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Abstract. Strongly coupled nonlinear phenomena such as those described by Earth System Models (ESM) are composed of

multiple component models with independent mesh topologies and scalable numerical solvers. A common operation in ESM

is to remap or interpolate results from one component ’s
:::::::::
component

:::::::
solution

:::::
fields

:::::::
defined

:::
on

::
its

:
computational mesh to

another
::::
mesh

::::
with

:
a
::::::::

different
::::::::::::
combinatorial

:::::::
structure

::::
and

::::::::::::
decomposition, e.g., from the atmosphere to the ocean, during the

temporal integration of the coupled system. Several remapping schemes are currently in use or available for ESM. However,5

a unified approach to compare the properties of these different schemes has not been attempted previously. We present a

rigorous methodology for the evaluation and intercomparison of remapping methods through an independently implemented

suite of metrics that measure the ability of a method to adhere to constraints such as grid independence, monotonicity, global

conservation, and local extrema or feature preservation. A comprehensive set of numerical evaluations are conducted based

on a progression of scalar fields from idealized and smooth to more general climate data with strong discontinuities and strict10

bounds. We examine four remapping algorithms with distinct design approaches, namely ESMF Regrid (Hill et al., 2004),

TempestRemap (Ullrich and Taylor, 2015), Generalized Moving-Least-Squares (GMLS) (Trask and Kuberry, 2020) with post-

processing filters, and WLS-ENOR (Li et al., 2020). By repeated iterative application of the high-order remapping methods

to the test fields, we verify the accuracy of each scheme in terms of their observed convergence order for smooth data and

determine the bounded error propagation using the challenging, realistic field data on both uniform and regionally refined mesh15

cases. In addition to retaining high-order accuracy under idealized conditions, the methods also demonstrate robust remapping

performance when dealing with non-smooth data. There is a failure to maintain monotonicity in the traditionalL2-minimization

approaches used in ESMF and TempestRemap, in contrast to stable recovery through nonlinear filters used in both meshless

(GMLS)
::::::
GMLS, and hybrid mesh-based (WLS-ENOR ) schemes. Local feature preservation analysis indicates that high-

order methods perform better than low-order dissipative schemes for all test cases. The behavior of these remappers remains20

consistent when applied on regionally refined meshes, indicating mesh invariant implementations. The MIRA intercomparison

protocol proposed in this paper and the detailed comparison of the four algorithms demonstrate that the new schemes, namely
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GMLS and WLS-ENOR, are competitive compared to standard conservative minimization methods requiring computation of

mesh intersections. The work presented in this paper provides a foundation that can be extended to include complex field

definitions, realistic mesh topologies, and spectral element discretizations thereby allowing for a more complete analysis of

production-ready remapping packages.
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1 Introduction

Coupled multimodel simulations often involve high degrees of computationally complex workflows, and achieving consistently15

accurate solutions is strongly dependent on the choice of spatiotemporal numerical algorithms used to resolve the interact-

ing scales in physical models. Rigorous spatial coupling between components in such systems involves field transformations

and communication of data across multiresolution grids while preserving key attributes of interest such as global integrals

and local features, which is usually referred to as the process of remapping
::::::::
remapping (also “regridding” or just “interpola-

tion”) (Van Leer, 1979; Dukowicz and Kodis, 1987; Jones, 1999). Such remap procedures are critical in ensuring the stability20

and accuracy of scientific codes simulating multiphysics problems that typically occur in many different scientific domains.

While there have been many high-order, stable interpolators proposed within different disciplines (Zienkiewicz and Zhu, 1992;

Grandy, 1999; Jones, 1999; Smith et al., 2000; Garimella et al., 2007; de Boer et al., 2008; Slattery, 2016), to our knowledge,

an effort to uniformly compare and measure the properties of these schemes has not yet been attempted. The current work is

motivated by a need for an intercomparison of remapping schemes, which led us to standardize several numerical metrics to25

uniformly compare the properties of these algorithms that are routinely applied to problems in climate and weather system

modeling.

Remapping algorithms, in general, compute the spatial interpolation or quasi-interpolation of field data that is defined on a

source mesh (Ωs) onto a target (Ωt) component mesh. It is imperative to note that these mesh pairs, Ωs and Ωt, are generally

of a different tessellation topology, spatial resolution, and regularity. Over the past several decades, there have been consid-30

erable efforts to create new conservative remapping algorithms to tackle various grid combinations and create consistently

accurate schemes for solution transfer between component models in multiphysics problems in many fields besides climate.
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These efforts have resulted in several software libraries and packages developed for this purpose. Examples include schemes

developed for fluid-structure interaction (FSI) or heat transfer (such as MpCCI (Joppich and Kürschner, 2006) and preCICE

(Bungartz et al., 2016)), moving mesh problems with arbitrary Lagrangian-Eulerian (ALE) methods (Dukowicz and Kodis,

1987; Dukowicz and Baumgardner, 2000), and general-purpose remap software such as MOAB (Tautges and Caceres, 2009;

Mahadevan et al., 2020), PANG (Gander and Japhet, 2013), and Data Transfer Kit (DTK) (Slattery et al., 2013).5

Remapping packages developed for ESMs such as the Community Earth System Model (CESM) (Hurrell et al., 2013) and

the Energy Exascale Earth System Model (E3SM) (E3SM Project, 2018), include SCRIP (Jones, 1999), the Earth System Mod-

eling Framework (ESMF) Regridder (Hill et al., 2004), TempestRemap (Ullrich and Taylor, 2015; Ullrich et al., 2016), ncremap

(Zender, 2008),
:::
and

:::
the Common Remapping Software (CoR) (Liu et al., 2018) , and the YAC interpolator (Hanke et al., 2016)

libraries. These remapping packages generate files with mapping weights that are then consumed by couplers such as MCT10

(Larson et al., 2005), cpl7 (Craig et al., 2012) and OASIS3-MCT (Craig et al., 2017), which apply the weights during run-

time. Support for generation of mapping weights, and application at runtime is growing (Mahadevan et al., 2020).
::::
Note

::::
that

::::
more

::::::::
recently,

:
a
:::::::::::
comparative

:::::
study

::
of

::::::
various

:::::::::::::::
production-ready

:::::::::
remappers

:::
for

:::::
ESMs

:::::
using

:::::::
realistic

:::::::
meshes

::::
was

:::::::::
performed

::
by

::::::::::
Valcke et al.

:::::
(2022

:
),
:::::
using

:::
the

:::::::
specific

:::::::::
numerical

::::::
metrics

::::
that

::::
have

:::::
been

::::::::
developed

::::
and

::::::::
presented

::
in
::::

this
::::::::::
manuscript.

::::
The

::::::
success

::
of

::::
this

::::
study

::
in
:::::
better

::::::::::::
understanding

:::
the

:::::::::
numerical

:::::::
behavior

::
of

::::::::::
production

::::::::
regridders

::
is

:::::::::
promising.

:
15

Many of the production-ready remapping software implementations used in global climate simulations are typically based on

first and second-order conservative mesh-based schemes, with additional support for second-order non-conservative bilinear

patch reconstructions (Zienkiewicz and Zhu, 1992; Rider, 2014), or third-order bi-cubic spline interpolations (Hanke et al.,

2016) for scalar fields. The projection algorithms implemented in these libraries for the conservative maps are based on the

computation of an overlay or a "supermesh" (Jiao and Heath, 2004a; Farrell et al., 2009; Farrell and Maddison, 2011), defined20

as ΩS∩T = Ωs ∩Ωt, which is then used to compute consistent and conservative linear operators through L2-minimization for

transferring field information (Ullrich and Taylor, 2015; Ullrich et al., 2016).

Remapping also occurs in other parts of a climate model, such as within the geophysical fluid dynamics solver of a compo-

nent. Remapping strategies for tracer transport advection schemes such as the Semi-Lagrangian Inherently Conserving and Ef-

ficient (SLICE) scheme (Zerroukat et al., 2005), Conservative and Monotone Cascade Remap on Sphere for CubedSphere (CS)25

to regular Latitude-Longitude (RLL) grids (Lauritzen and Nair, 2008), geometrically exact conservative remapping approaches

(Ullrich et al., 2009), and some other high-order mass conserving schemes (Norman and Nair, 2008; Erath et al., 2013) have

also been devised. While some of the previous work, including conservative semi-Lagrangian multi-tracer transport schemes

(CSLAM) (Lauritzen et al., 2010) with second-order variants (Zerroukat et al., 2006), can be easily extended to arbitrary mesh

topology combinations, many of the other approaches are tied to specific cases and not used in the inter-component coupling,30

which falls out of the scope of this study.

While traditional mesh-based schemes requiring computation of overlay/exchange grids have the advantage of being in-

herently conservative (Balaji et al., 2006), they tend to be computationally expensive (Jansen et al., 1992) and achieving

high-order accuracy for scalar field data can sometimes pose difficulties. Numerically suboptimal approximations, such as

nodal expansions or nearest neighbor values, can be used to compute interpolators
:::::::::::
interpolations

:
quite efficiently if the field35
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being remapped is smooth and does not mandate conservation prescriptions. Bilinear and bicubic interpolations can also prove

to be alternatives here. However, consistently ensuring high-order accuracy under conservation constraints is often necessary

for many real-world fields, such as the global heat flux that is exchanged between the atmosphere and ocean components in

climate systems.

More recently, new mesh-based (Li et al., 2020) and fully meshless (Trask and Kuberry, 2020) remapping schemes that5

do not require overlap meshes have been developed for other problems in order to mitigate the computational complexity of

computing exact intersections between unstructured meshes. These algorithms can provide high-order, conservative and stable

alternatives for climate modeling compared to the traditional linear maps generated from L2-minimization approaches.

As the number of available remapping algorithms grows, it becomes imperative to compare them under a unified framework

to understand the properties of the schemes, before applying them to real-world simulations. Additionally, while the compu-10

tational cost is critically important for production runs, our intercomparison study specifically compares only the numerical

performance of each algorithm under varying mesh topologies and field regularity, which are closely representative of those

from a climate model such as E3SM. The presented protocol hence provides a systematic way to test and compare all existing

and new remapping algorithms being developed for earth system modeling.

Organization15

The current study aims to better understand and document the key properties of the remapping schemes through the use of

mesh, field, and scale resolution-independent metrics definitions. This intercomparison paper is organized as follows:

– A detailed literature survey on the current state-of-art remapping schemes used in climate modeling and various re-

lated coupled physics problems, along with the relevant numerical background for four specific high-order remapping

algorithms and their implementations, is presented in Section 2.20

– Definitions for remapping metrics that evaluate field accuracy, global conservation, strict global bounds control, and

feature dispersion are presented in Section 3. We argue that these metrics are broadly useful for evaluating key properties

that determine the accuracy and stability of the solution transfers between model components, and can be applied to all

remapping algorithms widely used in climate codes.

– A sample workflow for computing and comparing various numerical metrics in a unified and unbiased fashion is featured25

in Section 4. Some implementation details on the open-source Python-based infrastructure are also provided.

– Consolidated results from the intercomparison study applied to four competing remap algorithms on representative

problems are shown in Section 5 for both uniformly refined and regionally refined global meshes.

– Potential future research directions to extend the analysis presented in this work are described in Section 6, followed by

a summary of the intercomparison study in Section 7.30
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2 Remapping Algorithms

In general, for coupled simulations, we need to transfer a field ψs ∈Rns defined on the source grid, Ωs, to a quantity ψt ∈Rnt

on the target grid, Ωt. A remap is hence defined as an operator R : Rns 7→Rnt that transfers ψs to a trial field ψ̃t ∈Rnt . As

noted above, we generally wish to preserve a property defined as an operator P : Rnt →Rm, that describes discrete physical

invariants and/or inequalities relevant to ψt. However, to keep the current work focused we restrict attention to definitions that5

are applicable only to scalar fields.

Finally, the accuracy or order of the remap typically depends on how the field ψ is reconstructed from a set of discrete values.

On a mesh, this could be a Taylor series expansion around a cell centroid (Jones, 1999) or a general Finite-Element (FE) type

expansion using nodal basis functions.

2.1 Related Work10

One of the simplest data-transfer methods is to use piecewise interpolation functionals. This approach is particularly convenient

if ψs defined on Ωs has an associated function space, which can be directly utilized for evaluating the interpolator
:::::::::
interpolant

::::::::::::
approximation. Such consistent interpolation techniques utilizing the underlying basis functions for field descriptions give rise

to standard second-order linear (on simplicial elements) or bilinear (with quadrilateral elements) interpolations (Hill et al.,

2004). In finite-volume methods, or for interpolating from station data (“scattered-data” or “Location Streams”), the nearest-15

point interpolation is sometimes used, which is at best first-order accurate.

More generally, the remap methods designed for scattered data and cell-to-cell transfers are closely related to the recon-

struction problem, i.e., to reconstruct a piecewise smooth function or its approximations at some discrete points on a mesh,

given some known quantities at discrete locations on the same mesh. The fundamental difference between reconstruction and

remapping is that the former involves a mapping between a discrete and a continuous function space, while the latter involves20

a mapping between two discrete spaces defined on Ωs, and Ωt. The demonstrated techniques used in high-order interpolators

use spline quasi-interpolants (de Boor, 1990), bi-cubic splines (Hanke et al., 2016; Craig et al., 2017), the standard radial-basis

function spaces (Flyer and Wright, 2007; Bungartz et al., 2016), the moving least-squares (MLS) method (Lancaster and Salka-

uskas, 1981), and its variants such as the modified MLS (MMLS) (Joldes et al., 2015; Slattery, 2016), which originate from

high-order reconstruction methods. Recent extensions to MLS for producing efficient high-order remap involve reconstructing25

locally the manifold geometry from a point set representation, and then generating a compact stencil in the local coordinate

chart (Liang and Zhao, 2013; Suchde and Kuhnert, 2019; Trask and Kuberry, 2020; Gross et al., 2020).

More recently, Li et al. (2020) proposed a high-order remap technique for piecewise smooth functions on surfaces, known

as WLS-ENO remap (WLS-ENOR), which is based on the continuous moving frame (CMF) for smooth functions (Jiao and

Wang, 2012) as well as an ENO-style technique (Liu and Jiao, 2016) for resolving discontinuities. For smooth functions, CMF30

differs from MLS (Lancaster and Salkauskas, 1981) in that it uses compact stencils over local coordinate systems from a C0

normal field, instead of global stencils and C∞ moving frames.
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Typically, a remap method can and should be independent of the discretization methods used in physics models. In this

context, the method may be nonconservative, or conservative with respect to certain properties of the reconstruction. A major

disadvantage of the quasi-interpolation techniques is the lack of inherent constraints for conserving energy during the remap

process; see, e.g., de Boer et al. (2008); Jiao and Heath (2004a). Note that the high-order quasi-interpolants (with degree of

basis expansion p > 1) tend to be significantly less dissipative than low-order methods (p ∈ [0,1]); see, e.g., Slattery (2016).5

However, such remap methods are not guaranteed to produce conservative or monotone remapped solution fields.

A common approach to overcome this issue is to enforce conservation, so that the integrals over the source and target

meshes are equal. There are several examples of first- and second-order conservative remap schemes (Chesshire and Henshaw,

1994; Grandy, 1999; Gander and Japhet, 2013; Jones, 1999; Ullrich and Taylor, 2015) that rely on common-refinement-based

L2 projection (Jiao and Heath, 2004a) approaches. These schemes require computation of a function integral defined on the10

source mesh over some control volumes associated with a target node (or cell). The numerical integration is computed over

the intersections of the elements (or cells) of the source and target meshes. These intersections form the common refinement

(Jiao and Heath, 2004a), or supermesh (Farrell et al., 2009), whose computations require sophisticated computational-geometry

algorithms for efficiency and robustness (Jiao and Heath, 2004b, c). Although these first- and second-order schemes applied

to ESMs are conservative, they may exhibit excessive numerical diffusion resulting in dissipation of “energy”, especially near15

field discontinuities, or regions with large second derivatives.

Concurrently, when applying high-order remapping methods, discontinuities in the function defined on Ωs can lead to over-

shoots or undershoots when evaluated on Ωt. The discontinuities may be in the function values (aka C0 discontinuities), which

tend to lead to O(1) oscillations (or “ringing”) that do not vanish under mesh refinement, analogous to the Gibbs phenomena

(Gottlieb and Shu, 1997; Fornberg and Flyer, 2007). Additionally, any discontinuities in the derivatives (C1 discontinuities)20

tend to cause milder oscillations that vanish under mesh refinement but nevertheless may accumulate in repeated remapping

cycles. It is often critical to resolve or control these numerical artifacts as they introduce non-physical variations that can

influence the numerical stability of the coupled global nonlinear multiphysics system.

