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Abstract.  

Agricultural nitrous oxide (N2O) emission accounts for a non-trivial fraction of global greenhouse gases (GHGs) budget. To 

date, estimating N2O fluxes from cropland remains a challenging task because the related microbial processes (e.g., 

nitrification and denitrification) are controlled by complex interactions among climate, soil, plant and human activities. 

Existing approaches such as process-based (PB) models have well-known limitations due to insufficient representations of 25 

the processes or constraints of model parameters, and to leverage recent advances in machine learning (ML) new method is 

needed to unlock the “black box” to overcome its limitations due to low interpretability, out-of-sample failure and massive 

data demand. In this study, we developed a first of its kind knowledge-guided machine learning model for agroecosystems 

(KGML-ag), by incorporating biogeophysical/chemical domain knowledge from an advanced PB model, ecosys, and tested 

it by simulating daily N2O fluxes with real observed data from mesocosm experiments. The Gated Recurrent Unit (GRU) 30 

was used as the basis to build the model structure. To optimize the model performance, we have investigated a range of 

ideas, including: 1) Using initials of intermediate variables (IMVs) instead of time series as model input to reduce data 

demand; 2) Building hierarchical structures to explicitly estimate IMVs for further N2O prediction; 3) Using multitask 

learning to balance the simultaneous training on multiple variables; and 4) Pretraining with millions of synthetic data 

generated from ecosys and fine tuning with mesocosm observations. Six other pure ML models were developed using the 35 

same mesocosm data to serve as the benchmark for the KGML-ag model. Results show that KGML-ag did an excellent job 
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in reproducing the mesocosm N2O fluxes (overall r2 = 0.81, and RMSE = 3.6 mg N m-2 day-1 from cross-validation). 

Importantly KGML-ag always outperforms the PB model and ML models in predicting N2O fluxes, especially for complex 

temporal dynamics and emission peaks. Besides, KGML-ag goes beyond the pure ML models by providing more 

interpretable predictions as well as pinpointing desired new knowledge and data to further empower the current KGML-ag. 40 

We believe the KGML-ag development in this study will stimulate a new body of research on interpretable ML for 

biogeochemistry and other related geoscience processes. 

1 Introduction 

Nitrous oxide (N2O), with its global warming potential 273 ± 118 times greater than that of carbon dioxide (CO2) for a 100-

year time horizon, is one of the important greenhouse gases (IPCC6; Forster et al., 2021). The increasing rate of atmospheric 45 

N2O concentration during the period 2010-2015 is 44% higher than during 2000-2005, mainly driven by increased 

anthropogenic sources that have increased total global N2O emissions to ~17 Tg N yr−1 (Syakila and Kroeze, 2011; 

Thompson et al., 2019). It is estimated that approximately 60% of the contemporary N2O emission increases are from 

agriculture management at global scale (Pachauri et al., 2014; Robertson et al., 2014; Tian et al., 2020), but the estimation 

uncertainty can exceed 300% (Barton et al., 2015; Solazzo et al., 2021). Quantifying N2O emissions from agricultural soils is 50 

extremely challenging, partly because the related microbial processes, mainly about incomplete denitrification and 

nitrification, are controlled by many environment and management factors such as temperature/water conditions, soil/crop 

properties, and N fertilization rate, all of which together have collectively led to large temporal and spatial variabilities of 

N2O emissions (Butterbach-Bahl et al., 2013; Grant et al., 2016). 

 55 

Process-based (PB) models are often used for simulating N2O fluxes from the agroecosystem, but they have some inherent 

limitations, including incomplete knowledge of the processes, low accuracy due to the under-constrained parameters, 

expensive computing cost, and rigid structure for further improvements, that we could not resolve by using PB model itself. 

For example, an advanced agroecosystem model, ecosys (Grant et al., 2003, 2006, 2016), simulates N2O production rates 

through nitrification and denitrification processes when oxygen (O2) is limited, with equations considering the influence 60 

from related substrate concentrations (e.g., NO2
-, N2O, and CO2), nitrifier and denitrifier populations, and soil thermal, 

hydrological physical and chemical conditions. The produced N2O accumulates, transfers in gaseous phase, aqueous phase, 

over different soil layers, and eventually exchanges with atmosphere at the soil surface. Other PB models, including DNDC 

(Zhang et al., 2002; Zhang and Niu, 2016), DAYCENT (Del Grosso et al., 2000; Necpálová et al., 2015), and APSIM 

(Keating et al., 2003; Holzworth et al., 2014), have also included processes to simulate N2O production, but adopt different 65 

parameterizations using static partition parameters to estimate N2O emission from nitrification, and other empirical 

parameters to control the influence on nitrification from soil water content, pH, temperature and substrate concentrations. 

Besides, N2O is intimately connected with the soil organic carbon (SOC) dynamics, because soil nitrifiers and denitrifiers 

https://doi.org/10.5194/gmd-2021-317
Preprint. Discussion started: 14 October 2021
c© Author(s) 2021. CC BY 4.0 License.



3 
 

interact strongly with aerobic and anaerobic heterotrophs that process SOC evolution, and all of these microbes are driven by 

shared environmental variables including soil temperature, moisture, redox status, and physical and chemical properties 70 

(Thornley et al., 2007). As expected, these connections make it difficult for PB models, even the most advanced ones like 

ecosys, to find sufficient representations of the physical and biogeochemical processes or obtain enough data to calibrate a 

large number of model parameters with strong spatio-temporal variations. Thus, novel approaches are needed for addressing 

the big challenge of agricultural N2O flux simulations. 

 75 

Machine learning (ML) models can automatically learn patterns and relationships from data. Recent studies have 

investigated the potential to predict agricultural N2O emission with ML models, including random forest (RF, Saha et al., 

2021), metamodelling with extreme gradient boosting (XGBoost) (Kim et al., 2021), and deep learning neural network 

(DNN) (Hamrani et al., 2020). Notably, Hamrani et al. (2020) compared nine widely used ML models for predicting 

agricultural N2O. That study pointed out that the long short term memory (LSTM) model with recurrent networks containing 80 

memory cells as building blocks will be most suitable for N2O predictions, but the challenge remains with respect to the 

ability of capturing the sharp peak of N2O fluxes and lag time between N fertilizer application and the emission peak. 

Although there is an increasing interest in leveraging recent advances in machine learning, capturing this opportunity 

requires going beyond the ML limitations, including limited generalizability to out-of-sample scenarios, demand for massive 

training data, and low interpretability due to the “black-box” use of ML (Karpatne et al., 2017). PB models with their 85 

transparent structures built by representations of physical and biogeochemical processes, seem to be exact complementary to 

ML models. Thus, combining the power of ML model and PB model understanding innovatively is likely a path forward. 

 

The above need to integrate ML and PB models can be possibly addressed by the newly proposed framework of Knowledge-

guided Machine Learning (KGML) models. In the review by Willard et al. (2021), five research frontiers have been 90 

identified regarding the development of KGML for diverse disciplines including earth system science, they are: 1) Loss 

function design according to physical or chemical laws (Jia et al., 2019, 2021; Read et al., 2019); 2) Knowledge-guided 

initialization through pretraining ML models with synthetic data generated from PB models (Jia et al., 2019, 2021; Read et 

al., 2019); 3) Architecture design according to causal relations or adding dense layers containing domain knowledge 

(Khandelwal et al., 2020; Beucler et al., 2019, 2021); 4) Residual modeling with ML models to reduce the bias between PB 95 

model outputs and observations (Hanson et al., 2020); and 5) Other hybrid modeling approaches combining PB and ML 

models (Kraft et al., 2021). These recent advances in KGML pave the pathway to a more efficient, accurate and interpretable 

solution for estimating N2O fluxes from the agroecosystem.  

