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Abstract.  22 

Agricultural nitrous oxide (N2O) emission accounts for a non-trivial fraction of global greenhouse gases (GHGs) budget. To 23 

date, estimating N2O fluxes from cropland remains a challenging task because the related microbial processes (e.g., nitrification 24 

and denitrification) are controlled by complex interactions among climate, soil, plant and human activities. Existing approaches 25 

such as process-based (PB) models have well-known limitations due to insufficient representations of the processes or 26 

uncertainties of model parameters, and to leverage recent advances in machine learning (ML) a  new method is needed to 27 

unlock the “black box” to overcome its limitations such as low interpretability, out-of-sample failure and massive data demand. 28 

In this study, we developed a first-of-kind knowledge-guided machine learning model for agroecosystems (KGML-ag), by 29 

incorporating biogeophysical/chemical domain knowledge from an advanced PB model, ecosys, and tested it by comparing 30 

simulating daily N2O fluxes with real observed data from mesocosm experiments. The Gated Recurrent Unit (GRU) was used 31 

as the basis to build the model structure. To optimize the model performance, we have investigated a range of ideas, including: 32 

1) Using initial values of intermediate variables (IMVs) instead of time series as model input to reduce data demand; 2) 33 

Building hierarchical structures to explicitly estimate IMVs for further N2O prediction; 3) Using multitask learning to balance 34 

the simultaneous training on multiple variables; and 4) Pretraining with millions of synthetic data generated from ecosys and 35 

fine tuning with mesocosm observations. Six other pure ML models were developed using the same mesocosm data to serve 36 

as the benchmark for the KGML-ag model. Results show that KGML-ag did an excellent job in reproducing the mesocosm 37 
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N2O fluxes (overall r2 = 0.81, and RMSE = 3.6 mg N m-2 day-1 from cross-validation). Importantly KGML-ag always 38 

outperforms the PB model and ML models in predicting N2O fluxes, especially for complex temporal dynamics and emission 39 

peaks. Besides, KGML-ag goes beyond the pure ML models by providing more interpretable predictions as well as pinpointing 40 

desired new knowledge and data to further empower the current KGML-ag. We believe the KGML-ag development in this 41 

study will stimulate a new body of research on interpretable ML for biogeochemistry and other related geoscience processes.  42 

1 Introduction 43 

Nitrous oxide (N2O), with its global warming potential 273 ± 118 times greater than that of carbon dioxide (CO 2) for a 100-44 

year time horizon, is one of the major greenhouse gases (IPCC6; Forster et al., 2021). The increasing rate of atmospheric N 2O 45 

concentration during the period 2010-2015 is 44% higher than during 2000-2005, mainly driven by increased anthropogenic 46 

sources that have increased total global N2O emissions to ~17 Tg N yr
−1

 (Syakila and Kroeze, 2011; Thompson et al., 2019). 47 

It is estimated that approximately 60% of the contemporary N2O emission increases are from agriculture management at global 48 

scale (Pachauri et al., 2014; Robertson et al., 2014; Tian et al., 2020), but the estimation uncertainty can exceed 300% (Barton 49 

et al., 2015; Solazzo et al., 2021). Quantifying N2O emissions from agricultural soils is extremely challenging, partly because 50 

the related microbial processes, mainly about incomplete denitrification and nitrification, are controlled by many environment 51 

and management factors such as temperature/water conditions, soil/crop properties, and N fertilization rate, all of which 52 

together have collectively led to large temporal and spatial variabilities of N2O emissions (Butterbach-Bahl et al., 2013; Grant 53 

et al., 2016). 54 

 55 

Process-based (PB) models are often used for simulating N2O fluxes from agroecosystems, but they have some inherent 56 

limitations, including incomplete knowledge of the processes, low accuracy due to the under-constrained parameters, 57 

expensive computing cost, and rigid structure for further improvements, that we could not resolve by using PB model itself. 58 

For example, an advanced agroecosystem model, ecosys (Grant et al., 2003, 2006, 2016), simulates N2O production rates 59 

through nitrification and denitrification processes when oxygen (O2) is limited, with equations considering the influence from 60 

related substrate concentrations (e.g., NO2
-, N2O, and CO2), nitrifier and denitrifier populations, and soil thermal, hydrological 61 

physical and chemical conditions. The produced N2O accumulates, transfers in gaseous phase, aqueous phase, over different 62 

soil layers, and eventually exchanges with atmosphere at the soil surface. Other PB models, including DNDC (Zhang et al., 63 

2002; Zhang and Niu, 2016), DAYCENT (Del Grosso et al., 2000; Necpálová et al., 2015), and APSIM (Keating et al., 2003; 64 

Holzworth et al., 2014), have also included processes to simulate N2O production, but adopt different parameterizations using 65 

static partition parameters to estimate N2O emission from nitrification, and other empirical parameters to control the influence 66 

on nitrification from soil water content, pH, temperature and substrate concentrations. Besides, N2O is intimately connected 67 

with the soil organic carbon (SOC) dynamics, because soil nitrifiers and denitrifiers interact strongly with aerobic and 68 

anaerobic heterotrophs that process SOC evolution, and all of these microbes are driven by shared environmental variables 69 
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including soil temperature, moisture, redox status, and physical and chemical properties (Thornley et al., 2007). As expected, 70 

these connections make it difficult for PB models, even the most advanced ones like ecosys, to find sufficient representations 71 

of the physical and biogeochemical processes or obtain enough data to calibrate a large number of model parameters with 72 

strong spatio-temporal variations. Thus, novel approaches are needed for addressing the big challenge of agricultural N2O flux 73 

simulations. 74 

 75 

Machine learning (ML) models can automatically learn patterns and relationships from data. Recent studies have investigated 76 

the potential to predict agricultural N2O emission with ML models, including random forest (RF, Saha et al., 2021), 77 

metamodelling with extreme gradient boosting (XGBoost) (Kim et al., 2021), and deep learning neural network (DNN) 78 

(Hamrani et al., 2020). Notably, Hamrani et al. (2020) compared nine widely used ML models for predicting agricultural N2O. 79 

That study pointed out that the long short term memory (LSTM) model with recurrent networks containing memory cells as 80 

building blocks will be most suitable for N2O predictions, but the challenge remains with respect to the ability of capturing the 81 

sharp peak of N2O fluxes and lag time between N fertilizer application and the emission peak. Although there is an increasing 82 

interest in leveraging recent advances in machine learning, capturing this opportunity requires going beyond the ML 83 

limitations, including limited generalizability to out-of-sample scenarios, demand for massive training data, and low 84 

interpretability due to the “black-box” use of ML (Karpatne et al., 2017). PB models with their transparent structures built by 85 

representations of physical and biogeochemical processes, seem to be exact complementary to ML models. Thus, combining 86 

the power of ML model and PB model understanding innovatively is likely a path forward. 87 

 88 

The above need to integrate ML and PB models can be potentially addressed by the newly proposed framework of Knowledge-89 

guided Machine Learning (KGML) models. In the review by Willard et al. (2021), five research frontiers have been identified 90 

regarding the development of KGML for diverse disciplines including earth system science, they are: 1) Loss function design 91 

according to physical or chemical laws (Jia et al., 2019, 2021; Read et al., 2019); 2) Knowledge-guided initialization through 92 

pretraining ML models with synthetic data generated from PB models (Jia et al., 2019, 2021; Read et al., 2019); 3) Architecture 93 

design according to causal relations or adding dense layers containing domain knowledge (Khandelwal et al., 2020; Beucler 94 

et al., 2019, 2021); 4) Residual modeling with ML models to reduce the bias between PB model outputs and observations 95 

(Hanson et al., 2020); and 5) Other hybrid modeling approaches combining PB and ML models (Kraft et al., 2021). These 96 

recent advances in KGML pave the pathway to a more efficient, accurate and interpretable solution for estimating N2O fluxes 97 

from the agroecosystem.  98 

 99 

In this study, we present a first-of-its-kind attempt of developing a KGML for agricultural GHG fluxes prediction (KGML-ag) 100 

with knowledge-guided initialization and architecture design, and demonstrate the potential of KGML-ag with a case study on 101 

quantifying N2O flux observed by a multi-year mesocosm experiments. We designed the KGML-ag structure based on the 102 

causal relations of related N2O processes informed by an advanced agroecosystem model, ecosys (Grant et al., 2003, 2006, 103 
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2016). We used the synthetic data generated from ecosys to design the KGML-ag input/output, and to pre-train the KGML-ag 104 

model to learn the basic patterns of each variable. Observations from multi-season controlled-environment mesocosm 105 

chambers (Miller, 2021, thesis; Miller et al., 2021, in review) were used to refine the pretrained KGML-ag and evaluate the 106 

model performance. Since there is limited literature that guides the development of KGML-ag and not a one that directly 107 

addressed GHG fluxes, we investigated a range of ideas to optimize the model performance, including: 1) Using initial values 108 

of intermediate variables (IMVs) instead of sequences as model input to reduce data demand; 2) Building hierarchical 109 

structures to explicitly estimate IMVs for further N2O prediction; 3) Using multitask learning to balance the simultaneous 110 

training on multiple variables; and 4) Pretraining with millions of synthetic data generated from ecosys and fine tuning with 111 

mesocosm observations. Although we evaluated the KGML-ag models with real measurements only from a mesocosm 112 

experiment, the lessons learned from the development process and various KGML-ag structures can be transferred to other 113 

data, other variables and large scale simulations, therefore have broader implications on further KGML related research in 114 

agriculture. We believe this study will stimulate a new body of research on interpretable machine learning for biogeochemistry 115 

and other related topics in geoscience. 116 

2 Methods 117 

2.1 Experimental design overview 118 

To develop and evaluate the KGML-ag models and compare their performance with pure ML models, we designed the 119 

following experiments: 120 

1) With the synthetic data, we developed and pretrained multiple KGML-ag models to learn general patterns and 121 

interactions among variables, and evaluated their model performance (Fig. S2, Table 1); 122 