The deficiency in linear mapping approaches arises from the fact that they are only dependent on Ωs, and Ωt, but completely

independent of the solution field that is being projected between the meshes. As a consequence of Godunov’s theorem (Go-25

dunov, 1959) extended to linear remapping workflows with monotonicity constraints, there may be a restriction on the optimal

achievable order of accuracy as shown by Van Leer (1979) while still preserving global solution bounds during the projection

step. Hence, often the properties of the linear maps can be enhanced by using a procedure that is nonlinear (depending on the

projected field variations) to recover property preservation for high gradient fields.

In this vein, the techniques for resolving Gibbs phenomena can be classified as filtering and mollification; see Jerri (2013).30

The filtering techniques often rely on post-processing, such as cropping and property redistribution, to ensure local conservation

in a neighborhood. A recent variation of the mass borrowing approach (Royer, 1986) uses a limiter as a filter during the

remapping process (Bradley et al., 2019), in order to impose local bounds preservation for linear map applications, such

that monotonicity can be recovered even when the underlying remapper does not provide it. This “Clip-And-Assured-Sum”

(CAAS) post-processing filter can be useful to avoid spurious numerical oscillations due to resolution disparity, or strong35
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gradients in the underlying solution. Applying CAAS filters on quasi-interpolatory linear maps can hence produce strictly

bounded reconstructions on Ωt, while providing property preservation, as a viable option to achieve better remapped solutions

in production climate simulations. In contrast, mollification adapts the kernels (i.e., basis functions) near discontinuities. In

the past, a discontinuity detecting ,
:::
and

:
a posteriori stabilization procedure has

:::::::::
procedures

::::
have been used with specific mesh

discretizations (Blanchard and Loubere, 2016) to choose optimal orders of reconstruction adaptively
:
,
:
in order to ensure better5

behavior for polygonal meshes. Other methods, such as WLS-ENOR, detect discontinuous regions and can effectively adapt

the weighting schemes to resolve the Gibbs phenomena at the cost of additional computations at runtime.

Alternatively, rather than imposing a weakly nonlinear post-processing filter, using fully nonlinear remap schemes can be an

option when the computational cost of the solution transfer is not the dominant factor in the simulation. Such nonlinear remap

schemes typically use optimization-based remap (OBR) procedures (Carey et al., 2001; Bochev and Shashkov, 2005; Bochev10

et al., 2011) to minimize the net residual projection error using Lagrange multipliers. OBR follows a “divide-and-conquer”

alternative (Bochev et al., 2014) to direct property preserving methods, which separates accuracy considerations from property

preservation. In so doing, OBR helps to avoid interdependencies between mesh quality, accuracy, and property preservation

that force many monotone reconstruction methods to make trade-offs between the latter two (Berger et al., 2005). Extensions

of such schemes for remapping climate data is an unexplored topic and may provide avenues for future research.15

Additionally, mimetic schemes that use compatible function spaces (Thuburn et al., 2009) depending on the fields being

transferred between component models have proven to be extremely accurate for remapping scalar and vector fields on Arakawa

C/D grids (Pletzer and Hayek, 2019). Potential extensions for arbitrary mesh topologies to yield compatible, conservative

remaps for fluxes in climate components are possible (Ringler et al., 2010). However, to our knowledge, general theory and

implementations for remapping on arbitrary meshes are currently unavailable, which may restrict the usage of such schemes20

for production climate simulations.

2.2 Weighted Least-Squares Approximations in Remapping

A common theme across all of the remapping methods described in this paper is that they utilize some variants of the least

squares approximations (aka quasi-interpolation) in their computational kernels. To illustrate the idea, let us consider a function

f(u) : Ω→ R at a given point u0 = [0,0]
T , such as a quadrature point in a cell on the target mesh. Let us first assume a domain25

Ω⊂ R2 for simplicity, where u≡ [u,v]. Let f be Cp−1 continuous for some degree p≥ 0, then f(u) can be approximated to

p+ 1st order accuracy about u0, using a degree-p two-dimensional Taylor polynomial as

f(u) =

p∑
q=0

j+k=q∑
j,k≥0

cjku
jvk +O

(
hp+1

)
, (1)

where cjk =
1

j!k!

∂j+k

∂uj∂vk
f(u0), and h is a measure of the radius of the local neighborhood. In cell-to-cell transfer, typically

some integrals of f are known on the source mesh. Given m cells on the source mesh in a neighborhood of a point u0 on the30

target mesh, and let φi(u) be the test function (such as the Heaviside functions) associated with the ith cell. Let bi denote these
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known integral values. We then obtain a system of m equations with n= (p+ 1)(p+ 2)/2 unknown coefficients cjk,

∫
Ω

p∑
q=0

j+k=q∑
j,k≥0

cjku
j
iv

k
i φi(u) du≈ bi (2)

for 1≤ i≤m. Note that one can also use a bi-degree-p Taylor polynomial by letting 0≤ j ≤ p and 0≤ k ≤ p in (1), which

would lead to n= (p+ 1)(p+ 1) unknowns. The resulting approximate Taylor polynomial can then be used, for example,

to evaluate (or quasi-interpolate) f at u0 to p+ 1st order accuracy, or even to higher order due to superconvergence. The5

same procedure can also be applied to construct a trivariate quasi-interpolation by replacing u and ujvk with x and xjykz`,

respectively. The m equations in (2) can be written in matrix form as Ax≈ b, where A ∈ Rm×n is known as a generalized

Vandermonde matrix, x ∈ Rn is composed of cjk in (1), and b ∈ Rm is composed of the known integrals bi on the source

mesh. In general, the generalized Vandermonde system (2) is rectangular. It can be solved by minimizing a weighted norm of

the residual vector r = b−Ax, i.e.,10

min
x
‖r‖W ≡min

x
‖W (Ax− b)‖2, (3)

where W is a diagonal matrix containing the weight for each row in A. This formulation is known as weighted least squares or

WLS in short (Golub and Van Loan, 2013). When m= n, and A and W are nonsingular, W does not affect the solution. More

generally, when m 6= n, different W leads to different solutions by changing the relative importance of certain sample points.

Different remapping algorithms and reconstruction schemes use specific weighting strategies to achieve optimal solutions to15

the weighted least-squares problem in Equation (3). Note that the generalized Vandermonde matrix A may be ill-conditioned

as the polynomial degree p used for the reconstruction grows. A preferred approach to address this potential ill-conditioning is

to use a rank-revealing QR factorization (Golub and Van Loan, 2013; Li et al., 2020).

2.3 Algorithms for Earth System Models

Among the standard conservative remapping and high-order reconstruction strategies introduced in Section 2.1 for climate20

problems, we selected four specific algorithms to explore in detail. The motivation for choosing these algorithmic implemen-

tations was driven by their high usability including the use in current ESM’s, and the rigorous underlying numerics that can

be verified and validated consistently for a large suite of test problems. We categorize these algorithms below into three broad

groups based on whether the algorithms require overlay meshes and whether mesh data structures are utilized to compute the

solution reconstruction.25

I) Overlay-mesh-based remappers

We consider two specific implementations that provide conservative remapping capability for production ESMs.

(a) ESMF: The Earth System Modeling Framework’s Regrid function providing bilinear and conservative maps

(b) TempestRemap: Conservative, consistent, and monotone remapper with higher-order L2 projection support

8



Both ESMF Regrid and TempestRemap provide the remapping capability for scalar fields defined on Ωs based on a

weighted residual formulation given in Equation (3). With a source field ψs defined on Ωs, the formulation computes ψt

on Ωt by solving the following problem:∫
Ω

ψtφi dV =

∫
Ω

ψsφi dV, (4)

where the φi are suitable weight functions. In a common-refinement-based transfer (Jiao and Heath, 2004a), the φi are the5

basis functions ψt,i on Ωt, which leads to a Galerkin projection method. Such a Galerkin method can achieve conserva-

tion globally by solving the weighted residual minimization in Equation (4). More details on the specific methodologies

used for reconstruction in these implementations are provided in later sections.

Note that the SCRIP library (Jones, 1999) also does provide both first- and second-order conservative remapping

schemes, but it was not included in the current study since its capabilities are similar to that of ESMF and TempestRemap10

implementations, and those two are used in current production versions of CESM and E3SM.

II) Meshless remappers

Reconstruction methods that do not directly utilize the topological information about the underlying mesh layout are

meshless methods. In our study, we will consider the Generalized Moving Least-Squares method (GMLS), with global

conservation, monotonicity constraints, and local bounds preservation provided by CAAS as a post-processing filter.15

Future studies could also include the comparison of MMLS (Slattery, 2016) and RBF (Bungartz et al., 2016) recon-

structions within this framework for remapping climate data, since those methods have demonstrated some success in

fluid-structure interaction and nuclear engineering problems.

III) Non-overlay mesh-based hybrid remappers

The final category includes the mesh-based remappers that do not require computation of an intersection mesh between20

Ωs and Ωt. The Weighted Least-Squares Essentially Non-Oscillatory Remap method (WLS-ENOR) utilizes a disconti-

nuity capturing, high-order technique for piecewise smooth functions to produce optimal field transformations between

meshes by minimizing the residual in Equation (3).

Other opportunities for comparison in this category include using reconstructed climate data with the conservative bi-

linear algorithm
:::
and

::::
patch

:::::::::::::
reconstructions

:
in ESMF or bicubic interpolations available in YAC

::::::
coupler

:
(Hanke et al.,25

2016).

These algorithms and their implementations span a range of remapping techniques, including those used currently in pro-

duction runs and those that can potentially be used in the future given the availability of open-source software. Further details

regarding the numerics and the software tools for each of the schemes are provided in the following subsections.
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2.3.1 ESMF

The Earth System Modeling Framework (ESMF*) (Hill et al., 2004) consists of a suite of software modeling tools that support

building Earth System Models. Among other features, ESMF exposes several key functionalities to transfer data between

component models in weather and climate modeling
:::::::::
applications. It offers a variety of data structures for transferring field data

between components, and libraries for regridding, time advancement, and other common modeling functions. The advanced5

regridding algorithms provided by ESMF implement standard bilinear interpolation, higher-order patch recovery, first and

second-order conservative projections, and several variations of non-conservative nearest neighbor interpolants. ESMF can

produce maps that are “offline", in the sense that can be precomputed, stored, and then applied as a linear operators to arbitrary

fields defined on Ωs to compute the projection on Ωt. Fully online remapping is also possible with ESMF.

In the current intercomparison study, we utilized the command line applications installed with ESMF (version 8.1) to gen-10

erate and apply interpolation weights from the command line using NetCDF files. Using this ESMF_REGRIDWEIGHTGEN

application, interpolation weights can be generated for various grid combinations and applied to source field data to compute

projections between component models. More specifically, we select only the first and second-order conservative projection

methods invoked with ‘conserve’ and ‘conserve2nd’ command-line options respectively, which are implemented in ESMF for

scalar fields and fluxes. These options are routinely used in production climate models and hence provide valuable baselines on15

the current state of remapping algorithms in our comparison study. For more details regarding the numerics and implementation

of the algorithms in ESMF, we refer readers to Collins et al. (2005), Jones (1999), and Kritsikis et al. (2017).

2.3.2 TempestRemap

TempestRemap† is a software library to generate conservative, consistent, and monotone remapping weights of arbitrarily

high order accuracy
:::::
(with

::::::
degree

:::::
p > 1)

:
between meshes on the sphere. Similar to the ESMF tools, TempestRemap generates20

“offline" maps that are consumed by ESMs. TempestRemap supports the computation of remapping weights between any

combination of finite volume
::::
(FV) and/or spectral element (

:::
SE)

:
(both continuous and discontinuous spaces) descriptions with

conservative prescriptions. For purposes of the current manuscript, we describe only the high-order FV-FV algorithms below.

In TempestRemap, the procedure used to generate remapping weights for FV discretizations consists of two primary opera-

tions (Ullrich and Taylor, 2015; Ullrich et al., 2016). First, local polynomial reconstructions are defined over the source mesh25

with some adjustments made for spherical geometry (Jalali and Gooch, 2013). The coefficients of these local reconstructions

are computed according to a weighted pseudoinverse method (Skamarock and Menchaca, 2010; Skamarock and Gassmann,

2011). These polynomials are integrated over the target mesh by using the overlap, or supermesh (Farrell et al., 2009), which

in general can be defined as Ωs∩t = Ωs ∩Ωt. Note that when computing high-order linear maps, if a sufficiently large patch

on the source map is not used during the reconstruction process, the condition number of the generalized Vandermonde matrix30

*ESMF: https://earthsystemmodeling.org/
†TempestRemap: https://github.com/ClimateGlobalChange/tempestremap
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A in Equation (2) can be very high, leading to numerical roundoff errors and degradation in the overall accuracy of the remap

operator to first-order accuracy in the neighborhood.
::::::
Further

::::::
details

:::::::
analysis

:::
are

:::::::
provided

:::
in

:::::::::::::::
Ullrich and Taylor

:::::
(2015

:
).
:

A common approach for the integration operator has been to
:::::::
construct

:
a
::::::::

potential
:::::::
function

::::
with

::::::::::
divergence

::
is

:::::
equal

::
to

:::
the

:::::
scalar

::::
field

:::::
being

::::::::
integrated,

::::
and

::::
then

:::
use

:::
the

:::::::::
divergence

:::::::
theorem

::
to transform integrals over mesh faces into line integrals over

the boundary using the divergence theorem (Dukowicz and Kodis, 1987)
::::::
around

:::
the

:::
face

::::::::::::::::::::::::::::::::::::::::::::::::::
(Dukowicz and Kodis, 1987; Jones, 1999; Ullrich et al., 2009)5

. While this technique has been used to define conservative remapping operators, a drawback is that it requires an analytical

expression for the potential function, which can be difficult in general. An alternative method was proposed in Erath et al.

(2013), which, although avoiding some of the difficulties of the line integral approach, lacks consistency. In TempestRemap,

a quadrature-based integration operator is used to generate an initial set of remapping coefficients,
:
which is guaranteed to be

consistent (exactly remaps the unit field), but may not be conservative. To obtain conservation, the coefficients of the matrix10

are projected linearly into the space of maps that are both conservative and consistent.

2.3.3 GMLS

The Generalized Moving Least Squares (GMLS) method extends the Moving Least Squares (MLS) technique from approxi-

mation of point values to approximation of arbitrary linear functionals (Nayroles et al., 1992; Breitkopf et al., 2000; Wendland,

2004; Mirzaei et al., 2012). Similar to MLS, a distance-based weighting kernel is used to favor the source data sites closer to15

the point of query or reconstruction. GMLS features a broad choice of sampling functionals and target operators, and hence the

term ‘generalized’ in its name. The application of nonlinear sampling functionals and target operators for GMLS is possible

(Gross et al., 2020), but is certainly not common. In fact, most applications of GMLS use linear sampling functionals and

target operators (gradient, curl, divergence, integral average along an edge or over a cell, etc...), for which there is theory on

approximation and wellposedness. When the sampling functionals and the target operator are simply pointwise evaluations,20

GMLS reduces to the traditional MLS method.

High-order accurate approximations cannot be achieved with traditional MLS schemes using function spaces described by

Raviart-Thomas (H(div)), and Nedelec basis (H(curl)), or even cell-averaged quantities that are common in FV codes. How-

ever, through careful selection of the sampling functionals and target operators, consistent approximations of fields embedded

in these various non-standard spaces are possible using the GMLS approach. This flexibility of the GMLS method greatly25

increases the available types of input data that can be handled to produce high-order reconstructions of fields between Ωs, and

Ωt.

When a GMLS problem is solved, a set of coefficients corresponding to elements of a basis (traditionally polynomial) are

computed. The target operation is then applied to each member of the basis used for approximation, after which a dot product

is made between the originally computed coefficients and the evaluation of the target operation acting on the basis. While30

GMLS permits a wide choice of target operators, we choose a target operation which is the cell average of each member of the

approximating basis on the target grid.

Traditionally, GMLS uses a basis that is defined as a function of the spatial dimension from which a point cloud is sampled.

However, in this work, reconstruction of functions sampled on a manifold permits generating a compact stencil in a local
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coordinate chart, which is one dimension smaller (Liang and Zhao, 2013; Suchde and Kuhnert, 2019; Trask and Kuberry, 2020;

Gross et al., 2020). The savings in net computational floating-point operations (flops) is a factor of p3 in R2, as compared to a

traditional basis in R3, where p is the order of the basis.

