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Abstract. Communications in distributed memory supercomputers are still limiting scalability of geophysical models. Con-

sidering the recent trends of the semiconductor industry, we think this problem is here to stay. We present the optimisations

:::::::::::
optimizations

:
that have been implemented in the actual 4.0 reference version of the ocean model NEMO 4.0 to improve its

scalability. Thanks to the collaboration of oceanographers and HPC experts, we identified and removed the unnecessary com-

munications in two bottleneck routines, the computation of free surface pressure gradient and the forcing in the straights
::::::
straight5

or unstructured open boundaries. Since a wrong parallel decomposition choice could undermine computing performance, we

impose its automatic definition in all cases, including when subdomains containing land points only are excluded from the

decomposition. For a smaller audience of developers and vendors, we propose a new benchmark configuration, easy to use

while offering the full complexity of operational versions.

1 Introduction10

There is , hopefully, no more
::
no

:::::
longer

:
need to justify the importance of climate research for our societies (Masson-Delmotte

et al., 2018). Climate studies explore a complex system driven by a large variety of interactions between physical and
::::
from

:::::::
physical

::
to bio-geo-chemical processes over ocean, atmosphere, land surface and cryosphere. Numerical modeling is an essen-

tial tool in climate research, which supplements the sparse observations in time and space. Numerical experiments are a unique

way to tests
::
test

:
hypotheses, to investigate which processes are at stake, to quantifying

:::::::
quantify

:
their impacts on the climate and15

its variability and, last but not lest
::::
least, to perform climate change forecasts (Flato et al., 2013). The numerical performance of

climate models is key and must be kept at the best possible level in order to minimize the time-to-solution but also the energy-

to-solution. Models must continuously evolve in order to take advantage of new machines. Exascale is expected in the coming

years (the supercomputer Fugaku, ranked number 1 of November 2020 TOP 500 list, achieved a Linpack performance of 0.44

EFlop/s) but the growing complexity of the supercomputers makes it harder and harder for model developers to catch-up with20

the expected performance.

Scalability is a major issue as models will have to achieve good scaling performance on hundred
::::::::
hundreds of thousands or

even millions of a mix of tasks and threads (Etiemble, 2018). In addition to the hardware constrain, the community interest

in better representing fine spatial scale phenomena pushes for finer and finer spatial resolution which can only be achieved

1

https://orcid.org/0000-0002-5641-1437


through an increase of the parallel decomposition of the problem. The costly communications between parallel processes must25

thus be minimised
:::::::::
minimized in order to keep the time restitution of the numerical experiments at its best level.

In that perspective, this document focuses on the "NEMO" model (Nucleus for European Modelling of the Ocean, http://www.nemo-ocean.eu,

Madec and Team), a framework for research activities and forecasting services in ocean and climate sciences, developed in

a sustainable way by a European consortium. The constant renewal
::::::::::
improvement

:
of the model equations on

::::::
physics

:::
on

:::
the

one hand and the evolution of the supercomputers technology on the other hand require that model computing performance30

must be continually reviewed and improved. It is a delicate work to optimise
:::::::
optimize

:
a model like NEMO, which is used by

a large community which profiles are ranging from Ph.D. students to experts in climate physics and modelling or operational

oceanography. This work must improve the performance while preserving the code accessibility by
::
for

:
climate scientists who

use it and develop it , and are not necessary
::
but

:::
are

::::
not

:::::::::
necessarily

:
experts in computing sciences. This optimization work

lies within this framework and we gathered, in this study, authors with very complementary profiles: oceanographers, NEMO35

developers, specialized engineers in climate modelling and frontier simulations and pure HPC engineers. This works
::::
work

complements the report of Maisonnave and Masson (2019) by presenting the new HPC optimisations
:::::::::::
optimizations that have

been implemented in NEMO 4.0, the actual
::::::
current

:
reference version of the code.

Whether the core number increase in the future machines will affect the
:::
The

::::::::
tendency

::
to

:::::::
increase

::::
the number of cores

::
on

:::::::::::::
supercomputers

:::::
might

::::::::
translate

::
to

::
an

:::::::
increase

::
of
:::::

cores
:
per share memory node, the total machine node number, or both, is40

unclear. In NEMO, parallel subdomains are not sharing memory and the MPI library is required to exchange the model variables

at their boundaries. This is why the incremental approach we follow is addressing and facilitating the future addressing of
:::::
Thus,

::
the

:::::
work

::
of

::::
this

:::::
study

::::::
focuses

:::
on

:::
the

::::::::
reduction

::
of

:
the problem of inter and intra node MPI communication cost. We assume

that its reduction is and will stay worthwhile, independently ,
:::
for

::::
both

:::::::::
inter-mode

::::
and

:::::::::
intra-node.

:::
We

::::::
expect

::::
that

:::
the

::::
need

:::
for

::::
such

::::::::
reduction

:::
will

::::::::
continue

::
in

::::::
future,

::::::::::
independent of hardware evolution.45

We first describe the new features that have been added to the code in order to support the optimisation
:::::::::::
optimization work,

see Sect. 2. This includes an automatic definition of the domain decomposition (Sect. 2.1), which minimizes the subdomains

size for a given maximum number of cores and takes into account the possibility to remove
::::
while

::::::
staying

::::::::::
compatible

::::
with

:::
the

::::::
removal

:
subdomains containing only land points. We next present, in Sect. 2.2, the new benchmark test case that was specif-

ically designed to be extremely simple to be deployed while being able to represent all physical options and configurations50

of NEMO. The optimisation
:::::::::::
optimization work by itself is detailed in Sect. 3. A significant reduction of the number of com-

munications is first proposed in the computation of free surface pressure gradient (Sect. 3.1). The second set of optimisation

::::::::::
optimization

:
concerns the communications in the handling of the straits or unstructured open boundaries, Sect. 3.2. The last

section (Sect. 4) discusses and concludes this work.

2 A proper benchmarking environment55

This second section of the paper details the code modifications introduced in NEMO 4.0 in order to provide a proper benchmarking

environment aiming
:::::::::::
benchmarking

:::::::::::
environment

:::::
aimed at facilitating numerical performance tests and optimizations.
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2.1 Optimum Dynamic Sub-Domain Decomposition

The MPI implementation in NEMO uses a horizontal domain decomposition : the first 2 dimensions are divided by 2 coefficients

::::::::::::
decomposition

:::::
along

:::
the

::::::::
horizontal

::::::
plane.

::::
Each

::
of

:::
the

:::::::::
horizontal

:::::::::
dimension

::
is

::::::
divided

:::
by

:
a
:::::::::
coefficient (called jpni and jpnj)60

allowing to distribute the MPI tasks over jpni× jpnj rectangular
:::
and

:::::::::
horizontal subdomains (see chapter 8.3 in Madec and

Team). Note that the land only subdomains
:::::
Land

::::
only

::::::::::
subdomains

:::
(i.e.

:::::::::::
subdomains

:::::::::
containing

::::
only

::::
land

::::::
points) can be sup-

pressed from the computational domain. The
:
If

:::
so,

:::
the number of MPI task is, in this case,

::::
tasks

:::
will

:::
be smaller than jpni×jpnj

(see figure
:::::
Figure

:
8.6 in Madec and Team).

::::
Note

::::
that,

::
as

:::::::
NEMO

:::::::::::
configurations

::::
can

::::::
contain

::::::
"under

:::
ice

::::
shelf

:::::
seas",

::::
land

::::::
points

::
are

:::::::
defined

::
as

:::::
points

::::
with

::::
land

::::::::
masking

:::::
values

::
at

:::
all

:::::
levels

:::
and

:::
not

::::
only

::
at

:::
the

:::::::
surface.65

The choice of the domain decomposition proposed by default in NEMO until
::
up

:::
till version 3.6 was very basic as 2 was

the only prime factor considered when looking at divisors of the number of MPI tasks ! Tintó et al. (2017) underlined this

deficiency. In their figure
:::::
Figure

:
4, they demonstrated that the choice of the domain decomposition is a key factor to get

the appropriate model scalability. In their test with ORCA025 configuration on 4096 cores, the number of simulated years

per day is almost multiplied by a factor of 2 when using their optimum domain decomposition instead of the default one.70

Benchmarking NEMO with the default domain decomposition would therefore be completely misleading. Tintó et al. (2017)

proposed a strategy to optimize the choice of the domain decomposition in a preprocessing phase. Finding the best domain

decomposition is thus the starting point of any work dedicated to NEMO numerical performance.

We detail in this section how we implemented a similar approach, but on-line in the initialization phase of NEMO. Our idea

is to propose, by default, the best domain decomposition for a given number of MPI tasks and avoid the waste of cpu
::::
CPU75

resources by non-expert users.

2.1.1 Optimal domain decomposition research algorithm

Our method is based on the minimization of the size of the MPI subdomains
:::::
while taking into account the fact that land only

subdomains can be excluded from the computation. The algorithm we wrote can be summarized in 3 steps:

1. Get the Land Fraction (LF : the total number of land points divided by the total number of points, thus between 0 and 1)80

of the configuration we are running. The Land Fraction will provide the maximum number of subdomains that could be

potentially removed from the computational domain. If we want to run the model on Nmpi processes we must look for

a domain decomposition generating a maximum of Nsubmax = bNmpi/(1−LF )c subdomains, as we wont
::::
won’t

:
be

able to remove more than Nmpi×LF land only subdomains.