2) With the observed data, we finetuned multiple KGML-ag models to adapt real-world situations, and evaluated their 123 

model performance (Fig. 2-3; Fig. S3-5; Table 2-3); 124 

3) We further benchmarked KGML-ag models and uncertainties with other pure ML models without considering 125 

temporal dependence, including Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB) from the sklearn 126 

package (https://scikit-learn.org/stable/), Extreme Gradient Boosting (XGB) from the XGBoost package 127 

(https://xgboost.readthedocs.io/en/latest/) and a 6-linear-layer artificial neural network (ANN) with the mesocosm 128 

experiment data by 10 times ensemble experiments (Fig. 4-5; Fig. S6-8); 129 

4) We conducted a few small experiments to further investigate how various model configurations, such as the 130 

pretraining process, data augmentation and IMV initial values would influence KGML-ag model performance (Table 131 

3). 132 

https://scikit-learn.org/stable/
https://xgboost.readthedocs.io/en/latest/
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2.2 KGML-ag structure development 133 

2.2.1 Generating synthetic data with ecosys 134 

We generated synthetic data using a PB model, ecosys. The ecosys model is an advanced agroecosystem model constructed 135 

from detailed biophysical and biogeochemical rules instead of using empirical relations (Grant et al., 2001). It represents N 2O 136 

evolution in the microbe-engaged processes of nitrification-denitrification using substrate kinetics that are sensitive to soil 137 

nitrogen availability, soil temperature, soil moisture, and soil oxygen status (Grant and Pattey 2008). Two groups of microbial 138 

populations, autotrophic nitrifiers and heterotrophic denitrifiers, produce N2O with specific competitive or cooperative 139 

relations in ecosys when O2 availability fails to meet O2 demand for their respirations, and NO2
- become alternative electron 140 

acceptors. N2O transfer within soil layers and from soil to the atmosphere is driven by concentration gradient using diffusion-141 

convection-dispersion equations, in the forms of gaseous and aqueous N2O under control of volatilization-dissolution (Grant 142 

et al., 2016). Unlike the pipeline model described by Davidson et al. (2000) , which mainly considers the correlations of N2O 143 

production with nitrogen availability and of N2O emissions with soil water content, ecosys enables integrative effects of energy, 144 

water, nitrogen availability on N2O production and N2O transfer via the microbial population dynamics and their interactions 145 

with soil, plant, and atmospheric dynamics, under diverse meteorological and anthropogenic disturbances (e.g. runoff, 146 

drainage, tillage, irrigation, soil erosion). Many previous studies have demonstrated its robustness in simulating agricultural 147 

carbon and nitrogen cyclings at different spatial/temporal scales, and under different management practices (Grant et al., 2003, 148 

2006, 2016; Metivier et al., 2009; Zhou et al., 2021).  For the agricultural ecosystems in the US Midwest, whose simulations 149 

are used for synthetic data in this study, the performance of ecosys on CO2 and N2O fluxes have been extensively benchmarked, 150 

including CO2 exchange (daily Reco R2 = 0.80-0.86; daily NEE, R2 = 0.75-0.897) and leaf area index (LAI, R2 = 0.78) from 151 

six flux towers, USDA census reported corn yield (R2 = 0.83) and soybean yield (R2 = 0.80), satellite-derived GPP for corn 152 

(R2 = 0.83) and soybean (R2 = 0.85) in the US Midwestfrom Illinois, Iowa and Indiana, and hourlycumulative N2O 153 

fluxesemissions (R2 = 0.36) across eight Midwestern states (ZhouWang et al., 2021; Yang et al., 2022). In addition, ecosys 154 

model can capture the dynamics and magnitude of N2O flux in hourly frequency (R2 = 0.2-0.4 and RMSE = 0.1-0.2 mg N m−2 155 

h−1 in Grant et al., 2008; R2 = 0.28-0.37 and RMSE = 0.2-0.28 mg N m−2 h−1 in Grant et al., 2003), and in various ecosystems 156 

(e.g. agriculture soil in Grant et al., 2006, 2008; forest in Grant et al., 2010; and grassland in Grant et al., 2016). 157 

Therefore, ecosys is an appropriate choice of domain knowledge provider and synthetic data generator in the development of 158 

KGML models. We generated daily synthetic data including N2O flux and 76 IMVs (e.g. CO2 flux from soil, layerwise soil 159 

NO3
- concentration, layerwise soil temperature, and layerwise soil moisture; detailed in Table S1) from ecosys simulations for 160 

2000-2018 over 99 randomly selected counties in Iowa, Illinois, and Indiana, USA. We used hourly meteorological inputs 161 

(downward shortwave radiation, air temperature, precipitation, relative humidity, and wind speed) from the phase 2 of North 162 

American Land Data Assimilation System (NLDAS-2, Xia et al., 2012) and layerwise soil properties (e.g.  bulk density, 163 

texture, pH, SOC concentration) from the SSURGO database (Soil Survey Staff, 2020) as inputs to ecosys. Crop management 164 

except N fertilization rates were configured to the same settings as mesocosm experiments (described in Sec 2.2.2). To increase 165 
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the variability in synthetic data, we implemented 20 different N fertilization rates ranging from 0 to 33.6 g N m -2 (i.e. 0 to 300 166 

lb N ac-1) in each simulation of 99 counties, and more detailed information for model setup refers to Zhou et al. (2021).  167 

 168 

The generated synthetic data were then processed for further use by KGML-ag development. Meanwhile, the hourly weather 169 

forcings were converted to seven daily variables, including the maximum air temperature (TMAX_AIR, oC), difference 170 

between the maximum and the minimum air temperature (TDIF_AIR, oC), the maximum humidity (HMAX_AIR, fraction), 171 

difference between the maximum and the minimum humidity (HDIF_AIR, fraction), surface downward shortwave radiation 172 

(RADN, W m-2), precipitation (PREC, mm day-1), and wind speed (WIND, m s-1). Six soil properties were retrieved from the 173 

SSURGO database, including total averaged (depth weighted averaged for all layers) bulk density (TBKDS, Mg m-3), sand 174 

content (TCSAND, g kg-1), silt content (TCSILT, g kg-1), pH (TPH), cation exchange capacity (TCEC, cmol+ kg-1) and soil 175 

organic carbon (TSOC, g C kg-1); and two crop properties were retrieved, including planting day of the year (PDOY) and crop 176 

type (CROPT, 1 for corn and 0 for soybean). Finally, each synthetic data sample has daily N2O flux, 76 selected IMVs, 7 177 

weather forcings (W), 1 N fertilization rate (FN, g N m-2) and 8 soil/crop properties (SCP) (Fig. 1.a; Table S1). The periods 178 

from April 1st to July 31st (122 days) were selected to cover the mesocosm observations (around 30 days before and 90 days 179 

after N fertilizer date). The total amount of synthetic data sample is 122 days x 18 years x 99 counties x 20 N fertilizer rates 180 

(about 4.3 million data points). We randomly selected the samples from 70 counties for training, 10 counties for validation, 181 

and 19 counties for testing. 182 

2.2.2 Mesocosm experiments for KGML-ag model fine-tuning and evaluation 183 

Observations were acquired from a controlled-environment mesocosm facility on the St. Paul campus of the University of 184 

Minnesota. Soil samples were sourced in 2015 from a farm in Goodhue County, MN (44.2339o N and 92.8976o W), which had 185 

been under corn-soybean rotation for 25 years. Six chambers with a soil surface area of 2 m2 and column depth of 1.1 m were 186 

used to plant continuous corn during 2015-2018 and monitor the N2O flux response to different precipitation treatments. The 187 

experiment also measured other environmental variables including air temperature and photosynthetically active radiation 188 

(PAR), which were controlled to mimic the outdoor ambient environment. Granular urea fertilizer was hand broadcasted and 189 

incorporated to a depth of 0.05 m to each chamber at a rate of 22.4 g N m-2 (200 lb N ac-1) on May 1st of 2015, May 4th of 190 

2016 and May 3rd of 2017, and 10.3 g N m-2 (92 lb N ac-1) on May 8th of 2018. Corn hybrid (DKC-53-56RIB) were hand 191 

planted to a depth of 0.05 m in two rows spaced 0.76 m apart 3-5 days after fertilizer application, at a seeding rate of 35,000 192 

seeds ac-1 in 2015 to 2017, and 70,000 seeds ac-1 in 2018 but thinned upon emergence to ensure 100 percent emergence at 193 

35,000 seeds ac-1. Crops were harvested at the end of September by cutting the stover five inches above the soil. Hourly N2O 194 

fluxes (mg N m-2 h-1) and CO2 fluxes (g C m-2 h-1) were measured using non-steady-state flux chambers with a CO2 analyzer 195 