As is true for many other regression schemes, GMLS is not inherently conservative to machine precision, but rather it

is “conservative” to discretization precision. In other words, the degree to which it violates conservation is discretization-5

dependent and generally vanishes with refinement. However, such weak conservation notions may not be deemed satisfactory

for climate modeling applications where exact global conservation has a history of being demanded and valued. In such cases,

GMLS remap should be followed by a post-process filter to restore global conservation to machine precision. In this paper, we

use either the GMLS or GMLS-CAAS notations to indicate whether the CAAS routine has been used as a post-processing filter

after each remap step, in order to restore global conservation, global bounds, along with an attempt to improve local property10

preservation.

Similar to the overlay-mesh-based, ESMF, and TempestRemap offline remappers described in Section 2.3.1 and Section 2.3.2

respectively, the solution of the GMLS problem produces a stencil or a linear mapping that can be computed a priori to a

simulation. This enables storage of the relevant parts of the remap operator as a sparse matrix. Therefore, the use of GMLS

without post-process filtering can be thought of as an offline remapper, and GMLS-CAAS can combine the offline and online15

processes to achieve more favorable properties. Note that the CAAS filter is only one of several choices available for the

online post-processing filter. Alternative strategies such as the nonlinear OBR (Bochev et al., 2014) for feature detection, and

minimization of local dissipation may be possible in conjunction with the GMLS workflow. These enhanced GMLS remapping

strategies may be considered in future studies.

There are several key motivations for using GMLS to perform field remapping for ESMs. These include mesh topology20

independence, as well as flexibility in the choice of the sampling functional, and the target operator, thereby enabling remap of

non-traditional degrees of freedom that may be defined on the vertices, edges, or faces of Ωs. Additionally, the embarrassingly

parallel nature of the dense linear systems that require inversions during reconstruction yields a high flops-to-communication

ratio. This feature makes GMLS more suited for next-generation platforms. Given the computationally intensive nature of the

GMLS algorithm, it is best implemented in libraries focused on parallel performance portability, computational efficiency, and25

significant compiler optimizations. The Compadre Toolkit‡ (Kuberry et al., 2019) is built on Kokkos (Edwards et al., 2014) and

Kokkos Kernels, such that a single version of the code is written to be performant on both multi-core CPU and hybrid-GPU

architectures. Compadre is built to assemble and solve large batches of GMLS problems in parallel, thereby leveraging batched

QR solvers with pivoting for the parallel solution of many small dense linear systems.

2.3.4 WLS-ENOR30

WLS-ENOR, or Weighted-Least-Squares-based Essentially Non-Oscillatory Remap (Li et al., 2020) is based on the WLS-ENO

reconstruction technique proposed in (Liu and Jiao, 2016). Originally developed for solving hyperbolic PDEs, WLS-ENO

detects discontinuities and then reduces or eliminates the potential Gibbs phenomena in the solutions of the PDEs by adapting

‡Compadre Toolkit: https://github.com/SNLComputation/compadre
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the weighting schemes in WLS based on the local features in the solution. WLS-ENOR adapted WLS-ENO to remap data

between meshes, and in the process, it enhanced the treatment of discontinuities to resolve not only the severe oscillations at

C0 discontinuities (i.e., jumps in function values), but also the accumulated effect of mild oscillations due to C1 discontinuities

(i.e., jumps in the derivatives).

Unlike the preceding remapping techniques, WLS-ENOR is a non-overlay mesh-based technique in that it uses the mesh for5

computing numerical integration, but it does not require an overlay mesh (although it has the option to use the overlay mesh

if available). More specifically, WLS-ENOR utilizes adaptive quadrature rules with p-refinement in smooth regions and h-

refinement near discontinuities in its numerical integration to achieve high-order accuracy
::::
(with

::::::
degree

::::::
p > 1) and (near-local)

conservation. More specifically, WLS-ENOR is composed of three major components. The first component is a WLS-based

algorithm for smooth functions, as we described in Section 2.2. In this context, the weighting scheme in WLS-ENOR is based10

on a positive-definite radial function due to Buhmann (Buhmann, 2001). As shown in (Li et al., 2020), this weighting scheme

encourages statistical error cancellations and enables better superconvergence (i.e., higher than (p+ 1)st-order convergence)

with even-degree p for node-to-node transfer of smooth functions. In this inter-comparison work, we use an extension of the

work in (Li et al., 2020) to cell-centered data. Mathematically, this extension essentially uses the step functions (aka Heaviside

functions) over the cells on the source mesh as the test functions in (2), compared to the Dirac delta function at the nodes15

on the source mesh as test functions in (Li et al., 2020). Note that in this work, we apply WLS on a sphere Ω = S, which

is topologically a 2-D object embedded in R3. One could construct a WLS in R3 directly as in (Slattery et al., 2013), which

would lead to a large generalized Vandermonde system. Alternatively, we can construct a local uv (surface tangent) coordinate

frame at each point x0 ∈ S. Specifically, let m0 denote an approximate normal at x0, which can be the exact normal to S or a

first-order estimation. Let t1 and t2 form an orthonormal basis of an approximate tangent plane orthogonal to m0. The local uv20

coordinate frame is then centered at x0 with axes t1 and t2. We can then transform the sample points about x0 to use this local

uv coordinate frame and apply the WLS to construct a bivariate quasi-interpolation. In terms of implementation, WLS-ENOR

constructs a matrix-based transfer operator for smooth functions, which maps the cell-averaged values from the source mesh

to the target mesh.

The second component in WLS-ENOR is the detection and resolution of discontinuities. In particular, WLS-ENOR can25

detect C0 and C1 discontinuities of the function on the source mesh and then transfer the discontinuity tags from the source

mesh to the target mesh. The detector in WLS-ENOR is based on an asymptotic analysis of the Gibbs phenomena near C0

and C1 discontinuities as described in (Li et al., 2020). The original detector in (Li et al., 2020), however, was for node-to-

node transfer. For cell-to-cell transfer in this work, we simply apply the detector on the dual mesh and treat cell-averaged

values as approximations of cell-center values. This approximation is second-order accurate, which is sufficient in detecting30

discontinuities. After identifying the discontinuities, WLS-ENOR uses a solution-based weighting scheme that effectively leads

to (nearly) one-sided quasi-interpolation in discontinuous regions. This solution-based weighting scheme causes WLS-ENOR

to use a different set of basis functions to overcome the Gibbs phenomena, and hence it can be classified as a mollification

technique (cf. Section 2.1). In terms of implementation, the discontinuity detector on the source mesh is implemented as a
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matrix-based operator; after the discontinuities are identified, a new local solution-based transfer operator is constructed for

each cell on the target mesh near a discontinuous cell on the source mesh. We refer readers to (Li et al., 2020) for details.

The third component in WLS-ENOR is an adaptive quadrature technique, which is enabled when the target mesh is signif-

icantly coarser than the source mesh. In this case, simply sampling the function at the quadrature points of a target cell may

miss some important local features on the source mesh, especially near discontinuities. To overcome this loss of information,5

one could use the overlay mesh as in TempestRemap. This approach may be ideal in terms of accuracy and conservation,

but it introduces complications when the elements have curved edges. Although WLS-ENOR implementation supports this

option, in this comparative work, we use a non-overlay-based version of WLS-ENOR that utilizes h-, and p-refinement of the

quadrature rules in discontinuous and smooth regions, respectively. In particular, near the detected discontinuities, WLS-ENOR

subdivides the cells (i.e., h-refinement) on the target mesh to match the local resolution on the source mesh and then utilizes10

the quadrature points of the sub-divided cells. For smooth regions, we found it more efficient to use the quadrature points

of higher-degree quadrature rules (i.e., p-refinement) than subdividing the cells. This adaptive quadrature technique not only

overcomes the loss of accuracy but also enables WLS-ENOR to recover global conservation in a fashion that is nearly local

to discontinuous regions. To this end, if there is a gain or loss in terms of global conservation, we distribute this global error

proportionally to cells that have gained or lost mass locally, correspondingly. This conservation-recovery procedure reduces the15

pollution of the conservation errors from discontinuous regions to smooth regions. We estimate the local conservation errors

using the subdivided cells near discontinuities for accuracy and robustness; for smooth regions, we use a simple comparison of

the local extreme values in the local neighborhood for smooth regions for efficiency.

The current implementation of the WLS-ENOR algorithm uses MATLAB, where the core components were converted into

C using ‘MATLAB Coder’ (version 4.2). An open-source C++ implementation is currently underway and will be released in20

the future for both node-to-node and cell-to-cell field transfers.

3 Metrics to Evaluate Remapping Algorithms

Solution remapping on unstructured meshes is a complex process, and it is critical to satisfy several key properties to ensure that

the transferred field data between components do not introduce unbounded and nonphysical error modes. In order to compare

different remapping schemes in an unbiased framework, we introduce five primary categories under which the comparison25

metrics can be grouped.

1. Sensitivity: Algorithmic invariance to underlying component mesh topology

2. Consistency: Ability to retain the order of convergence of the underlying discretization in a given norm

3. Conservation: Ensuring global integral, (and) local conservation of critical quantities

4. Monotonicity: Preservation of global and local solution bounds during remap and solution transfer between components30

5. Dissipation: Minimization of local solution dispersion on repeated
:::::::::::::
back-and-forth remap transfers between Ωs and Ωt
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Given a continuous field ψ, we use Ds and Dt to denote the reference discretization of ψ on the source and target grid,

respectively. These are generated by directly sampling the analytical fields and by Spherical Harmonic expansion (see section

4) for the realistic fields. The regridding operator from source to target mesh is denoted by R, i.e. the regridded field ψ is

denoted by RDs[ψ]. The global integral operator is denoted by Is and It on the source and target grid, respectively. Typically

these operators take the form5

I[x] =
∑
all j

xjJj , (5)

where Jj denotes the area or weight of the jth degree of freedom (i.e. the volume of a finite volume).

3.1 Grid Sensitivity

A crucial factor for the success and broader usability of a general remapping algorithm in ESMs is the ability to produce mesh-

independent numerical behavior that is robust for any pair of structured or unstructured meshes. In other words, remapping10

algorithms need to be general and without approximations targeted at specific topological elements.

In the current work, we utilized three different meshes of varying resolutions. Specifically, we present analysis performed

to compare remapping schemes using the Cubed-Sphere (CS), Quasi-uniform Voronoi (MPAS), Regular Latitude-Longitude

(RLL) meshes, on both quasi-uniform and Regionally Refined Meshes (RRM). Some sample meshes used in the study are

shown in Figure 1.15

3.2 Standard Accuracy Measures

Accuracy in the remapped solution will be assessed with standard error metrics defined as follows.

‖E‖L1
≡ It [eK ]

It
[∣∣∣Dt[ψ]

∣∣∣] , (6)

‖E‖L2
≡

√√√√√ It [e2
K ]

It
[∣∣∣Dt[ψ]

∣∣∣2] , (7)

‖E‖L∞
≡ max[eK ]

max
∣∣∣Dt[ψ]

∣∣∣ , (8)20

where eK =
∣∣∣RDs[ψK ]−Dt[ψK ]

∣∣∣ is the local remapping error in element K ∈ Ωt, E represents the discrete error vector in

the solution field relative to the reference field sampled on Ωt, and It is the weighted integral using Equation (5) on Ωt. In some

general sense, the error measure ‖E‖L1
identifies errors in large-scale features, ‖E‖L2

identifies errors in small-scale features,

and ‖E‖L∞
identifies the largest pointwise error.

::::
These

:::
are

:::::::
special

::::
cases

:::
of

::::
error

::::::::
measures

:::::::
‖E‖Lp

,
::
in

:::
Lp:::::

norm,
::::::
where

::
as

::
p

::::
tends

:::::
from

:
1
::
to

:::
∞,

:::
the

::::::
norms

::::::
capture

:::
the

:::::::::
large-scale

:::::
mean

:::::::
absolute

:::::
errors

::::
and

::
the

::::::
largest

:::::::::
pointwise

:::::
errors

::
at

:::
the

:::
two

::::::::
extremes25

::::::::::
respectively

::
for

:::::
p= 1

::::
and

::::::
p=∞.

:
Related to accuracy, consistency is assessed by applying these metrics to uniformly smooth
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(a) Equiangular Cubed-Sphere mesh (b) Quasi-uniform Centroidal Voronoi mesh (c) Regular Latitude-Longitude mesh

(d) Cubed-Sphere RRM (e) MPAS Voronoi RRM

Figure 1. A depiction of the five meshes studied in validation, unit testing and intercomparison of the regridding schemes.

fields with noC0 orC1 discontinuities, and verifying the asymptotic theoretical rate of convergence under uniform mesh refine-

ment conditions.
:::
The

:::::::::
asymptotic

:::::::::::
convergence

::::
order

:::
of

:
a
:::::
given

:::::::::
remapping

:::::::
method

::::
with

:
a
:::::::
degree-p

::::::::::::
reconstruction

::
is
::
in

:::::::
general

:::::::
expected

::
to

:::
be

::::::::
O(hp+1)

::
in ‖E‖L2:::

and
::::::
O(hp)

::
in

:
‖E‖H1:

,
:::::
where

::
h
::
is
:::
the

::::::::::::
characteristic

:::::
spatial

::::::
length

::
of

:::
the

:::::
mesh

::::
that

:::
can

:::
be

::::::::
computed

:::::
using

:
a
::::::
simple

::::::::
definition

::::
such

::
as

:::::::::::
h= 1

NΩt (el) ,
::::
with

:::::::
NΩt(el)::::::::::

representing
:::
the

:::::::
number

::
of

:::::::
elements

::
in
:::
the

:::::::::::
unstructured

::::
mesh

:::
Ωt.:::::

Note
:::
that

:::
for

::::::::::
non-uniform

:::::::
meshes

::::
such

::
as

:::::
RRM,

::
it

:
is
:::::::::
important

::
to

:::
take

:::
the

:::::::::::::::
root-mean-square

::::::
(RMS)

:::::::
element

:::::::
jacobian5

::::
value

:::
for

:::
the

:::::::::
parameter

::
h.

:::::::::::
Additionally,

:::::
while

:::
the

:::::::
accuracy

:::
of

:::
the

:::::
remap

:::::::::
projection

::
is

:::::::
strongly

:::::::::
dependent

::
on

::::
both

:::
Ωs::::

and
:::
Ωt,

::
in

::::::
studies

::::::::
presented

::::
here,

:::
we

::::
only

::::::
utilize

:::::::
uniform

:::::::::
refinements

:::
in

::::
both

::::::
meshes

:::::::
(without

::::::::
including

::::::::::::::
cross-resolution

::::::::::
calculations

:::::::
resulting

::::
from

::::
say

:
a
:::
fine

:::
Ωs::::

and
:::::
coarse

::::
Ωt),::

to
:::::::
compute

:::
the

::::::
overall

:::::::::::
convergence

:::::
order

::
for

:::::::::
projecting

::::::
smooth

::::::
fields.
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Note that in order to eliminate potential aliasing errors, the normalization factors Dt[ψ] used in the denominator for defini-

tions of ‖E‖L1
, ‖E‖L2

, and ‖E‖L∞
are computed based on the exact sampling (element-averaged for FV discretization) of

the data (reference solution) on Ωt, and not using the projection of the field RDs[ψ] ∈ Ωt.

3.3 Gradient Preservation Measures

Preservation of the solution gradients in addition to other critical properties, such as local conservation in the remapping pro-5

cedure, require C1 continuity in the Ds[ψ]. Let∇Ds,∇RDt, be the gradients of the scalar fields on Ωs, and Ωt, respectively.

Then, in order to measure accuracy of the solution and its gradient, we introduce two specific global metrics: |E|H1
semi-

norm and the ‖E‖H1
norm.

|E|2H1
≡ It [∇eK∇eK ]

It
[∣∣∣Dt[ψ]

∣∣∣2] , (9)

‖E‖2H1
≡
It
[
e2
K +∇eK∇eK

]
It
[∣∣∣Dt[ψ]

∣∣∣2] = ‖E‖2L2
+ |E|2H1

, (10)10

where eK =
∣∣∣RDs[ψK ]−Dt[ψK ]

∣∣∣ is the local remapping error in element K, ∇eK =
∣∣∣∇RDs[ψK ]−∇Dt[ψK ]

∣∣∣ is the cor-

responding gradient of the error, and It is the weighted integral using Equation (5) on Ωt.

In this study,∇q for some scalar q, defined as a cell mean value, is generated by finding the convex hull of cells surrounding

the current cell and computing the gradient per Barth and Jespersen (1989). We compute these gradients as part of the metrics

evaluation after each remapping sequence.15

3.4 Global conservation

Global conservation is trivially assessed by evaluating the change in the global integral of the scalar field value on the source

mesh and the projected field on the target mesh. We use the following metric to quantify global conservation.