2. We next have to provide the best domain decomposition defined by the following rules: (a) it generates a maximum of85

Nsubmax subdomains, (b) it gives the smallest subdomain size for a given value Nsub of subdomains and (c) no other

domain decomposition with less subdomains has a subdomain size smaller or equal. This last constrain requires in fact

that we build the list of best domain decompositions incrementally, from Nsub= 1 to Nsub=Nsubmax.
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3. Having this list, we have to test the largest value of Nsub that is listed and check if
:
, once we remove its land only

subdomains, we obtain a
:::
the number of remaining ocean subdomains lower or equal than

::
is

:::::
lower

::::
than

::
or

:::::
equal

:::
to90

Nmpi. If it is not the case, we discard this choice and test the next domain decomposition listed (in a decreasing order

of number of subdomains) until it fits the limit of Nmpi processes.

Note that we could imagine that in a few cases, a non-optimal domain decomposition would
::::
could

:
allow to remove more

land only subdomains than the selected optimal decomposition and become a better choice. Taking into account this possibility

would increase tenfold the number of domain decompositions to be tested, which would make the selection extremely costly95

and,
:::
in

:::::::
practice,

:
impossible to use. We consider that the probability of facing such a case becomes extremely unlikely as we

increase the number of subdomains (which is the usual target) as smaller subdomains fit better the coastline. We therefore

ignore this possibility and consider only optimal decomposition when looking at land only subdomains.

If the optimal decomposition found has a number of ocean subdomains Nsub smaller than Nmpi, we print a warning

message saying that the user provides more MPI tasks than needed and we simply keep in the computational domain (Nmpi−100

Nsub) land only subdomains in order to fit the required number of Nmpi MPI tasks. This simple trick that may look quite

useless for simple configurations,
:
is in fact required when using AGRIF (Debreu et al., 2008) because (as it is implemented

today in NEMO) each parent and child domains share the same number of MPI tasks that can therefore rarely be optimized to

each domain at the same time.

The next 2 sub-sections details
:::::
detail the keys parts of steps (1,3) and (2).105

2.1.2 Getting land-sea mask information

We need to read the global land-sea information for 2 purposes: get the land fraction (step 1) and find the number of land

only subdomains in a given domain decomposition (step 3). By default, reading NetCDF configuration files in NEMO can be

trivially done by the mean of
:::
via a dedicated Fortran module ("iom"). However, in this specific context, things must be done

more carefully to avoid a one-off but potentially extremely large memory allocation associated with a massive disk access.110

Until
:::
This

:::::::
solution

::::
was

::::
used

::
up

:::
till

:
revision 3.6 included,

:::
but

:::
has

::
a

:::::
major

:::::::::
drawback: each MPI process was reading the whole

global land-sea mask, which .
::::
This

:::::::::
potentially

:::::::
implies

::
an

::::::::
extremely

:::::
large

:::::::
memory

::::::::
allocation

:::::::
followed

:::
by

:
a
:::::::
massive

::::
disk

::::::
access.

::::
This is clearly not the proper strategy when aiming at running very large domains on large numbers of MPI processes with

limited memory . !
:

The difficulty here lies in the minimization of the memory used to get the needed information from the

global land-sea mask. To overcome this issue, we
:::
the

::::::
general

::::
idea

::
is

::
to dedicate some processes to read only horizontal

:::::
zonal115

stripes of the land-sea mask file. This solution requires less memory and will ensure the continuity of the data to be read which

optimizes the reading process.

When looking at the land fraction for step
:::
The

:::::::
number

::
of

::::::::
processes

::::
used

:::
to

::
do

:::
this

:::::
work

::::
and

::
the

::::::
width

::
of

:::
the

:::::
stripe

::
of

::::
data

::
we

::::
read

:::::
differ

::
in

:::::
steps (1) , we need

:::
and

:::
(3).

:

::
To

::::::::
compute the total number of ocean points , and

:
in

::::
step

:::
(1)

:
we use as much processes as we have

::::
many

::::
MPI

:::::::::
processes120

::
as

:::::::
available

:
to read the file with 2 limits:

::
(i)

:
each process must read at least 2 linesand ,

::::
(ii) we use no more that

:::
than

:
100
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processes to avoid to saturate
:::::::
saturating

:
the file system with too many processes

::
by accessing the same input file

::::
with

:::
too

:::::
many

::::::::
processes (an arbitrary value that could be changed). The number of oceanic points in each stripe is next added and shared

among processes through
:::
total

:::::::
number

::
of

:::::
ocean

::::::
points

::
in

::
the

:::::::::
simulation

::
is
::::
then

:::::
added

::::::
among

::::
MPI

::::::::
processes

:::::
using

:
a collective

communication.125

When looking at the land only subdomains in a jpni× jpnj domain decomposition for step (3), we need the number of

ocean points in each of the jpni×jpnj subdomains. In this case, we read jpnj stripes of land-sea mask corresponding to bands

:::::
stripes

:
of subdomains. This work is distributed among a maximum of the jpnj

:::::::::::::
min(100, jpnj)

::::
MPI

:
processes accessing the

input file concurrently. Each of these processes reads sequentially one
:
A
:::::::
process

:::::
reads

:::
one

:::::
stripe

::
of

::::
data

:
or several stripes of

data and communicates only
::
if

::
we

::::
use

:::
less

::::
than

:::::
jpnj

::::::::
processes.

::
A
::::::
global

:::::::::::::
communication

::
is

::::
then

::::
used

::
to

:::::::
compute

:
the number130

of ocean points for the jpni subdomains included in data stripes loaded in memory
::::::::::
subdomains

:::::::::
containing

::
at

::::
least

:::
one

::::::
ocean

::::
point.

2.1.3 Getting the best domain decomposition sorted from 1 to Nsubmax subdomains

The second step of our algorithm starts with the simple fact that domain decomposition uses Euclidean division: the division

of the horizontal domain by the number of processes along i and j directions rarely results in whole numbers. In consequence,135

some MPI subdomains will potentially be 1-point larger in i and/or j direction than others. Increasing the number of processes

does not always reduce the size of the largest MPI subdomains, especially when using a large number of processes compared

to the global domain size. Table 1 illustrates this point with a simple example: a 1D domain of 10 points (jpiglo) distributed

among jpni tasks with jpni ranging from 1 to 9. Because of the halos required for MPI communications, the total domain

size is (jpiglo+ 2 ∗ jpni− 2) that must be divided by jpni. One can see that using jpni= 4 to 7 will always provide the140

same size for the largest subdomains: 4. Only specific values of jpni (1, 2, 3, 4 and 8) will end up in a reduction of the largest

subdomains
:::::::::
subdomain size and correspond to the optimized values of jpni that should be chosen. Using other values would

simply increase the number of MPI subdomains that are smaller without affecting the size of the largest subdomain.

jpiglo 10

jpni 1 2 3 4 5 6 7 8 9

jpiglo+2jpni− 2 10 12 14 16 18 20 22 24 26

(jpiglo+2jpni− 2)/jpni 10 6.0 4.66 4.0 3.6 3.33 3.14 3.0 2.88

jpimax 10 6 5 4 4 4 4 3 3
Table 1. Example of 1D 10-point domain decomposition

This result must be extended to the 2D domain decomposition used in NEMO. When searching all couples (jpni,jpnj)

that should be considered when looking for the optimal decomposition, we can quickly reduce their number by selecting145

jpni and jpnj only among the values suitable for the 1D decomposition of jpiglo along the i direction and jpjglo along the j

direction. The number of these values corresponds roughly to the number of divisor
::::::
divisors

:
of jpiglo and jpjglo, which can be
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approximated by 2
√
jpiglo and 2

√
jpjglo. This first selection is thus providing about 2

√
jpiglo× jpjglo couples (jpni,jpnj)

instead of the (jpiglo×jpjglo) couples that could be defined by default. Next, we discard from the list of couples (jpni,jpnj)

all cases ending up with more subdomains than Nsubmax provided by the previous step.150

The final part of this second step is to build the list of optimal decompositions, each one defined by a couple (jpni,jpnj),

with a number of subdomains (jpni× jpnj) ranging from 1 to a maximum of Nsubmax. This work is done with an iterative

algorithm starting with the couple (jpni,jpnj) = (1,1). The recurrence relation to find element N + 1 knowing element N of

the list of optimal decompositions is the following: first, we keep only the couples (jpni,jpnj) which
::
for

:::::
which

:::
the

:
maximum

subdomain size is smaller than the maximum subdomain size found for the element N . Next, we define the element N + 1 as155

the couple (jpni,jpnj) that gives the smallest number of subdomains (jpni× jpnj). It happens rarely that several couples

(jpni,jpnj) correspond to this definition. In this case, we decided
:
If
:::
the

::::::::
situation

:::::
arises,

:::
we

::::::
decide

:
to keep the couple with

the smaller subdomain perimeter , so
:
to
::::::::
minimize

:
the volume of data exchanged during the communicationsis minimized. This

choice is quite arbitrary as NEMO scalability is limited by the number of communications but not by their volume. Limiting

the subdomain perimeter should therefore have a very limited effect. We stop the iteration process once there is no more couple160

with a subdomain size smaller than the one selected at rank N .

Once this list of the best domain decomposition sorted from 1 toNsubmax subdomains is established, we just have
:
it
:::::::
remains

::::
only to follow the third step of our algorithm to get the best subdomain decomposition (see section 2.1.1).

2.1.4
:::::::::
Additional

:::::::::::
optimization

:::
to

::::::::
minimize

:::
the

::::::
impact

:::
of

:::
the

:::::
north

::::
pole

:::::::
folding

:::
The

::::::
former

:::::
work

::
of

:::::::::::::::::::::::::::
Maisonnave and Masson (2019)

::::::
showed

:::
that

:::
the

:::::::
specific

:::::
north

::::
pole

::::::
folding

::::
used

::
in

::::::
global

::::::::::::
configurations165

:::
(the

:::::::
tripolar

::::::
ORCA

::::::
family

:::::
grids,

::
?
:
)
::
is

::
a
::::::
source

::
of

:::::
load

:::::::::
imbalance

::
as

:::
the

:::::::::
processes

::::::
located

::::::
along

:::
the

:::::::
northern

:::::::::
boundary

::
of

:::
the

:::::::
domain

::::
must

::::::::
perform

:::::::::
additional

::::::::::::::
communications.