(LI-10820 for 2016 and LI-7000 for 2017 and 2018, LI-COR Biosciences, Lincoln, NE) and a N2O analyzer (Teledyne 196 

M320EU, Teledyne Technologies International Corp, Thousand Oaks, CA) (Detail method can be retrieved from Fassbinder 197 

et al., 2012, 2013). We also collected soil moisture at 15 cm depth (VWC as abbreviation of volumetric water content, m3 m-198 
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3), weekly 0-15 cm depth soil NO3
- + NO2

- concentration (NO3
- for short in the following text, g N Mg-1), soil NH4

+ 199 

concentration (NH4
+, g N Mg-1), and related environment variables including air temperature, radiation, humidity and soil/crop 200 

properties from three growing seasons during 2016-2018 and six mesocosm chambers (Fig. S1). The magnitude of N2O flux 201 

and NO3
- soil concentration and their responses following fertilizer application from this mesocosm experiment are slightly 202 

higher thanconsistent with several field studies of agricultural soils (Fassbinder et al., 2013; Grant et al., 1999, 2006, 2008, 203 

2016; Hamrani et al., 2020;  Venterea et al., 2011). More details about the mesocosm facility and experimental design can be 204 

found in the thesis of Miller L. (2021). 205 

 206 

The observed data were then processed to fine-tune and evaluate the KGML-ag models. The N2O flux and four IMVs and 207 

weather variables were collected from the measurements in the selected period (i.e., April 1st to July 31st). Weekly NO3
- (short 208 

for soil NO3
- within 0-15 cm depth), and NH4

+ (short for soil NH4
+ within 0-15 cm) were linearly interpolated to the daily time 209 

scale on days containing VWC (short for soil VWC in 15 cm) data. Hourly air temperature, net radiation, N2O (short for N2O 210 

fluxes from soil), CO2 (short for CO2 fluxes from soil) and VWC were resampled to daily scale. All SCP were derived from 211 

mesocosm measurements except that TCEC was derived from the SSURGO database according to the soil origin. We used the 212 

leave-one-out cross-validation (LOOCV) method for the finetuning and evaluation process. Each time we used five chambers’ 213 

data for model finetuning and another one chamber data for validation. For example, if we used chamber 1-5 to train the model, 214 

then chamber 6 would serve as the out-of-sample data to validate the results.  Only the validation results would be presented 215 

in our study.Each time we used one chamber data for validation and another five chambers’ data for model finetuning.  216 

 217 

To reduce overfitting and increase the generalization of the trained model based on the small amount of mesocosm data, we 218 

applied the following method to augment the experimental measurements and weather forcings to 1000 times larger by 219 

sampling hourly data and averaging them to daily scale. In this method, 16 hours (or maximum valid hours) of data are 220 

randomly selected from 24 hours of data to compute their mean as the daily value. Since up to 23/34 of the day isare covered 221 

by the selected data (16 hours /24 hours), the augmented daily values should be representative enough for the source day with 222 

and meanwhile present slight variations from each other. Furthermore, the observation ratio, (24 hours - missing hours) / 24 223 

hours, can be used as the weights in loss function to inject the data quality information in model optimization. If the day h as 224 

more than 16 hours missing values, we consider the observations in that day as not trustworthy and drop the day by setting the 225 

weight to 0. This method can not only augment the data to 1000 times larger but also deal with the missing values in observed 226 

data inherently. The total amount of observed mesocosm data and related weather forcings are augmented to 122 days x 3 227 

years x 6 chambers x 1000 data samples in this study.  228 

 229 
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2.2.3 Gated Recurrent Unit (GRU) as the basis of KGML-ag 230 

Hamrani et al. (2020) compared different models and reported that LSTM provided the highest accuracy in predicting N2O 231 

fluxes, because N2O flux is time dependent by its production/consumption nature and LSTM simulates target variables by 232 

considering both current and historical states. The LSTM model, proposed by Hochreiter and Schmidhuber (1997), uses a cell 233 

state as an internal memory to preserve the historical information. At each time step, it creates a set of gating variables to filter 234 

the input and historical information and then uses the processed data to update the cell state. Similar to LSTM, GRU is a gated 235 

recurrent neural network but only keeps one hidden state (Cho et al., 2014). Though simpler than LSTM, GRU is proved to 236 

have similar performance (Chung et al., 2014). Our preliminary test on synthetic data for N2O prediction showed that GRU 237 

indeed provided similar or higher accuracy and model efficiency under different model settings than LSTM (Table S2). This 238 

is possible because simpler models with fewer weights and hyperparameters are more robust in combating the overfitting 239 

problem. Therefore, we choose GRU as the basis of KGML-ag development. 240 

2.2.4 Incorporating domain knowledge to the development of KGML-ag 241 

To quantitatively reveal the correlations between N2O fluxes and IMVs and guide the KGML-ag development, we conducted 242 

feature importance analysis by a customized 4-layer GRU ML model (Fig. 1b). Each layer of the model has a GRU cell with 243 

64 hidden units. The 4-layer structure makes the model deeper and capable of capturing complex interactions. Between each 244 

GRU cell, 20% of the output hidden states are randomly dropped by replacing them with zero values (so called 20% dropout) 245 

to avoid overfitting. A linear dense layer is used to map the final output to N2O. We first trained GRU models using synthetic 246 

data with different combinations of IMVs as inputs to predict the N2O fluxes (original-test, Table S2). The feature importance 247 

analysis of well-trained models was then implemented by replacing one input feature with a Gaussian noise with mean μ=0 248 

and standard deviation σ=0.01, while keeping others untouched (new-test). The importance score was calculated by the new-249 

test’s root mean square error (RMSE) (replacing one feature) minus the original-test’s RMSE (no replacing). RMSE was 250 

calculated by 
√∑ (𝑦𝑖−𝑦𝑖′)2𝑁

1

𝑁
 where 𝑁 is the total number of observations across time and space, 𝑦𝑖  is i-th measurement from 251 

synthetic data or observed data and 𝑦𝑖 ′ is its corresponding prediction.  252 

 253 

To find important variables for N2O flux prediction in an ideal situation where all variables are available, we conducted a 254 

feature importance analysis for GRU models with all IMVs and basic inputs including FN, 7 W and 8 SCP (Fig. S2a). Results 255 

indicated that flux variables including NH3, H2, N2, O2, CH4, evapotranspiration (ET) and CO2 had significant influence on the 256 

model performance. Variables ranked high in feature importance analysis are considered with priority during model 257 

development. To develop a functionable KGML-ag, we further investigated the feature importance of four IMVs that are 258 

available from mesocosm observations including CO2, NO3
-, VWC and NH4

+, which were ranked 7th, 20th, 58th, 60th 259 

respectively in 92 input features of synthetic data (Fig. S2a). We used these four available IMVs to create two input 260 
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combinations: 1) CO2 flux, NO3
-, VWC and NH4

+ (IMVcb1), and 2) NO3
-, VWC and NH4

+ (IMVcb2). The objective of 261 

building IMVcb2 was to investigate the importance of the highly ranked variable CO2 flux (by removing it from the inputs), 262 

and the impact of mixing-up flux and non-flux variables on model performance. We tested the feature importance of the GRU 263 

models built with IMVcb1 and IMVcb2 to check whether they would help in N2O prediction (Fig. S2b-c). All the feature 264 

importance results above indicated the correlation intensity between N2O and many other variables, which would help the 265 

KGML-ag model development and interpretation in this study (rest of this section and Sec. 3.1), and would guide future N2O 266 

related measurements and KGML model development (discussed in Sec. 4.3). 267 

 268 

Next we used the knowledge learned from synthetic data to develop the structure of KGML-ag (Fig. 1c-d). Previous studies 269 

for KGML models have used physical laws, e.g., conservation of mass or energy, to design the loss function for constraining 270 

the ML model to produce physically consistent results (Read et al., 2019; Khandelwal et al., 2020). However, for complex 271 

systems like agroecosystems, it is challenging to incorporate physical laws, such as mass balance for N2O, into the loss function 272 

due to the incomplete understanding of the processes and the lack of mass balance related data for validation. An alternative 273 

solution is to incorporate such information in the design of the neural network (Willard et al., 2021). Effectiveness of such  an 274 

approach was demonstrated by Khandelwal et al. (2020) in the context of modeling stream flow in a river basin using Soil & 275 

Water Assessment Tool (SWAT). They used a hierarchical neural network to explicitly model IMVs (e.g., soil moisture, snow 276 

cover) and their relationships with the target variable (streamflow) and showed that this model is much more effective than a 277 

neural network that attempts to directly learn the relationship between input drivers and the target variables. Following this 278 

idea, we identified four desired features of an effective KGML-ag model, including: 1) We used initial values instead of 279 

sequence of the IMVs from synthetic data or observed data to provide a solid starting state for the ML system and reduce the 280 

IMV data demand, and then used the rest of the data to further constrain the prediction of IMVs; 2) We built a hierarchical 281 

structure based on the structure of process representation in ecosys to first predict IMVs and then simulate N2O with predicted 282 