Lg ≡
It [RDs[ψ]]− Is [Ds[ψ]]

Is [|Ds[ψ]|]
. (11)

However, we note that this definition for Lg is only meaningful when the target domain fully envelops the source domain20

(which may have gaps or holes in more general cases). In the case of climate modeling, an admissible example for using

Equation (11) would be for remapping heat and moisture fluxes from the land surface to the overlying atmosphere.
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3.5 Global Extrema Preservation

Global extrema preservation can be assessed via the standard Gmin and Gmax error metrics (Ullrich and Taylor, 2015):

|Gmin| ≡min

0,
min(Dt[ψ])−min(RDs[ψ])

max
∣∣∣Dt[ψ]

∣∣∣−min
∣∣∣Dt[ψ]

∣∣∣ min(RDs[ψ])−min(Dt[ψ])

max
∣∣∣Dt[ψ]

∣∣∣−min
∣∣∣Dt[ψ]

∣∣∣
::::::::::::::::::::::::

 , (12)

|Gmax| ≡max

0,
max(RDs[ψ])−max(Dt[ψ])

max
∣∣∣Dt[ψ]

∣∣∣−min
∣∣∣Dt[ψ]

∣∣∣
 (13)

The error measuresGmin andGmax identify undershoots and overshoots, respectively, by taking on nonzero values
::::::::::
(|Gmin| ≤ 05

:::
and

:::::::::::
|Gmax| ≥ 0) when there is a departure away from the reference global extreme values. In other words, a nonzero value

of the metric indicates changes in global extrema, indicating presence of Gibbs phenomenon
::
or

::::::::::
instabilities

:::::::::
introduced

::::
due

::
to

:::
the

::::::::::
interpolation. Hence, the global extrema metric is particularly useful as it provides indications about the monotonicity-

preserving properties of the remapping schemes.

3.6 Local Extrema Preservation10

Local extrema preservation can be assessed using a localized difference, i.e. to what degree does the remapped grid cell value

fall within the range of surrounding grid cells sampled on the target grid. This consideration motivates us to define a localized

difference in extrema:

∆min,j ≡min

{
0,(RDs[ψ])j − min

1-ring patch

(
Dt[ψ]

)
j

}
,∀j ∈ Ωt, (14)

∆max,j ≡max

{
0,(RDs[ψ])j − max

1-ring patch

(
Dt[ψ]

)
j

}
,∀j ∈ Ωt. (15)15

where the minimum and maximum are taken over all grid cells on the target mesh that surround the current target cell j. These

values can then be reduced to a single value in the usual manner by using an appropriate norm definition for both ∆min,j and

∆max,j :

Lmin,1 ≡
It[|∆min|]
It[|Dt[ψ]|]

,

Lmin,2 ≡
√
It[∆2

min]√
It
[∣∣∣Dt[ψ]

∣∣∣2] ,

Lmin,∞ ≡
maxj |∆min,j |

max |Dt[ψ]| −min |Dt[ψ]|
.

,

Lmax,1 ≡
It[|∆max|]
It[|Dt[ψ]|]

,

Lmax,2 ≡
√
It[∆2

max]√
It
[∣∣∣Dt[ψ]

∣∣∣2] ,

Lmax,∞ ≡
maxj |∆max,j |

max |Dt[ψ]| −min |Dt[ψ]|
.

(16)

Note that the definition of the localized differences shown in Equation (14) and Equation (15) utilize a local neighborhood20

to determine the deviation from reference extrema values. This is sufficient to capture resolution of sharp gradients in the
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remapped fields under mesh refinement, for element-averaged data. However, the metric contains a O(h) dependence on the

mesh resolution and can be applied to C0 or smoother fields, but not when C0 discontinuities are present.

4 Metrics for Intercomparison of Remapping Algorithms (MIRA) Workflow

For all remapping algorithms evaluated in this comparison study, we conduct iterative two-way (Ωs→ Ωt and Ωt→ Ωs)

remapping of an initial source field with FV discretization on Ωs. We do so in order to characterize the stability of a scheme5

and expose any dissipation effects, which would not be possible to ascertain when comparing single, uni-directional field

transfers. With this workflow, we seek to quantify the consistency, stability, and convergence of each participating algorithm

as measured with the metrics defined in Section 3. Here, Nr indicates the number of iterative applications of the linear map

to compute field transformation on Ωs→ Ωt→ Ωs, which will be referred to as remap iterations. The additional remapping

metrics computed from the repeated remap iterations are critical in determining the
:::::
While

::::::::::
production

::::
ESM

:::::::
solvers

::
do

::::
not10

:::::
utilize

:::::::
repeated

::::::
remap

:::::::
transfers

::
at
:::::
every

::::
time

:::::
step,

:::
our

::::::::
approach

::
to

:::
use

:::::::
iterative

:::::::
remaps

:::
can

:::::::
provide

:::::::
valuable

::::::
insight

::::
into

:::
the

::::::::
dissipative

::::::
effects

::::
and

:
long-term temporal behavior of a fully coupled climate simulation, as it entails multiple transfers of

field data between component models. Hence,
:::::::::
simulations,

:::
in

:::::::
addition

::
to determining the stability of the remapping operator

and understanding dissipation behavior for repeated transfers provide valuable insight into the propagation of spatial coupling

errors in the solver
:::::
remap

:::::::
operator

:::::::
without

:
a
::::
need

:::
for

:::::::
explicit

::::::
spectral

:::::::
analysis.15

4.1 Open-source MIRA Implementation

The workflow necessary to evaluate a given remapping method comprises of five consecutive steps described below.

1. Generate a series of meshes of different topologies and resolutions. We use the Cubed-Sphere (CS), Quasi-uniform

Voronoi (MPAS), Regular Latitude-Longitude (RLL), and Regionally Refined (RMM) grids of the CS and/or MPAS

types of varying resolutions to devise the test cases. See figure 1 for an illustration of the meshes. The mesh data is20

stored in universal NetCDF4 format containing an array of vertex point locations and a cell connectivity map to describe

the topology.

2. Given a collection of meshes as in step 1 above, a Python module called MESHPREPROCESSDRIVER is then used to

generate and store the adjacency maps and unstructured cell area integrals with high-order Gauss quadrature rules. The

convex hull map for each cell is also precomputed and stored during this step in order to speed up the evaluation of25

remapped field gradient metrics.

3. A second Python module called FIELDGENDRIVER then takes each of the pre-processed mesh files and evaluates scalar

fields by sampling from either an analytical function on the sphere or a set of prescribed Spherical-Harmonic (SPH)

coefficients, which is described in Section 4.2. In this step, a cell average is computed by local quadrature within each

mesh element to a given order of accuracy by appropriately choosing the order of the quadrature to resolve the SPH30
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expansion order. This operation is performed on all the input meshes to generate the reference "ground truth" realization

of a given field, which is used to compute the metrics defined in Section 3 accurately.

We emphasize that any existing mesh (such as Yin-Yang (Kageyama and Sato, 2004) or cubic-octahedral (Gaussian)

reduced grids) can be used in this workflow, instead of the ones generated in step 1, as FIELDGENDRIVER only relies

on existence of element connectivities and adjacency maps to be available for computing cell integrals.5

4. All remapping algorithms evaluated in this study use the mesh data, depending on the scheme, and initial reference

solutions on Ωs to execute the test suite over one or manyNr iterations. The expected output from each of the algorithms,

for the test problems devised, are the discrete solution vectors ψi
s ∈ Ωs, and ψi

t ∈ Ωt, where i ∈ [1, . . .Nr]. In the current

study, unless otherwise specified, Nr = 1000.

5. The final Python module in the metrics suite, METRICSDRIVER, can then be invoked on each of the remapped output10

data (typically stored in NetCDF files) to compute all the remapping metrics defined in Section 3 consistently. The

computed remapping metrics are then stored as comma-separated values (CSV) for further analysis and intercomparison

studies.

The schematic shown in Figure 2 provides further details on this workflow. Note that in order to evaluate and compare a new

remapping implementation such as SCRIP (Jones, 1999), CoR (Liu et al., 2018), or YAC (Hanke et al., 2016), only the fourth15

and fifth steps in the workflow have to be executed, since the pre-processed input meshes and the sampled reference data have

been made available publicly (Mahadevan et al., 2021).

4.2 Scalar Test Variables on the Sphere

In the remapping intercomparison study, we consider five scalar test variables defined on the sphere as reference solutions fields.

These fields are chosen such that different aspects of the remapper can be evaluated uniformly. Details about the analytical and20

real-world fields and the sampling methodology used in the Python implementation are provided below.

4.2.1 Idealized Analytical Fields

Idealized fields used in this study mirror the approach of Lauritzen et al. (2007) and Ullrich and Taylor (2015). Namely, we

employ three idealized test cases of varying complexity to understand the error measures produced by remapping. The two

analytical fields studied are depicted in Figure 3.25

The first analytical field (ANALYTICALFUN1) is a combination of spherical harmonics functions with frequency wave

similar to order 3, given by

ψ = Y 2
3 +Y 3

3 , (17)

where Y l
m are the real spherical harmonic functions evaluated through the SHTOOLS package for degree m and polynomial

order l.30

20



Figure 2. The MIRA workflow for generating the remapping metrics for the intercomparison study.

Following Jones (1999), and Lauritzen et al., (2007), the second field (ANALYTICALFUN2) is a relatively smooth function

resembling spherical harmonics of order 2, and azimuthal wavenumber 2, given by

ψ = 2 + cos2 θ cos(2λ), (Y 2
2 ). (18)

These fields are used to test performance for a smooth, well-resolved field and a slightly high-frequency, weakly-resolved

field with rapidly changing gradients. Given that the analytical expressions for these fields are trivial to evaluate, we can5

compute the exact numerical errors introduced by the remapping schemes when projecting the fields from Ωs to Ωt.

Note that the FIELDGENDRIVER module can take arbitrary closed-form functions and evaluate them on the sphere by using

high-order quadrature order rules to sample and compute element averaged data. This design allows the flexibility to test

slightly more complex analytical vortex fields (Ullrich et al., 2009) or any three-dimensional real-valued function projected on

the sphere with coordinate transformations (Townsend et al., 2016).10
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(a) ANALYTICALFUN1: Y 2
3 +Y 3

3 . (b) ANALYTICALFUN2: 2+ cos2 θ cos(2λ).

Figure 3. Contour plots of analytical fields used in this study; ANALYTICALFUN1 (left), and ANALYTICALFUN1 (right)

4.2.2 Real Data Fields

We also test the performance of each remap technique by regridding real data fields obtained from freely available composite

satellite observations. The fields chosen are: Total Precipitable Water (TPW), Cloud Fraction (CFR), and Global Topography

(TOPO). From a representative data set, we compute a Spherical Harmonic (SPH) decomposition in order to determine an

analytical approximation of spectral content. We employ these particular fields because we can control their characteristics as5

functions, i.e., global bounds for topography, positive definiteness for precipitable water, and continuity for cloud fraction. As

such, these fields present distinct challenges to the remapping methods. For convenience, we use the SHTOOLS (Wieczorech

and Meschede, 2018) package through its Python interface (PySHTools), which facilitates the computation of spectra based on

spherical harmonic bases and reconstruction of fields thereof.

Given the 1D averaged spatial amplitude spectrum for each set of composite satellite data as shown in Figure 4 with a10

corresponding linear fit, we then produce controlled randomized realizations for each field on any unstructured mesh and

resolution, including regionally refined grids. The randomization is applied to the coefficients of the expansion at each degree,

extracted from the linear fit functions in Figure 4, and is entirely reproducible given an integer seed to a pseudo-random

number generator (set to 384 in our study). The code for this is available in the FIELDGENDRIVER (Guerra et al., 2021). The

original data ranges from 0.25 to 0.1 degrees of resolution and SPH reconstructions are smoothly varying up to the number of15

coefficients employed. Note that while the order of SPH reconstruction can be specified arbitrarily high (between 1 and 512

modes) to get a better resolution of the fields, the computation of element-averaged sampling representative of FV discretization

needs to utilize a sufficiently high-degree quadrature rule such that the SPH expansions are exactly integrated on the sphere.

Total Precipitable Water (TPW): Global composite data for TPW is taken from the MIMIC-TPW2 project§ (Wimmers and

Velden, 2011). Morphological compositing is applied to microwave sensor data and numerically advected. This field has20

an absolute minimum for all realizations of 0.0 mm with maxima typically in the 70.0 to 80.0 mm range. A representative,

randomized reconstruction of TPW is shown in Figure 5a.

§MIMIC-TPW2 project: http://tropic.ssec.wisc.edu/real-time/mtpw2/product.php?color_type=tpw_nrl_colors&prod=global2&timespan=24hrs
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Figure 4. 1D averaged spatial amplitude spectrum for real data fields based on composite satellite observations. Fit coefficients over two

branches (dotted blue and green lines) correspond to a function: f = axb + c where x is the logarithm of the spherical harmonic degree.

Cloud Fraction (CFR): Global composite data for CFR is taken from the NASA AQUA/MODIS data archive¶ (Platnick

et al., 2020). This field uses absolute global limits for all realizations of 0.0 to 1.0. Thus, by imposing these bounds

after each reconstruction, C0 discontinuities are introduced. These manifest as spatially flat regions in the data where

maximum cloud cover is noted. A randomized reconstruction of CFR is shown in Figure 5b.

Global Topography (TOPO): Global topography data is taken from the ETOPO1 Global Relief Model|| (Center, 2009;5

Amante and Eakins, 2009). This field has a global minimum/maximum for all realizations of -10994.0/8848.0 m, but is

otherwise smoothly varying. A randomized reconstruction of TOPO is shown in Figure 5c.

¶NASA AQUA/MODIS data archive: https://neo.sci.gsfc.nasa.gov/view.php?datasetId=MYDAL2_M_CLD_FR
||ETOPO1 Global Relief Model: https://www.ngdc.noaa.gov/mgg/global/global.html
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(a) Global TPW test field for remapping metrics (b) Global CFR test field for remapping metrics.

(c) Global TOPO test field for remapping metrics.

Figure 5. Randomized reconstruction of the real-world fields used in this study.

The raw satellite data snapshot of TPW, CFR, and TOPO fields that are used in the current study have been made available

separately (Guerra and Mahadevan, 2021) in order to make the workflow reproducible.

5 Results and Discussions

Comparing different remapping algorithms under a unified infrastructure for test problems and metrics collection is a nontrivial

task. The metrics defined in this study and the implementation of the various field samplings on arbitrary unstructured meshes5

have provided large output datasets to analyze the key properties of the remappers under consideration.

Specifically,
::
for

:::::::::
uniformly

::::::
refined

:::::::::::
experiments,

:
a series of different mesh types (CS, MPAS, RLL) Nuni

type = 3 with five

different refinement levels were generated to cover both the uniform refinement cases (Nuni
ref = 5) and regionally refined cases

with CS-MPAS mesh type (Nrrm
type = 2,Nrrm

ref = 3
::::::::::
(Nuni

ref = 5)
::::
were

:::::::::
generated.

::::::::
Similarly,

:::
for

:::
the

::::::::
regionally

::::::
refined

:::::::::::
experiments,
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:::
two

:::::::
different

:::::
mesh

:::::
types

::::::::::
(Nrrm

type = 2)
:::::
using

:::
CS

:::
and

::::::
MPAS

::::
with

::::
three

:::::::::
refinement

:::::
levels

::::::::::
(Nrrm

ref = 3) around the continental US

.
::::
were

:::::
used.

:::::
Table

:
1
::::::::

provides
:::
the

::::::
details

:::
on

:::
the

::::::
number

:::
of

:::::::
elements

::::
and

:::::
nodes

::
in
::::

the
::::::
various

:::::::
meshes

::::::
utilized

::
in

:::
the

:::::::
current

:::::
study.

Table 1.
:::::
Details

::
on

::::::
number

:::
of

:::::::
elements

:::::::
(NΩ(el))

:::
and

:::::
nodes

::::::::
(NΩ(nd))

:::
for

::::::
different

:::::
mesh

::::
types

:::
and

:::::::::
resolutions

::::
used

::
in

:::
the

:::::
study.

::::
(left)

:::::::
uniformly

::::::
refined

::::::
meshes,

:::
and

:::::
(right)

::::::::
regionally

:::::
refined

::::::
meshes.