:::::::::::::::::::::::::::
Maisonnave and Masson (2019)

::::::
reduced

::::
the

::::
extra

:::::
cost

::
of

::::::
theses

:::::::::::::
communications

:::
by

::::::::::
minimizing

:::
the

:::::::
number

:::
of

:::::
array

:::::
lines

:::::::
involved

:::
in

:::::
these

:::::::
specific

::::::::::::::
communications.

:::::
This

:::::::::::
development

::::::::
decreased

:::
the

::::::::
additional

:::::
work

::::
load

::
of

:::
the

:::::::
northern

:::::::::
processes.

:::
We

:::::::
decided

::
to

:::
go

:::
one

::::
step

::::::
further

::
by

::::::::::
minimizing

:::
the

::::
size

:::::
along

::
the

:::::::::
j-direction

:::
of

:::
the

:::::::
northern

::::
MPI

::::::::::
subdomains

:::
so

::::
they

::::
have

::::
less

::
to

:::::::
compute

::::
and

:::
can

:::::::
perform

::::
their

:::::::
specific

::::::::::::::
communications170

::::::
without

:::::::
creating

::::
(too

:::::
much)

::::
load

::::::::::
imbalance.

::::
This

::::::::::
optimization

:::::
takes

:::::::::
advantage

::
of

:::
the

::::::::
Euclidean

:::::::
division

:::
of

:::
the

:::::
global

:::::::
domain

::::
used

::
to

::::::
define

:::
the

::::
MPI

::::::::::
subdomains

::::
(see

::::
table

:::
1).

::
In

:::
the

:::::
large

:::::::
majority

::
of

::::::
cases,

:::
this

:::::::
division

:::
has

::
a
::::::::
non-zero

::::::::
remainder

:::
(r)

::::::
which

::::::
means

:::
that

:::::
some

::::::::::
subdomains

:::::
must

::
be

::::::
bigger

::::
than

:::
the

::::::
others.

::::
The

::::
idea

::
is

::::::
simply

:::
to

::
set

::::
the

:::::
j-size

::
of

:::
all

::::
MPI

:::::::::::
subdomains,

::::::
except

:::
for

:::
the

:::::::
northern

:::::
ones,

:::
to

:::
the

:::::
largest

:::::
value

:::::
given

::
by

:::
the

::::::::
Euclidean

:::::::
division

::::::::
(jpjmax)

:::
and

::
to
:::::::
attribute

:::
the

:::::::::
remaining

:::::
points

:::::
along

:::
the

:::::::::
j-direction

::
to

:::
the

:::::::
northern175

::::::::::
subdomains.

:::
By

::::::
default,

:::
the

::::::
domain

::
is

::::
split

:::::
along

:::
the

::::::::
j-direction

::::
with

:::
the

::::::::
following

::::::::::::::
j-decomposition:

::::::::::::::::::::::::::::::::
r× jpjmax + (jpnj− r)(jpjmax− 1).

:
If
:::
the

:::::::::::
configuration

:::::::
includes

:::
the

:::::
north

::::
pole

:::::::
folding,

::
we

::::::
switch

::
to

:::
the

::::::::
following

::::::::::::::
j-decomposition:

:::::::::::::::::::::::::
(jpnj− 1)jpjmax + jpjnorth

::::
with

::::::::::::::::::::::::::
jpjnorth = jpjmax− jpnj+ r.

::::
This

::::
trick

:::::
allows

:::
us

::
to

::::::::
minimize

:::
the

:::::
j-size

::
of

:::
the

:::::::
northern

::::::::::
subdomains

:::::::
without

::::::::
changing

::
the

::::
size

::
of

:::
the

::::::
largest

::::
MPI

:::::::::::
subdomains.

::::
Note

::::
that

:
a
::::::::
minimum

:::
of

:
4
::
or

::
5
:::::
points

::
is
:::::::
required

:::
for

::::::::
jpjnorth::

in
:::::
order

::
to

:::::::
perform

:::
the

::::
north

::::
pole

::::::
folding

::::::
around

:::
the

:::::::
F-point

:::::::::::
(jperio= 6)

::
or

:::
the

::::::
T-point

:::::::::::
(jperio= 4).

:
180
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Figure 1.
::::::
Example

::
of

:::::::::
ORCA025

::::::
domain

:::::::::::
decomposition

:::::
along

::
the

:::::::::
j-direction

::::
(1021

:::::::
points).

::::
Left:

::::
j-size

::
of
:::

the
::::::
largest

:::
MPI

::::::::::
subdomains

:::::::
(jpjmax,

::
in

::::
grey)

:::
and

::
of

:::
the

::::::
northern

::::
MPI

:::::::::
subdomains

::::::::
(jpjnorth,

::
in

::::::
orange)

::::::::
according

::
to

::
the

:::::::
optimum

::::::
number

::
of

::::
MPI

:::::::::
subdomains

::
in

:::
the

:::::::
j-direction

::::::
(jpnj).

:::::
Right:

::::
ratio

::::::::::::::
jpjnorth/jpjmax :

in
:::
%.

:::::
Figure

::
1

::::::::
illustrates

::::
this

::::::::::
optimization

:::::::
applied

::
to

:::
the

:::::::::
ORCA025

::::
grid,

::::::
which

:::::::
contains

::::
1021

::::::
points

:::::
along

:::
the

:::::::::
j-direction.

:::::
Note

:::
that,

:::::::::
following

:::
the

:::::
results

:::::::::
illustrated

::
in

::::
table

::
1,

:::
we

:::
kept

::::
only

:::
the

:::::::
optimal

:::::
values

::
of

:::::
jpnj,

:::::
hence

:::
the

::::::::::
occurrence

::
of

::::::
discrete

::::::
values

::::
along

::::
this

::::
axis.

:::::
When

:::::
jpnj

::
is

:::::
small

:::::
(< 20

::
in

:::
the

:::::::::
ORCA025

:::::
case),

::::::::
jpjnorth:::::::

remains
:::::
close

::
to

::::::
jpjmax::::

and
::::
their

::::
ratio

::
is

::::::
higher

:::
than

:::::
90%.

::::
This

:::::::::::
optimization

:::::
seems

::::
here

:::
to

::
be

::::::::::
insufficient

:::
but

:::::::::::::
communications

::::
are

::::::
usually

:::
not

:
a
:::::::::

bottleneck
:::::
when

:::::
using

:::::
large

::::
MPI

::::::::::
subdomains

:::::::::::
(jpjmax 100

:::
and

::::::
above).

::::
The

::::
ratio

:::::::::::::::
jpjnorth/jpjmax::

is
::::::::
generally

:::::::
smaller

::
for

::::::
larger

:::::
values

:::
of

::::
jpnj

:::::::
(> 20).185

:
It
:::::::
reaches

:
a
:::::::::
minimum

::
of

::::
20%

:::
for

:::::::::
jpnj = 36

:::
but

:::
the

:::::
main

::::::::
drawback

:::
of

:::
this

::::::
simple

:::::::::::
optimization

::
is

:::
that

:::
the

:::::
ratio

:::
can

:::::::
reaches

::::
very

::::
large

::::::
values

::::::::
(> 90%)

::::
even

:::
for

::::
very

:::::
large

::::::
values

::
of

:::::
jpnj.

::::
The

::::::
benefit

:::
of

:::
this

:::::::::::
optimization

::::
may

::::::::
therefore

:::::::::::
significantly

::::
vary

::::
even

:::::
when

::::::
slightly

::::::::
changing

:::
the

::::::::::::::
j-decomposition.

::::
This

::::::::::
optimization

::
is
::
a

:::
first

::::
step

::
to

:::::::
improve

:::::::
NEMO

:::::::::::
performances

:::::
when

::::
using

::
a
:::::::::::
configuration

::::
with

:::
the

:::::
north

::::
pole

::::::
folding

::::
and

::
we

:::
are

::::
still

::::::::
exploring

:::::
other

::::::::
pathways

::
to

::::
find

::
an

:::::::::::
optimization

:::
that

::::::
would

::
be

:::::::
adapted

::
to

::
all

:::::::::::::::
j-decompositions.

::::
We

:::::
could,

:::
for

::::::::
example,

:::
set

:::
the

:::::
j-size

::
of

:::
the

::::::::
northern

::::
MPI

::::::::::
subdomains

::::::
before

:::::::::
computing190

::
the

::::::::::::::
j-decomposition

::
of

:::
the

:::::::::
remaining

::::
part

::
of

:::
the

:::::::
domain.

::::
This

:::::::
solution

::::::
would

:::::::
however

::::::
require

:
a
::::::::

criterion
::
to

::::::
specify

:::
the

:::::
most

:::::::::
appropriate

:::::
j-size,

::::::
which

:::
will

:::::::::
necessitate

::::::
further

::::::::::::
benchmarking

:::::
work

::
to

:::::::
quantify

:::
the

::::::::
remaining

::::
load

:::::::::
imbalance,

:::
its

::::::::::
dependency

::
to

:::
the

:::::::
domain

::::
size,

::
to

:::
the

:::::::
number

::
of

::::::::::
subdomains

:::
and

::::
very

:::::
likely

::
to
:::
the

::::::::
machine

:::
and

::
its

::::::::
libraries.