IMVs; 3) We trained all variables together using multitask learning to reach the best prediction scores, which generalized the 283 

model and incorporated interactions between IMVs and N2O; 4) We initialized the KGML-ag model by pretraining with 284 

synthetic data before using real observed data to transfer physical knowledge, which further reduced the demand on large 285 

training samples and aided in faster convergence for fine-tuning. 286 

 287 

To meet these desired features, we proposed two KGML-ag models (Fig. 1c-d). The first model, KGML-ag1, is a hierarchical 288 

structure containing two modules to simulate IMVs and N2O sequentially. Each module is a 2-layer 64 units GRU ML model. 289 

The inputs to the module of the KGML-ag1 model for IMV predictions (KGML-ag1-IMV module) are FN, 7W and 8SCP 290 

together with the initial values of IMVs, and the outputs are IMV predictions. The inputs to the module of the KGML-ag1 291 

model for N2O predictions (KGML-ag1-N2O module) are FN, 7W, 8SCP and predicted IMVs from KGML-ag1-IMV, and the 292 

output is the target variable N2O. Linear dense layers were coded for both modules to map output states to IMVs or N2O. The 293 

dropout method was applied to drop 20% of the state output between GRU cells and dense layers. The second model, KGML-294 
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ag2, is also a hierarchical structure similar to KGML-ag1, but has multiple KGML-ag2-IMV modules to explicitly simulate 295 

IMVs by tuning them separately in the fine-tuning process (discussed in Sec. 2.2.5). Each KGML-ag2-IMV module in KGML-296 

ag2 is a 2-layer 64 units GRU cell with the inputs of FN+7W+8SCP and one IMV initial value, and the output of one IMV 297 

prediction. The KGML-ag2-N2O module collects the IMV predictions from KGML-ag2-IMV modules and predicts the N2O 298 

with inputs of FN+7W+8SCP and predicted IMVs. 299 

2.2.5 Strategies for pretraining and fine-tuning processes 300 

To increase the efficiency of the training process, we used the Z-normalization ( 
(𝑋− 𝜇)

𝜎
, where 𝑋 is the vector of a particular 301 

variable over all the data samples in the data set; 𝜇 is the mean value of 𝑋; 𝜎 is the standard deviation of 𝑋) method to normalize 302 

each variable separately on synthetic data. Then the scaling factors (𝜇, 𝜎) derived from ecosys synthetic data for each variable 303 

were used to Z-normalize observed data into the same ranges as synthetic data. As mentioned in Sec. 2.2.1, the TDIF_AIR, 304 

HDIF_AIR were used instead of absolute min temperature (TMIN_AIR) and humidity (HMIN_AIR). This is done because 305 

TMIN_AIR and HMIN_AIR follow similar trends as TMAX_AIR and HMAX_AIR, making Z-normalization numerically 306 

poorly defined. Using the difference between maximum and minimum can provide a clearer information of daily air 307 

temperature/humidity variation.  308 

 309 

During the pretraining process, we initialized the IMV of KGML-ag using the first day value of synthetic IMV time series. 310 

Adam optimizer with a start learning rate of 0.0001 was used for the training process. The learning rate would decay by 0.5 311 

times after every 600 training epochs. At each epoch, synthetic data samples were randomly shuffled before being input to the 312 

model to predict N2O (and IMVs if any). The mean square error (MSE) loss (calculation was equal to the square of RMSE) or 313 

sum of MSE loss (if multitask learning) between predictions and ecosys synthetic observations were calculated to optimize the 314 

weights of GRU cells. After the training process updated the model’s weights, the validation process was performed to evaluate 315 

the model performance based on untouched samples with RMSE and the square of Pearson correlation coefficient (r2). r2 was 316 

calculated as 
(∑ (𝑦𝑖′− 𝑦𝑖′)(𝑦𝑖− 𝑦𝑖))𝑖

2

∑ (𝑦𝑖′− 𝑦𝑖′)2(𝑦𝑖− 𝑦𝑖)2
𝑖

, where 𝑦𝑖  is the i-th measurement from synthetic data or observed data, 𝑦𝑖 ′ is its 317 

corresponding prediction, 𝑦𝑖  is the mean of the measurement 𝑦  in diagnosing space and  𝑦𝑖 ′ is the mean of the predicted 𝑦′ in 318 

diagnosing space. If both validated r2 and RMSE were better than the best values in previous epochs, the updated model in this 319 

epoch would be saved. Normalized RMSE (NRMSE, calculated by RMSE/(max-min) of each variable observation) was 320 

introduced to evaluate IMV predictions between variables with different value ranges. 321 

 322 

During the fine-tuning process, we used estimated IMV initial values of 1.0 g C m-2, 0.2 m3 m-3, 0.0 g N Mg-1, and 20.0 g N 323 

Mg-1 for CO2, VWC, NH4
+, and NO3

- respectively, from starting day (April 1st) to the day before the first day of real 324 

observations, as input to KGML-ag models. Then the first-day values of observed IMVs were input into KGML-ag during the 325 
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rest days of the period as IMV initial values. In addition, as described in Sec. 2.2.2, we used a data augmentation method to  326 

augment the total amount of data 1000 times larger for the fine-tuning process. The purpose of this data augmentation method 327 

was to increase the generalization of the fine-tuned model and to overcome the overfitting due to small sample size. The mask 328 

matrix was elementarily multiplied to the output matrix to calculate the MSE, r2 and RMSE only for days with observations. 329 

The similar optimizer was used with an initial learning rate of 0.00005 and decay fraction of 0.5 per 200 epochs. Other 330 

training/validation methods in each epoch were similar to the pretraining process. Specifically, in the KGML-ag1 model 331 

finetuning process, we first froze the KGML-ag1-N2O module and only trained the KGML-ag1-IMV module for IMVs. After 332 

finishing the KGML-ag1-IMV module training, we froze the KGML-ag1-IMV module and trained the KGML-ag1-N2O 333 

module for N2O. In the KGML-ag2 fine-tuning process, the similar freezing method was used but different KGML-ag2-IMV 334 

modules were trained separately one by one. 335 

2.3 Development environment description 336 

We used the Pytorch 1.6.0 (https://pytorch.org/get-started/previous-versions/) and python 3.7.9 337 

(https://www.python.org/downloads/release/python-379/) as the programing environment for the model development. In order 338 

to use the GPU to speed-up the training process, we installed cudatoolkit 10.2.89 (https://developer.nvidia.com/cuda-toolkit). 339 

A desktop with Nvidia 2080 super GPU was used for code development and testing. The Mangi cluster 340 

(https://www.msi.umn.edu/mangi) from High Performance Computing of Minnesota Supercomputing Institute (HPC-MSI, 341 

https://www.msi.umn.edu/content/hpc) with 2-way Nvidia Tesla V100 GPU was used in training processes which consumed 342 

longer time and bigger memories. 343 

3 Results 344 

3.1 Pretraining experiments using synthetic data from ecosys 345 

In the pretraining stage, the GRU model with 76 IMVs achieved the best performance in predicting N2O fluxes (r2=0.98, RMSE 346 

=0.54 mg N m-2 day-1 and normalized RMSE (NRMSE) = 0.01) on the test set of synthetic data generated from ecosys (Table 347 

1). The high performance was due to some flux IMVs such as NH3, H2, O2, CO2 and ET, which are highly correlated to N2O 348 

(Fig. S2a), were used as input to the model. The good performance of GRU with all IMVs indicates that ML models are able 349 

to perfectly mimic ecosys when sufficient information about IMVs is available. The GRU model with only basic input of N 350 

fertilizer rate, 7 weather forcings, and 8 soil/crop properties (FN+7W+8SCP) had the accuracy of r 2=0.89 and RMSE = 1.37 351 

mg N m-2 day-1 (Table 1). The relatively low performance is likely because this model failed to capture several highly nonlinear 352 

pathways that are employed by ecosys to predict N2O (e.g., one influence pathway from precipitation to N2O can be: 353 

Precipitation → soil moisture → N components solubility/concentration → nitrification/denitrification rate/amount → soil 354 

N2O concentration → gas N2O flux). When adding sequences of IMV combinations (i.e., IMVcb1 of CO2 flux, NO3
-, NH4

+ 355 

https://pytorch.org/get-started/previous-versions/
https://www.python.org/downloads/release/python-379/
https://developer.nvidia.com/cuda-toolkit
https://www.msi.umn.edu/mangi
https://www.msi.umn.edu/content/hpc
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and VWC, and IMVcb2 of NO3
-, NH4

+ and VWC), the GRU models performed slightly better than the GRU model using only 356 

basic inputs, achieving r2 of 0.92 and 0.90, respectively (Table 1). The KGML-ag1 with IMVcb1 and IMVcb2 initial values 357 

provided better performance (both r2 = 0.90) than GRU with basic input and comparable performance to the GRU with inputs 358 

of IMVcb1 and IMVcb2 sequence. Besides, KGML-ag1 provided predicted IMVs of CO2, NO3
-, NH4