 

In this study, we present the first-of-its-kind attempt of developing the KGML for agricultural GHG fluxes prediction 100 

(KGML-ag) with knowledge-guided initialization and architecture design, and demonstrate the potential of KGML-ag with a 

case study on quantifying N2O flux observed by a multi-year mesocosm experiments. We designed the KGML-ag structure 
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based on the causal relations of related N2O processes informed by an advanced agroecosystem model, ecosys (Grant et al., 

2003, 2006, 2016). We used the synthetic data generated from ecosys to design the KGML-ag input/output, and to pre-train 

the KGML-ag model to learn the basic patterns of each variable. Observations from multi-season controlled-environment 105 

mesocosm chambers (Miller, 2021, thesis; Miller et al., 2021, in review) were used to refine the pretrained KGML-ag and 

evaluate the model performance. Since there is limited literature that guides the development of KGML-ag and not a one that 

directly addressed GHG fluxes, we investigated a range of ideas to optimize the model performance, including: 1) Using 

initials of intermediate variables (IMVs) instead of sequences as model input to reduce data demand; 2) Building hierarchical 

structures to explicitly estimate IMVs for further N2O prediction; 3) Using multitask learning to balance the simultaneous 110 

training on multiple variables; and 4) Pretraining with millions of synthetic data generated from ecosys and fine tuning with 

mesocosm observations. Although we evaluated the KGML-ag models with real measurements from a mesocosm 

experiment, the lessons learned from the development process and various KGML-ag structures can be transferred to other 

data, other variables and large scale simulations, therefore have broader implications on further KGML related research in 

agriculture. We believe this study will stimulate a new body of research on interpretable machine learning for 115 

biogeochemistry and other related topics in geoscience. 

2 Methods 

2.1 Experimental design overview 

To develop and evaluate the KGML-ag models and compare their performance with pure ML models, we designed the 

following experiments: 120 

1) With the synthetic data, we developed and pretrained multiple KGML-ag models to learn general patterns and 

interactions among variables, and evaluated their model performance (Fig. S2, Table 1); 

2) With the observed data, we finetuned multiple KGML-ag models to adapt real-world situations, and evaluated their 

model performance (Fig. 2-3; Fig. S3-5; Table 2-3); 

3) We further benchmarked KGML-ag models with other pure ML models without considering temporal dependence, 125 

including Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB) from the sklearn package 

(https://scikit-learn.org/stable/), Extreme Gradient Boosting (XGB) from the XGBoost package 

(https://xgboost.readthedocs.io/en/latest/) and a 6-linear-layer artificial neural network (ANN) with the mesocosm 

experiment data (Fig. 4-5; Fig. S6-8); 

4) We conducted a few small experiments to further investigate how various model configurations, such as the 130 

pretraining process, data augmentation and IMV initials would influence KGML-ag model performance (Table 3). 
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2.2 KGML-ag structure development 

2.2.1 Generating synthetic data with ecosys 

We generated synthetic data using a PB model, ecosys. The ecosys model is an advanced agroecosystem model constructed 

from detailed biophysical and biogeochemical rules instead of using empirical relations (Grant et al., 2001). Many previous 135 

studies have demonstrated its robustness in simulating agricultural carbon and nitrogen cyclings at different spatial/temporal 

scales, and under different management practices (Grant et al., 2003, 2006, 2016; Metivier et al., 2009; Zhou et al., 2021). 

Therefore, ecosys is an appropriate choice of domain knowledge provider and synthetic data generator in the development of 

KGML models. We generated daily synthetic data including N2O flux and 76 IMVs (e.g. CO2 flux from soil, layerwise soil 

NO3
- concentration, layerwise soil temperature, and layerwise soil moisture; detailed in Table S1) from ecosys simulations 140 

for 2000-2018 over 99 randomly selected counties in Iowa, Illinois, and Indiana, USA. We used hourly meteorological 

inputs (downward shortwave radiation, air temperature, precipitation, relative humidity, and wind speed) from the phase 2 of 

North American Land Data Assimilation System (NLDAS-2, Xia et al., 2012) and layerwise soil properties (e.g.  bulk 

density, texture, pH, SOC concentration) from the SSURGO database (Soil Survey Staff, 2020) as inputs to ecosys. Crop 

management except N fertilization rates were configured to the same settings as mesocosm experiments (described in Sec 145 

2.2.2). To increase the variability in synthetic data, we implemented 20 different N fertilization rates ranging from 0 to 33.6 

g N m-2 (i.e. 0 to 300 lb N ac-1) in each simulation of 99 counties, and more detailed information for model setup refers to 

Zhou et al. (2021). 

 

The generated synthetic data were then processed for further use by KGML-ag development. Meanwhile, the hourly weather 150 

forcings were converted to seven daily variables, including the maximum air temperature (TMAX_AIR, oC), difference 

between the maximum and the minimum air temperature (TDIF_AIR, oC), the maximum humidity (HMAX_AIR, fraction), 

difference between the maximum and the minimum humidity (HDIF_AIR, fraction), surface downward shortwave radiation 

(RADN, W m-2), precipitation (PREC, mm day-1), and wind speed (WIND, m s-1). Six soil properties were retrieved from the 

SSURGO database, including total averaged (depth weighted averaged for all layers) bulk density (TBKDS, Mg m -3), sand 155 

content (TCSAND, g kg-1), silt content (TCSILT, g kg-1), pH (TPH), cation exchange capacity (TCEC, cmol+ kg-1) and soil 

organic carbon (TSOC, g C kg-1); and two crop properties were retrieved, including planting day of the year (PDOY) and 

crop type (CROPT, 1 for corn and 0 for soybean). Finally, each synthetic data sample has daily N2O flux, 76 selected IMVs, 

7 weather forcings (W), 1 N fertilization rate (FN, g N m-2) and 8 soil/crop properties (SCP) (Fig. 1.a; Table S1). The periods 

from April 1st to July 31st (122 days) were selected to cover the mesocosm observations (around 30 days before and 90 days 160 

after N fertilizer date). The total amount of synthetic data sample is 122 days x 18 years x 99 counties x 20 N fertilizer rates 

(about 4.3 million data points). We randomly selected the samples from 70 counties for training, 10 counties for validation, 

and 19 counties for testing. 
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2.2.2 Mesocosm experiments for KGML-ag model finetuning and evaluation 

Observations were acquired from a controlled-environment mesocosm facility on the St. Paul campus of the University of 165 

Minnesota. Soil samples were sourced in 2015 from a farm in Goodhue County, MN (44.2339o N and 92.8976o W), which 

had been under corn-soybean rotation for 25 years. Six chambers with a soil surface area of 2 m2 and column depth of 1.1 m 

were used to plant continuous corn during 2015-2018 and monitor the N2O flux response to different precipitation 

treatments. The experiment also measured other environmental variables including air temperature and photosynthetically 

active radiation (PAR), which were controlled to mimic the outdoor ambient environment. Granular urea fertilizer was hand 170 

broadcasted and incorporated to a depth of 0.05 m to each chamber at a rate of 22.4 g N m-2 (200 lb N ac-1) on May 1st of 

2015, May 4th of 2016 and May 3rd of 2017, and 10.3 g N m-2 (92 lb N ac-1) on May 8th of 2018. Corn hybrid (DKC-53-

56RIB) were hand planted to a depth of 0.05 m in two rows spaced 0.76 m apart 3-5 days after fertilizer application, at a 

seeding rate of 35,000 seeds ac-1 in 2015 to 2017, and 70,000 seeds ac-1 in 2018 but thinned upon emergence to ensure 100 

percent emergence at 35,000 seeds ac-1. Crops were harvested at the end of September by cutting the stover five inches 175 

above the soil. Hourly N2O fluxes (mg N m-2 h-1) and CO2 fluxes (g C m-2 h-1) were measured using non-steady-state flux 

chambers with a CO2 analyzer (LI-10820 for 2016 and LI-7000 for 2017 and 2018, LI-COR Biosciences, Lincoln, NE) and a 

N2O analyzer (Teledyne M320EU, Teledyne Technologies International Corp, Thousand Oaks, CA) (Detail method can be 

retrieved from Fassbinder et al., 2012, 2013). We also collected soil moisture at 15 cm depth (VWC as abbreviation of 

volumetric water content, m3 m-3), weekly 0-15 cm depth soil NO3
- + NO2

- concentration (NO3
- for short in the following 180 

text, g N Mg-1), soil NH4
+ concentration (NH4

+, g N Mg-1), and related environment variables including air temperature, 

radiation, humidity and soil/crop properties from three growing seasons during 2016-2018 and six mesocosm chambers (Fig. 