2.2 The BENCH configuration

Once we found
::
On

:::
top

::
of

::::::
finding

:
the best domain decomposition, exploring the code numerical performance requires a proper195

benchmark.
:::::::::
Preferably

::::
one that is easy to install and configure but, at the same time, keeps the

::::
while

:::::::
keeping

:::
the

:
code usage

close to the production mode.

The NEMO framework proposes various configurations based on a core ocean model: e.g. global (ORCA family) or regional

grids, with different vertical and horizontal spatial resolution
:::::::::
resolutions. Different components can moreover be added to the

ocean dynamical core: sea-ice (i.e. SI3) and/or bio-geo-chemistry (i.e. TOP-PISCES). A comprehensive performance analysis200
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must thus be able to scrutinise
::::::::
scrutinize the subroutines of every module sets to deliver a relevant message about the computing

performance of the NEMO model to its whole users
:::
the

:::::
whole

::::
user community. On the other hand, as pointed out by the former

RAPS consortium (Mozdzynski, 2012), performing such benchmarking exercise must be kept simple, since it is often done by

people with basic knowledge of NEMO or physical oceanography (e.g.,
:
HPC experts and hardware vendors).

We detail in this section a new NEMO configuration we specifically developed to simplify future benchmarking activi-205

ties by responding to the double constraint of (1) be light and trivial to use and (2) allow to test any NEMO configuration

(size, periodicity pattern, components, physical parameterizations...)
:
. At the opposite of the dwarf concept (Müller et al.,

2019), this configuration encompasses the full complexity of the model and helps to address the current issues of the commu-

nity. This BENCH configuration was used in (Maisonnave and Masson, 2019)
::::::::::::::::::::::::::
Maisonnave and Masson (2019) to assess the

performances
:::::::::::
performance of the global configuration (ORCA family). We use it in the current study section to continue this210

work and improve now the performances
:::
but

::::
also

::
to

:::::::
improve

:::
the

::::::::::
performance

:
of the regional configurations.

2.2.1 BENCH general description

This new configuration, called BENCH, is made available in the tests/BENCH directory of the NEMO distribution.

BENCH is based on a flat bottom rectangular cuboid, which allows to by-pass any input configuration file and gives the pos-

sibility to define the domain dimensions simply via namelist parameters (nn_isize, nn_jsize and nn_ksize in namusr_def ).215

Note that the horizontal grid resolution is fixed (100km) whatever grid size is defined, which limits the growth of instabilities

and allows to keep the same time step length in all tests.

Initial conditions and forcing fields do not correspond to any reality and have been specifically designed (1) to ensure

the the maximum of robustness and (2) to facilitate BENCH handling as they do not require any input file. In consequence,

BENCH results are meaningless from a physical point of view and should be used only for benchmarking purposes. The model220

temperature and salinity are almost constant everywhere with a light stratification which keep the vertical stability of the model.

We add on each point of each horizontal levels a very small perturbation which keeps
::::
level

:
a
::::::::::
perturbation

:::::
small

:::::::
enough

::
to

::::
keep

the solution very stable but lets
::::
while

::::::
letting the oceanic adjustment processes occurring and

:
to

::::::::
maintain the associated amount

of calculations at a realistic level. This perturbation also guarantees that each point of the domain has a unique initial value of

temperature and salinity, which facilitates the detection of potential MPI issues. We apply a zero forcing at surface, except for225

the wind stress which is small and slowly spatially varying.

To make it as simplest
:::::
simple

:
as possible to use, the BENCH configuration does not need any input files

::
file, so that a

full simulation can be lead without any other download but
:::::::::
performed

::
by

:::::::::::
downloading

::::
only

:
the source code. In addition, the

lack of input (or output) files prevents any disk access perturbation of our performance measurement. However, output can

be activated as in any NEMO simulation, for example to make possible a performance evaluation
:::
test

:::
the

::::::::::
performance

:
of the230

XIOS (Meurdesoif, 2018) output suite.
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2.2.2 BENCH flexibility

Any NEMO numerical schemes and parameterizations
::::::
scheme

::::
and

::::::::::::::
parameterization can be used band be used in BENCH. To

help the user in his namelist choices and to test diverse applications, a selection of namelist parameters is provided with BENCH

to confer to the benchmarks the numerical properties corresponding to popular global configurations: ORCA1, ORCA025 and235

ORCA12.

The SI3 sea-ice and TOP-PISCES modules can be activated or not
:::::
turned

:::
on

::
or

:::
off

:
by choosing the appropriate namelist

parameters and CPP keys when compiling. The initial temperature/salinity definition was designed in such a was
:::
way

:
that if

SI3 is activated in the simulation, the sea ice will cover about 1/5 of the domain, which corresponds approximately of
::
to the

annual ratio of ORCA ocean grid points covered by sea-ice.240

Any closed or periodical conditions can be used in BENCH and specified through a namelist parameter (nn_perio in

namusr_def ). User can for example, use
::::::
choose

:::::::
between

:
closed boundaries, East-West periodical conditions, bi-periodic

conditions (nn_perio = 7, to make sure that all MPI subdomains have exactly 4 neighbours) or even the north pole folding

::::
used

::
in

:::
the

::::::
global

:::::::::::
configuration

::::::
ORCA

:
(nn_perio = 4 or 6)used in the global configuration ORCA with its bi-polar grid in

the northern hemisphere
:
.
::::
Note

::::
that

:::::::::
bi-periodic

:::::::::
conditions

::::::
ensure

:::
that

:::
all

::::
MPI

::::::::::
subdomains

::::
have

:::
the

::::
same

:::::::
number

::
of

:::::::::
neighbour245

::::::::::
subdomains

::
if

::::
there

:::
are

:::
no

::::
land

:::::::
points,

:
it
::

is
::

a
:::::::::
convenient

:::::
way

::
to

::::::
reduce

::::
load

:::::::::
imbalance. The specificity of the periodical

conditions in ORCA global grids have
:::
has a big impact on performance, which

:
.
::::
This motivated the possibility to use them in

new
::
the

:
BENCH configuration: a simple change of nn_perio definition gives to BENCH the ORCA periodic characteristics

and reproduces the same communication pattern between subdomains located on the Northernmost part of the grid.

The previous
::::::::
foregoing section describes BENCH main features that are set by default

:
, but we must keep in mind that each250

of them can be modified through namelist parameters if needed. By default, BENCH is not using any input file to define the

configuration, the initial conditions and
:
or

:
the forcing fields. We could however decide to specify some input files if it was

requited by the functionality
:::::::
required

::
by

:::
the

::::::
feature

:
to be tested.

2.2.3 BENCH grid size, MPI domain decomposition and land only subdomains

Like in any other NEMO configuration, BENCH computations can be distributed on a set of MPI processes.
:::
The

:
BENCH255

grid size is defined in the namelist with 2 different options. If nn_isize and nn_jsize are positive, they simply define the

total grid size on which the domain decomposition will be applied. This is the usual case, the size of each MPI subdomains

is comparable (but not necessary
:::::::::
necessarily equal) for each MPI task and computed by the code according to chosen pattern

of domain decomposition. If nn_isize and nn_jsize are negative,
:

the absolute value of these parameters will no more define

the global domain size but the
::::
now

:::::
define

:::
the

:
MPI subdomains size. In this case, the size of the global domain is computed by260

the code to fit the prescribed subdomains size. This options forces
:::::
These

::::::
options

:::::
force each MPI subdomains to have the exact

same size whatever number of MPI processes is used, which facilitates the measurement of model
::
the

:::::::
model’s weak scalability.

In NEMO, calculations are processed, in a large majority,
::::::
almost

::::::
always

:::::::::
performed at each grid pointand ,

:
a mask is next

:::
then

:
applied to take into account land grid points , if any. Consequently, the amount of calculations is the same with or

9
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Figure 2. Time to solution (in hour per simulated year) as a function of the subdomain size (grid point number per subdomain side) ,
::
on

:::
the

BENCH configuration, same
:
.
:::
The grid than

:
is
:::
the

::::
same

::
as

:
a global ocean

:::
grid at 1 degree resolution (ORCA1), including

:
.
:::
The

::::::::::
configuration

::::::
includes

:::
the SI3 sea-ice subroutines, without any bathymetry (standard

:::::
model.

:::
The

::::
STD case , (red line)

:
is

::::::
without

:::
any

:::::::::
bathymetry, or with

land only subdomains removal
:::
the

:::
LSR

::::
case (dark blue line)

::
has

:
a
:::::::::
bathymetry

:::
and

:::
land

::::
only

:::::::::
subdomains

:::
are

::::::
removed. In each case, the time

spent waiting boundary conditions
::::::
waiting

:::
time is also plotted (resp. orange and light blue)

:
.

without bathymetry, and
:
it

::::::
follows

::::
that

:
the computing performance of BENCH and a realistic configuration are extremely265

close. However, we must underline that the absence of continents in the default usage of BENCH , prevent to test is
:::::::
prevents

::
to

:::
test the removal of subdomains entirely covered by land points (Molines, 2004). Note that if we want

:
it
::
is

:::::::
possible to test a

realistic bathymetry and the removal of land only subdomains in BENCH , we can use
::
by

::::
using

:
any NEMO configuration input

file in BENCH (as in all NEMO configurations). In this case, we just have to
:::
the

::::
user

:::
can

::::::
simply define ln_read_cfg = .true.

and provide the configuration file name in the variable cn_domcf in the namelist block namcfg. A comparison of the BENCH270

scalability, without (named STD) or with land only subdomains removal (named LSR)
:
,
::::::::
displayed

:::
on

:::::
Figure

::
2,

:
was performed

to assess the removal impact.

The subdomain size of configurations that remove or not
::::::::::::
Configurations

:::
that

::::::
remove

:
land only subdomains , if decomposed

with
:::::
might

::::
have

::::::
smaller

::::::::::
subdomains

::::
than

::::::::::::
configurations

:::
that

:::::
don’t

:::::
when

::::
using

:
the same number of MPI processes, is different.

