Response to the Referee comment on "A new sampling capability for uncertainty
quantification in the Ice-sheet and Sea-level System Model v4.19 using Gaussian
Markov random fields” by Kevin Bulthuis and Eric Larour

1 Summary statement

In this manuscript, the authors implement a method by which samples from a Gaussian Ran-
dom Field with Matern covariance can be drawn. This method is based on the stochastic PDE
approach. Using this sampling mechanism, the manuscript shows a handful of experiments
demonstrating the sensitivity of mass flux to input fields (e.g. thickness, traction) perturbed
according to this random noise. Tha manuscript also demonstrates an autoregressive approach
to generating time-correlated noise, and shows the experimental distribution of mass loss due
to an uncertain surface mass balance perturbed in this way.

The methods presented here are already mature, both from the perspective of the sampling
technique and the ice sheet model. There’s no data assimilation or attempts to tune the hyper-
parameters of the sampling methods, so there’s nothing to discuss with respect to inference.
The patterns of sensitivity are about as one would expect. It’s good that this capability exists,
and will be useful in future studies. The paper is mostly written clearly, and does a decent
job in placing this work in the appropriate context. As such, I only have some minor tech-
nical points, discussed below. However, this brevity is because there just isn’t much scientific
impact presented to comment on.

We would like to thank anonymous referee #1 for the time dedicated to this manuscript and
his/her constructive comments to improve the general quality and readibility of the manuscript.
We will try to give a proper response to his/her comments. For each referee’s comment (written
in blue), we included below a response (written in black) and proposed means to improve the
manuscript.

2 Minors comments

1.78: This WLOG statement isn’t true: of course, there’s a loss of generality from assuming a
mean of zero. However, it’s reasonable to argue that it doesn’t matter because your later plan
to use these as relative perturbations to some a priori inferred mean.

Agree. We remove the WLOG statement.

- 1.106: It’s worth noting here that Gaussian random fields are already being employed in
Isaac, 2015 (already referenced in this paper at another location) and also in Brinkerhoff,
2021( https://arxiv.org/abs/2108.07263 ), both of which use low-rank approximations to yield
the problem tractable.

Thank you for the suggestion. We have added these references as well as Babaniyi et al., 2021
(https://tc.copernicus.org/articles/15/1731/2021/) as references for applications of Gaussian
random fields in glaciology.

We have added the following sentence: "Gaussian random fields have already been employed
in glaciology in a number of studies including Isaac et al. (2015), Babaniyi et al. (2021) and
Brinkerhoff (2021)."



- 1.144: It’s worth mentioning the downsides to the SPDE approach as well: in the inverse
context, it provides no immediate solution for how to represent posterior covariance.

Thank you for the suggestion. We recognize that the manuscript lacks a bit of perspective
about the SPDE approach in the important context of inverse problems and that it cannot be
used directly to represent posterior covariance.

We have added the following paragraph in the manuscript:" The SPDE approach can also be
used to define a proper choice of a prior distribution for inverse problems in infinite dimension
(Bui-Thanh et al., 2013; Isaac et al., 2015; Petra et al., 2014; Stuart, 2010). However, this
approach does not provide any immediate solution to represent the posterior covariance. For
general inverse problems, the posterior distribution does not need to be Gaussian even if the
prior distribution is a Gaussian random field. In this case, the posterior covariance can be
estimated using, for instance, Markov chain Monte Carlo algorithms (Beskos et al., 2017; Petra
et al., 2014) or a Laplace approximation of the posterior distribution (Bui-Thanh et al., 2013,;
Isaac et al., 2015).

- 1.160: It’s not immediately obvious that the matrix square root (particularly of K') should
be easy to compute, or that it should retain sparsity. If it doesn’t retain sparsity, then the
scalability of this method could be substantially limited.

Indeed, there is a priori no reason for the square root of the matrices K and M to retain
the sparsity of both matrices. The computation of these square root matrices represent an
important computational cost compared to other numerical operations required by the SPDE
approach. This motivates the use of a lump matrix approximation of the mass matrix. A
lump matrix approximation of the matrix K can also be considered for o = 1 (and odd values
of a) in order to compute the K'/2. Tt should be better acknowledged in our manuscript.

We have changed the sentence as: "The bulk of the computational cost is in evaluating the
square root of the matrix M or K. Even if the matrices M and K are sparse, their square
root does not need to be sparse. In order to speed up the computation and retain sparsity, the
mass matrix M (idem for K if K'/2 needs to be evaluated) can be approximated as a diagonal
lump mass matrix M"

- Eq. 16: Is there a more rigorous means to quantify what potential errors that this mass
lumping step induces.

While we think that investigating the impact of the mass lumping (or Markov) approximation
is beyond the scope of this paper, we want to mention that it has been studied in Appendix
C5 in Lindgren et al. (2011). Following Lindgren et al. (2011) the convergence rate for the
Markov approximation is the same as for the full finite-element model. Bolin and Lindgren
(2009) have also shown negligible differences between the exact finite-element model repres-
entation and the Markov approximation.

We have added the following sentence to the manuscript for further references regarding the
mass lumping approximation: "The Markov approximation of the Gaussian random field has
been shown to have negligible differences with the exact finite element representation (Bolin
and Lindgren, 2009) and its convergence rate is the same as the exact finite element repres-
entation (Lindgren, 2011).

- 1.192: T don’t understand this paragraph. if ¢ = 1 then shouldn’t nothing change at all



(contrary to the statement that it leads to a random walk)? It seems to me that the equations
would yield,

Ty = Ty + €, (1)
e~ N(p=0,0"=0) (2)

I may be misunderstanding, but perhaps clarification would be helpful here.

Indeed, the paragraph may be a bit confusing. The variance of an AR1 process can be
computed as
Vize] = ¢*V]z;1] + Vle] = ¢*V[z, 1] + o7 (3)

The condition on the variance of the noise for the autoregressive to be stationary in time with
constant variance o2 is that 02 = 02(1—¢?). If ¢ = 1, it requires indeed the noise term to have
a zero variance for the autoregressive model to be stationary in time. We did not consider the
degenerate case of a Gaussian noise with zero variance when writing this paragraph (as there
would be no randomness in the process), but this should be made more explicit to avoid any
confusion. If we impose o2 > 0, then the autoregressive model is indeed a random walk for

6 =1.

To avoid any confusion, we change the paragraph as follows: "At every time step t, the noise

term €:(s) is chosen as a Gaussian random field with Matérn covariance function and positive

variance o2, obtained as the solution of the SPDE (3). If |¢| < 1, x; is a stationary process in

time with zero mean and marginal variance o? if x is a Gaussian random field with zero mean
2

and variance o2 and the noise variance is chosen as 02 = o2(1 — ¢?). If |¢| > 1, the process is

non stationary in time, with the case ¢ = 1 corresponding to a discrete random walk."

- 1.285: Can ’converged’ be rigorously defined here.

Indeed the statement 'reasonable convergence’ might seem a little bit vague. We estimated
the estimation error for the mean and standard deviation of the mass flux via bootstrapping.
The bootstrap error is of a few hundredths of percent for the mean value and a few percents
for the standard deviation. We have indicated these values at the end of the sentence.

- Fig. 16 Might this be better represented as a single plot, with t as the independent variable?

We thank the referee for his/her suggestion. Such a single plot would definitely make sense.
Unfortunately, the uncertainty in the mass flux estimates is so tiny that it cannot be represen-
ted properly on a single plot as a function of time. Because we want to highlight the increase
in the uncertainty over time, we find the current figure more appropriate for our purpose.
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