

Voldoire, A., Saint-Martin, D., Sénési, S., Decharme, B., Alias, A., Chevallier, M., Colin, J., Guérémy, J.-F., Michou, M., 
Moine, M.-P., Nabat, P., Roehrig, R., Mélia, D. S. y, Séférian, R., Valcke, S., Beau, I., Belamari, S., Berthet, S., Cassou, C., 
Cattiaux, J., Deshayes, J., Douville, H., Ethé, C., Franchistéguy, L., Geoffroy, O., Lévy, C., Madec, G., Meurdesoif, Y., 
Msadek, R., Ribes, A., Sanchez-Gomez, E., Terray, L., and Waldman, R.: Evaluation of CMIP6 DECK Experiments With 
CNRM-CM6-1, J. Adv. Model. Earth Syst., 11, 2177–2213, https://doi.org/10.1029/2019MS001683, 2019. 1010 

Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Bianchi, A., Dottori, F., and Feyen, L.: Climatic and socioeconomic 
controls of future coastal flood risk in Europe, Nat. Clim. Change, 8, 776–780, https://doi.org/10.1038/s41558-018-0260-4, 
2018a. 

Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva, S., Jackson, L. P., and Feyen, L.: Global 
probabilistic projections of extreme sea levels show intensification of coastal flood hazard, Nat. Commun., 9, 2360, 1015 
https://doi.org/10.1038/s41467-018-04692-w, 2018b. 

van Westen, R. M., Dijkstra, H. A., van der Boog, C. G., Katsman, C. A., James, R. K., Bouma, T. J., Kleptsova, O., Klees, 
R., Riva, R. E. M., Slobbe, D. C., Zijlema, M., and Pietrzak, J. D.: Ocean model resolution dependence of Caribbean sea-
level projections, Sci. Rep., 10, 14599, https://doi.org/10.1038/s41598-020-71563-0, 2020. 

https://doi.org/10.5194/gmd-2021-328
Preprint. Discussion started: 15 October 2021
c© Author(s) 2021. CC BY 4.0 License.



  

 

35 
 

Woodworth, P. L., Hunter, J. R., Marcos, M., Caldwell, P., Menéndez, M., and Haigh, I.: Towards a global higher-frequency 1020 
sea level dataset, Geosci. Data J., 3, 50–59, https://doi.org/10.1002/gdj3.42, 2017. 

Woodworth, P. L., Melet, A., Marcos, M., Ray, R. D., Wöppelmann, G., Sasaki, Y. N., Cirano, M., Hibbert, A., Huthnance, 
J. M., Monserrat, S., and Merrifield, M. A.: Forcing Factors Affecting Sea Level Changes at the Coast, Surv. Geophys., 40, 
1351–1397, https://doi.org/10.1007/s10712-019-09531-1, 2019. 

Xu, Z., Han, Y., and Yang, Z.: Dynamical downscaling of regional climate: A review of methods and limitations, Sci. China 1025 
Earth Sci., 62, 365–375, https://doi.org/10.1007/s11430-018-9261-5, 2019. 

Zalesak, S. T.: Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 31, 335–362, 
https://doi.org/10.1016/0021-9991(79)90051-2, 1979. 

Zhang, X., Church, J. A., Monselesan, D., and McInnes, K. L.: Sea level projections for the Australian region in the 21st 
century, Geophys. Res. Lett., 44, 8481–8491, https://doi.org/10.1002/2017GL074176, 2017. 1030 

 

https://doi.org/10.5194/gmd-2021-328
Preprint. Discussion started: 15 October 2021
c© Author(s) 2021. CC BY 4.0 License.