A fair comparison of computing performance must be done for
:::::
hence

::
be

:::::
done

::::
with

:
identical subdomain size. This is why275

::::::::
Therefore,

:
the performance of Fig 2 is

:::::
Figure

::
2
::
is

:::
not

:
given as a function of the grid point number of a subdomain side

(root mean
::::::
number

::
of

::::::::
resources

:::::
used,

::::
like

::
in

:::::
usual

:::::::::
scalability

:::::
plots,

::::
but

::
as

::
a

:::::::
function

::
of

:::
the

:::::::
number

:::
of

::::
grid

:::::
points

:::
in

:::
the

:::
side

::
of
::

a
:::::::::
subdomain

::::::
(mean

::
of

:::
the

::::
root

:
square of the subdomain area), and not of the number of used resources, like in usual

scalability plots. Performance is slightly better in LSR
::
the

:::::
LSR

::::
case. The other information displayed in Fig

:::::
Figure

:
2, the
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simulation waiting time, represents the total elapsed time spent to wait MPI communicationsfor boundary condition update,280

and basically encompasses communication duration and
::
in

::::
MPI

::::::::::::::
communications.

::::
The

::::::
waiting

::::
time

:::::::::::
encompasses

::::
data

:::::::
transfer,

:::::::
overhead

::
of

:::
the

::::
MPI

::::::
library

::::
and computation load imbalance. The comparison of waiting time in

::::::
between

:
STD and LSR helps

to understand the origin of the small overall performance discrepancy. Most of it comes from LSR shorter waiting, which could

be explained by the smaller amount of communication between processes, considering that in this configuration,
:
In

:::
the

:::::
LSR

::::
case,

:
some subdomains have boundaries with land only subdomains, thus no communication

:::
land

::::
only

::::::::::
neighbours

::::
that

::::
they285

::::
don’t

:::::::::::
communicate

:::::
with,

:::
this

::::
can

::::::
explain

:::::
LSR’s

::::::
shorter

:::::::
waiting

::::
time

:::
and

:::::
some

::
of

:::
the

::::::::
difference

::::::::
regarding

:::
the

::::
time

::
to

:::::::
solution.

However, scalability regimes, slopes and limits, in STD and LSR, for computations as for communications,
::
for

::::
both

:::::
time

::
to

::::::
solution

::::
and

::::::
waiting

:::::
time, are practically the same

::
in

::::
STD

:::
and

:::::
LSR. As already mentioned (Ticco et al., 2020), BENCH is able

to reproduce
::
the

:
computation performance of any usual NEMO configuration , and gives

:::
and

:::::::
provides a simplified alternative

for benchmarking work.290

Since the 4.0 version release, the BENCH configuration was tested on various platforms and showed good numerical stability

properties (Maisonnave and Masson, 2019). The stability of the BENCH configuration allows us to perform original
:::::::::
innovative

benchmarks to easily test the potential impact of future optimization of MPI communications. BENCH can indeed run for quite

a large number of time steps even if we artificially decide to skip MPI communications. We can, for example, figure out what

would be
:::
For

::::::::
example,

:
it
::
is
:::::::
possible

:::
to

:::::::
examine the code scalability without any communications

::::::::::::
communication

:
by simply295

adding a RETURN command at the beginning of NEMO communication routine. If we add a IF test with a modulo to

decide if this RETURN command is applied or not, one can have an idea of what would be the code performances
::
the

:::::
code

::::::::::
performance

::::::
would

::
be

:
if we could reduce the communications by a factor of N. By playing with the communication pattern

in the BENCH configuration
:::::::
Likewise, one can therefore test the potential benefit of different ideas for the optimisation of

the communications in NEMO before being really coding them
::::::
benefits

::
of
::::::

plenty
::
of

:::::
ideas

:::::::
without

::::::
getting

:::
too

:::::
deep

::::
into

:::
the300

:::::::::::::
implementation.

2.3 Dedicated tool for communication cost measurement

The last piece of the puzzle that we implemented to set up an effective benchmarking environment in NEMO is to collect and

summarizes
:::::::::
summarize information related to the performances

::::::::::
performance of the MPI part in

::
of the code.

In NEMO, MPI communications are wrapped in a small number of high level
::::::::
high-level

:
routines co-located in a single305

Fortran file (lib_mpp.F90). These routines provide functionalities for horizontal halo exchange and global averages or min/-

max operations between all horizontal subdomains. With very little code changes in this file, it is possible to identify and

characterise
::::::::::
characterize

:
the whole MPI communication pattern. This instrumentation does not replace external solutions,

based on automatic instrumentation, e.g. with “Extrae-Paraver” (Prims et al., 2018) or "Intel Trace Analyzer and Collector"

(Koldunov et al., 2019), which provide a comprehensive timeline of the exchanges. The amount of information collected by310

our solution is much smaller, and the possibilities of analysis reduced, but we are able to deliver without any external library,

without additional computing cost or additional postprocessing, a simplified information for
::::::::
simplified

::::::::::
information

:::
on

:
any

kind of machine(portability).
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A counter of the time spent in MPI routines( i.e. “waiting time”, as defined in subsection 2.2.3),
:
, is incremented at any

call of a
::
an

:
MPI send or receive operation in one hand, and at any

::::::
(named

::::::::
“waiting

::::::
time”).

::
A

::::::
second

:::::::
counter

:::::::
handles MPI315

collective operations on the other hand. Symmetrically, a second counter is filled
::::::
(named

:::::::
“waiting

::::::
global

::::::
time”).

:::::::::::
Additionally,

:
a
::::
third

:::::::
counter

::
is

::::::::::
incremented

:
outside these MPI related operations

::::::
(named

:::::::::::
“computation

::::::
time”). On each process, only two

::::
three data are collected into two

::::
three floats: the cumulative time spent sending/receiving/gathering or waiting

:
,
::::::::
gathering MPI

messages and the complementary period spent in other operations(named “computation time”).

After a few time steps, we are able to produce in a dedicated output file called communication_report.txt, the listing of320

the .
::
It
:::::::
contains

:::
the

:::
list

::
of

:
subroutines exchanging halosand how many times they did, on one hand, and the listing of the

:
,
::::
how

::::
many

:::::::::
exchanges

:::::
each

:::::::
perform

:::
per

::::
time

::::
step

:::
and

:::
the

:::
list

:
subroutines using collective communicationson the other hand. The

total number of exchanged halos, the number of 3D halos, and their maximum size are also provided.

At the simulation end
:::
end

::
of

:::
the

:::::::::
simulation, we also produce a separated counting, per MPI process, of the total duration of (i)

halo exchanges for 2D/3D and simple/multiple arrays, (ii) collective communications needed to produce global sum/min/max,325

(iii) any other model operation independent from MPI (named “computing”) and (iv) the whole simulation. These numbers

exclude the first and last time steps, so that any possible initialization or finalization operations were excluded of the counting.

This analysis is output jointly to the existing information related to the per-subroutine timing (timing.output file).
::::
This

::::::
analysis

::::
can

::
be

:::::
found

::::::
below

:::
the

:::::::::
information

::::::
related

::
to
:::
the

:::::::::::::
per-subroutine

:::::
timing

::
in

:::
the

:::::::::::::
timing.output

::::
file.

3 Reducing or removing unnecessary MPI communications330

This third section presents the code optimizations that were done following the implementation of the benchmarking environ-

ment described in the second
:::::::
previous section.

In a former study(Maisonnave and Masson, 2019), we
:
,
:::::::::::::::::::::::::::
(Maisonnave and Masson, 2019) relied on the measurement tool

(section 2.3) to assess the performance of the BENCH configuration (section 2.2). In this work , they
:::
This

:::::
work focused only

on global configurations with grid sizes equivalent to 1◦ to 1/12◦ horizontal resolution, including or not sea-ice and bio-geo-335

chemistry modules. Our analysis revealed that the global configurations scalability was limited by a major load imbalance

due to the special halo exchange required by the north fold treatment. A fine study of the north fold communications pattern

revealed that it was possible to further reduce the number of array lines involved in these specific communications, achieving

a speed up of x1.4 at a new scalability limit.

Maisonnave and Masson (2019) also
::::::::::::::::::::::::::
Maisonnave and Masson (2019) modified various NEMO subroutines to reduce (or340

group) MPI exchanges , like communicating a 3D halo in a single step instead of a sequence of 2D halos, or avoiding collective

communication (i) during the prognostic variable sanity check, (ii) during the computation of a convergence criterion in sea-ice

thermodynamics, and (iii) during bio-geo-chemistry tracer advection to spread negative value locally.

::::
with

:
a
:::::
focus

:::
on

:::
the

:::::
north

::::
pole

:::::::
folding.

:
In this section, we propose to complement the work of Maisonnave and Masson

(2019) by improving NEMO
:
’s
:
scalability in regional configurations instead of global configurations. This implies to configure345
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the BENCH namelist in a regional setup including open boundaries, as detailed in the annex A. We also deactivated the sea-ice

component which was deeply rewritten in NEMO version 4 and necessitates a dedicated work on its performance.

As evidenced by Tintó et al. (2019), the MPI efficiency in NEMO is not limited by the volume of data to be transferred

between processes but by the number of communications itself. Regrouping the communications that cannot be removed is

therefore a good strategy to improve NEMOperformances
:
’s
:::::::::::
performance. Our goal is thus to find the parts of the code which do350

the most of communications and next
::::::::::::::
communications

:::
and

::::
then

:
figure out how we can reduce this number either by removing

communications that appear to be useless or by regrouping as much as possible the
::::::::::
unnecessary

::::::::::::::
communications

::
or

::
by

::::::::
grouping

indispensable communications. Note that following the development of Tintó et al. (2019) a Fortran generic interface has been

added to NEMO and
:::
that

:
makes the grouping of multiple communications extremely easyfor the user.