S1). More details about the mesocosm facility and experimental design can be found in the thesis of Miller L. (2021). 

 

The observed data were then processed to finetune and evaluate the KGML-ag models. The N2O flux and four IMVs and 185 

weather variables were collected from the measurements in the selected period (i.e., April 1st to July 31st). Weekly NO3
- 

(short for soil NO3
- within 0-15 cm depth), and NH4

+ (short for soil NH4
+ within 0-15 cm) were linearly interpolated to the 

daily time scale on days containing VWC (short for soil VWC in 15 cm) data. Hourly air temperature, net radiation, N2O 

(short for N2O fluxes from soil), CO2 (short for CO2 fluxes from soil) and VWC were resampled to daily scale. All SCP were 

derived from mesocosm measurements except that TCEC was derived from the SSURGO database according to the soil 190 

origin. We used the leave-one-out cross-validation (LOOCV) method for the finetuning and evaluation process. Each time 

we used one chamber data for validation and another five chambers’ data for model finetuning.  

 

To increase the model generalization and avoid overfitting, we used the data augmentation method to enrich the finetuning 

data set to be 1000 times larger. Data augmentation is a typical practice in ML when training data is limited (Meyer et al., 195 

2021). In particular, we randomly sampled 16 hours of data from a 24-hours period in each day and chamber, and then used 
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the sampled data to calculate the daily value. If less than 16 missing values existed in 24 hours, we used the above method to 

sample the data and calculated a fraction number (24-missing value number)/24 to record valid data fraction in the mask 

matrix. If more than 16 missing values were found, we dropped this point and recorded 0 in the mask matrix. The final 

sample has daily N2O flux, 4 IMVs, 7 weather forcing variables and 8 static soil/crop properties (similar to synthetic data). 200 

The total amount of augmented observed data sample is 122 days x 3 years x 6 chambers x 1000 data augmentations. The 

mask matrix is of the same size as the observed data sample but its elements range from 0 to 1. 

2.2.3 Gated Recurrent Unit (GRU) as the basis of KGML-ag 

Hamrani et al. (2020) compared different models and reported that LSTM provided the highest accuracy in predicting N2O 

fluxes, because N2O flux is time dependent by its production/consumption nature and LSTM simulates target variable by 205 

considering both current and historical states. The LSTM model, proposed by Hochreiter and Schmidhuber (1997), uses a 

cell state as an internal memory to preserve the historical information. At each time step, it creates a set of gating variables to 

filter the input and historical information and then uses the processed data to update the cell state. Similar to LSTM, GRU is 

a gated recurrent neural network but only keeps one hidden state (Cho et al., 2014). Though simpler than LSTM, GRU is 

proved to have similar performance (Chung et al., 2014). Our preliminary test on synthetic data for N2O prediction showed 210 

that GRU indeed provided similar or higher accuracy and model efficiency under different model settings than LSTM (Table 

S2). This is likely because simpler models with fewer weights and hyperparameters are more robust in combating the 

overfitting problem. Therefore, we choose GRU as the basis of KGML-ag development. 

2.2.4 Incorporating domain knowledge to the development of KGML-ag 

To quantitatively reveal the correlations between N2O and IMVs and guide the KGML-ag development, we conducted the 215 

feature importance analysis by a customized 4-layer GRU ML model (Fig. 1b). Each layer of the model has a GRU cell with 

64 hidden units. The 4-layer structure makes the model deeper and capable of capturing complex interactions. Between each 

GRU cell, 20% of the output hidden states are randomly dropped by replacing them with zero values (so called 20% 

dropout) to avoid overfitting. A linear dense layer is used to map the final output to N2O. We first trained GRU models by 

synthetic data with different combinations of IMVs as inputs to predict the N2O (original-test, Table S2). The feature 220 

importance analysis of well-trained models was then implemented by replacing one input feature with a Gaussian noise with 

mean μ=0 and standard deviation σ=0.01, while keeping others untouched (new-test). The importance score was calculated 

by the new-test’s root mean square error (RMSE) (replacing one feature) minus the original-test’s RMSE (no replacing). 

RMSE was calculated by 
√∑ (𝑦𝑖−𝑦𝑖′)2𝑁

1

N
 where N  is the total number of observations across time and space, 𝑦𝑖  is i-th 

measurement from synthetic data or observed data and 𝑦𝑖′ is its corresponding prediction.  225 
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To find important variables for N2O prediction in an ideal situation that all variables are available, we conducted a feature 

importance analysis for GRU models with all IMVs and basic inputs including FN, 7 W and 8 SCP (Fig. S2a). Results 

indicated that flux variables including NH3, H2, N2, O2, CH4, evapotranspiration (ET) and CO2 had significant influence on 

the model performance. To develop a functionable KGML-ag in real world, we further investigated the feature importance of 230 

four IMVs that are available from mesocosm observations including CO2, NO3
-, VWC and NH4

+, which were ranked 7th, 

20th, 58th, 60th respectively in 92 input features of synthetic data (Fig. S2a). We used these four available IMVs to create 

two input combinations: 1) CO2 flux, NO3
-, VWC and NH4

+ (IMVcb1), and 2) NO3
-, VWC and NH4

+ (IMVcb2). The 

objective of building IMVcb2 was to investigate the importance of CO2 flux (by removing it from the inputs), and the impact 

of mixing-up flux and non-flux variables on model performance. We tested the feature importance of the GRU models built 235 

with IMVcb1 and IMVcb2 to check whether they would help in N2O prediction (Fig. S2b-c). All the feature importance 

results above indicated the correlation intensity between N2O and many other variables, which would help the KGML-ag 

model development and interpretation in this study (rest of this section and Sec. 3.1), and would guide future N2O related 

measurements and KGML model development (discussed in Sec. 4.4). 

 240 

Next we used the knowledge learned from synthetic data to develop the structure of KGML-ag (Fig. 1b-c). Previous studies 

for KGML models have used physical laws, e.g., conservation of mass or energy, to design the loss function for constraining 

the ML model to produce physically consistent results (Read et al., 2019; Khandelwal et al., 2020). However, for complex 

systems like agroecosystems, it is challenging to incorporate physical laws, such as mass balance for N2O, into the loss 

function due to the incomplete understanding of the processes and the lack of mass balance related data for validation. An 245 

alternative solution is to incorporate such information in the design of the neural network (Willard et al., 2021). 