+, and VWC with r2 over 359 

0.91, and NRMSE below 0.06 (Table 1). KGML-ag2 also provided comparable N2O performance but relatively better IMVs 360 

performance of r2 over 0.92 and NRMSE below 0.05. Results indicated that KGML-ag models with IMV initial values as extra 361 

input performed similar or better than pure ML models in synthetic data. 362 

3.2 KGML-ag evaluation using observed data from mesocosm 363 

After being fine-tuned with observed data, KGML-ag1 had N2O prediction overall accuracy of r2=0.81 and RMSE=3.6 mg N 364 

m-2 day-1, while non-pretrained GRU model provided r2=0.78 and RMSE=4.0 mg N m-2 day-1, and pretrained GRU model 365 

provided r2=0.80 and RMSE=3.77 mg N m-2 day-1 (Table 3). The time series of N2O predictions from KGML-ag1 and the non-366 

pretrained GRU model were further compared (Fig. 2), from which we found at least two advantages of using KGML-ag1 for 367 

N2O predictions: 1) For the region without observation data (normally before day 25), KGML-ag1 predicted stable N2O fluxes 368 

close to 0 mg N m-2 day-1 (which is close to the reality in the experiment setting) while GRU caused anomalous peaks of fluxes. 369 

This is because KGML-ag1 has learned knowledge for the whole period from the pretraining process with ecosys model 370 

generated synthetic data, but GRU model has no prior knowledge for the period without any data in observations; 2) Although 371 

KGML-ag1 had a lower accuracy than GRU in some chambers, KGML-ag1 can better capture the temporal dynamics of N2O 372 

fluxes compare to GRU, especially when the fluxes are highly variable (e.g. Fig 2 chamber 2).  373 

 374 

To validate KGML-ag1 robustness, we further investigated the KGML-ag1 and GRU model performance in different temporal 375 

windows, shrinking from the whole period to the N2O peak occurrence time (days 1-122, day 30-80, day 40-65 and day 45-60 376 

for year 2016-2018), and performance in N2O flux, first order gradient of N2O (slope) and second order gradient of the N2O 377 

(curvature) (Table 2). Slope represents the speed of N2O flux changes through time and curvature represents the acceleration. 378 

Assessing prediction performance with these two metrics will reveal the model robustness on capture variable dynamics, which 379 

is critical when predicting fast-change variables with hot moments (a short period of time with rare events like flux increasing 380 

quickly) like N2O. First of all, the overall r2 and RMSE of KGML-ag1 for values, slope and curvature were always better than 381 

GRU. In particular, KGML-ag1 captured the peak region (e.g., days 45-60) much better than GRU in both magnitude and 382 

dynamics (Table 2, Fig 2). Even for chamber 2 and 5 in which KGML-ag1 made worse N2O predictions than GRU (Δr2 ranging 383 

from -0.07 to -0.03), it better captured temporal dynamics than GRU in terms of slope (Δr2 ranging from 0.08 to 0.16) and 384 

curvature (Δr2 from 011 to 0.23) (Table 2). For other chambers, KGML-ag1 outperformed GRU consistently. For chamber 1, 385 

KGML-ag1 had worse N2O predictions RMSE than GRU but the Δr2 increased as the window shrinks to the peak emission 386 

time (0.07 → 0.13). The slope and curvature for chamber 1 also indicated that KGML-ag1 captured the dynamics much 387 



13 

 

better than GRU. For chamber 3, KGML-ag1 predicted better N2O but presented worse slope and curvature RMSE than 388 

GRU (Table 2).  However, when explicitly investigating the time series of N2O flux, slope and curvature in each year, KGML-389 

ag1 outperformed GRU more significantly in 2017, the year with more complex temporal dynamics of N2O fluxes, than in 390 

2016 and 2018, especially for chamber 3 (Fig. 2; Fig. S3-4). This investigation supported that KGML-ag1 was more capable 391 

for complex dynamics predictions. 392 

 393 

Interestingly, the fine-tuned KGML-ag1 model predicted reasonable IMVs including CO2, NO3
-, NH4

+, and VWC with overall 394 

r2 of 0.37, 0.39, 0.60, and 0.33 and NRMSE of 0.14, 0.21, 0.09 and 0.18, respectively (Table 3). The time series comparisons 395 

between IMV predictions and observations further indicated that KGML-ag1 could reasonably capture both magnitude and 396 

dynamics (Fig. 3). KGML-ag2 presented better IMVs predictions than KGML-ag1, with overall r2 of CO2, NO3
-, NH4

+, and 397 

VWC increasing by 0.37, 0.17, 0.06 and 0.51, and NRMSE decreasing by 0.05, 0.03, 0.01 and 0.10, respectively, but a slightly 398 

lower r2 (decreasing 0.02) of N2O (Table 3; Fig. S5). This indicated that explicitly simulating each IMV with separated KGML-399 

ag2-IMV modules did not benefit the N2O flux prediction accuracy, likely due to increasing model complexity which resulted 400 

in reduced stability and ignoring the IMV interactions. In addition, we also found all KGML-ag models would perform better 401 

by using IMVcb1 (with CO2) than using IMVcb2 (without CO2) in real data tests, indicating feature importance analysis based 402 

on synthetic data can be a reasonable substitute for analysis with the often limited real-world data. 403 

3.3 KGML-ag comparing with other pure ML models 404 

The results from eight different models showed that KGML-ag1 comparing with other pure ML models consistently provided 405 

the lowest RMSE (3.59-3.94 mg N m-2 day-1, 1.14-1.23 mg N m-2 day-2, and 0.84-0.89 mg N m-2 day-3) and highest r2 (0.78-406 

0.81, 0.48-0.56, and 0.23-0.31) for N2O fluxes, slope and curvature, respectively (Fig. 4). This indicated that KGML-ag1 407 

outperformed other pure ML models in capturing both the magnitude and dynamics of N2O flux. Meanwhile, we have 408 

calculated the uncertainty of mesocosm measurement due to converting hourly data to daily data during 30-80 days by using 409 

augmented value minus mean of the augmented values (-10.2 to 10.4 mg N m-2 day-1, and standard deviation =1.4 mg N m-2 410 

day-1). KGML-ag1 during the same period has comparable uncertainties based on ensemble simulations (calculated by 411 

ensemble value minus mean of ensemble values; -14.4 to 15.2 mg N m-2 day-1, with standard deviation = 1.3 mg N m-2 day-1). 412 

KGML-ag2 presented slightly better mean scores for  N2O flux predictions than KGML-ag1, but worse scores for slope and 413 

curvature and larger uncertainties. This proved the hypothesis discussed in section 3.2 that KGML-ag2 didn’t benefit the 414 

magnitude and dynamics predictions of N2O flux with its more complex structure and less connections between IMVs. 415 

 416 

Within the tree-based models (DT, RF, GB and XGB), the simplest model DT provided the worst predictions for N2O flux, 417 

slope and curvature. The XGB model provided the highest N2O flux accuracy with r2 of 0.61-0.63 and RMSE of 5.07-5.17 mg 418 

N m-2 day-1, while the GB model provided best slope and curvature predictions with r2 of 0.38-0.40 and 0.23-0.26, and RMSE 419 

of 1.34-1.37 mg N m-2 day-2 and 0.91-0.95 mg N m-2 day-3, respectively. The highest N2O flux accuracy and relatively low 420 
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slope and curvature accuracy of the XGB model implied that there is a trade-off between the abilities of capturing dynamics 421 

and magnitude.  422 

 423 

In the group of deep learning models including ANN, GRU and KGML-ag1, ANN provided the worst predictions. Even with 424 

the better N2O flux predictions than most tree-based models (except XGB), the slope and curvature predictions of ANN were 425 

the worst among all eight models. This implied that the trade-off between accurately capturing N2O dynamics to magnitude in 426 

ANN was significant. But when considering the temporal dependence, deep learning model GRU and KGML-ag1 427 

outperformed all other models in flux, slope and curvature predictions. This indicated that without considering temporal 428 

dependence the improvement in N2O flux prediction accuracy could be risky by causing the performance drop in capturing 429 

dynamics.  430 

 431 

The detailed model comparisons in each chamber are shown in Fig. 5 (N2O flux) and Fig. S6-7 (N2O slope and curvature), 432 

where the results are found to follow the same pattern as described above. In addition, time series comparisons of chamber 3 433 

and 4 in 2017 between different models are presented in Fig. S8 as two examples. For periods without any observed data, we 434 

assumed that the good model predictions should be stable, consistent with the nearest period and close to the reality in the 435 

experiment setting (e.g. no erratic peak and N2O flux near 0 mg N m-2 day-1 before day 25). From these comparisons, we infer 436 

that without considering temporal dependence and pretraining process, the tree-based model including DT, RF, GB and XGB 437 

and deep learning model ANN predicted erratic peaks in almost every missing data point, while the GRU model was stable in 438 

small gaps  short missing period (1-2 days of missing data) and only presented poor performance in long missing period (before 439 

25 day 25). This improvement by the GRU model maycan be attributed to the structure of GRU that naturally keeps the 440 

historical information using hidden states, which enables GRU to consider the temporal dependence and make consistent 441 

predictions over time. 442 

3.4 Influence of pretraining process, data augmentation and using IMV initial values as input feature 443 

After we pretrained the GRU model with synthetic data, the overall r2 of N2O flux predictions in observed data increased by 444 

0.02, 0.12 and 0.14, and RMSE decreased by 0.23 mg N m-2 day-1, 0.15 mg N m-2 day-2 and 0.02 mg N m-2 day-3 for flux, slope 445 

and curvature predictions, respectively, compared to non-pretrained GRU (No.1-6 in Table 3 gray region). The gap between 446 

the GRU model with pretrain and KGML-ag1 in N2O value prediction shows the improvement resulting from architecture 447 

change (r2 increases by 0.01 and RMSE decreases by 0.17 mg N m-2 day-1). Although pretrained GRU had higher slope and 448 

curvature prediction accuracy than KGML-ag models, it still couldn’t achieve the current N2O value prediction accuracy of 449 