::::
Type

::::::::
Resolution

:::::
NΩ(el)

: ::::::
NΩ(nd)

:

CS

::
r0

:::
1536

: :::
1538

:

::
r1

:::
6144

: :::
6146

:

::
r2

:::::
24576

:::::
24578

::
r3

:::::
98304

:::::
98306

::
r4

:::::
393216

: :::::
393218

:

MPAS

::
r0

:::
2562

: :::
5120

:

::
r1

:::::
10242

:::::
20480

::
r2

:::::
40962

:::::
81920

::
r3

:::::
163842

: :::::
327680

:

::
r4

:::::
655362

: :::::::
1310720

RLL

::
r0

:::
1800

: :::
1742

:

::
r1

:::::
16200

:::::
16022

::
r2

:::::
64800

:::::
64442

::
r3

:::::
259200

: :::::
258482

:

::
r4

:::::::
1036800

:::::::
1035362

::

::::
Type

::::::::
Resolution

::::::
NΩ(el)

::::::
NΩ(nd)

:

CS
::
r0

::::
15858

: :::::
15860

::
r1

::::::
112606

:::::
112608

::
r2

::::::
247328

:::::
247330

MPAS
::
r0

::::
15970

: :::::
31936

::
r1

::::
28535

: :::::
57066

::
r2

::::
67886

: :::::
135768

Using the field definitions (Nfields = 5) introduced in Section 4.2, consisting of two smooth analytical fields and three

real-fields expanded with spherical harmonics, sampling was then evaluated on all input meshes (Nuni
typeN

uni
ref +Nrrm

typeN
rrm
ref =5

15 + 6 = 21) to serve as reference solutions. With these input meshes (Mahadevan et al., 2021), the remapping algorithms

were applied following the workflow in Figure 2 for combinations of CS-MPAS (both uniform and RRM), MPAS-RLL, and

RLL-CS meshes of varying resolutions to evaluate the metrics data.

The volume of consolidated output metrics data is enormous from this experiment, since 1000 remapping iterations were

performed on N =Nuni
type[N

uni
ref ]

2
Nfields = 375

:::::::::::::::::::::::::::::
N =Nuni

typeC2[Nuni
ref ]

2
Nfields = 375

:
global, uniformly refined mesh cases,10

and N = [Nrrm
ref ]

2
Nfields = 45

:::::::::::::::::::::::::::::
N =Nrrm

typeC2[Nrrm
ref ]

2
Nfields = 45 RRM cases, with each of the four remapping algorithms

using various degrees of reconstructions p for FV-FV field transfers. Measuring more than 15 different remapping metrics

for each of these cases has provided extensively detailed results to compare the algorithmic implementations in an unbiased

fashion. Hence, unless explicitly noted, only significantly unique results are presented and discussed below in the following

subsections. We direct readers to the IPython notebooks available in (Mahadevan et al., 2021), which can be used to generate15
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the comparison for any combination of mesh types, source resolution, target resolution, field variable, and remapping schemes.

Note that all the metrics data collected during the analysis are also stored in the same repository for reproducibility.

Detailed results from the intercomparison study and discussion on the implication of each metric to the remapping scheme

are presented next.

5.1 Consistency5

The consistency of the high-order remap algorithm implementations can be verified by remapping smooth functions and cal-

culating the spatial convergence order of the resultant approximations on the target mesh after repeated remaps. Using the

sampled analytical functions described by ANALYTICALFUN1 and ANALYTICALFUN2, a verification study was conducted

using the standard error norms and gradient error metrics data for the various schemes. For smooth solution profiles, the the-

oretically expected convergence rates for a consistent remapping method are O(hp+1) in ‖E‖L1
, ‖E‖L2

, and ‖E‖L∞
global10

error norms, and O(hp) in ‖E‖H1
and |E|H1

global gradient error norms.
:::
The

:::::::::::
convergence

:::::
rates

::::::::
measured

::
in

:::
the

:::::::
current

::::::
studies

:::
use

:::
the

::::::::
definition

:::
of

::
h

:::::::
provided

:::
in

::::::
Section

::::
3.2,

:::
by

:::::
using

:::
the

:::::::
NΩ(el)

::::
data

::::::::
described

::
in

:::::
Table

::
1
:::
for

:::::::
different

:::::::
refined

::::::
meshes.

:

In these studies,
::::::
general,

:::::
from

::::
these

::::::
studies

:
we observed that convergence rates for both low and high-degree approximations

up to p= 2 of the analytically smooth fields show good agreement with the theoretically expected accuracy convergence rates.15

However, for high-order mesh-based remaps, achieving higher thanO(h3) convergence rate appears to be a limitation with the

methods involved in this study, while the hybrid and meshless schemes show consistent recovery of the approximation orders

for all degrees tested. The following subsections provide detailed results and discussions for each of the remapping algorithms.

5.1.1 ESMF

The conservative schemes implemented in the ESMF package (Hill et al., 2004) have been thoroughly verified, and are routinely20

used to generate the linear maps for solution transfer between components in E3SM. The second-order conservative projection

algorithm that was originally introduced for ALE computations (Dukowicz and Kodis, 1987), and later applied to spherical

meshes (Jones, 1999), has been implemented in ESMF with an appropriate linear gradient reconstruction (Kritsikis et al., 2017).

We measure the convergence rates for both the first-order (‘conserve’
:::::::
conserve) and second-order (‘conserve2nd’

::::::::::
conserve2nd)

conservative schemes and present the results observed in Table 2. The ESMF first-order conservative scheme yields expected25

rates
::
of

:::::
O(h)

:::::::::::::
asymptotically. However, the second-order scheme

:
(
::::::::::
conserve2nd)

:
shows degraded convergence rates as con-

firmed by the global error and gradient norms. This convergence result is unexpected
:::::::::
unexpected and contrary to the analysis

of the second-order, piece-wise linear finite-volume reconstruction procedure presented by (Kritsikis et al., 2017), which is

implemented in ESMF.
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Table 2. ESMF: Convergence rates for ANALYTICALFUN1 field on all mesh types

ESMF Option Grid Type ‖E‖L1
‖E‖L2

‖E‖L∞
‖E‖H1

|E|H1

conserve

CS-MPAS 1.031 1.022 0.857 0.004 0.002

MPAS-RLL 1.034 1.010 0.963 0.001 0.001

RLL-CS 1.025 1.014 0.994 0.018 0.017

conserve2nd

CS-MPAS 0.986 0.973 0.823 -0.019 -0.021

MPAS-RLL 1.057 1.031 0.930 0.014 0.014

RLL-CS 0.999 0.943 0.886 -0.056 -0.056

::::
Note

:::
that

:::
we

:::::
have

::::::::
presented

:::
the

::::::::
computed

:::::::::::
convergence

::::
rates

::::
from

:::
the

:::::::
analysis

:::
as

::
is,

:::
and

:::::::::::
qualitatively

::::::::
speaking,

:::
the

::::::
values

::
in

::::
Table

::
2
:::
that

:::
are

::::::::::::
approximately

:::::
equal

::
to

:::
1.0

:::::::
indicate

::::::
O(h),

:::
and

::::::::::::
approximately

:::::
equal

::
to

:::
0.0

:::::::
indicate

::::
O(1)

::::::::
behavior.

:

In order to better understand the relative accuracy of the first and second-order conservative remapping implementations

in ESMF, we performed a comparative analysis for all grid combinations using standard global error norms. These results

are shown in Figure 6, where the ‖E‖L2
and ‖E‖H1

error profiles for both the conservative schemes are compared as a5

function of remap iterations (Nr) for the CS-MPAS mesh combination
::
r4

:::::::::
resolution

::::::
meshes. The computed error metrics

from both the schemes indicate that, even though the convergence rates are similar, the ‘conserve2nd’
::::::::::
conserve2nd option

in ESMF clearly produces a significantly better approximation for the remapped field, irrespective of the mesh resolution or

field characteristics in the tested samples. It is also evident that the ESMF algorithms are more accurate for the RLL-CS mesh

types in all global error norms, indicating sensitivity to the underlying element types in the mesh.
:::
The

::::::::::
significantly

:::::
better

:::::
error10

::::::::::::
approximations

:::
of

:::
the

::::::::::
conserve2nd

::::::::::
conservative

::::::
scheme

:::::::::
emphasize

:::
that

::
it
::::::
should

::
be

::::::::
preferred

::::
over

:::
the

:::::::
conserve

::::::
scheme

:::::
when

:::::::
possible,

::::::::::
irrespective

::
of

:::
the

:::::::::
underlying

:::::
mesh

:::::
types

:::::::
involved

::
in

::::::
remap.
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(a) Global ‖E‖L2
Error (b) Global ‖E‖H1

Error

Figure 6. ESMF comparison of ‘conserve’
::::::
conserve and ‘conserve2nd’

:::::::::
conserve2nd options for all mesh types

:::
type

:::::::::::
combinations

:::::::::
(CS-MPAS,

:::::::::
MPAS-RLL,

::::::::
RLL-CS)

::
of

::::::::
resolution

::
r4,

:
and the TOPO field, using

:::
log(‖E‖L2 :

) (left) and
::
log

:
(‖E‖H1

)
:
(right) global error

metrics as function of Nr:
.

5.1.2 TempestRemap

The conservative high-order linear maps computed by TempestRemap, as shown in Table 3, produce higher-order expected

theoretical convergence rates in comparison to ESMF for the smooth analytical solution fields. The convergence results pre-

sented here have been generated with a bi-degree-p basis reconstruction using a rectangular truncation strategy that computes

source patches based on edge-adjacency graphs.5

Note that even for smooth solutions, the convergence rates observed for p > 2 degrade during the conservative reconstruction

for FV-FV maps. This degradation is evident in the rate reduction in all the global error norms for p > 2, which indicates that a

larger patch size may be necessary to accurately and consistently recover the smooth field after remap from Ωs to Ωt. The rate

reduction is especially noticeable in the presence of pole singularities like that of RLL meshes, where the ‖E‖L∞
shows further

reduction in convergence rates. The failure to achieve O(h4) or higher-order accuracy is an artifact of the implementation in10

TempestRemap, which can be improved with further analysis and is not a limitation of the underlying numerical method.
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Table 3. TempestRemap: Convergence rates for ANALYTICALFUN1 field on all mesh types

Degree Grid Type ‖E‖L1
‖E‖L2

‖E‖L∞
‖E‖H1

|E|H1

p= 0

CS-MPAS 1.031 1.022 0.857 0.004 0.002

MPAS-RLL 1.034 1.010 0.963 0.001 0.001

RLL-CS 1.025 1.014 0.994 0.018 0.017

p= 1

CS-MPAS 2.096 2.056 1.882 1.069 1.067

MPAS-RLL 2.033 2.008 1.923 1.027 1.027

RLL-CS 2.018 2.005 1.964 0.995 0.994

p= 2

CS-MPAS 3.096 3.101 2.900 2.105 2.103

MPAS-RLL 3.126 3.103 2.996 2.069 2.069

RLL-CS 3.030 3.018 2.995 2.022 2.021

p= 3

CS-MPAS 3.258 3.298 3.125 2.347 2.346

MPAS-RLL 3.144 3.112 2.570 2.311 2.310

RLL-CS 3.936 3.000 2.016 2.000 1.999

TempestRemap produces conservative solution projections between mesh combinations that can be 3rd-order with p=

2, for smooth fields. However, even if local element-wise conservation can be guaranteed in overlay-based high-order L2

minimization schemes, monotonic reconstructions may not be strictly possible without additional effort. This behavior is

because Godunov’s theorem (Godunov, 1959) precludes the existence of optimal high-order linear maps that are also monotone.

Due to this restriction, and since Gibbs phenomena (Jerri, 2013) are ubiquitous with high-order maps when steep gradients are5

encountered, global bounds can be preserved in TempestRemap by employing nonlinear filtering algorithms such as CAAS

during the online solution transfer in ESMs.

5.1.3 GMLS

The remapping scheme based on the meshless Generalized Moving Least-Squares (GMLS) method demonstrates the flexibility

to deliver higher-order convergence for scalar field data. The convergence rates computed for the ANALYTICALFUN1 field are10

shown in Table 4 for various polynomial degrees.
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Table 4. GMLS and GMLS-CAAS: Convergence rates for ANALYTICALFUN1 field on all mesh types. Note that the superconvergence

of gradients for p = 4 appears to be special for ANALYTICALFUN1; for ANALYTICALFUN2, GMLS converged at about fourth order, as

theoretically expected, in ‖E‖H1
and |E|H1

.

GMLS GMLS-CAAS

Degree Grid Type ‖E‖L1
‖E‖L2

‖E‖L∞
‖E‖H1

|E|H1
‖E‖L1

‖E‖L2
‖E‖L∞

‖E‖H1
|E|H1

p= 1

CS-MPAS 1.957 1.957 1.944 1.838 1.832 1.957 1.957 1.944 1.838 1.832

MPAS-RLL 1.990 1.990 1.978 1.663 1.652 1.990 1.990 1.978 1.663 1.652

RLL-CS 1.981 1.980 1.979 1.870 1.864 1.981 1.980 1.979 1.870 1.864

p= 2

CS-MPAS 3.678 3.685 3.414 2.378 2.371 3.670 2.983 2.018 1.925 1.923

MPAS-RLL 3.647 3.581 3.136 2.106 2.104 3.649 3.103 2.078 1.975 1.975

RLL-CS 3.666 3.615 3.363 2.241 2.235 3.659 2.877 1.985 1.862 1.861

p= 3

CS-MPAS 3.982 3.982 3.978 3.954 3.952 3.924 3.118 2.022 1.948 1.944

MPAS-RLL 3.986 3.986 3.978 3.815 3.808 3.969 3.321 2.180 2.001 2.000

RLL-CS 3.985 3.985 3.985 3.969 3.968 3.914 2.975 2.035 1.873 1.872

p= 4

CS-MPAS 6.000 6.001 5.996 5.939 5.936 3.724 2.890 1.997 1.902 1.901

MPAS-RLL 5.993 5.993 5.980 5.736 5.727 3.866 2.965 2.121 1.973 1.973

RLL-CS 5.969 5.969 5.965 5.930 5.928 3.747 2.873 2.010 1.881 1.880

The convergence rates for the nominal GMLS scheme and the GMLS-CAAS remapping method with a post-processing

step in Table 4 show that, in general, high-order accuracy can be achieved. However, using the nominal GMLS scheme for

climate modeling problems can result in non-conservative and potentially oscillatory reconstructions for fields with strong

gradients. Hence, GMLS-CAAS algorithm is especially advantageous to enable global and local bounds preservation. Note

that the augmented GMLS-CAAS algorithm suffers from convergence degradation for higher polynomial degree values and is5

limited to O(h3) for this smooth field data in ‖E‖L2
. There is limited theoretical proof for convergence rates of CAAS filter

in the literature (Bradley et al., 2019) for arbitrary problems. However, in two dimensions, one can consider a field with 1D

connected band of extrema that demonstrates a maximum rate of convergence ofO(h3) in ‖E‖L2
norm. Algorithms like CAAS

function by clipping newly formed local extrema resulting from higher-order reconstructions and computing a redistribution of

the mass deficit accordingly. We hypothesize that the observed convergence degradation is primarily a result of these clipping10

and redistribution steps.

Even though the GMLS-CAAS remaps show lower convergence rates, it provides the benefit of making the scheme globally

conservative and monotone. The CAAS algorithm requires runtime modification of the projected fields to ensure global and

local bounds, and the nonlinear solution-dependent filter can eliminate Gibbs oscillations, providing better stability during

remap operation.15
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5.1.4 WLS-ENOR

The convergence
::::
rates

::
for

:::::::
various

:::::::::
polynomial

:::::::
degrees

::
of

::::::::::::
reconstruction

:
p
:::
are

::::::::
tabulated

::
in

::::
Table

::
5.

::::
The

::::::::::
convergence

:
analysis for

the WLS-ENOR scheme shows that even for high polynomial degrees, theoretically expected rates
::
of

::::::::
O(hp+1)

::
in ‖E‖L2 :::

and

:::::
O(hp)

:::
in ‖E‖H1

are observed for the smooth analytical field. The
::::
fields.