Effectiveness of such an approach was demonstrated by Khandelwal et al. (2020) in the context of modeling stream flow in a 

river basin using Soil & Water Assessment Tool (SWAT). They used a hierarchical neural network to explicitly model IMVs 

(e.g., soil moisture, snow cover) and their relationships with the target variable (streamflow) and showed that this model is 

much more effective than a neural network that attempts to directly learn the relationship between input drivers and the 250 

target variables. Following this idea, we identified four desired features of an effective KGML-ag model, including: 1) We 

used initials instead of sequence of the IMVs from synthetic data or observed data to provide a solid starting state for the ML 

system and reduce the IMV data demand, and then used the rest of the data to further constrain the prediction of IMVs; 2) 

We built a hierarchical structure based on causal relations derived from ecosys to first predict IMVs and then simulate N2O 

with predicted IMVs; 3) We trained all variables together using multitask learning to reach the best prediction scores, which 255 

generalized the model and incorporated interactions between IMVs and N2O; 4) We initialized the KGML-ag model by 

pretraining using synthetic data before using real observed data to transfer physical knowledge, which further reduced the 

demand on large training samples and aided in faster convergence for finetuning. 

 

To meet these desired features, we proposed two KGML-ag models (Fig. 1c-d). The first model, KGML-ag1, is a 260 
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hierarchical structure containing two modules to simulate IMVs and N2O sequentially. Each module is a 2-layer 64 units 

GRU ML model. The inputs to the module of the KGML-ag1 model for IMV predictions (KGML-ag1-IMV module) are FN, 

7W and 8SCP together with the initials of IMVs, and the outputs are IMV predictions. The inputs to the module of the 

KGML-ag1 model for N2O predictions (KGML-ag1-N2O module) are FN, 7W, 8SCP and predicted IMVs from KGML-ag1-

IMV, and the output is the target variable N2O. Linear dense layers were coded for both modules to map output states to 265 

IMVs or N2O. The dropout method was applied to drop 20% of the state output between GRU cells and dense layers. The 

second model, KGML-ag2, is also a hierarchical structure similar to KGML-ag1, but has multiple KGML-ag2-IMV modules 

to explicitly simulate IMVs by tuning them separately in the fine-tuning process (discussed in Sec. 2.2.5). Each KGML-ag2-

IMV module in KGML-ag2 is a 2-layer 64 units GRU cell with the inputs of FN+7W+8SCP and one IMV initial, and the 

output of one IMV prediction. The KGML-ag2-N2O module collects the IMV predictions from KGML-ag2-IMV modules 270 

and predicts the N2O with inputs of FN+7W+8SCP and predicted IMVs. 

2.2.5 Strategies for pretraining and finetuning processes 

To increase the efficiency of the training process, we used the Z-normalization ( 
(𝑿− 𝜇)

σ
, where 𝑿 is the vector of a particular 

variable over all the data samples in the data set; 𝜇 is the mean value of 𝑿; σ is the standard deviation of 𝑿) method to 

normalize each variable separately on synthetic data. Then the scaling factors (𝜇, σ) derived from ecosys synthetic data for 275 

each variable were used to Z-normalize observed data into the same ranges as synthetic data. As mentioned in Sec. 2.2.1, the 

TDIF_AIR, HDIF_AIR were used instead of absolute min temperature (TMIN_AIR) and humidity (HMIN_AIR). This is 

done because TMIN_AIR and HMIN_AIR follow similar trends as TMAX_AIR and HMAX_AIR, making Z-normalization 

numerically poorly defined. Using the difference between maximum and minimum can provide a clearer information of 

daily air temperature/humidity variation.  280 

 

During the pretraining process, we initialized the IMV of KGML-ag using the first day value of synthetic IMV time series. 

Adam optimizer with a start learning rate of 0.0001 was used for the training process. The learning rate would decay by 0.5 

times after every 600 training epochs. At each epoch, synthetic data samples were randomly shuffled before being input to 

the model to predict N2O (and IMVs if any). The mean square error (MSE) loss (calculation was equal to the square of 285 

RMSE) or sum of MSE loss (if multitask learning) between predictions and ecosys synthetic observations were calculated to 

optimize the weights of GRU cells. After the training process updated the model’s weights, the validation process was 

performed to evaluate the model performance based on untouched samples with RMSE and the square of Pearson correlation 

coefficient (r2). r2 was calculated as 
(∑ (𝑦𝑖′− 𝑦𝑖′̅̅ ̅̅ ̅)(𝑦𝑖− 𝑦𝑖̅̅̅))𝑖

2

∑ (𝑦𝑖′− 𝑦𝑖′̅̅ ̅̅ ̅)𝟐(𝑦𝑖− 𝑦𝑖̅̅̅)2
𝑖

, where 𝑦𝑖 is the i-th measurement from synthetic data or observed 

data, 𝑦𝑖′ is its corresponding prediction, 𝑦�̅� is the mean of the measurement 𝑦  in diagnosing space and  𝑦𝑖′̅̅ ̅̅  is the mean of the 290 

predicted 𝑦′ in diagnosing space. If both validated r2 and RMSE were better than the best values in previous epochs, the 
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updated model in this epoch would be saved. Normalized RMSE (NRMSE, calculated by RMSE/(max-min) of each variable 

observation) was introduced to evaluate IMV predictions between variables with different value ranges. 

 

During the finetuning process, we used estimated IMV initials of 1.0 g C m-2, 0.2 m3 m-3, 0.0 g N Mg-1, and 20.0 g N Mg-1 for 295 

CO2, VWC, NH4
+, and NO3

- respectively, from starting day (April 1st) to the day before the first day of real observations, as 

input to KGML-ag models. Then the first-day values of observed IMVs were input into KGML-ag during the rest days of the 

period as IMV initials. In addition, as described in Sec. 2.2.2, we used a data augmentation method to augment the total 

amount of data 1000 times larger for the finetuning process. The purpose of this data augmentation method was to increase 

the generalization of the finetuned model and to overcome the overfitting due to small sample size. The mask matrix was 300 

elementarily multiplied to the output matrix to calculate the MSE, r2 and RMSE only for days with observations. The similar 

optimizer was used with an initial learning rate of 0.00005 and decay fraction of 0.5 per 200 epochs. Other 

training/validation methods in each epoch were similar to the pretraining process. Specifically, in the KGML-ag1 model 

finetuning process, we first froze the KGML-ag1-N2O module and only trained the KGML-ag1-IMV module for IMVs. 

After finishing the KGML-ag1-IMV module training, we froze the KGML-ag1-IMV module and trained the KGML-ag1-305 

N2O module for N2O. In the KGML-ag2 finetuning process, the similar freezing method was used but different KGML-ag2-

IMV modules were trained separately one by one. 

2.3 Development environment description 

We used the Pytorch 1.6.0 (https://pytorch.org/get-started/previous-versions/) and python 3.7.9 

(https://www.python.org/downloads/release/python-379/) as the programing environment for the model development. In 310 

order to use the GPU to speed-up the training process, we installed cudatoolkit 10.2.89 (https://developer.nvidia.com/cuda-

toolkit). A desktop with Nvidia 2080 super GPU was used for code development and testing. The Mangi cluster 

(https://www.msi.umn.edu/mangi) from High Performance Computing of Minnesota Supercomputing Institute (HPC-MSI, 

https://www.msi.umn.edu/content/hpc) with 2-way Nvidia Tesla V100 GPU was used in training processes which consumed 

longer time and bigger memories. 315 

3 Results 

3.1 Pretraining experiments using synthetic data from ecosys 

In the pretraining stage, the GRU model with 76 IMVs achieved the best performance in predicting N2O fluxes (r2=0.98, 

RMSE =0.54 mg N m-2 day-1 and normalized RMSE (NRMSE) = 0.01) on the test set of synthetic data generated from 

ecosys (Table 1). The high performance was due to some flux IMVs such as NH3, H2, O2, CO2 and ET, which are highly 320 

correlated to N2O (Fig. S2a), were used as input to the model. The good performance of GRU with all IMVs indicates that 

ML models are able to perfectly mimic ecosys when sufficient information about IMVs is available. The GRU model with 
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only basic input of N fertilizer rate, 7 weather forcings, and 8 soil/crop properties (FN+7W+8SCP) had the accuracy of 

r2=0.89 and RMSE = 1.37 mg N m-2 day-1 (Table 1). The relatively low performance is likely because this model failed to 

capture several highly nonlinear pathways that are employed by ecosys to predict N2O (e.g., one influence pathway from 325 

precipitation to N2O can be: Precipitation → soil moisture → N components solubility/concentration → 

nitrification/denitrification rate/amount → soil N2O concentration → gas N2O flux). When adding sequences of IMV 

combinations (i.e., IMVcb1 of CO2 flux, NO3
-, NH4

+ and VWC, and IMVcb2 of NO3
-, NH4

+ and VWC), the GRU models 

performed slightly better than the GRU model using only basic inputs, achieving r2 of 0.92 and 0.90, respectively (Table 1). 