In the configuration we are testing (BENCH with no periodicity, open boundaries and no sea-ice), almost 90% of the number355

of communications are due to
:::::::::::::
communications

:::
are

::
in

:::
two

:::::::
routines

::
: the surface pressure gradient computation (44%) and the

open boundary conditions (45%). The following optimizations will therefore focus on those two parts of the code. Note that in

both cases, the involved communications transfer a very limited volume of data (from a single scalar to a 1-dimension array)

which justifies even more the strategy proposed by Tintó et al. (2019).

3.1 Free Surface Computation Optimization360

In most of the configurations based on NEMO, including in our BENCH test, the surface pressure gradient term in the

prognostic ocean dynamics equation is computed using a "Forward-Backward" time-splitting formulation (Shchepetkin and

McWilliams, 2005). At each time step n of the model, a simplified 2D dynamic is resolved at a much smaller sub time step

∆t∗ resulting inm
:
a
:
sub time step per time step

:
m, withm ranging from 1 toM(≈ 50). This 2D dynamic will then be averaged

to obtain the surface pressure gradient term.365

In the previous NEMO version, each sub-time step completes the following computations :

ηm+ 1
2 = ( 3

2 +β)ηm− ( 1
2 + 2β)ηm−1 +βηm−2

Uh
m+ 1

2 = ( 3
2 +β)Uh

m− ( 1
2 + 2β)Uh

m−1
+βUh

m−2

Ũh
m+ 1

2 =Dm+ 1
2Uh

m+ 1
2 ∆e

Communication 1 on Ũhm+ 1
2

ηm+1 = ηm−∆t∗[div(Ũh
m+ 1

2 ) +P −E]

Communication 2 on ηm+1

η′ = δηm+1 + (1− δ− γ− ε)ηm + γηm−1 + εηm−2

Uh
m+1

= 1
Dm+1 [DmUh

m
+ ∆t∗

(
(1− r)g gradx(η′)−Dm+ 1

2 fk×Uh
m+ 1

2 +G
)
]

Communication 3 on Uh
m+1
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With η the sea surface height, Uh the speed integrated over the vertical, Ũh the flux, Dm =H + ηm the height of the water

column, ∆e the length of the cell, P precipitation, E evaporation, g the gravity acceleration, f the Coriolis frequency, k the

vertical unit vector, G a forcing term, β, r, δ, γ and ε are constants370

NEMO uses a staggered Arakawa C grid, meaning that , among other, zonal
:::
that

::
is
::
to

:::
say

::::
that

::::
some

::::::::
variables

:::
are

::::::::
evaluated

::
at

:::::::
different

::::::::
locations.

:::::
Zonal

:
velocities are evaluated at the middle of the eastern grid edges, meridional velocities at the middle of

the northern grid edges and sea surface height at the grid center. Due to this feature, spatial interpolations are sometimes needed

to get variables on other points that they are initially defined
::
at

::::::
another

:::::::
location

::::
that

:::
the

::::
one

::::
they

::::
were

:::::::
initially

:::::::
defined

::
on.

For instance, ηm+ 1
2 must be interpolated

::::
from

::
T to U and V points to be used in the equation Ũhm+ 1

2 =Dm+ 1
2Uh

m+ 1
2 ∆e=375

(H + ηm+ 1
2 )Uh

m+ 1
2 ∆e. Since adjacent points on both sides of the grid cells are needed in the interpolation, ηm+ 1

2 can not

:::::
cannot

:
be directly interpolated on eastern U points ghost cells ( grey arrows in figure 3)as there is no T points on the east

of an eastern U point ghost cell in the MPI subdomain. For a similar reason
:::::
Figure

:::
3).

::::::::
Similarly, ηm+ 1

2 can not
:::::
cannot

:
be

interpolated on northern V points ghost cells. It entails that Ũhm+ 1
2 is not directly computed on eastern U point and northern

V points ghost cellsand Communication 1 is
:
.
:::::::::::::::
Communication 1

:
is
::::::::
therefore

:
used to update Ũhm+ 1

2 on those ghost cells.380

Figure 3. The MPI subdomain is bounded by the grid, the interior of the MPI subdomain is highlighted in blue while the ghost cells are in

white. Black arrows show U and V points where ηm+ 1
2 (and therefore Ũhm+ 1

2 ) can be directly computed and grey arrows points where they

can not
::::
cannot

:
be computed without communication. Red dots show T points where div(Ũhm+ 1

2 ) can be directly computed.

The computation of div(Ũh
m+ 1

2 ) defined at T points requires values of Ũhm+ 1
2 on adjacent U and V pointsand therefore

can not
:
.
:
It
::::::::
therefore

::::::
cannot be completed on western and and southern ghost cells, Communication 2 updates the field on those

cells. Similarly
:
, gradx(η′) can not

::::::
cannot be computed over the whole MPI subdomain hence the Communication 3.

A careful examination of this algorithm is however showing that this communication sequence can be improved. As detailed

on Figure 3, the computation of div(Ũh
m+ 1

2 ) (red dots) defined at T points only demands correct values at the four adjacent385
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U and V points (black arrows). Communication 1 on Ũhm+ 1
2 can be delayed and grouped together with Communication 2 on

ηm+1 as values
:::::
Values

:
of ηm+ 1

2 on U and V points of northern and eastern ghost cells are not needed in the computation of

div(Ũh
m+ 1

2 ) on the interior of the MPI subdomain.
::::::::::::::
Communication 1

:::
on

:::::::
Ũh

m+ 1
2

:::
can

:::::
hence

::
be

:::::::
delayed

::::
and

:::::::
grouped

:::::::
together

::::
with

::::::::::::::
Communication 2

:::
on

:::::
ηm+1.

:
Note that the communication on Ũhm+ 1

2 can not
:::::
cannot be removed altogether as the variable

is also used for other purposes that are not detailed here.390

Following this improvement, the number of communications per sub-time step in the time-splitting formulation has been

reduced from 3 to 2. This translates in a reduction from 135 (44%) to 90 (29%) communications per time step in the surface

pressure gradient routine for the examined configuration.

3.2 Open Boundaries Communication Optimisation
::::::::::::
Optimization

Configurations with open boundaries require to frequently correct fields on the boundaries. In the previous NEMO version,395

a communication must
:::
had

::
to

:
be carried out after the computation of boundary conditions to update values that are both on

open boundary and on ghost cells. In the configuration we tested, with open boundaries and no sea-ice, 45% of the number of

communications are
::::
were due to open boundaries.

Boundary conditions in NEMO are often based on the Neumann condition, ∂φ
∂n = 0 where φ is the field on which the

condition is applied and n the outgoing normal, or the Sommerfeld condition ∂φ
∂t + c∂φ∂n = 0 where c is the speed of the400

transport through the boundary. For both boundary conditions the only spatial derivative involved is ∂φ
∂n . The main focus is

therefore to find the best way to compute ∂φ
∂n in various cases.

NEMO allows two kinds of open boundaries : straight open boundaries and unstructured open boundaries. As straight open

boundaries along domain edges are far more common and easier to address, we will examine them first.

3.2.1 Straight Open Boundaries along domain edges405

Figure 4.a shows schematic representation of the BENCH configuration with use here with with straight open boundaries on

each sides
::::
every

::::
side that will be used to explain the optimization

:::::::::::
optimizations performed in this part of the code. The code

structure of NEMO requires domains to be bordered by land points (in brown) on all directions except when cyclic conditions

are applied. The four open boundaries (red stripes on each side of the domain) are thus located next to the the land points, on

the second an
:::
and

:
before last rows and columns of the global domain.410

Let us consider an MPI subdomain located on the eastern side of the global domain, represented by the red square on Figure

4.a and detailed on 4.b. Originally, the treatment of the open boundaries was performed only in the inner domain (red stripes

over blue cells) and a communication phase was used to update the value of the open boundaries points located on the ghost

cells (red stripes over white cells). In case of a straight longitudinal boundary with the exterior of the computational domain on

the East, ∂φ∂n |(x,y) will be discretized
::::::::
calculated at a point (xi,yi) by φ(xi−1,yi)−φ(xi,yi)

∆xi,i−1
where ∆xi,i−1

is the distance between415

xi and xi−1. When such conditions are applied, only values defined at points orthogonal to the open boundary are needed, yet

such points are inside the MPI subdomain, even when (xi,yi) is on a ghost cell (red stripes over white cells on Figure 4.b).

Moreover, in the code, fields are always updated on ghost cells before open boundary conditions are applied, hence the entire
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Figure 4. On the left, a configuration with straight open boundaries, the red line delimits a possible MPI subdomain detailed on the right.

Brown cells are land cells and red hatched cells are open boundary cells. On the right, inner domain cells are in blue, red dots mark T

points constituting the open boundary ((xi,yi)) and red arrows the points orthogonal to the boundary ((xi−1,yi)) used in the computing of
∂φ
∂n
|(x,y)=(xi,yi).

field on the MPI subdomain is properly defined and can be used. The computation of the boundary condition is thus possible

over the whole boundary including the on ghost cellsand there .
:::::
There

:
is no need for any communication update. When straight420

open boundaries along domain edges are used, this optimization gets rid of all the communications linked with open boundaries

computation.

3.2.2 Unstructured Open Boundaries

Unstructured open boundaries allow the user to define any boundary shape. Figure 5.a shows an example of such an open

boundary where open boundaries are defined all along land points .
::::::
defined

::::
next

::
to

:::
land

::::::
points.