KGML-ag1. Besides, the KGML-ag models had relatively shallow N2O prediction modules (2-layer GRU KGML-ag-N2O 450 

module of KGML-ag models vs 4-layer GRU) but included modules for IMV predictions, which therefore increased the model 451 

interpretability.  452 

 453 
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It's worth noting that prediction accuracy of all KGML-ag models dropped without augmenting the training dataset in the fine-454 

tuning process (No.7-10 in Table 3 blue region). Moreover, the maximum training epochs increased from 800 to 20000, which 455 

resulted in overfitting on the small data set. This indicated that the data augmentation indeed helped the models become more 456 

generalizable and gain better accuracy.  457 

 458 

Experiments using zero initial values presented a significant drop in every variable’s prediction accuracy (No.11-14 in Table 459 

3 yellow region). This indicated that the IMV initial values input into the KGML-ag-IMV modules of KGML-ag models 460 

influenced not only the IMV prediction but also the N2O prediction of the KGML-ag-N2O module. This shows that there is 461 

useful information transferred from IMVs in the KGML-ag-IMV module to the KGML-ag-N2O module. 462 

4 Discussion 463 

In the previous section, we showed that KGML-ag models can outperform ML models, by invoking architectural constraints 464 

and PB model synthetic data initialization. Compared to traditional PB models such as ecosys, KGML-ag models provide 465 

computationally more accurate and efficient predictions (KGML-ag few seconds vs ecosys half hour), which is similar to 466 

traditional ML surrogate models (Fig. S9). But KGML-ag goes beyond that by providing more interpretable predictions than 467 

pure ML models. 468 

4.1 Interpretability of KGML-ag 469 

The proposed KGML-ag models incorporate causal relations among N2O related variables/processes as shown in Fig. S10. 470 

Managements, weather forcings and initial values of IMVs influence soil water, soil temperature and soil properties, which 471 

influence the availability of O2 and N as well as the microbe populations in soil, and further influence the nitrification and 472 

denitrification rates. N2O is produced during both nitrification and denitrification when soil O2 concentration is limited. Our 473 

KGML-ag follows this hierarchical structure by designing KGML-ag-IMV modules representing the soil processes for IMVs 474 

predictions (Fig. 1c-d).  475 

 476 

To better explain the time series predictions of N2O flux (Fig. S1; Fig. 2-3), we separated the observations of each year into 477 

three periods: leading period (before N2O increasing), increasing period (increasing to the peak) and decreasing period (peak 478 

decreasing to near zero). During the leading period, both NH4
+ and CO2 were increasing immediately in the following few days 479 

following urea N fertilizer application, indicating that urea was decomposing into NH4
+ and CO2 in soil water. With 480 

accumulating NH4
+ in soil, nitrification started producing NO3

- and consuming O2. N2O didn’t respond to the fertilizer 481 

immediately due to enough O2 in soil. Then when the soil became sufficiently hypoxic, N2O fluxes entered an increasing 482 

period with N2O being produced by nitrification and denitrification processes. CO2 fluxes were relatively low and NH4
+ kept 483 

decreasing during this period. Finally, when soil NH4
+ was exhausted and NO3

- started decreasing due to denitrification, N2O 484 
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fluxes then entered the decreasing period. CO2 flux was related to urea decomposition during the leading period, and was more 485 

closely related to O2 demand in other periods. The KGML-ag predictions of N2O and IMV captured the three periods and 486 

transition points, demonstrating the connections between those variables following the description as above (Fig. 3; Fig. S5). 487 

Although KGML-ag1 obtained lower IMVs prediction accuracy compared to KGML-ag2, it captured the general trends and 488 

was doing better for transitions, especially in NH4
+ predictions. KGML-ag2 overfitted on the observations and ignored the 489 

correlations between IMVs, which resulted in loss in pretrain knowledge, poorer performance in the leading period, and erratic 490 

predictions in the period with missing observations (before day 25). 491 

4.2 Lessons for KGML-ag development 492 

The development of KGML-ag in our study is suitable to predict not only N2O but also other variables, such as CO2, CH4 and 493 

ET, with complicated generation processes relying on the historical states. To develop a capable KGML model, we need to 494 

carefully address three questions:  495 

 496 

What kind of ML model is suitable for developing KGML? The answer could be determined by the dominant variation type 497 

of the target variable in the data. If the dominant type is temporal variance, like flux variables in high temporal resolution (e.g., 498 

daily, or hourly), we should consider ML models with temporal dependency. RNN models such as GRU used in this study, 499 

and CNN models such as casual CNN (Oord et al., 2016) can be good starting ML models. If the dominant type is spatial 500 

variation, like variables in coarse temporal resolution (e.g., monthly or annually) but with high diversity due to soil property, 501 

land cover and climate, we should consider ML models with the ability to deal with edges, hotpoints and categories, such as 502 

CNN; 503 

 504 

What physical/chemical constraints can be used to build KGML models? Although physical rules such as mass balance or 505 

energy balance are conceptually straightforward and were proved capable of constraining KGML in predicting lake phosphorus 506 

and temperature dynamics (Hanson et al., 2020; Read et al., 2019), they were excluded in this study according to our 507 

preliminary analysis. The reason is that the mass balance equation of N in the agriculture ecosystem includes too many 508 

unknown and unobservable components such as N2 flux, NH3 flux, N leaching, microbial N, plant N and soil/plant exchange, 509 

which collectively introduce large uncertainties in balance equations and make them hard to be directly applied in the KGML-510 

ag framework. Other related physical (e.g., diffusion, solution) or chemical (e.g., nitrification, denitrification) processes cannot 511 

be easily added into the KGML-ag structure as rules due to lack of understanding of the process. Instead, as mentioned in Sect. 512 

2.2.4, we used hierarchical structure to enforce an architectural constraint and causal relations among variables, and pretraining 513 

processes to infuse knowledge from ecosys to KGML-ag models. 514 

 515 

How to involve PB models in the KGML development? An advanced PB model like ecosys built upon biophysical and 516 

biochemical rules instead of empirical relations will be a good basis to learn the process, guide the structure and provide t he 517 
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constraints for KGML. The generated synthetic data in this study helped us get some knowledge about variables such as their 518 

general trends, dynamics and correlations. Such knowledge can be transferred to KGML models from synthetic data in the 519 

pretraining process, which can reduce the efforts to collect large numbers of real-world observation data. Moreover, while 520 

KGML shows great potential beyond PB models, we reckon that equally important for improving N2O modeling is to continue 521 

improving our understanding of the related processes and mechanisms. Novel data collection and incorporating new 522 

understanding into PB models (e.g., ecosys) could provide foundation to further empower KGML (see further discussion in 523 

Sect. 4.3). 524 

 525 

4.3 Limitation and possible improvement 526 

First, the KGML-ag models in this study are limited by the available observed data. The mesocosm measurements of N2O 527 

fluxes (16.9±11.7 mg N m-2 day-1 during days of 45-60; Highest value is 71 mg N m-2 day-1) and NO3
- soil concentrations 528 

(59.3±20.7 g N Mg-1 during days of 45-60; Highest value is 95.2 g N Mg-1) are at the high end of the range that has been 529 

observed by field studies (Fassbinder et al., 2013; Grant et al., 1999, 2006, 2008, 2016; Hamrani et al., 2020;  Venterea et al., 530 

2011). Some IMVs with high feature importance scores (e.g., O2 flux, N2 flux) or at different depths (e.g., soil NO3
- at 5 cm 531 

depth, VWC at 5 cm depth), and data out of growing seasons are not included. The direct consequences are that some important 532 

processes cannot be well represented by the current KGML-ag (e.g., O2 demand and N availability for nitrification and 533 

denitrification). Further improvement of KGML should consider three categories of data: target variable N2O flux, IMVs and 534 

basic inputs (Fig. 1a). For N2O flux observation, we lack sub-hourly to sub-daily observations to capture the hot moment of 535 

emission during 0-30 days after N fertilizer applications. Besides, the non-growing season can provide 35-65% of the annual 536 

direct N2O emissions from seasonally frozen croplands and lead to a 17–28 % underestimate of the global agricultural N2O 537 

budget if ignoring its contribution (Wagner-Riddle et al., 2017), but we can barely find observations from non-growing 538 

seasons. For IMVs, we found oxygen demand indicator (e.g., O2 concentration or flux, CO2 flux, CH4 flux), N mass balance 539 

related variables (e.g., N2 flux, soil NO3
-, soil NH4

+, N leaching) and soil water and temperature, can be used to better constrain 540 

the processes and therefore improve the KGML performance. Rohe et al. (2021) also indicated the importance of O2, CO2 and 541 

N2 soil fluxes for N2O predictions. In addition, the layerwise soil observations (e.g., soil NO3
-, soil VWC) at 0-30 cm depth 542 

can be used to significantly improve the KGML model quality, according to our feature importance analysis (Fig. S2a). 543 