The KGML-ag1 with IMVcb1 and IMVcb2 initials provided better performance (both r2 = 0.90) than GRU with basic input 330 

and comparable performance to the GRU with inputs of IMVcb1 and IMVcb2 sequence. Besides, KGML-ag1 provided 

predicted IMVs of CO2, NO3
-, NH4

+, and VWC with r2 over 0.91, and NRMSE below 0.06 (Table 1). KGML-ag2 also 

provided comparable N2O performance but relatively better IMVs performance of r2 over 0.92 and NRMSE below 0.05. 

Results indicated that KGML-ag models with IMV initials as extra input performed similar or better than pure ML models in 

synthetic data. 335 

3.2 KGML-ag evaluation using observed data from mesocosm 

After being finetuned with observed data, KGML-ag1 had N2O prediction overall accuracy of r2=0.81 and RMSE=3.6 mg N 

m-2 day-1, while non-pretrained GRU model provided r2=0.78 and RMSE=4.0 mg N m-2 day-1, and pretrained GRU model 

provided r2=0.80 and RMSE=3.77 mg N m-2 day-1 (Table 3). The time series of N2O predictions from KGML-ag1 and the 

non-pretrained GRU model were further compared (Fig. 2), from which we found at least two advantages of using KGML-340 

ag1 for N2O predictions: 1) For the region without observation data (normally before day 25), KGML-ag1 predicted stable 

N2O fluxes close to 0 mg N m-2 day-1 (which is close to the reality in the experiment setting) while GRU caused anomalous 

peaks of fluxes. This is  because KGML-ag1 has learned “common sense” for the whole period from the pretraining process 

with ecosys model generated synthetic data, but GRU model has no prior knowledge for the period without any data in 

observations; 2) Although KGML-ag1 had a lower accuracy than GRU in some chambers, KGML-ag1 can better capture the 345 

temporal dynamics of N2O fluxes compare to GRU, especially when the fluxes are highly variable (e.g. Fig 2 chamber 2).  

 

To validate KGML-ag1 robustness, we further investigated the KGML-ag1 and GRU model performance in different 

temporal windows, shrinking from the whole period to the N2O peak occurrence time (days 1-122, day 30-80, day 40-65 and 

day 45-60 for year 2016-2018), and performance in N2O flux, first order gradient of N2O (slope) and second order gradient 350 

of the N2O (curvature) (Table 2). First of all, the overall r2 and RMSE of KGML-ag1 for values, slope and curvature were 

always better than GRU. In particular, KGML-ag1 captured the peak region (e.g., days 45-60) much better than GRU in both 

magnitude and dynamics (Table 2, Fig 2). Even for chamber 2 and 5 in which KGML-ag1 made worse N2O predictions than 

GRU (Δr2 ranging from -0.07 to -0.03), it better captured temporal dynamics than GRU in terms of slope (Δr2 ranging from 

0.08 to 0.16) and curvature (Δr2 from 011 to 0.23) (Table 2). For other chambers, KGML-ag1 outperformed GRU 355 
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consistently. For chamber 1, KGML-ag1 had worse N2O predictions RMSE than GRU but the Δr2 increased as the window 

shrinks to the peak emission time (0.07 → 0.13). The slope and curvature for chamber 1 also indicated that KGML-ag1 

captured the dynamics much better than GRU. For chamber 3, KGML-ag1 predicted better N2O but presented worse slope 

and curvature RMSE than GRU (Table 2).  However, when explicitly investigating the time series of N2O flux, slope and 

curvature in each year, KGML-ag1 outperformed GRU more in 2017, the year with more complex temporal dynamics of 360 

N2O fluxes, than in 2016 and 2018, especially for chamber 3 (Fig. 2; Fig. S3-4). This investigation supported that KGML-

ag1 was more capable for complex dynamics predictions. 

 

Interestingly, the finetuned KGML-ag1 model predicted reasonable IMVs including CO2, NO3
-, NH4

+, and VWC with 

overall r2 of 0.37, 0.39, 0.60, and 0.33 and NRMSE of 0.14, 0.21, 0.09 and 0.18, respectively (Table 3). The time series 365 

comparisons between IMV predictions and observations further indicated that KGML-ag1 could reasonably capture both 

magnitude and dynamics (Fig. 3). KGML-ag2 presented better IMVs predictions than KGML-ag1, with overall r2 of CO2, 

NO3
-, NH4

+, and VWC increasing by 0.37, 0.17, 0.06 and 0.51, and NRMSE decreasing by 0.05, 0.03, 0.01 and 0.10, 

respectively, but a slightly lower r2 (decreasing 0.02) of N2O (Table 3; Fig. S5). This indicated that explicitly simulating each 

IMV with separated KGML-ag2-IMV modules did not benefit the N2O flux prediction accuracy, likely due to increasing 370 

model complexity which resulted in reducing stability and ignoring the IMV interactions. 

3.3 KGML-ag comparing with other pure ML models 

The results from seven different models showed that KGML-ag1 consistently provided the lowest RMSE (3.60 mg N m-2 

day-1, 1.20 mg N m-2 day-2, and 0.87 mg N m-2 day-3) and highest r2 (0.81, 0.51, and 0.28) for N2O fluxes, slope and 

curvature, respectively (Fig. 4). This indicated that KGML-ag1 outperformed other pure ML models in both capturing the 375 

magnitude and dynamics of N2O flux.  

 

Within the tree-based models (DT, RF, GB and XGB), the simplest model DT provided the worst predictions for N2O flux, 

slope and curvature. The XGB model provided the highest N2O flux accuracy with r2 of 0.62 and RMSE of 5.11 mg N m-2 

day-1, while the GB model provided best slope and curvature predictions with r2 of 0.42 and 0.28, and RMSE of 1.31 mg N 380 

m-2 day-2 and 0.88 mg N m-2 day-3, respectively. The highest N2O flux accuracy and relatively low slope and curvature 

accuracy of the XGB model implied that there is a trade-off between the abilities of capturing dynamics and magnitude.  

 

In the group of deep learning models including ANN, GRU and KGML-ag1, ANN provided the worst predictions. Even 

with the better N2O flux predictions than tree-based models, the slope and curvature predictions of ANN were the worst 385 

among all seven models. This implied that the trade-off between accurately capturing N2O dynamics to magnitude in ANN 

was significant. But when considering the temporal dependence, deep learning model GRU and KGML-ag1 outperformed 
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all other models in flux, slope and curvature predictions. This indicated that without considering temporal dependence the 

improvement in N2O flux prediction accuracy could be risky by causing the performance drop in capturing dynamics.  

 390 

The detailed model comparisons in each chamber are shown in Fig. 5 (N2O flux) and Fig. S6-7 (N2O slope and curvature), 

where the results are found to follow the same pattern as described above. In addition, time series comparisons of chamber 3 

and 4 in 2017 between different models are presented in Fig. S8 as two examples. From these comparisons, we infer that 

without considering temporal dependence and pretraining process, the tree-based model including DT, RF, GB and XGB and 

deep learning model ANN predicted erratic peaks in almost every missing data point, while GRU model was stable in small 395 

gaps and only presented poor performance in long missing period (before 25 day). This improvement by GRU model can be 

attributed to the structure of GRU that naturally keeps the historical information using hidden states, which enables GRU to 

consider the temporal dependence and make consistent predictions over time. 