::::
For

::::::::
example,

:::
for

:::::
p= 4,

:::
we

::::
can

:::::::
confirm

::::
that

:::
the

:::::::::
asymptotic convergence rates for various degrees are tabulated in Table 5‖E‖L2:

is
::::::
O(h5)

:::
and

:::
for

:
‖E‖H1

,
:
|E|H1::

is
::::::
O(h4).5

Table 5. WLS-ENOR: Convergence rates for ANALYTICALFUN1 field on all mesh types

Degree Grid Type ‖E‖L1
‖E‖L2

‖E‖L∞
‖E‖H1

|E|H1

p= 2

CS-MPAS 3.039 3.044 2.854 2.063 2.061

MPAS-RLL 3.006 3.003 2.903 2.002 2.002

RLL-CS 3.030 3.036 2.931 2.046 2.045

p= 3

CS-MPAS 4.989 4.991 4.963 3.993 3.991

MPAS-RLL 5.023 5.021 4.932 3.997 3.997

RLL-CS 4.961 4.981 4.887 3.989 3.988

p= 4

CS-MPAS 5.131 5.145 4.845 4.141 4.139

MPAS-RLL 5.007 5.001 4.853 3.997 3.997

RLL-CS 5.170 5.118 4.951 4.033 4.032

We note that the WLS-ENOR algorithm is equipped with an internal nonlinear filtering (or more precisely, mollification)

mechanism to detect sharp gradients and discontinuities, in order to adaptively choose the weights during the high-order

reconstruction process locally. In contrast to the GMLS-CAAS high-order meshless scheme with a post-processing filter that

results in a convergence order degradation, the WLS-ENOR scheme remains consistently accurate for smooth functions up to

p= 4 in our experiments.10

5.1.5 Real Fields: Convergence Rate Comparisons

While high-order convergence rates are achievable for smooth field profiles of ANALYTICALFUN1 and ANALYTICALFUN2,

maintaining theoretical rates of convergence for ‘real-world’ field data is not guaranteed, because such data may lack the

regularity necessary to achieve the best possible rates. Due to the presence of strong C0 and C1 discontinuities in the real scalar

fields, which are representative of flux fields exchanged between components in coupled climate solvers, a remap comparison15

on the SPH sampled TPW field data was computed, as tabulated in Table 6. The convergence rate comparisons using different

remap schemes show that the computed rates for higher-order polynomial reconstructions fall severely short of theoretical rates

as expected, relative to the rates shown previously for ANALYTICALFUN1.

However, it can be observed that higher than first-order schemes tend to show better behavior on all meshes and fields

tested. Additionally, the linear maps computed with ESMF underperform the other schemes, as evident from the gradient error20
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norms, ‖E‖H1
and |E|H1

. The meshless schemes are competitive in terms of accuracy bounds and provide a viable alternative

approach for usage in production climate simulations, where traditionally L2-minimization schemes and low-order bilinear

maps have been routinely used.

Table 6. Comparing global error measures for the TPW field with different remap schemes on all mesh types of finest
:::
(r4)

:
Ωs and Ωt

resolutions

Grid Type Remapping Scheme ‖E‖L1
‖E‖L2

‖E‖L∞
‖E‖H1

|E|H1

CS-MPAS

ESMF (‘conserve2nd’
:::::::::
conserve2nd) 1.209 1.180 0.881 0.132 0.128

TempestRemap (p = 3) 1.281 1.307 1.396 1.375 1.384

GMLS (p = 4) 1.761 1.834 2.129 2.515 2.551

GMLS-CAAS (p = 4) 1.785 1.896 2.063 2.258 2.264

WLS-ENOR (p = 4) 1.677 1.810 2.261 2.517 2.553

MPAS-RLL

ESMF (‘conserve2nd’
:::::::::
conserve2nd) 1.216 1.133 1.004 0.056 0.056

TempestRemap (p = 3) 2.233 2.204 2.132 2.156 2.148

GMLS (p = 4) 2.233 2.208 2.230 2.265 2.274

GMLS-CAAS (p = 4) 2.238 2.218 2.073 1.952 1.946

WLS-ENOR (p = 4) 2.242 2.223 2.708 2.767 2.797

RLL-CS

ESMF (‘conserve2nd’
:::::::::
conserve2nd) 1.299 1.242 1.010 -0.018 -0.021

TempestRemap (p = 3) 1.353 1.327 1.114 1.097 1.081

GMLS (p = 4) 1.353 1.364 1.499 1.739 1.768

GMLS-CAAS (p = 4) 1.377 1.432 1.817 1.818 1.827

WLS-ENOR (p = 4) 1.357 1.343 1.727 1.728 1.758

Note that in this particular comparison, we selected the highest polynomial degree p that was tested for each remapping

method, even though for production climate simulations, typically p= 1, or p= 2 may yield a more numerically stable solution5

due to Gibbs phenomena. In such operational circumstances, high-order methods for TempestRemap and GMLS should be

augmented with nonlinear post-processing filters, such as CAAS.

5.2 Global Conservation

All mesh-based L2 projection scheme implementations chosen in this study, namely ESMF and TempestRemap, are globally

conservative by the nature of the underlying numerics (Ullrich and Taylor, 2015). Since these implementations compute consis-10

tent reconstructions using overlay meshes, any deficit with respect to exact conservation can be verified by performing column

sum operations on the discrete linear map matrix representing the projection or mass-matrix operator.

The global field integral error indicating conservation deficit for TPW field variable is shown in Figure 7 for different mesh

resolutions of the CS-MPAS mesh type. In these plots, the y-axes represent the logarithmic error of the global integral value
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between solution remapped onto Ωt relative to the reference solution sampled on Ωt. Hence, lower values indicate better

satisfaction of the global conservation metric.

The expected behavior of preserving global integrals in the remapped solutions, as illustrated in Figure 7, have been ver-

ified for both low and higher-order maps, irrespective of the mesh topology, or the field variables being transferred across

meshes. Notably, the slow accumulation of roundoff error in the global field integral as a function of remap iterations has a5

detrimental effect to global conservation
:::
can

::::::
quickly

::::
add

::
to

:::
the

:::::
global

:::::::::::
conservation

::::
error

:::::
when

:::::
using

:::::
linear

::::
maps. This effect is

seen in the field projections computed with TempestRemap
::::
both

::::::::::::
TempestRemap

::::
and

::::::
ESMF through two sparse matrix-vector

(SpMV) products in each remap iterationand is distinctly subdued in .
:::
As

:::::::
expected

::::::
based

::
on

::::::::::::
computational

::::::::::
complexity

::
of

:::
the

:::::
SpMV

:::::::::
operation,

:
the low-order ESMF map

::::::::::
conservative

::::::
ESMF

:::::::
remaps

:::
do

:::::::::
accumulate

::::::
errors

::::
more

::::::
slowly

:::::
than

:::::::::
high-order

::::::::::::
TempestRemap

:
projections, especially at fine mesh resolutions.10

(a) Resolution: CS(r0)-MPAS(r4) (b) Resolution: CS(r4)-MPAS(r0)

(c) Resolution: CS(r4)-MPAS(r4)

Figure 7. Global conservation
::::
error metric for the TPW field on CS-MPAS meshes with different resolutions in semi-log scale
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The WLS-ENOR scheme achieves excellent global conservation by applying adaptive quadrature rules to integrate the func-

tions to (near) machine precision and redistributing the conservation errors locally near discontinuous regions. The unmodified

GMLS scheme is non-conservative without any post-processing and hence is not presented here. However, using the nonlinear

CAAS filtering algorithm with the GMLS remapping scheme provides global conservation to user-specified tolerances.

This conservation metric describes whether the remapped solution preserves the global integral over the domain, which is5

often a desirable constraint for most scalar variables in order to ensure that the total mass and energy in the closed simulation

system remain constant. However, for some scalar fields
::::
such

::
as

:::::::::
sea-surface

::::::::::
temperature

::::::
(SST)

::
or

:::::
TPW, such a conservation

constraint may not be strictly mandated, and this enables the use of even the non-conservative GMLS scheme, which has been

demonstrated to achieve excellent accuracy.

5.3 Monotonicity - Global Extrema Preservation10

Departures away from global extrema, i.e., overshoots and undershoots, provide a useful metric to assess the stability of the

remap operator under investigation. A perfectly stable method has a zero value for this metric. The results for the monotonicity

metric as a function of the remap iterations are shown in Figure 8 and Figure 9 for Lmax ::::::
|Gmax|:of CFR variable on MPAS-

RLL, and Lmin ::::::
|Gmin| of the TOPO variable on CS-MPAS meshes, respectively. These field variables have been specifically

chosen to showcase the effects of the remapping algorithms on the well-defined upper and lower global field bounds that cannot15

be violated.

The results clearly demonstrate that the mesh-based remapping schemes
::::
such

::
as

::::
those

::
in
::::::
ESMF

:::
and

:::::::::::::
TempestRemap

::::::::::::::
implementations

do not adhere to the global extrema (both maxima and minima) after the first linear remap operator application. The magnitude

of this departure is resolution dependent, but the behavior is consistent in all cases tested. The use of low-order, dissipative

linear maps from ESMF shows a slow drift away from global maxima, which are
:::::
nearly

:
recovered after several remaps (around20

700 in Figure 8). However, the global minima increase continuously within the bounds of the reference solution. Hence, the

‘conserve2nd’
::::::::::
conserve2nd option in ESMF damps the global maxima and amplifies the global minima.

:::::
While

:::
not

::::::::
currently

::::::
pursued

::
in
::::

the
:::::
paper,

::::::
further

:::::::
analysis

:::
on

:::
the

::::::
spectral

:::::::::
properties

::
of

:::
the

:::::::::
low-order

:::::::
forward

:::
and

::::::
reverse

:::::
maps

::::
can

::::
shed

::::
light

:::
on

::
the

::::::::::
dampening

::::::::
properties

::
of
:::::
these

::::::
ESMF

:::::
linear

:::::
maps.

:

In contrast, the high-order TempestRemap solutions show a drift away from the bounds in every case. The mildly damped25

increase of the metric as a function of remap operator application signals the presence of spurious high-frequency modes in

the linear map, which is more prevalent as the degree of reconstruction increases. Obtaining high-order remapped solutions in

addition to preserving monotonicity in these schemes will require post-processing filters such as CAAS, which can be used to

improve the behavior in TempestRemap for such problems of interest.

Compared to the traditional remapping schemes, the meshless and hybrid
::::::::::::
GMLS-CAAS

:::
and

::::::
hybrid

:::::::::::
WLS-ENOR

:
remap30

schemes, namely GMLS-CAAS and WLS-ENOR, maintain the global bounds for all
::::
most test cases and fields tested in

this study. Augmenting the non-monotone GMLS scheme with CAAS bounds preservation algorithm shows excellent, stable

behavior for all cases. WLS-ENOR shows relatively high compliance to actual bounds because its non-oscillatory weights near

discontinuities essentially preserve the monotonicity and convexity of the solutions. However, when the meshes are sufficiently
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fine, the functions may appear smooth relative to the grid resolution, and in such scenarios, WLS-ENOR would not apply

the adaptive weights and the global extremes may oscillate randomly at a magnitude comparable to the local discretization

error, as seen in Figure 8(b).
::::
Note

::::
that

:::
the

::::::
hidden

:::::
traces

:::
of

::::::
|Gmin|::::

and
::::::
|Gmax|::::

for
::::::::::::
GMLS-CAAS

:::
and

:::::::::::
WLS-ENOR

:::
in

:::
the

:::::
figures

::::::
Figure

::
9

:::
and

::::::
Figure

:
8
::::::::::
respectively

:::
are

::
at

:::
the

::::::::
expected

:::::
levels

::
of

::::
zero

:::::::::
(monotone

::::::::::::::
reconstructions).

::::
This

::
is

::::::
evident

:::
for

:::
the

::::::::::::
GMLS-CAAS

:::
and

:::::::::::
WLS-ENOR

:::::::
methods

::
in

:::::
many

::
of

:::
the

:::::::::::
experiments.5

(a) Resolution MPAS(r4)-RLL(r0) (b) Resolution MPAS(r4)-RLL(r4)

Figure 8. Lmax ::::::
|Gmax| metric for the CFR field on MPAS-RLL with different target mesh resolutions

:
.

5.4 Locality - Local Extrema Preservation

Similar to the global bounds metrics that measure solution monotonicity, the local bounds metrics compute the norm of error

resulting from the comparison of the reference sampled field data against the projected field in a one-ring local neighborhood.

This metric provides insight into the preservation of local field features on repeated remap operator applications. The com-

puted locality metrics for maxima and minima for various mesh resolutions and real-world fields are shown in Figure 10 and10

Figure 11.

These results showcase that the high-order TempestRemap implementations perform quite well with minimal feature loss

for all fields on all meshes. In contrast, the low-order ESMF linear maps have high dissipation growth that is dependent on both

the resolution and remap iterations. For high-resolution meshes, the amplification of the dissipation at every iteration can even

be undamped and grows linearly with the ESMF ‘conserve2nd’
:::::::::::
conserve2nd option. This result implies that as the number of15

remap iterations increase, more information on local features is lost during every transfer for these cases.

For the WLS-ENOR scheme, which uses a hybrid strategy to detect local features and adaptive quadrature rules to resolve

a high discrepancy in mesh resolutions, its preservation of local bounds exhibits a strong dependence on the spatial resolution

of Ωs and Ωt. However, unlike ESMF, the slope of metric indicating departure away from local bounds remains near zero as
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(a) Resolution CS(r0)-MPAS(r4) (b) Resolution CS(r4)-MPAS(r4)

Figure 9. Lmin :::::
|Gmin|:metric for the TOPO field on CS-MPAS with different source mesh resolutions

remap iterations are increased, signifying that the reconstructions remain stable on repeated applications without any further

feature losses, probably due to its use of adaptive quadrature rules.

In the meshless remapping category, the GMLS schemes utilize the CAAS algorithm to clip and conserve fields in a lo-

cal subset of the neighborhood for each evaluation point. For GMLS-CAAS, local bounds must be given to CAAS, and it is

important to consider how they are determined. As GMLS is a meshless solution technique, local bounds for each site of recon-5

struction are determined by computing the maximum and minimum of the values in the neighborhood (determined meshlessly

using a K-d tree) used for reconstruction from Ωs. With a coarse Ωs resolution, these local bounds computed from K-d tree

queries are no longer accurate estimators to enforce tight bounds in a 1-ring neighborhood of Ωt, which is the metric mea-

sured in this study for local bounds preservation. The discrepancy in bounds for such scenarios could be minimized by using a

mesh intersection of the cells in the source and target neighborhoods, but no attempt was made to do this for GMLS-CAAS in10

keeping with the spirit of its application as a purely meshless technique.
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(a) Resolution CS(r0)-MPAS(r4) (b) Resolution CS(r4)-MPAS(r0)

(c) Resolution CS(r4)-MPAS(r4)

Figure 10. Lmax,2 metric for the TPW field on CS-MPAS meshes with different resolutions

Lauritzen and Nair (2008) noted that when remapping using their monotone and conservative CaRS algorithm, the higher-

order reconstructions do not significantly improve accuracy when Ωs is finer than Ωt. However, the reverse case shows sig-

nificant benefit with high-order polynomial reconstructions. These conclusions are similar to those observed in the current

intercomparison experiments shown in Figure 10 and Figure 11.
::::
Note

:::
that

:::
in

:::::
Figure

::::::
10(c),

:::
for

:::::
equal

:::::::::
resolution

:::::::::
CS-MPAS

::::::
studies,

:::
the

:::::::::
dissipation

::::::::
decreases

::::
with

::::::
ESMF,

:::::::::::::
GMLS-CAAS,

:::::::::::
WLS-ENOR

:::
and

:::::::::::::
TempestRemap

::::::::
schemes,

::
in

:::
that

::::::
order.5
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(a) Resolution RLL(r0)-CS(r4) (b) Resolution RLL(r4)-CS(r0)

(c) Resolution RLL(r4)-CS(r4)

Figure 11. Lmin,2 metric for the TOPO field on RLL-CS meshes with different resolutions

One of the key outcomes of this analysis indicates that using nonlinear filtering algorithms like CAAS can provide the

benefits of property preservation to achieve global conservation and monotonicity constraints. However, these advantages can

be offset by the higher local dissipation effects, especially on disparate mesh resolutions of Ωs and Ωt. So depending on the

problem use-case for which linear maps are being used to transfer solution fields between meshes with varying resolutions, an

adaptive approach may be taken to choose a nonlinear filter when monotonicity constraints are important and to apply it with5

care, especially for high-order maps where feature preservation may suffer.
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5.5 Analysis on RRM Meshes

We restrict the analysis in this study to all the conservative variations of the schemes chosen. As a result, the global conservation

metric is truly satisfied for all cases tested with RRM meshes. The following subsections provide a detailed comparison of the

error resolutions and global/local bound preservation metrics.