Moreover, continuous monitoring on these variables during the whole year is preferred rather than only during the growing 544 

season, since N2O flux is largely influenced by previous states. To apply the KGML-ag to large scale, other observational data 545 

including basic inputs of soil/crop properties (e.g., soil bulk density, pH, crop type), management information (e.g., fertil izer, 546 

irrigation, tillage) and weather forcings along with N2O flux observations are critical for fine-tuning and validating the 547 

developed KGML-ag and therefore explicitly simulating the N2O or IMVs dynamics under specific conditions. Recent 548 

advances in remote sensing and machine learning have enabled estimating these variables with high-resolution at a large scale 549 

(Peng et al., 2020) 550 
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  551 

Second, the physical/chemical constraints can be more comprehensive in KGML-ag models. Although current KGML-ag 552 

models are well-initialized with ecosys synthetic data and constrained by causal relations of processes with hierarchical 553 

structure, the predicted N2O flux and IMVs can still violate some basic physical rules like mass balance. As we discussed in 554 

Sec. 4.2, it will be challenging to add physical rules like mass balance equation for N in a complicated agriculture ecosystem 555 

due to data limitations such as missing observations on certain key variables. Using inequalities instead of equations for mass 556 

balance may be one alternative solution. For example, we could use ReLU to add in a limitation for N mass balance residues 557 

which are calculated from known terms not larger than an empirical static value. Besides, better understanding of processes in 558 

the N cycle from fieldworks and lab experiments can also help us design new constraints. This limitation is also partially 559 

related to the data limitation and can be overcomed by involving more complete N2O data to introduce more powerful 560 

constraints to KGML-ag. 561 

 562 

Third, the KGML-ag currently are suffering from dealing with physical/chemical boundary transitions. Boundary transitions 563 

are common in the real world, such as phase change, volume solubility, and soil porosity etc. A detailed PB model generally 564 

coded plenty of “if/else/switch” statements inside to deal with the boundaries. But KGML-ag models based on the GRU are 565 

better at capturing continuous changes, rather than discrete changes. One solution is to include data with boundary information. 566 

In this study, involving IMVs like O2, CO2 and N2, which already have boundary information like water freezing point, N pool 567 

volumes and other complicated boundaries related to soil/crop properties, can significantly improve the model performance. 568 

The data with boundary information could be continuous observation or estimated value from existing data. By using initial 569 

values to predict IMVs, KGML-ag in this study can partially solve the boundary transition problem when observation data is 570 

limited. Another solution is designing new structures of KGML-ag, such as combining ReLU function or including CNN 571 

model which are robust for discrete situations to the RNN models, or designing new constraints to limit the model working 572 

within the thresholds. 573 

 574 

Finally, at the current stage we can not claim to have completely opened the black box of KGML-ag, but this framework is a 575 

significant step towards this goal. For example, some ideas implemented in our study, such as using pretraining to transfer 576 

knowledge from a PB model to a ML model, incorporating causal relations by hierarchical structure, predicting IMVs for 577 

tracking middle changes and using initial values as input to reduce data demand, would shed light on the future KGML-ag 578 

framework improvement. Besides, we acknowledge the importance of further testing the KGML-ag over completely 579 

independent datasets, but results presented in this manuscript are sufficient to justify the power of KGML as a framework. The 580 

mesocosm experiment data we used in this study has provided a comprehensive set of inputs and intermediate variables in 581 

addition to the output of N2O fluxes, thus serving as a unique testbed. We expect to further validate and refine our KGML-ag 582 

model our validation results will be more solid once more gold standard data of N2O fluxes along with other relevant inputs 583 

and intermediate variables become publicly available. Moreover, incorporating more and more domain knowledge into 584 
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KGML-ag will be possibleinevitable  forin further improvement, but we don’t think KGML-ag will become inefficient as it 585 

becomes more like the PB model. In fact, to efficiently emulatesurrogate components of PB models has been proposed as a 586 

research frontier in hybrid modeling for earth system science (Reichstein et al., 2019; Irrgang et al., 2021), with latest advances 587 

occurring in weather forecasts (Bauer et al., 2021). By using a hybrid model, computationally inefficient components of PB 588 

can be identified one by one, and be replaced with more efficient ML-based surrogates to eventually obtain the most efficient 589 

model. Further KGML-ag model development will also need to balance efficiency, accuracy and interpretability. 590 

5 Conclusions 591 

In this study, two KGML-ag models have been developed, validated, and tested for agricultural soil N2O flux prediction using 592 

synthetic data generated by the PB model ecosys and observational data from a mesocosm facility. The results show that 593 

KGML-ag models can outperform PB and pure ML models in N2O prediction in not only magnitude (KGML-ag1 r2 = 0.81 vs 594 

best ML model GRU r2 = 0.78) but also dynamics (KGML-ag1 accuracy minus GRU accuracy, slope Δr2 = 0.06 and curvature 595 

Δr2 = 0.08). KGML-ag can also defeat the PB model ecosys in efficiency by completing ecosys’s half-hour job within a few 596 

seconds. Compared to ML models, KGML-ag models can better represent complex dynamics and high peaks of N2O flux. 597 

Moreover, with IMV predictions and hierarchical structures, KGML-ag models can provide biogeophysical/chemical 598 

information about key processes controlling N2O fluxes, which will be useful for interpretable forecasting and developing 599 

mitigation strategies. Data demand for the KGML-ag models is significantly reduced due to involving IMV initial values and 600 

pretrain processes with synthetic data. This study demonstrated that the potential of KGML-ag application in the complex 601 

agriculture ecosystem is high and illustrates possible pathways of KGML-ag development for similar tasks. Further 602 

improvement of our KGML-ag models can involve general principles to further constrain the predictions through loss functions 603 

or architectures, but call for more detailed, high temporal resolution N2O observation data from field measurements.  604 
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 744 

Figure 1: The model structuress. a) The ecosys model; b) Gated recurrent unit (GRU) model; c) KGML-ag1 model with a 745 
hierarchical structure; d) KGML-ag2 model with a hierarchical structure with separated GRU modules for IMV predictions. 746 
Specifically, in our KGML model design, weather forcings (W) include temperature (TMAX, TDIF), precipitation (PRECN), 747 
radiation (RADN), humidity (HMAX and HDIF) and wind speed (WIND); soil/crop properties (SCP) include bulk density (TBKDS), 748 
sand content (TCSAND), silt content (TCSILT), pH (TPH), cation exchange capacity (TCEC), soil organic carbon (TSOC), planting 749 
day of the year (PDOY) and crop type (CROPT); IMVs include CO2 flux, soil NO3

- concentration,  soil NH4
+concentration, and soil 750 

volumetric water content (VWC). 751 

  752 
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 753 

Figure 2: Leave-one-out cross validation of time series of N2O flux (mg N m-2 day-1) time series predicted by thecomparisons among 754 
pure non-pretrained GRU modelpredictions (blue line) and, KGML-ag1 modelpredictions (red line).  and oObservations are shown 755 
as (black line-dots. ) from cross-validation. The N2O flux unit is mg N m-2 day-1. Validation results for each chamber were based on 756 
out-of-sample predictions by models trained by other five chambers.Leave-one-out cross validation (LOOCV) method was used to 757 
train/validate the models. Only validation results were presented and each chamber validation results were from models trained by 758 
other five chambers.  759 
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 762 

Figure 3: Leave-one-out cross validation of time series of IMVs predictedion byfrom KGML-ag1 model (red line). Observations are 763 
shown as black line-dots.The black-dot line represents observations and the red line represents the results from KGML-ag1. 764 
Validation results for each chamber were based on out-of-sample predictions by models trained by other five chambers. Chmb is 765 
the abbreviation for chamber. r2 and RMSE are calculated and present in each year and chamber. The CO2 flux and soil NO3

- 766 
concentration units are g C m-2 day-1 and g N Mgm-12, respectively. 767 
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 769 

Figure 3 Contd.: Leave-one-out cross validation of time series of IMVs predictedion byfrom KGML-ag1 model (red line). 770 
Observations are shown as black line-dots. . The black-dot line represents observations and the red line represents the results from 771 
KGML-ag1.  Validation results for each chamber were based on out-of-sample predictions by models trained by other five 772 
chambers.Chmb is the abbreviation for chamber. r2 and RMSE are calculated and present in each year and chamber. The soil NH4

+ 773 
concentration and soil VWC units are g N Mgm-12 and m3 m-3, respectively. 774 
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 775 

 776 

 777 

Figure 4: The comparisons of overall prediction accuracy from leave-one-out cross validation for N2O value (a), 1st order gradient 778 
(slope, b) and 2nd order gradient (curvature, c) between four tree-based ML models (DT, RF, GB and XGB), two deep learning 779 
models (ANN and GRU) and KGML-ag models. The overall performances were calculated by comparing out-of-sample predictions 780 
(each chamber’s predictions were from models trained by other five chambers) from all validated chambers with observations. 781 
Different color symbols represent the different models. The x- and y-error bars are coming from the maximum and minimum scores 782 
of ensemble experiments. The dot represents the mean score of the ensemble experiments. 783 
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 785 

Figure 5: The comparisons of N2O flux prediction accuracy r2 (a) and (b) RMSE from Leave-one-out cross validation, between four 786 
tree-based ML models (DT, RF, GB and XGB), two deep learning models (ANN and GRU) and KGML-ag models in six6 chambers. 787 
Validation results for each chamber were based on out-of-sample predictions by models trained by other five chambers. The gray 788 
error bars are coming from the maximum and minimum scores of ensemble experiments. 789 