::
A

:::::::
possible

:::
use

::
of

::
an

:::::::::::
unstructured425

::::
open

::::::::
boundary

::
is

:::
the

::::::::
following

:
:
::
a
::::
user

:::::
could

::::
want

:::
the

:::::::::
simulation

:::
not

::
to

:::::::
include

:::::
ocean

:::::
points

::::::
where

:::
the

:::::
ocean

::
is

:::
too

:::::::
shallow

:::
and

::::::
instead

::::::
define

::
an

:::::::::::
unstructured

::::
open

::::::::
boundary

:::::::::
delimiting

:::
an

::::
area

::
of

::::
low

:::::
depth

:::
(for

:::::::
instance

:::
in

:::
the

::::::
vicinity

:::
of

::
an

:::::::
island).

:::
The

:::::::
shallow

:::::
ocean

:::::
points

::::
will

::
be

:::::::
defined

::
as

::::
land

::::::
points

::
in

:::
the

::::::
domain

::::::::
definition

:::
but

::::::::
exchange

:::
of

:::::
water

::::::
masses

:::
and

:::::::::
properties

:::
will

::
be

::::::::
possible

::::::
through

:::
the

:::::::::::
unstructured

::::
open

:::::::::
boundary.

Depending on the MPI decomposition, open boundary cells can end up on ghost cells and facing the outside of the MPI430

subdomain, hence rendering direct computation of the boundary condition impossible. For example, in the MPI subdomain

Figure 5.b, to compute the boundary condition ∂φ
∂n |(x,y)=(xi,yi) on some points ((xi,yi) ) highlighted by a red arrow would

require the value of φ on a point ((xi+1,yi)) outside of the MPI subdomain. Note that straight open boundaries can potentially

be defined anywhere in the domain (and not only along the domain edges). In this case it is also possible that a straight open

Boundary would be just tangential to the MPI domain decomposition. In such rare case, applying the open boundary conditions435
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Figure 5. On the left, a configuration with straight open boundaries on the eastern and southern sides and unstructured open boundaries

on the western and northern sides, the red line delimits a possible MPI subdomain detailed on the right. Brown cells are land cells and red

hatched cells are open boundary cells. Red dots mark some T points of the open boundary ((xi,yi)) and red arrows the points orthogonal to

the boundary used in the computing of ∂φ
∂n
|(x,y)=(xi,yi).

would also require a MPI communication. These rare cases are in fact treated in the same manner as for the unstructured open

boundaries and are thus automatically included in the procedure we implemented for unstructured open boundaries.

We chose to detect points where direct computation (i.e. without a communication phase) will be impossible during the

initialization of the model and trigger communications only for MPI subdomains where at least one such point is present. This

allows for the previous optimization to be compatible with unstructured open boundaries. Corner points
:::::
Points

::
on

::
a
::::::
corner of440

an unstructured open boundary require also a
::::
also

::::::
require specific attention when tracking the open boundary points that could

need a communication phase. Indeed, on an outside corner, several points can be considered orthogonal to the open boundary.

The choice of the neighbouring points involved in this computation will tell us if the treatment of the corner requires a MPI

communication or not. When reviewing the corner points treatment in the previous
::::
older

:
NEMO version, we realized that

the method chosen in some cases did not ensure symmetry properties (a reflection symmetry could change the results). We445

therefore decided to first correct this problem in the physical application of the Neumann condition of corner points before

finding and listing those which require a MPI communication. This first step is detailed in the next paragraph even if, formally,

this is not a performance optimisation
::::::::::
optimization.

Appliying
:::::::
Applying

:
the Neumann condition, ∂φ∂n = 0, to an open boundary point equates to setting that point to the value of

one (or the average value of several) of its neighbours that are orthogonal to the open boundary. The selected method must have450

reflection and rotation symmetry properties and allow the open boundary point to be set to the most realistic value possible.

The method used is illustrated on Figure 6 where contour lines of a field φ are in blue with the φ= 0 contour line passing

through the T point of an open boundary cell (red dot) on an outside corner of the open boundary. Contour lines are straight

and the field is increasing linearly in diagonal or orthogonal directions. Red arrows indicate the best choice for the Neumann
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condition. In figure
:::::
Figure

:
6 the best choice is to take the average of the values of the closest available points. Here, applying455

the Neumann condition is done by setting φ(xi,yi) to φ(xi+1,yi)+φ(xi,yi−1)
2 . Indeed, if only one of those two points was used,

there would not be good symmetry properties and
::::
(cases

::
1,
::
3
:::
and

:::
4)

:::
and

:
if the top right point was also taken into the average,

the result would be a bit better in case 1 for a non linear
::::::::
nonlinear field but worse in cases 2, 3 and 4.

Figure 6. Brown cells are land cells and red hatched cells are open boundary cells. Red dots mark points from the open boundary and

red arrows the best points to use to compute the Neumann condition, blue lines are contour lines of φ with the value of the contour line

highlighted in blue.

Using the same method, we finally summarized all Neumann conditions and their neighbour contributions in 5 cases showed

in Figure 7. All other possible dispositions are only rotations of one of these 5 cases. Thanks to this classification, we have next460

been able to figure out, from the model initialisation
::::::::::
initialization

:
phase, the communication pattern required by the treatment
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of the Neumann conditionsand therefore
:
.
:::::
Based

:::
on

:::
this

::::::::::
information

:::
we

::::
can restrict the number of communication phases to

their strict minimumaccording to the chosen MPI subdomain decomposition.

Figure 7. Brown cells are land cells and red hatched cells are open boundary cells. Red dots mark points from the open boundary and red

arrows the points used in the computing of ∂φ
∂n
|(x,y)=(xi,yi) for the Neumann condition.

3.3 Performance improvement

The computing performance is estimated using a realistic simulation of the West Atlantic between 100◦West and 31◦West and465

8◦South and 31◦North. It includes straight open boundaries on the North, East and South, and continent. The simulation is to

the 32th of a degree with 2188× 1300 = 2 844 400 mesh cells and 75 vertical levels. To reduce the impact of the file system

on the measurements, the simulation does not produce any output.

In this test case, which is representative of the very large majority of uses, the open boundaries are straight and located along

the edge of the domain. The communications related to open boundaries have therefore been completely removed and the470

communications related to the surface pressure gradient are diminished
:::::::
reduced by a third. As a result, in this configuration,

the total number of communications per time step has been reduced by about 60% (Figure 8).

The number of core
::::
cores

:
used is in line with the optimum dynamic sub-domain decomposition described in section 2.1. For

each core number, 3 simulations of 1080 time steps were conducted,
:

and the computing time was retrieved at each time step

of the model. Figure 9 shows that there are many outliers in the computing time that shift the mean to higher values while the475

median is not sensible to it. As the exact same instructions are run at every time step, the outliers are likely to be a consequence
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Figure 8. Comparison between the number of communication
::::::::::::
communications needed at each time step in NEMO before (blue) and after

the optimizations of this section were carried out (orange) for a configuration with open boundaries and without ice.

of instabilities of the supercomputer or preemption.
:
A

::::
finer

:::::::
analysis

:::::::
showed

:::
that

:::
the

::::::::::
slowdowns

:::::
occur

::
on

:::::::
random

:::::
cores

::
of

:::
the

:::::::::
simulation. Since the median effectively filters out outliers it corresponds to the computing time one would get on a perfectly

::
an

::::::::
extremely

:
stable supercomputer with no preemption.

Figure 10 shows the improvement of NEMO strong scaling brought by our optimizations. In this figure, the model perfor-480

mance is quantified by the means of the number of simulated
::::::
number

::
of

:
years that can be simulated during a 24-hour period

(Simulated Years Per Day, SYPD). For small numbers of core, the optimizations have no noticeable effect as the time spent

in the communication phases is , in any case,
:::::::::::::
communications

::
is very small. However, as the number of cores rises, each MPI

subdomain gets smaller, the
:::::::::::
computational

::::
load

::::::::::
diminishes,

:::
and

:::
the

:
communication load gets predominantand .

:::::
Here the opti-

mizations bring clear improvements: the number or
::
of simulated years per day is higher in the new and optimized version of the485

code (orange curves are above the corresponding blue curves). The scalability curves built by considering the 1080 time steps

(solid lines) are nevertheless quite noisy,
:
and the improvement is not as good as expected: 20% at best with even a negative

value around 30,000 cores.

Filtering out the outliers by using the median gives results that are better and more robust. The
:::::::
resulting

:
scalability curves

(dashed lines) are less noisyand.
:::::::::
Moreover, if we except the last point, the distance between the two dashed lines is steadily490

increasing as we use more cores. The impact of our optimizations is therefore more important at high numbers of core
::::::
greater

:
at
:::::::

greater
::::
core

::::::
number. The number of SYPD is, for example, increased by 35% for 37,600 cores when using the optimized
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Figure 9. Computing time (in seconds) per time step for a North-Atlantic
::::::::::
West-Atlantic

:
simulation run with 2049 cores. The grey (resp.

orange) dashed line shows the mean (resp. median) computing time of one time step.

Figure 10. Strong scaling performances
:::::::::
performance: Simulated Years Per Day (SYPD) as a function of the number of core

::::
cores used in the

simulation.
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version. One can also note that the optimized version ran on 23,000 cores simulates the same number of SYPD than the old

version on 37,600 cores which represents reduction of resources usage by nearly 40%.

The differences between the unfiltered and the filtered results can be understood as a consequence that
:::::
filtered

::::
and

::::::::
unfiltered495

:::::
results

:::
are

:::::::
possibly

::::::
linked

::
to

::::::::::
instabilities.