3.4 Influence of pretraining process, data augmentation and using IMV initials as input feature 

After we pretrained the GRU model with synthetic data, the overall r2 of N2O flux predictions in observed data increased by 400 

0.02, 0.12 and 0.14, and RMSE decreased by 0.23 mg N m-2 day-1, 0.15 mg N m-2 day-2 and 0.02 mg N m-2 day-3 for flux, 

slope and curvature predictions, respectively, compared to non-pretrained GRU (Table 3 gray region). The gap between the 

GRU model with pretrain and KGML-ag1 in N2O value prediction shows the improvement resulting from architecture 

change (r2 increases by 0.01 and RMSE decreases by 0.17 mg N m-2 day-1). Although pretrained GRU had higher slope and 

curvature prediction accuracy than KGML-ag models, it still couldn’t achieve the current N2O value prediction accuracy of 405 

KGML-ag1. Besides, the KGML-ag models had relatively shallow N2O prediction modules (2-layer GRU KGML-ag-N2O 

module of KGML-ag models vs 4-layer GRU) but included modules for IMV predictions, which therefore increased the 

model interpretability.  

 

It's worth noting that prediction accuracy of all KGML-ag models dropped without augmenting the training dataset in the 410 

finetuning process (Table 3 blue region). Moreover, the maximum training epochs increased from 800 to 20000, which 

resulted in overfitting on the small data set. This indicated that the data augmentation indeed helped the models become 

more generalizable and gain better accuracy.  

 

Experiments using zero initials presented a significant drop in every variable’s prediction accuracy (Table 3 yellow region). 415 

This indicated that the IMV initials input into the KGML-ag-IMV modules of KGML-ag models influenced not only the 

IMV prediction but also the N2O prediction of the KGML-ag-N2O module. This shows that there is useful information 

transferred from IMVs in the KGML-ag-IMV module to the KGML-ag-N2O module. 
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4 Discussion 

In the previous section, we showed that KGML-ag models can outperform ML models, by invoking architectural constraints 420 

and PB model synthetic data initialization. Compared to traditional PB models such as ecosys, KGML-ag models provide 

computationally more accurate and efficient predictions (KGML-ag few seconds vs ecosys half hour), which is similar to 

traditional ML surrogate models (Fig. S9). But KGML-ag goes beyond that by providing more interpretable predictions than 

pure ML models. 

4.1 Interpretability of KGML-ag 425 

The proposed KGML-ag models incorporate causal relations among N2O related variables/processes as shown in Fig. S10. 

Managements, weather forcings and initial IMVs influence soil water, soil temperature and soil properties, which influence 

the availability of O2 and N as well as the microbe populations in soil, and further influence the nitrification and 

denitrification rates. N2O is produced during both nitrification and denitrification when soil O2 concentration is limited. Our 

KGML-ag follows this hierarchical structure by designing KGML-ag-IMV modules representing the soil processes for IMVs 430 

predictions (Fig. 1c-d).  

 

To better explain the time series predictions of N2O flux (Fig. S1; Fig. 2-3), we separated the observations of each year into 

three periods: leading period (before N2O increasing), increasing period (increasing to the peak) and decreasing period (peak 

decreasing to near zero). During the leading period, both NH4
+ and CO2 were increasing immediately in the following few 435 

days following urea N fertilizer application, indicating that urea was decomposing into NH4
+ and CO2 in soil water. With 

accumulating NH4
+ in soil, nitrification started producing NO3

- and consuming O2. N2O didn’t respond to the fertilizer 

immediately due to enough O2 in soil. Then when the soil became sufficiently hypoxic, N2O fluxes entered an increasing 

period with N2O being produced by nitrification and denitrification processes. CO2 fluxes were relatively low and NH4
+ kept 

decreasing during this period. Finally, when soil NH4
+ was exhausted and NO3

- started decreasing due to denitrification, N2O 440 

fluxes then entered the decreasing period. CO2 flux was related to urea decomposition during the leading period, and was 

more closely related to O2 demand in other periods. The KGML-ag predictions of N2O and IMV captured the three periods 

and transition points, demonstrating the connections between those variables following the description as above (Fig. 3; Fig. 

S5). Although KGML-ag1 obtained lower IMVs prediction accuracy compared to KGML-ag2, it captured the general trends 

and was doing better for transitions, especially in NH4
+ predictions. KGML-ag2 overfitted on the observations and ignored 445 

the correlations between IMVs, which resulted in loss in pretrain knowledge, poorer performance in the leading period, and 

erratic predictions in the period with missing observations (before day 25). 
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4.2 Interpretability of KGML-ag 

The development of KGML-ag in our study is suitable to predict not only N2O but also other variables, such as CO2, CH4 

and ET, with complicated generation processes relying on the historical states. To develop a capable KGML model, we need 450 

to carefully address three questions:  

 

What kind of ML model is suitable for developing KGML? The answer could be determined by the dominant variation type 

of the target variable in the data. If the dominant type is temporal variance, like flux variables in high temporal resolution 

(e.g., daily, or hourly), we should consider ML models with temporal dependency. RNN models such as GRU used in this 455 

study, and CNN models such as casual CNN (Oord et al., 2016) can be good starting ML models. If the dominant type is 

spatial variation, like variables in coarse temporal resolution (e.g., monthly or annually) but with high diversity due to soil 

property, land cover and climate, we should consider ML models with the ability to deal with edges, hotpoints and 

categories, such as CNN; 

 460 

What physical/chemical constraints can be used to build KGML models? Although physical rules such as mass balance or 

energy balance are conceptually straightforward and were proved capable of constraining KGML in predicting lake 

phosphorus and temperature dynamics (Hanson et al., 2020; Read et al., 2019), they were excluded in this study according to 

our preliminary analysis. The reason is that the mass balance equation of N in the agriculture ecosystem includes too many 

unknown and unobservable components such as N2 flux, NH3 flux, N leaching, microbial N, plant N and soil/plant exchange, 465 

which collectively introduce large uncertainties in balance equations and make them hard to be directly applied in the 

KGML-ag framework. Other related physical (e.g., diffusion, solution) or chemical (e.g., nitrification, denitrification) 

processes cannot be easily added into the KGML-ag structure as rules due to lack of understanding of the process. Instead, as 

mentioned in Sect. 2.2.4, we used hierarchical structure to enforce an architectural constraint and causal relations among 

variables, and pretraining processes to infuse knowledge from ecosys to KGML-ag models. 470 

 

How to involve PB models in the KGML development? An advanced PB model like ecosys built upon biophysical and 

biochemical rules instead of empirical relations will be a good basis to learn the process, guide the structure and provide the 

constraints for KGML. The generated synthetic data in this study helped us get some knowledge about variables such as their 

general trends, dynamics and correlations. Such knowledge can be transferred to KGML models from synthetic data in the 475 

pretraining process, which can reduce the efforts to collect large numbers of real-world observation data. Moreover, while 

KGML shows great potential beyond PB models, we reckon that equally important for improving N2O modeling is to 

continue improving our understanding of the related processes and mechanisms. Novel data collection and incorporating new 

understanding into PB models (e.g., ecosys) could provide foundation to further empower KGML (see further discussion in 

Sect. 4.3). 480 
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4.3 Limitation and possible improvement 

First, the KGML-ag models in this study are limited by the available observed data. Some IMVs with high feature 

importance scores (e.g., O2 flux, N2 flux) or at different depths (e.g., soil NO3
- at 5 cm depth, VWC at 5 cm depth), and data 

out of growing seasons are not included. The direct consequences are that some important processes cannot be well 485 

represented by the current KGML-ag (e.g., O2 demand and N availability for nitrification and denitrification). Further 

improvement of KGML should consider three categories of data: target variable N2O flux, IMVs and basic inputs (Fig. 1a). 