  790 



32 

 

Table 1: Pretrain results for different model and IMV combinations using ecosys synthetic data. Only performances from testing 791 
data sets (synthetic data from 19 counties) were presented.  792 

      N2O CO2 NO3
- NH4

+ VWC 

No. Pretrain Model Input Feature N r2 RMSE  r2 NRMSE  r2 NRMSE  r2 NRMSE  r2 NRMSE  

1 GRU+76IMVs 76 IMVs+FN+7Ws+8SCP 0.98 0.54 --a -- -- -- -- -- -- -- 

2 GRU+IMVcb1 4 IMVs+FN+7Ws+8SCP 0.92 1.15 -- -- -- -- -- -- -- -- 

3 GRU+IMVcb2 3 IMVs+FN+7Ws+8SCP 0.90 1.26 -- -- -- -- -- -- -- -- 

4 GRU  FN+7Ws+8SCP 0.89 1.37 -- -- -- -- -- -- -- -- 

5 KGML-ag1+IMVcb1_ini FN+7Ws+8SCP+4IMV_ini 0.90 1.24 0.91 0.06 0.95 0.03 0.98 0.03 0.95 0.04 

6 KGML-ag1+IMVcb2_ini FN+7Ws+8SCP+3IMV_ini 0.90 1.26 -- -- 0.94 0.03 0.97 0.03 0.95 0.04 

7 KGML-ag2+IMVcb1_ini FN+7Ws+8SCP+4IMV_ini 0.90 1.27 0.92 0.05 0.95 0.02 0.98 0.03 0.96 0.04 

8 KGML-ag2+IMVcb2_ini FN+7Ws+8SCP+3IMV_ini 0.91 1.19 -- -- 0.95 0.00 0.99 0.02 0.95 0.04 

aThe empty slot indicates that the model does not predict that variable. 793 

 794 

Table 2: Prediction accuracy comparisons between non-pretrained GRU model and KGML-ag1. 795 

   N2O, KGML-ag1 minus GRU N2O 1st order gradient, 

KGML-ag1 minus GRU 

N2O 2nd order gradient, 

KGML-ag1 minus GRU 

  No. All timeb Day 

30-80 

Day 

40-65 

Day 

45-60 

All 

time 

Day 

30-80 

Day 

40-65 

Day 

45-60 

All 

time 

Day 30-

80 

Day 40-

65 

Day  

45-60 

Δr2 a 

All data 0.03c 0.04 0.07 0.10 0.07 0.07 0.07 0.15 0.08 0.08 0.09 0.11 

Chamber1 0.07 0.10 0.20 0.13 0.18 0.18 0.19 0.14 0.08 0.09 0.09 0.02 

Chamber2 -0.04 -0.05 -0.07 -0.05 0.08 0.09 0.09 0.16 0.20 0.20 0.20 0.23 

Chamber3 0.06 0.06 0.08 0.06 0.04 0.04 0.04 0.13 -0.01 -0.01 -0.01 0.07 

Chamber4 0.06 0.08 0.12 0.07 0.05 0.05 0.05 0.14 0.07 0.07 0.08 0.12 

Chamber5 -0.05 -0.06 -0.07 -0.03 0.09 0.09 0.10 0.16 0.13 0.13 0.15 0.11 

Chamber6 0.03 0.04 0.08 0.17 0.14 0.14 0.15 0.22 0.12 0.13 0.14 0.23 

ΔRMSEa 

All data -0.41 -0.56 -0.84 -1.19 -0.07 -0.10 -0.14 -0.20 -0.03 -0.05 -0.07 -0.08 

Chamber1 0.80 1.06 1.21 1.70 0.00 0.00 -0.02 0.00 0.05 0.07 0.10 0.18 

Chamber2 0.08 0.11 0.07 -0.04 -0.10 -0.13 -0.18 -0.14 -0.10 -0.14 -0.19 -0.22 

Chamber3 -0.71 -0.96 -1.30 -2.09 0.03 0.04 0.07 -0.25 0.09 0.13 0.17 0.08 

Chamber4 -1.68 -2.27 -3.09 -3.81 -0.11 -0.15 -0.21 -0.26 -0.05 -0.07 -0.09 -0.16 

Chamber5 0.53 0.69 0.86 0.99 -0.10 -0.14 -0.20 -0.23 -0.09 -0.12 -0.18 -0.14 

Chamber6 -0.20 -0.27 -0.37 -0.61 -0.14 -0.20 -0.29 -0.33 -0.07 -0.10 -0.15 -0.19 

aLeave-one-out cross validation results for each chamber were based on out-of-sample predictions by models trained by other five chambers. 796 

The “All data” performances were calculated by comparing out-of-sample predictions from all validated chambers with observations. The 797 

difference of r2 (Δr2), and difference of RMSE (ΔRMSE, units are mg N m-2 day-1, mg N m-2 day-2, mg N m-2 day-3 for N2O value, 1st order 798 

gradient and 2nd order gradient, respectively) were calculated by values from KGML-ag1 minus values from GRU. 799 

bResults from different time windows of different chambers during the period of April 1st-July31st (Days1-122) were detected. 800 
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cNone bold values mean KGML-ag1 outperforms GRU, while bold values mean the opposite. 801 

 802 

 803 

Table 3: Experiments for measuring GRU and KGML-ag models performance, and influence of pretraining process, training data 804 
augmentation and IMV initial values. 805 

      

N2O 

N2O 1st order 

gradient 

N2O 2nd order 

gradient CO2 NO3
- NH4

+ VWC 

No. Retrain Model Experiment r2 c RMSEc  r2 RMSE  r2 RMSE  r2 NRMSE  r2 NRMSE  r2 NRMSE  r2 NRMSE  

1 GRU, 

baselinea 

No Pretrain 0.78 4.00 0.45 1.27 0.20 0.90 --b -- -- -- -- -- -- -- 

2 GRU Pretrain 0.80 3.77 0.57 1.12 0.34 0.82 -- -- -- -- -- -- -- -- 

3 KGML-ag1+ 

IMVcb1_ini 

Original 

setting 

0.81 3.60 0.51 1.20 0.28 0.87 0.37 0.14 0.39 0.21 0.60 0.09 0.33 0.18 

4 KGML-ag1+ 

IMVcb2_ini 

Original 

setting 

0.80 3.71 0.49 1.22 0.21 0.91 -- -- 0.37 0.22 0.53 0.10 0.33 0.19 

5 KGML-ag2+ 

IMVcb1_ini 

Original 

setting 

0.79 3.77 0.48 1.23 0.22 0.90 0.74 0.09 0.46 0.18 0.66 0.08 0.84 0.08 

6 KGML-ag2+ 

IMVcb2_ini 

Original 

setting 

0.78 3.91 0.47 1.24 0.20 0.91 -- -- 0.49 0.18 0.69 0.08 0.84 0.08 

7 KGML-ag1+ 

IMVcb1_ini 

No 

augmentation  

0.80 3.73 0.49 1.22 0.22 0.90 0.38 0.14 0.38 0.21 0.61 0.09 0.37 0.17 

8 KGML-ag1+ 

IMVcb2_ini 

No 

augmentation  

0.77 4.04 0.41 1.31 0.13 0.95 -- -- 0.38 0.21 0.53 0.10 0.35 0.18 

9 KGML-ag2+ 

IMVcb1_ini 

No 

augmentation  

0.76 4.06 0.45 1.27 0.16 0.95 0.69 0.10 0.21 0.25 0.60 0.09 0.80 0.09 

10 KGML-ag2+ 

IMVcb2_ini 

No 

augmentation  

0.74 4.27 0.48 1.23 0.21 0.90 -- -- 0.40 0.21 0.60 0.09 0.81 0.09 

11 KGML-ag1+ 

IMVcb1_ini 

Zero initial 

values 

0.48 6.27 0.26 1.49 0.08 1.00 0.19 0.16 0.25 0.25 0.47 0.12 0.14 0.25 

12 KGML-ag1+ 

IMVcb2_ini 

Zero initial 

values 

0.49 5.94 0.31 1.41 0.13 0.95 -- -- 0.31 0.25 0.38 0.13 0.24 0.25 

13 KGML-ag2+ 

IMVcb1_ini 

Zero initial 

values 

0.48 6.05 0.12 1.66 0.01 1.09 0.58 0.12 0.34 0.25 0.21 0.13 0.56 0.31 

14 KGML-ag2+ 

IMVcb2_ini 

Zero initial 

values 

0.39 6.60 0.15 1.59 0.04 1.01 -- -- 0.16 0.27 0.27 0.12 0.53 0.31 

aNo.1-6Gray region includes the experiments with original simulation settings as described in Sec. 2 and bold valuesdark gray refers to the 806 

baseline GRU simulation; No.7-10Blue region includes the experiments without data augmentation during the finetuning process; And No. 807 

11-14yellow region includes the experiments of replacing original IMV initial values with zeros. 808 

bThe empty slot indicates that the model does not predict that variable. 809 

cThe leave-one-out cross validation overall performances were calculated by comparing out-of-sample predictions (each chamber’s 810 
predictions were from models trained by other five chambers) from all validated chambers with observations. 811 
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