::
As

:
each core has similar chances of suffering from instabilities or going into preemp-

tion, hence, at high numbers of core , unusually slow
::
at

:::::
higher

::::
core

:::::::
number

::::::
slower cores are more common. Since communi-

cations tend to synchronise
::::::::::
synchronize cores, a single slow core slows down the whole run. The median gets rid of time steps

in which preemption or great instabilities occur. Its indicates the performances
:
It

:::::::
indicates

:::
the

:::::::::::
performance

:
we could get on a

"perfect" machine which would not present any "anomalies" during the execution of the code. This machine is unfortunately500

not existing and the trend in the
::::
Such

:
a
::::::::
machine

:::::::::::
unfortunately

:::::
does

:::
not

:::::
exist.

:::
The

:::::
trend

::
in

:
new machines architecture with

always more
::::::::
increasing complexity and heterogeneity suggests that performances

::::::::::
performance

:
"anomalies" during the model

integration may occur more and more often to become a common feature. Our results point out this new constrain which is

already already eroding a significant part of our optimisation
::::::::::
optimization

:
gains (from 40% to 20%) and will require to be

taken into account in the future optimizations of the code.505

4 Conclusions

We presented in this paper the new HPC optimisations
:::::::::::
optimizations what have been implemented in NEMO 4.0, the cur-

rent reference version of the code. The different skills we gathered among the co-authors allowed us to improve NEMO

performances
:::::::::::
performance while facilitating its use. The automatic and optimized domain decomposition is a key feature to

perform a proper benchmarking work
:
, but it also benefits to all users by selecting the optimum use of the available resources.510

This new feature also points out possible waste of resources to the users, making them aware of the critical impact of the choice

of the domain decomposition on the code performance. The new BENCH test case results from a close collaboration between

ocean physicist and HPC engineers. We distorted the model input, boundary and forcing conditions in such way that the model

is stable enough
::
to

:::::
ensure

:::::::
enough

:::::::
stability to do benchmark simulations in any configuration with the less possible

::
as

:::
few

:
input

files as possible (basically the namelist files). Note that the stability of this configuration is even allowing
:::
even

::::::
allows

:
devel-515

opers to carry out some unorthodox HPC testsas, for .
:::
For

:
example, artificially suppressing a part of the MPI communications

to test the potential benefit of further optimisations
:::::::::::
optimizations before coding them.

In this 4.0 release, code optimisation
::::::::::
optimization was targeting the scalability by reducing the number of communications.

The present paper focuses on two parts of the code: (1) the computation of the surface pressure gradient , which does
:::
that

::::::::
amounted

::
to

:
about 150 communications per model time step and (2) the treatment of the open boundaries conditions that are520

:::
was

:
also doing a similar amount of communicationsper model time step

::::::
number

::
of

::::::::::::::
communications. We managed to reduce

the communications by 30% in the routine computing the surface pressure gradient. The results are even more spectacular in

the part of the code dealing with the open boundaries as we managed to suppress all communications in the very large majority

of cases. Note that this optimisation
::::::::::
optimization work gave us also the opportunity to improve the algorithm used in the

treatment of some unstructured open boundaries with a tricky geometry. Several conclusions can be drawn from the analysis of525
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the performance improvements obtained with this very large reduction (from∼ 300 to∼ 125, that is to say∼ 60%) of the total

number of communications per model time step. First, as expected, this optimization has an impact only once we use enough

cores (>500 in our case) so the communications have a significant weight in the total elapsed time of the simulation. Second,

the elapsed time required to perform one model time step is far from being constant as it should be in theory. Some time steps

are much longer to compute than the median time step. This significant spread in the model time step duration requires that we530

use the median instead of the mean value when comparing performances
::::::::::
performance of different simulations.

These results are suggesting further investigations for future optimizations. The large variability of the elapsed time needed

for one time step suggests that the performance of the machines are
::
is definitely not constant. They are, in fact, varying in

time and between the cores in a manner that is much larger than what we originally expected. This behaviour can be explained

by many things (preemption, network load, etc. . . )and benchmarks
:
.).

:::::::::::
Benchmarks on different machines are suggesting that535

this heterogeneity in the functioning of the supercomputers will happen more and more as we are using more and more

:::::::::::::
supercomputers

::::
will

:::
get

:::::
more

:::::::
common

:::
as

:::
we

::::
start

:::::
using

:::::
more

:
cores. Code optimisations

:::::::::::
optimizations

:
will have to take

this new constrain into account. We will have to adapt our codes in order to absorb (or at least
:
or

:
limit the effects ) of the

::
of asynchrony that will appear during the execution on the different coresat a growing frequency. The way we perform the

communication phase in NEMO, with its point-to-point synchronisation
:::::::
blocking

:::::::::::::
communications

:
between, first, east-west540

neighbours and, next, north-south neighbours will have to be revisitedfor .
::::

For example with non-blocking send and receive

::::
sends

::::
and

:::::::
receives

:
or with new features such as neighbour collective communications. In recent architecture, the number of

cores inside a node has increased. This leads to a two-level parallelism where the communication speed/latency differs for inter-

node exchanges and intra-node exchanges. Inter-nodes communications are probably slower and are probably the source of

more asynchronythan the inner-nodes communications
:::::::
possibly

:
a
::::::
source

::
of

::::::::::
asynchrony. A possible optimisation

::::::::::
optimization545

could therefore be to minimize the ratio of inter-node versus inner-nodes communications. The figure
::::::
Figure 11 illustrates this

idea. The domain decomposition of NEMO is represented with each square being an MPI processes
::::::
process

:
and each node a

rectangle of the same colour. In this representation, the perimeter of a “rectangle-node” directly gives the number of inter-node

communications (if we say to simplify that the domain is bi-periodic and each MPI process has always 4 neighbours). If we

make the hypothesis that that each node can host x2 MPI processes, these x2 processes are placed by default on a “line-node”550

with a perimeter of 2x2 + 2. In this case, the ratio of inter-node versus inner-nodes communications is (2x2 + 2)/4x2. Now,

if we distribute the x2 processes on a “square-node”, the number of inter-node communications becomes 4x and the ratio

4x/4x2 = 1/x. If we take x= 8 for 64-core nodes, we get a reduction of -75% of the number of inter-node communications

when comparing the “line-node” dispatch (130) with the “square-node” dispatch (32). The ratio of inter-node versus inner-

nodes communications drops from 50% to 12.5%. These numbers are of course given for ideal cases where the number cores555

per node is a square. We should also consider additional constrains like the removal of MPI processes containing only land

points, the use of some of the cores per node for XIOS, the IO server used and NEMO. The optimal dispatch of the MPI

processes in a real application is maybe not so trivial but there is certainly here
::
the

::::::::::::::
aforementioned

::::::
strategy

::
is
:
an easy way to

minimize the inter-node communications, which
:
.
::::
This could be an advantage when we will be confronted with the occurrence

of more and more asynchrony.560
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Figure 11. NEMO domain decomposition with the dispatch of the MPI processes among the different nodes. In this schematic representation,

each square represents one MPI process of NEMO. We consider that NEMO is distributed over 216 MPI processes and that each node has 9

cores. The distribution of the MPI processes on the cores is represented by their colour: processes on the same node have the same colour.

left panel: default dispatch of the MPI processes in line, right panel: optimized dispatch of the MPI processes in square

Code availability. The NEMO source code and all the code developments described in this paper are freely available on NEMO svn depos-

itory at the following address: https://forge.ipsl.jussieu.fr/nemo/browser/NEMO/releases/r4.0

or alternatively here : https://doi.org/10.5281/zenodo.5566313
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Appendix A: Namelist configuration to use BENCH with open boundaries

The BENCH configuration, see section 2.2, was used by Maisonnave and Masson (2019) in its global configuration including

the east-west periodicity and the north pole folding. As detailed in section 2.2.2, the BENCH configuration can be adapted to

any purpose through the use of the
::::
using

:::
the

:
configuration file: namelist_cfg

::::::::::::
namelist_cfg.570

This annex shows the parameters to be modified or added in namelist_cfg
::::::::::::
namelist_cfg

:
in order to use the BENCH

configuration with strait
::::::
straight open boundaries used in section 3.

!-----------------------------------------------------------------------

&namusr_def ! User defined : BENCH configuration

!-----------------------------------------------------------------------575

nn_perio = 0 ! no periodicity

/

!-----------------------------------------------------------------------

&nambdy ! unstructured open boundaries580

!-----------------------------------------------------------------------

ln_bdy = .true. ! Use unstructured open boundaries

nb_bdy = 4 ! number of open boundary sets
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ln_coords_file = .false.,.false.,.false.,.false.

cn_dyn2d = ’flather’,’flather’,’flather’,’flather’585

nn_dyn2d_dta = 0,0,0,0

cn_dyn3d = ’frs’,’frs’,’frs’,’frs’

nn_dyn3d_dta = 0,0,0,0

cn_tra = ’frs’,’frs’,’frs’,’frs’

nn_tra_dta = 0,0,0,0590

cn_ice = ’frs’,’frs’,’frs’,’frs’

nn_ice_dta = 0,0,0,0

nn_rimwidth = 5,5,5,5

/

!-----------------------------------------------------------------------595

&nambdy_index

!-----------------------------------------------------------------------

ctypebdy = ’E’

nbdyind = -1

/600

!-----------------------------------------------------------------------

&nambdy_index

!-----------------------------------------------------------------------

ctypebdy = ’W’

nbdyind = -1605

/

!-----------------------------------------------------------------------

&nambdy_index

!-----------------------------------------------------------------------

ctypebdy = ’N’610

nbdyind = -1

/

!-----------------------------------------------------------------------

&nambdy_index

!-----------------------------------------------------------------------615

ctypebdy = ’S’

nbdyind = -1

/
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