For N2O flux observation, we lack sub-hourly to sub-daily observations to capture the hot moment of emission during 0-30 

days after N fertilizer applications. Besides, the non-growing season can provide 35-65% of the annual direct N2O emissions 

from seasonally frozen croplands and lead to a 17–28 % underestimate of the global agricultural N2O budget if ignoring its 490 

contribution (Wagner-Riddle et al., 2017), but we can barely find observations from non-growing seasons. For IMVs, we 

found oxygen demand indicator (e.g., O2 concentration or flux, CO2 flux, CH4 flux), N mass balance related variables (e.g., 

N2 flux, soil NO3
-, soil NH4

+, N leaching) and soil water and temperature, can be used to better constrain the processes and 

therefore improve the KGML performance. Rohe et al. (2021) also indicated the importance of O2, CO2 and N2 soil fluxes 

for N2O predictions. In addition, the layerwise soil observations (e.g., soil NO3
-, soil VWC) at 0-30 cm depth can be used to 495 

significantly improve the KGML model quality, according to our feature importance analysis (Fig. S2a). Moreover, 

continuous monitoring on these variables during the whole year is preferred rather than only during the growing season, 

since N2O flux is largely influenced by previous states. To apply the KGML-ag to large scale, other observational data 

including basic inputs of soil/crop properties (e.g., soil bulk density, pH, crop type), management information (e.g., fertilizer, 

irrigation, tillage) and weather forcings along with N2O flux observations are critical for finetuning and validating the 500 

developed KGML-ag and therefore explicitly simulating the N2O or IMVs dynamics under specific conditions. Recent 

advances in remote sensing and machine learning have enabled estimating these variables with high-resolution at a large 

scale (Peng et al., 2020) 

  

Second, the physical/chemical constraints can be more comprehensive in KGML-ag models. Although current KGML-ag 505 

models are well-initialized with ecosys synthetic data and constrained by causal relations of processes with hierarchical 

structure, the predicted N2O flux and IMVs can still violate some basic physical rules like mass balance. As we discussed in 

Sec. 4.2, it will be challenging to add physical rules like mass balance equation for N in a complicated agriculture ecosystem 

due to data limitations such as missing observations on certain key variables. Using inequalities instead of equations for 

mass balance may be one alternative solution. For example, we could use ReLU to add in a limitation for N mass balance 510 

residues which are calculated from known terms not larger than an empirical static value. Besides, better understanding of 

processes in the N cycle from fieldworks and lab experiments can also help us design new constraints. This limitation is also 
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partially related to the data limitation and can be overcomed by involving more complete N2O data to introduce more 

powerful constraints to KGML-ag. 

 515 

Third, the KGML-ag currently are suffering from dealing with physical/chamical boundary transitions. Boundary transitions 

are common in the real world, such as phase change, volume solubility, and soil porosity etc. A detailed PB model generally 

coded plenty of “if/else/switch” statements inside to deal with the boundaries. But KGML-ag models based on the GRU are 

better at capturing continuous changes, rather than discrete changes. One solution is to include data with boundary 

information. In this study, involving IMVs like O2, CO2 and N2, which already have boundary information like water 520 

freezing point, N pool volumes and other complicated boundaries related to soil/crop properties, can significantly improve 

the model performance. The data with boundary information could be continuous observation or estimated value from 

existing data. By using initials to predict IMVs, KGML-ag in this study can partially solve the boundary transition problem 

when observation data is limited. Another solution is designing new structures of KGML-ag, such as combining ReLU 

function or including CNN model which are robust for discrete situations to the RNN models, or designing new constraints 525 

to limit the model working within the thresholds. 

5 Conclusions 

In this study, two KGML-ag models have been developed, validated, and tested for agricultural soil N2O flux prediction 

using synthetic data generated by the PB model ecosys and observational data from a mesocosm facility. The results show 

that KGML-ag models can outperform PB and pure ML models in N2O prediction in not only magnitude (KGML-ag1 r2 = 530 

0.81 vs best ML model GRU r2 = 0.78) but also dynamics (KGML-ag1 accuracy minus GRU accuracy, slope Δr2 = 0.06 and 

curvature Δr2 = 0.08). KGML-ag can also defeat the PB model ecosys in efficiency by completing ecosys’s half-hour job 

within a few seconds. Compared to ML models, KGML-ag models can better represent complex dynamics and high peaks of 

N2O flux. Moreover, with IMV predictions and hierarchical structures, KGML-ag models can provide 

biogeophysical/chemical information about key processes controlling N2O fluxes, which will be useful for interpretable 535 

forecasting and developing mitigation strategies. Data demand for the KGML-ag models is significantly reduced due to 

involving IMV initials and pretrain processes with synthetic data. This study demonstrated that the potential of KGML-ag 

application in the complex agriculture ecosystem is high and illustrates possible pathways of KGML-ag development for 

similar tasks. Further improvement of our KGML-ag models can involve general principles to further constrain the 

predictions through loss functions or architectures, but call for more detailed, high temporal resolution N2O observation data 540 

from field measurements.  
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Figure 1: The model frames. a) The ecosys model frame; b) Gated recurrent unit (GRU) model frame; c) KGML-ag1 model frame 

of hierarchical structure; d) KGML-ag2 model frame of hierarchical structure with separated GRU modules for IMV predictions. 
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 670 

Figure 2: N2O flux time series comparisons among pure non-pretrained GRU predictions (blue line), KGML-ag1 predictions (red 

line) and observations (black line-dot) from cross-validation. 
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Figure 3: IMVs prediction from KGML-ag1. The black-dot line represents observations and the red line represents the results 675 
from KGML-ag1. Chmb is the abbreviation for chamber. r2 and RMSE are calculated and present in each year and chamber. 
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Figure 3 Contd.: IMVs prediction from KGML-ag1. The black-dot line represents observations and the red line represents the 

results from KGML-ag1. Chmb is the abbreviation for chamber. r2 and RMSE are calculated and present in each year and 680 
chamber. 
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Figure 4: The comparisons of overall prediction accuracy for N2O value (a), 1st order gradient (slope, b) and 2nd order gradient 

(curvature, c) between four tree-based ML models (DT, RF, GB and XGB), two deep learning models (ANN and GRU) and 685 
KGML-ag1 model. Different color symbols represent the different models. 
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Figure 5: The comparisons of N2O flux prediction accuracy r2 (a) and (b) RMSE, between four tree-based ML models (DT, RF, GB 

and XGB), two deep learning models (ANN and GRU) and KGML-ag1 model in 6 chambers. 
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Table 1: Pretrain results for different model and IMV combinations using ecosys synthetic data. 

      N2O CO2 NO3
- NH4

+ VWC 

No. Pretrain Model Input Feature N r2 RMSE  r2 NRMSE  r2 NRMSE  r2 NRMSE  r2 NRMSE  

1 GRU+76IMVs 76 IMVs+FN+7Ws+8SCP 0.98 0.54 --a -- -- -- -- -- -- -- 

2 GRU+IMVcb1 4 IMVs+FN+7Ws+8SCP 0.92 1.15 -- -- -- -- -- -- -- -- 

3 GRU+IMVcb2 3 IMVs+FN+7Ws+8SCP 0.90 1.26 -- -- -- -- -- -- -- -- 

4 GRU  FN+7Ws+8SCP 0.89 1.37 -- -- -- -- -- -- -- -- 

5 KGML-ag1+IMVcb1_ini FN+7Ws+8SCP+4IMV_ini 0.90 1.24 0.91 0.06 0.95 0.03 0.98 0.03 0.95 0.04 

6 KGML-ag1+IMVcb2_ini FN+7Ws+8SCP+3IMV_ini 0.90 1.26 -- -- 0.94 0.03 0.97 0.03 0.95 0.04 

7 KGML-ag2+IMVcb1_ini FN+7Ws+8SCP+4IMV_ini 0.90 1.27 0.92 0.05 0.95 0.02 0.98 0.03 0.96 0.04 

8 KGML-ag2+IMVcb2_ini FN+7Ws+8SCP+3IMV_ini 0.91 1.19 -- -- 0.95 0.00 0.99 0.02 0.95 0.04 

aThe empty slot indicates that the model does not predict that variable. 