5.5.1 Error Metrics Comparison5

In order to compare the performance of the different remapping schemes on more realistic and complex unstructured RRM

meshes, the global error norms, ‖E‖L1
, ‖E‖L2

, ‖E‖L∞
, ‖E‖H1

and |E|H1
are computed and tabulated in Table 7. These

results were computed on the finest CS-MPAS
:::::::::::::::
CS(r2)-MPAS(r2) RRM mesh combination to look at

::::::
observe

:
the accurate

resolution of different fields. The
::::::::
remapped

:::::
fields.

:

:::
We

::::
note

:::
that

:::
the

:
global errors with respect to all error norms are considerably smaller in WLS-ENOR and TempestRemap10

for all the
:::
the

::::::
smooth

::::::::::
(analytical) field variables sampled on the RRM input meshes.

In contrast
::::::::::
Interestingly, the low-order ESMF implementation results in a larger error comparable to

:::::
shows

::::::::::
comparable

::::::::::
performance

::
to
::::

the
:::::::::
high-order GMLS-CAASwith

:
(p= 4for all the real fields

:
)
:::::::
scheme

::
in

:
‖E‖L2

, even though the relative

accuracy on smooth analytical fields is much better with GMLS-CAAS. The use of ESMF with ‘conserve2nd’ option and the

GMLS-CAAS schemes deliver larger
::::
both

:::::
these

:::::::
methods

:::
are

:::::
more

::::
than

::
5

:::::
orders

:::
of

:::::::::
magnitude

:::::
worse

::::
than

:::::::::::
WLS-ENOR

:::
in15

::::
terms

:::
of

:::::::
absolute

::::
error

:::::
value.

::::
The

:::::::
gradient

::::
error

:::::::
metrics

:
(‖E‖H1

and |E|H1
errors than the more accurate )

::::
also

:::::
show

:::
the

::::
high

::::::::
dissipative

::::::
errors

::
in

::::::::
low-order

::::::
ESMF

:::::::
methods

:::
for

::::
these

:::::::
smooth

::::
field

::::
data.

:

::::::::
However,

:
it
::
is
:::::::::
imperative

::
to

::::
note

::::
that

:::::
when

:::::::::
transferring

:::::
field

:::
data

:::::
with

::::::::
significant

:::
C1

:::::::::::::
discontinuities

:::::::
(TOPO,

:::::
CFR,

::::::
TPW)

:::
that

:::
are

::::::
typical

::
in

:::
real

:::::
world

::::::
climate

::::::::::
simulations,

:::::
using

:::::::::
high-order

:::::::::
remapping

:::::::
schemes

::::
such

::
as

:
WLS-ENORand TempestRemap

remapped solutions. This summary shows
:
,
::::::
GMLS

::::::::
meshless

:::::::
methods

::::
and

::::
even

:::::::::::::::::::
TempestRemap(p= 3)

::::
only

:::::::
provide

:::::::
nominal20

:::::::::::
improvements

:::::
over

:::::
linear

:::::
maps

:::::::::
computed

::::
with

:::::::::
low-order

::::::
ESMF

:::::::::::::
reconstructions

:::::
with

:::::::::::
conserve2nd

::::::
option.

::::::
These

::::::
results

::::::::::
demonstrate that the state-of-art ESMF conservative remapping schemes can be complemented by other algorithms that have

relatively better accuracy profiles,
:::
and

:::::
lower

:::::::
feature

:::::::::
dissipation for many coupled climate modeling problems.

In order to make a fair selection of ESMF conservative algorithm, the comparison between the ‘conserve’ and ‘conserve2nd’

:::::::
conserve

:::
and

::::::::::
conserve2nd implementations was repeated on RRM meshes. The ‖E‖L2

error profiles for various equal res-25

olution source and target meshes are shown in Figure 12 for the TPW variable. The results suggest that the behavior of

‘conserve2nd’
::::::::::
conserve2nd option remains marginally better than the ‘conserve’

:::::::
conserve option in these experiments, even

though the magnitude of accuracy gain with the ‘conserve2nd’
::::::::::
conserve2nd is not as attractive in comparison to the case of

regularly refined meshes analyzed in Figure 6. An
:::::
Hence

::
as

::
an

:
outcome of this experimentis that the results clearly demonstrate

the superiority of the ‘conserve2nd’ conservative remapping implementation option in ESMF in comparison to the ‘conserve’30

option, and is hence recommended for use
:
,
:::
the

::::::::::::::
recommendation

::
is

::
to

::::
use

:::::::::::
conserve2nd in all existing production climate

simulations when high-order maps are unavailable,
::
as
::

it
:::
has

::::::::::::
demonstrated

:::::
more

::::::::
favorable

::::::::
properties

::::
than

::::::::
conserve

::::::
option

::
in

:::::
ESMF.
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Table 7. Comparison of global error norm metrics for different remap schemes on the finest
::
(r2)

:
CS-MPAS RRM mesh combination, ordered

from best to worst in terms of ‖E‖L2
error for all field variables

Variable Method ‖E‖L1
‖E‖L2

‖E‖L∞
‖E‖H1

|E|H1

ANALYTICALFUN1

WLS-ENOR (p =4) 5.457e-12 6.057e-12 1.418e-11 1.563e-06 1.563e-06

TempestRemap (p =3) 3.410e-09 6.138e-07 9.785e-05 4.387e-01 4.387e-01

GMLS-CAAS (p =4) 1.129e-04 1.180e-04 1.709e-04 4.945e+00 4.945e+00

ESMF (‘conserve2nd’
:::::::::
conserve2nd) 1.475e-04 2.031e-04 1.288e-03 9.610e+01 9.610e+01

ANALYTICALFUN2

WLS-ENOR (p =4) 5.737e-13 7.329e-13 4.114e-12 2.066e-07 2.066e-07

TempestRemap (p =3) 4.692e-10 9.353e-08 2.268e-05 6.693e-02 6.693e-02

GMLS-CAAS (p =4) 1.226e-05 1.502e-05 3.306e-05 6.641e-01 6.641e-01

ESMF (‘conserve2nd’
:::::::::
conserve2nd) 2.223e-05 3.344e-05 3.144e-04 1.543e+01 1.543e+01

Total Precipitable Water (TPW)

WLS-ENOR (p =4) 1.008e-03 9.474e-04 7.281e-04 1.405e+01 1.405e+01

TempestRemap (p =3) 1.008e-03 9.474e-04 7.281e-04 1.406e+01 1.406e+01

ESMF (‘conserve2nd’
:::::::::
conserve2nd) 1.009e-03 9.527e-04 1.127e-03 4.300e+01 4.300e+01

GMLS-CAAS (p =4) 1.016e-03 1.029e-03 1.264e-03 5.879e+01 5.879e+01

Cloud Fraction (CFR)

TempestRemap (p =3) 2.802e-04 3.648e-04 5.248e-03 7.254e+01 7.254e+01

ESMF (‘conserve2nd’
:::::::::
conserve2nd) 3.042e-04 4.110e-04 5.490e-03 1.030e+02 1.030e+02

WLS-ENOR (p =4) 2.993e-04 4.689e-04 7.082e-03 1.300e+02 1.300e+02

GMLS-CAAS (p =4) 6.496e-04 8.577e-04 6.930e-03 1.627e+02 1.627e+02

Global Topography (TOPO)

WLS-ENOR (p =4) 5.672e-03 5.407e-03 3.714e-03 1.830e+02 1.830e+02

TempestRemap (p =3) 5.672e-03 5.407e-03 3.714e-03 1.830e+02 1.830e+02

ESMF (‘conserve2nd’
:::::::::
conserve2nd) 5.683e-03 5.424e-03 3.933e-03 2.572e+02 2.572e+02

GMLS-CAAS (p =4) 6.149e-03 6.023e-03 5.262e-03 4.035e+02 4.035e+02

5.5.2 Monotonicity Metrics

Similar to the uniformly refined cases, the monotonicity metric Lmax ::::::
|Gmax| was analyzed on the finest resolutions of the

CS-MPAS
::::::::::::::
CS(r2)-MPAS(r2)

:
regionally refined meshes for the CFR field, as plotted in Figure 13. All of the remapping schemes

tested in this experiment maintain strict bounds on global maxima and minima at the end of the remapping iterations, except for

:::
The

:::::::
behavior

:::
of

::
the

:::::::
|Gmax|:::::

metric
::::::
shows

::::::
similar

:::::
trends

::
in the

:::::
RRM

::::
cases

:::::::::
compared

::
to

:::
the

::::::
uniform

:::::::::
refinement

::::::
cases.

:::
The

:
high-5

order TempestRemap algorithm
::::::::::::
TempestRemap

:::::::
method

:::::
shows

:::
the

:::::
worst

::::::::
behavior,

:::::
while

::::::::
low-order

::::::
ESMF

:::::
maps

::::::
exhibit

:::::
good

:::::::::
dampening

::::
after

:::
the

:::
first

::::::
remap

::::
step.

::::
Note

::::
that

:::
the

:::::
hidden

::::::
traces

::
of

::::::
|Gmax|:::

for
::::::::::::
GMLS-CAAS

:::
and

:::::::::::
WLS-ENOR

::
in

:::::
Figure

:::
13

:::
are

:
at
:::
the

::::::::
expected

:::::
levels

::
of

::::
zero

::::::::::
(monotone

:::::::::::::
reconstructions). The observation shown here confirms that TempestRemap requires

::::::
overlay

:::::
mesh

:::::
based

:::::::
schemes

:::
like

::::::
ESMF

:::
and

:::::::::::::
TempestRemap

::::::
require additional post-processing monotone filters such as CAAS

during the online solution projection step in a simulation, in order to ensure strict global bounds preservation as a function of10

the remap iterations
:::
and

::
to

:::::
avoid

:::::
Gibbs

::::::::::
oscillations

::
for

::::::
strong

:::::::
gradient

:::::
fields.
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Figure 12. ESMF comparison of ‘conserve’
:::::::
conserve and ‘conserve2nd’

:::::::::
conserve2nd options for the TPW field on all CS-MPAS RRM

meshes
::
for

::
the

::::::
TOPO

::::
field,

::::
using

:::
log

:
(‖E‖L2:

)
:::::
global

:::
error

::::::
metrics

::
as

:::::::
function

::
of

:::
Nr .

(a) |Gmax| metric for CS(r0)-MPAS(r2) RRM (b) |Gmax| metric for CS(r2)-MPAS(r2) RRM

Figure 13. Lmax :::::
|Gmax|:metric identifying departure from global maxima for CFR fieldfor

:
:
::
a) coarse to fine

::::
(left), and

::
b)

:
similar

refinements
::::::::
resolutions of CS and MPAS

::::::::
CS-MPAS RRM meshes
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(a) Lmax,2 metric (b) Lmin,2 metric

Figure 14. Lmax,2 ::::
(left) and Lmin,2 ::::

(right)
:
metric

::::::
evolution

:
for TOPO field on the finest refinements of CSand MPAS

::::::::::
(r2)-MPAS(r2)

:
RRM

meshes

5.5.3 Locality Metrics

The observed trends in the locality metrics computed on RRM meshes are similar to those exhibited in the uniformly refined

mesh experiments presented earlier. Hence, for brevity, only the Lmax,2, and Lmin,2 metrics are presented for the TOPO field

on the finest resolution
:::
(r2) of RRM meshes in Figure 14.

It is imperative to recognize that the high order remapping schemes from TempestRemap and WLS-ENOR continue to5

generate minimally diffusive projections on target RRM meshes. This behavior is quite attractive as local features in the fields,

even in the presence of strong gradients, are resolved accurately with very low dissipation away from the sampled reference

field data. The locally adaptive, discontinuity tracking WLS-ENOR algorithm shows strongly stable behavior for all test cases.

However, the meshless GMLS-CAAS scheme and the low-order ESMF scheme exhibit severe departure away from these

local bounds that are consistent with the relatively larger ‖E‖H1
and |E|H1

observed in Table 7. Depending on the solution10

fields being remapped between model components, such strong dissipation in sharp features could lead to local numerical

artifacts in the coupled climate system.

One key observation from the global monotonicity metrics shown in Figure 13 is that TempestRemap fails to maintain strict

global bounds, while low-order ESMF and the meshless GMLS-CAAS schemes recover them consistently. However, the local

bound-preservation metrics in Figure 14 demonstrate that when using the conservative, high-order TempestRemap algorithm,15

element-wise dissipation in the field data is strictly bounded and relatively much smaller in comparison to other remapping

algorithms.
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6 Future Research Directions

This work provides a foundation for the systematic computation of key metrics of interest in regridding problems and imple-

ments the infrastructure to sample analytical and real-world fields and measure the metrics through a flexible Python code.

In the current manuscript, we have presented detailed experiments to compare remapping schemes for FV-FV discretization

settings on three specific mesh families (CS, MPAS, RLL) of varying resolutions, both uniform and regionally refined. There5

are several research directions that will be explored further in order to strengthen and improve the intercomparison protocol

and apply it to more realistic climate science problems.

Four key extensions of interest in this context are:

1. Complex meshes, including successive r−adapted meshes, and realistic samples with topological holes

2. Complex discretizations, other than just FV for source and target components10

3. Complex field descriptions, including vector data and preservation of nonlinear correlations in multiple fields

4. Computational efficacy, comparing numerical accuracy and algorithmic performance on next-generation architectures

Further details regarding these research directions are provided in the following subsections.

6.1 Complex Meshes: More than just global meshes

Uniformly refined meshes provide a simple infrastructure to test the consistency of remapping schemes, and additionally,15

regionally refined global grids help identify any spatial-scale dependencies in the algorithms. However, it is important to

note that the meshes tested do not include any topological holes that are typical in production climate simulations. A direct

extension of the current study would be to perform FV-FV remapping studies on realistic meshes, especially with the MPAS

ocean polygonal meshes (Petersen, 2018) that do not cover the entire sphere.

Several potential issues may arise when remapping fields on these complex topological meshes. For example, dealing with20

narrow isthmus regions like Panama, which is also at the boundary between ocean basins, or along the coast of Peru where

sea-level with high-altitude points from the Andes can influence and contaminate remaps to produce biases that appear along

these coastal regions. Such regions can yield incorrect field remaps when using simple nearest-neighbors maps, high-order

reconstructions, or even when computing the overlay mesh, as the numerical tolerances for querying neighborhood data become

an important influencing factor in the overall accuracy.25

The metrics definitions for standard error norms, global maxima, and global minima introduced in Section 3 are valid for

general meshes. But, in order for the global conservation metric Lg shown in Equation (11) to be valid, the target domain has

to fully envelop the source domain. Additionally, the definition and implementation of local dissipation metrics use a small

neighborhood (one-ring patch) around the target cell, which would also impose a similar requirement. This implies that for

analysis with realistic meshes, the metrics for evaluating the quality of solution field data transferred between the atmosphere30

and ocean components will strictly be measured only on the global atmosphere meshes to satisfy the above constraints. Note
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that the input specification for such cases would require at least the area fractions and appropriate masks to be provided in

order to enable efficient remap computations using the meshless and hybrid schemes like GMLS and WLS-ENOR.

Furthermore, another test study of interest would be to develop a sequence of meshes that slowly deform from the original

mesh into some intermediary that resolves moving solution fields like tracer transport, eventually returning back to the original

mesh. Such a test is referred to as ‘cyclic-remap’ test suites in the ALE community (Bochev and Shashkov, 2005). Performing5

successive remap over the sequence of such meshes, one can directly compare the final resulting field after multiple remaps

directly with the initial field without a need for a reference analytical solution field. Devising such a study requires mesh-

based adaptivity and smoothing algorithms to be used effectively in addition to mesh optimization strategies to avoid element

inversions (Brewer et al., 2003). On the other hand, any errors introduced due to SPH sampling functionals and discontinuities

introduced due to clipping field bounds can be completely avoided with such a setup.10

6.2 Complex Discretizations: More than just Finite Volume

The current study focused primarily on element averaged field data that is typical of FV discretization of models. Although

many atmosphere and ocean models define the scalar fields as element-averaged piecewise constant data, it is imperative to

extend the above analysis framework to Spectral-Element (SE) data defined on CS meshes so that it can be remapped onto

either FV data on MPAS or RLL meshes or SE data on CS meshes with different resolutions. These extensions would allow15

us to verify the flexibility of the high-order, conservative remapping schemes tested in the current study under discretization

specifications commonly used in climate components like HOMME (Taylor et al., 2007). We also make a note that such

extensions to more complex discretizations of source and target data should not require any modifications in the metrics

definitions already presented in this manuscript. Further extensions to meshes that contain topological holes will still require

Ωs ⊂ Ωt.20

6.3 Complex Fields: More than just scalars

During the remapping of climate data in production runs and scientific analysis, it is important to preserve not only scalar

fields but also vector fields and derived properties that provide better insights from simulations. For example, to understand the

atmospheric flows, analysis of global wind patterns is often performed in weather prediction, which requires the evaluation of

derivatives or integrals of the vector wind velocity fields (Nair and Jablonowski, 2008). Some critical considerations in such25

scenarios require preservation of divergence-free velocity fields, conservation of vorticity, and preservation of wind-stress curl

fields during the remap phase. Another example is, during the computation of tracer advection, certain tracers that contribute

to an equation-of-state must be remapped consistently with the density field in order to preserve derived quantities.

Typically, such vector fields are treated as collections of unrelated scalar fields that are remapped independently. However,

such approaches are deficient in preserving divergence-free conditions and can be inconsistent, since the propagation of remap-30

ping error in the components are not correlated.
::::
Care

::::::
should

:::
also

:::
be

:::::
taken

::
to

:::::
ensure

::::
that

:::
the

:::::::::
regridding

::
of

::::::
vector

::::::::::
components

:::
use

:
a
::::::
proper

::
3d

::::::::
Cartesian

:::::::::
coordinate

::::::
system

::::::
instead

::
of

::::::::
spherical

:::::
mesh

::::::::::
projections,

:::::
which

::::
will

:::
not

::::
yield

::::::::
consistent

::::::
vector

:::::
fields

::
on

:::
Ωt.:
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Remapping algorithms based on mimetic schemes (Pletzer and Hayek, 2019) that provide exact conservation for both scalar

and vector fields are promising in this direction. To our knowledge, existing remapping algorithms based on L2 minimization

and high-order interpolation-based algorithms need further research for tackling vector field data in problems of interest.

Furthermore, field data with nonlinear correlations such as those analyzed by (Lauritzen and Thuburn, 2012), adapted for

remapping scenarios, can also be valuable in determining whether the solution transfer algorithms can remain conservative and5

preserve correlation properties. Nonlinear remapping schemes (Carey et al., 2001; Bochev and Shashkov, 2005; Bochev et al.,

2011) may also prove to be viable options for these cases, albeit computational cost can be relatively much higher than using

linear maps on decoupled scalar components. Additionally, some remapping metrics definitions introduced in Section 3 will

have to be extended for vector field data.

6.4 Computational Efficacy: Comparing accuracy and efficiency10

The additional characteristic dimension that is essential to recognize in intercomparison studies is that the overall cost to obtain

the remaps over the simulation cycle includes both a one-time setup cost, and a constantly growing computational load at every

coupling step when field data need to be transferred between components. Hence, in order to better describe the computational

cost of the remapping algorithms, we could split the effort into an ‘offline’ cost and an ‘online’ cost. Note that often, what is

sacrificed in terms of computational performance, is gained in the quality of the remapped solution through higher accuracy,15

global bounds preservation, and strong local feature resolution with minimal dissipation. Since the numerical efficiency and

time to compute the solution are competing factors, the usage of advanced remapping algorithms for realistic cases will require

a more detailed analysis of the computational complexity at scale.
:::
An

::::::::
exception

::
to

:::
the

:::::::::::
performance

:::::
model

::::::
derived

::::
here

::
is
::::
that

::
for

::::::::
dynamic

::
or

::::::
moving

::::::
meshes

::::
such

::
as

:::::
those

:::::::::::
encountered

::
in

::::::
sea-ice

:::
and

::::::
ocean

:::::::
coupling

::
in

::::::
ESMs,

:::
the

:::::::
‘offline’

::::
cost

::
is
::::::
nearly

:::
zero

::::
and

:::
the

:::::
entire

::::::::::::
computational

::::
cost

::
is
::::::::

‘online’,
:::::
since

:::
the

:::::
maps

::
to

:::::::
compute

:::::
field

:::::::::
projections

:::::
have

::
to

::
be

::::::::::
recomputed

:::::
with20

::::::
changes

::
in
:::
Ωs::::

and
:::
Ωt.

The traditional mesh-based conservative remapping algorithms used in ESMF and TempestRemap require computation of

an intersection or supermesh, Ωs∩t, which in general is computationally expensive. While linear-complexity strategies like

advancing front methods do exist in libraries like PANG (Gander and Japhet, 2013), and MOAB (Mahadevan et al., 2020) to

compute mesh intersections, they can suffer from robustness issues when Ωs has topological holes. An alternative approach is to25

utilize a Kd-tree datastructure to accelerate queries on the meshes, in order to exactly locate the element containing a particular

point, which is a fundamental operation in intersection mesh computation (Jansen et al., 1992). The leading computational

cost for this operation is O(Nlog(N)), where N is the total number of elements in the mesh. The linear map computation

itself follows typical FV or FE operator assembly workflows, and does remain bounded. The online cost of such a linear map

application is essentially then provided by the sparse matrix-vector (SpMV) operation. The complexity for SpMV is, however,30

dependent on the degree p used for field reconstruction as it dictates the bandwidth of coupling between degrees-of-freedom

in Ωs and Ωt. The illustration in Figure 15 for ESMF (‘conserve’
:::::::
conserve), and TR (p= 3) remapping algorithms shows the

number of CS elements required to reconstruct the solution on a single target MPAS element when computing projections

between the CS(3
::
r3)-MPAS(3

::
r3) uniform refinement case. While the low-order ESMF algorithm may require only 2 FLOPS
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per reconstruction on a target element, TempestRemap (p= 3) would require a minimum of 50 FLOPS to achieve better

accuracy. To overcome some of these computational issues for large meshes, the use of MPI parallelism has been exploited in

ESMF, and has been proven scalable with MOAB-TempestRemap (Mahadevan et al., 2020) libraries.

(a) ESMF (conserve) algorithm equivalent to TempestRemap (p= 0) (b) TempestRemap (p= 3) algorithm

Figure 15. Comparison of source field reconstructions showing DoF coupling in linear maps when utilizing different remapping algorithms

and degrees of expansion.

Computation for the GMLS-CAAS meshfree approach on a manifold is dominated by the internal QR with pivoting factor-

ization, requiring O
(

(p2)3

6 ·N
)

FLOPS for the offline stencil calculation, where p is the polynomial degree of the basis used.5

This stencil calculation can be stored and applied as a SpMV operation, similar to TempestRemap. The CAAS nonlinear filter

is an online cost as it is solution dependent, and so at every instance that it is applied it carries aO(p2

2 ) bounds calculation cost

for each of N DoFs.

In terms of the computational cost, similar to TempestRemap and GMLS, the transfer for smooth function and the detection

of discontinuities in WLS-ENOR can take advantage of some preprocessing steps to build matrix-based operators. Hence, they10

primarily involve SpMV as the primary online cost as well. Additionally, the resolution of discontinuities requires constructing

and solving the generalized Vandermonde systems for each target cell near discontinuities as described in Section 2.2, which

can be relatively expensive. Hence, the overall cost for resolving discontinuities depends on the percentage of the cells in

discontinuity regions, which is determined only at runtime to account for field evolution. In general, on coarse meshes, this

ratio may be relatively higher. As the underlying mesh is refined, the solution field profile has a finer approximation that results15
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in a lower proportion of discontinuous cells. So the overall cost for the most expensive part in WLS-ENOR is expected to have

a sublinear time complexity under mesh refinement.

While the theoretical complexity requirements for the remapping algorithms under consideration can be considerably differ-

ent, it is imperative to measure the performance of these implementations on various architectures on standard test problems to

gauge overall efficacy (accuracy vs total computational time for Nr steps). This requires configuring, building, and installing5

the ESMF, TempestRemap, Compadre (GMLS-CAAS), and WLS-ENOR libraries on the same machine to compare the perfor-

mance profile for test problems at scale. Given the complexity and magnitude of such a task, we express this as another future

avenue for research experiments that can add value to the broader climate science community using remapping algorithms

::::::::::::::::
(Valcke et al., 2022).

7 Conclusions10

Remapping algorithms are critically important in climate science applications to maintain key numerical properties during

the transformation and transfer of coupled field data between component models. Inaccurate, non-conservative, or highly

dissipative remapping operators can introduce numerical artifacts in the coupled fields, which can destroy the high-order

accuracy of component solvers and propagate errors into the global nonlinear system representing the climate system. Hence,

understanding the behavior of remapping algorithms for earth system modeling requires standardized numerical definitions15

that provide better insight into the accuracy of transferred fields, along with the ability to preserve global and local solution

bounds to avoid numerically induced instabilities in the system.

In this paper, with these motivations in mind, four different remapping schemes were selected based on the current avail-

ability of the software implementations, the maturity of the underlying numerics, and potential computational efficiency that

could be obtained for real-world scenarios in comparison to existing state-of-art remapping algorithms used in production20

climate simulations. The mesh-based implementations in the libraries ESMF (Hill et al., 2004) and TempestRemap (Ullrich

and Taylor, 2015; Ullrich et al., 2016) provide support for the projection of field data between unstructured grids by using

intersection meshes to compute conservative weights through global L2-minimization approaches. These remapper implemen-

tations are used routinely in several earth system solvers such as CESM (Hurrell et al., 2013) and E3SM (E3SM Project, 2018)

for remapping scalar and flux field variables between component models. In contrast to the intersection-mesh-based remap-25

ping approaches, a hybrid mesh-based approach without an explicit need for overlay meshes using the WLS-ENOR algorithm

(Li et al., 2020) was included in this study. Finally, a fully meshless remapping algorithm was selected, which is based on the

Generalized Moving-Least-Squares (GMLS) scheme (Trask and Kuberry, 2020), with optional post-processing filters to ensure

monotonicity in the projected solutions using ClipAndAssuredSum (CAAS) (Bradley et al., 2019) technique. These remapping

algorithms cover a large span of low and high order conservative solution transfer implementations that can directly impact the30

overall stability and accuracy of predictive solvers and analysis suites for weather and climate modeling.

Comparing these four distinct remapping algorithms requires a uniform test infrastructure, which provides the framework

to create new verification studies and analyze the metrics obtained from the remapping algorithms. To enable such unbiased
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comparative studies, we introduced several remapping metrics that represent the key properties of remapping algorithms. These

include global error measures under various norms like ‖E‖L1
, ‖E‖L2

, ‖E‖L∞
, and gradient error measures given by ‖E‖H1

and |E|H1
. These error norms provide the necessary verification of the theory and implementation of the remapping algorithms

by measuring the theoretical order of accuracy applied to solution fields with sufficient smoothness. Next, global conservation

errors are measured by comparing the integral of the sampled reference fields on Ωt against the remapped solution on Ωt for5

multiple projection iterations. Finally, metrics for the global and local departure away from maxima or minima in the solution

fields can be evaluated in various norms to provide insight on monotonicity preservation and feature dissipation due to the

remapping algorithms. These standardized metrics provide the blueprint to build the remapping intercomparison suite, which

was then used to understand the numerical properties of all algorithms under consideration.

Furthermore, a flexible workflow built on several Python-based drivers to generate the unstructured meshes of different10

element topologies and resolutions, including regionally refined meshes, and to accurately sample five element-averaged fields

using SPH expansions was provided. With these input meshes, the four remapping algorithms were applied for both the smooth

analytical fields and representative real fields in an iterative fashion to compute cyclic projections (Ωs→ Ωt→ Ωs) for FV-FV

field transfers between component models in a climate system.

The results compiled from various test problems demonstrate that the conservative remapping implementations in ESMF15

are all first-order accurate for smooth problems, even though the ‘conserve2nd’
::::::::::
conserve2nd option produces consistently

better accuracy than the ‘conserve’
:::::::
conserve option. Hence, when possible, the ESMF ‘conserve2nd’

::::::::::
conserve2nd option

should be used to obtain better remaps for climate simulations.
:::::::
However,

:::::
these

:::
low

:::::
order

::::::
ESMF

:::::
maps

:::
are

::::::
highly

:::::::::
dissipative

::
in

:::::::
general. In contrast, TempestRemap produces remaps that are globally conservativeand

:
, high-order accurate up to O(h3)

convergence rates
::::::::::
convergence

::
to
::::::::
O(hp+1)

:
for smooth solution fields using

:::::::::::
second-degree

::
(p= 2. These low order ESMF20

maps are highly dissipative in general and can be rectified even with O(h2) maps produced with TempestRemap, which show

bounded dissipation even for )
::::::::::

polynomial
::::::::::::::

reconstructions,
:::
and

::::::::
bounded

::::::::::
dissipation

::
on

:::::
field

:::::::::
projections

::::::::::
containing sharp

features.
:::::
Here,

::
h

::::::::
represents

:::
the

::::::::::::
characteristic

:::::
spatial

::::::
length

::
of

:::
the

:::::
mesh

::::::
where

:::::
errors

:::
are

:::::::::
measured. However, neither one of

these low and high-order L2-minimization approaches can guarantee monotone remaps without the use of post-processing

filters such as slope limiters or CAAS to enforce global and local solution bounds. The use of these filters, however, inevitably25

introduces additional dissipation that can become significant with repeated applications of the remap operator.

On the other hand, the hybrid mesh-based and meshless schemes achieve very high order consistently (up to O(h5)) while

retaining global conservation, which has been one of the key advantages of traditional overlap-mesh-based schemes imple-

mented in ESMF and TempestRemap. Additionally, the ability to capture smoothly varying fields very accurately without any

degradation even for high polynomial degree reconstructions makes these schemes attractive and competitive, as compared30

to traditional mesh-based schemes utilizing L2-minimization methods for ESMs that require computation of overlap meshes,

which can incur a significant computational cost at high spatial resolutions (Mahadevan et al., 2020). These methods can es-

pecially be valuable when highly accurate scalar fields need to be sampled on a refined RLL grid for further analysis or in-situ

visualization to track multidecadal climate evolution.
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It is essential to note that while the fully mesh-based remapping algorithms are, in general, insensitive to mesh resolutions

or the topology, both the hybrid and meshless schemes are liable to larger mesh-dependent dissipation. This is especially

evident when the source and target mesh resolutions differ drastically. The use of the CAAS algorithm, when combined with

even non-conservative schemes such as GMLS, can provide global conservation and bounds preservation at the cost of added

dispersion to control numerical oscillations. In contrast, the built-in discontinuity indicators used by the WLS-ENOR algorithm5

demonstrate good feature resolving properties for real fields in all experiments conducted.

These experiments conducted on both uniform resolution meshes and regionally refined meshes provide valuable insight into

the properties of remapping algorithms and their numerical behavior. However, practical use of these algorithms in real-world

scenarios requires deeper investigation using more topologically diverse, complex meshes and discretization specifications that

are more representative of components used in E3SM and CESM.10

Finally, we want to emphasize that the MIRA infrastructure presented in this paper is freely available as an open-source

package (Guerra et al., 2021) to compare new and existing remapping algorithms under the same overall test constraints. Such

intercomparison studies are important to evaluate the cost of remapping algorithms under stability and accuracy constraints,

which remain crucial to better understanding the propagation of errors in coupled climate and weather systems.

Code availability. Information on the availability of source code for the remapping metrics intercomparison infrastructure featured in this15

paper, all relevant input meshes, and the final consolidated metrics data for schemes are provided below.
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Artifact Availability, License, Links

Remapping

intercomparison

code

The Python intercomparison workflow infrastructure and the scripts to compute the metrics

data for remapping schemes are available (Guerra et al., 2021). This code was developed

through funding from the CANGA project, and is publicly released under an open-source

license, with copyright owned by UChicago Argonne, LLC. v1.0 was tagged in September

2021 and the archive is available for download from Zenodo. The original repository is hosted

in GitHub. DOI: 10.5281/zenodo.5518037.

Raw satellite data

snapshot

The raw satellite data snapshots used to generate the Spherical Harmonic decomposition for

TPW, CFR, and TOPO fields are available at (Guerra and Mahadevan, 2021). The files

are distributed under the Creative Commons Attribution 4.0 International License, while ac-

knowledging the original sources for the data for TPW (Wimmers and Velden, 2011), CFR

(Platnick et al., 2020), and TOPO (Center, 2009; Amante and Eakins, 2009). v1.0 was re-

leased on Aug 09, 2021 and available here. DOI: 10.5281/zenodo.5172792.

Input meshes and

output metrics data

The pre-processed input meshes that were used in the study are available at (Mahadevan et al.,

2021). The input meshes and the consolidated metrics data for each of the remapping methods

(ESMF, TempestRemap, GMLS, GMLS-CAAS and WLS-ENOR) are made available under

an open-source license, with copyright owned by UChicago Argonne, LLC. v1.0 was tagged

in September 2021 and the archive is available for download from Zenodo. The original data

repository is hosted at GitHub. DOI: 10.5281/zenodo.5518065.
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