 

Table 2: Pretrain results for different model and IMV combinations using ecosys synthetic data. 

  
 

N2O, KGML-ag1 minus GRU N2O 1st order gradient, 

KGML-ag1 minus GRU 

N2O 2nd order gradient, 

KGML-ag1 minus GRU 

  No. All timeb Day 

30-80 

Day 

40-65 

Day 

45-60 

All 

time 

Day 

30-80 

Day 

40-65 

Day 

45-60 

All 

time 

Day 30-

80 

Day 40-

65 

Day  

45-60 

Δr2 a 

All data 0.03c 0.04 0.07 0.10 0.07 0.07 0.07 0.15 0.08 0.08 0.09 0.11 

Chamber1 0.07 0.10 0.20 0.13 0.18 0.18 0.19 0.14 0.08 0.09 0.09 0.02 

Chamber2 -0.04 -0.05 -0.07 -0.05 0.08 0.09 0.09 0.16 0.20 0.20 0.20 0.23 

Chamber3 0.06 0.06 0.08 0.06 0.04 0.04 0.04 0.13 -0.01 -0.01 -0.01 0.07 

Chamber4 0.06 0.08 0.12 0.07 0.05 0.05 0.05 0.14 0.07 0.07 0.08 0.12 

Chamber5 -0.05 -0.06 -0.07 -0.03 0.09 0.09 0.10 0.16 0.13 0.13 0.15 0.11 

Chamber6 0.03 0.04 0.08 0.17 0.14 0.14 0.15 0.22 0.12 0.13 0.14 0.23 

ΔRMSEa 

All data -0.41 -0.56 -0.84 -1.19 -0.07 -0.10 -0.14 -0.20 -0.03 -0.05 -0.07 -0.08 

Chamber1 0.80 1.06 1.21 1.70 0.00 0.00 -0.02 0.00 0.05 0.07 0.10 0.18 

Chamber2 0.08 0.11 0.07 -0.04 -0.10 -0.13 -0.18 -0.14 -0.10 -0.14 -0.19 -0.22 

Chamber3 -0.71 -0.96 -1.30 -2.09 0.03 0.04 0.07 -0.25 0.09 0.13 0.17 0.08 

Chamber4 -1.68 -2.27 -3.09 -3.81 -0.11 -0.15 -0.21 -0.26 -0.05 -0.07 -0.09 -0.16 

Chamber5 0.53 0.69 0.86 0.99 -0.10 -0.14 -0.20 -0.23 -0.09 -0.12 -0.18 -0.14 

Chamber6 -0.20 -0.27 -0.37 -0.61 -0.14 -0.20 -0.29 -0.33 -0.07 -0.10 -0.15 -0.19 

aThe difference of r2 (Δr2), and difference of RMSE (ΔRMSE, units are mg N m-2 day-1, mg N m-2 day-2, mg N m-2 day-3 for N2O value, 1st 695 

order gradient and 2nd order gradient, respectively) were calculated by values from KGML-ag1 minus values from GRU. 

bResults from different time windows of different chambers during the period of April 1st-July31st (Days1-122) were detected. 

cBlue cells mean KGML-ag1 outperforms GRU, while yellow cells mean the opposite. 
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Table 3: Experiments for measuring GRU and KGML-ag models performance, and influence of pretraining process, training data 

augmentation and IMV initials. 

      

N2O 

N2O 1st order 

gradient 

N2O 2nd order 

gradient CO2 NO3
- NH4

+ VWC 

No. Retrain Model Experiment r2 RMSE  r2 RMSE  r2 RMSE  r2 NRMSE  r2 NRMSE  r2 NRMSE  r2 NRMSE  

1 GRU, baselinea No Pretrain 0.78 4.00 0.45 1.27 0.20 0.90 --b -- -- -- -- -- -- -- 

2 GRU Pretrain 0.80 3.77 0.57 1.12 0.34 0.82 -- -- -- -- -- -- -- -- 

3 KGML-ag1+ 

IMVcb1_ini 

Original 

setting 

0.81 3.60 0.51 1.20 0.28 0.87 0.37 0.14 0.39 0.21 0.60 0.09 0.33 0.18 

4 KGML-ag1+ 

IMVcb2_ini 

Original 

setting 

0.80 3.71 0.49 1.22 0.21 0.91 -- -- 0.37 0.22 0.53 0.10 0.33 0.19 

5 KGML-ag2+ 

IMVcb1_ini 

Original 

setting 

0.79 3.77 0.48 1.23 0.22 0.90 0.74 0.09 0.46 0.18 0.66 0.08 0.84 0.08 

6 KGML-ag2+ 

IMVcb2_ini 

Original 

setting 

0.78 3.91 0.47 1.24 0.20 0.91 -- -- 0.49 0.18 0.69 0.08 0.84 0.08 

7 KGML-ag1+ 

IMVcb1_ini 

No 

augmentation  

0.80 3.73 0.49 1.22 0.22 0.90 0.38 0.14 0.38 0.21 0.61 0.09 0.37 0.17 

8 KGML-ag1+ 

IMVcb2_ini 

No 

augmentation  

0.77 4.04 0.41 1.31 0.13 0.95 -- -- 0.38 0.21 0.53 0.10 0.35 0.18 

9 KGML-ag2+ 

IMVcb1_ini 

No 

augmentation  

0.76 4.06 0.45 1.27 0.16 0.95 0.69 0.10 0.21 0.25 0.60 0.09 0.80 0.09 

10 KGML-ag2+ 

IMVcb2_ini 

No 

augmentation  

0.74 4.27 0.48 1.23 0.21 0.90 -- -- 0.40 0.21 0.60 0.09 0.81 0.09 

11 KGML-ag1+ 

IMVcb1_ini 

Zero initials 0.48 6.27 0.26 1.49 0.08 1.00 0.19 0.16 0.25 0.25 0.47 0.12 0.14 0.25 

12 KGML-ag1+ 

IMVcb2_ini 

Zero initials 0.49 5.94 0.31 1.41 0.13 0.95 -- -- 0.31 0.25 0.38 0.13 0.24 0.25 

13 KGML-ag2+ 

IMVcb1_ini 

Zero initials 0.48 6.05 0.12 1.66 0.01 1.09 0.58 0.12 0.34 0.25 0.21 0.13 0.56 0.31 

14 KGML-ag2+ 

IMVcb2_ini 

Zero initials 0.39 6.60 0.15 1.59 0.04 1.01 -- -- 0.16 0.27 0.27 0.12 0.53 0.31 

aGray region includes the experiments with original simulation settings as described in Sec. 2 and dark gray refers to the baseline GRU 

simulation; Blue region includes the experiments without data augmentation during the finetuning process; And yellow region includes the 

experiments of replacing original  IMV initials with zeros. 705 

bThe empty slot indicates that the model does not predict that variable. 

 

https://doi.org/10.5194/gmd-2021-317
Preprint. Discussion started: 14 October 2021
c© Author(s) 2021. CC BY 4.0 License.


