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Abstract.  23 

Agricultural nitrous oxide (N2O) emission accounts for a non-trivial fraction of global greenhouse gases (GHGs) budget. To 24 

date, estimating N2O fluxes from cropland remains a challenging task because the related microbial processes (e.g., nitrification 25 

and denitrification) are controlled by complex interactions among climate, soil, plant and human activities. Existing approaches 26 

such as process-based (PB) models have well-known limitations due to insufficient representations of the processes or 27 

uncertaintiesconstraints of model parameters, and to leverage recent advances in machine learning (ML) a  new method is 28 

needed to unlock the “black box” to overcome its limitations such asdue to low interpretability, out-of-sample failure and 29 

massive data demand. In this study, we developed a first- of- theits kind knowledge-guided machine learning model for 30 

agroecosystems (KGML-ag), by incorporating biogeophysical/chemical domain knowledge from an advanced PB model, 31 

ecosys, and tested it by comparing simulating daily N2O fluxes with real observed data from mesocosm experiments. The 32 

Gated Recurrent Unit (GRU) was used as the basis to build the model structure. To optimize the model performance, we have 33 

investigated a range of ideas, including: 1) Using initial values of intermediate variables (IMVs) instead of time series as model 34 

input to reduce data demand; 2) Building hierarchical structures to explicitly estimate IMVs for further N2O prediction; 3) 35 

Using multitask learning to balance the simultaneous training on multiple variables; and 4) Pretraining with millions of 36 

synthetic data generated from ecosys and fine tuning with mesocosm observations. Six other pure ML models were developed 37 
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using the same mesocosm data to serve as the benchmark for the KGML-ag model. Results show that KGML-ag did an 38 

excellent job in reproducing the mesocosm N2O fluxes (overall r2 = 0.81, and RMSE = 3.6 mg N m-2 day-1 from cross-39 

validation). Importantly KGML-ag always outperforms the PB model and ML models in predicting N2O fluxes, especially for 40 

complex temporal dynamics and emission peaks. Besides, KGML-ag goes beyond the pure ML models by providing more 41 

interpretable predictions as well as pinpointing desired new knowledge and data to further empower the current KGML-ag. 42 

We believe the KGML-ag development in this study will stimulate a new body of research on interpretable ML for 43 

biogeochemistry and other related geoscience processes. 44 

1 Introduction 45 

Nitrous oxide (N2O), with its global warming potential 273 ± 118 times greater than that of carbon dioxide (CO2) for a 100-46 

year time horizon, is one of the majorimportant greenhouse gases (IPCC6; Forster et al., 2021). The increasing rate of 47 

atmospheric N2O concentration during the period 2010-2015 is 44% higher than during 2000-2005, mainly driven by increased 48 

anthropogenic sources that have increased total global N2O emissions to ~17 Tg N yr−1 (Syakila and Kroeze, 2011; Thompson 49 

et al., 2019). It is estimated that approximately 60% of the contemporary N2O emission increases are from agriculture 50 

management at global scale (Pachauri et al., 2014; Robertson et al., 2014; Tian et al., 2020), but the estimation uncertainty can 51 

exceed 300% (Barton et al., 2015; Solazzo et al., 2021). Quantifying N2O emissions from agricultural soils is extremely 52 

challenging, partly because the related microbial processes, mainly about incomplete denitrification and nitrification, are 53 

controlled by many environment and management factors such as temperature/water conditions, soil/crop properties, and N 54 

fertilization rate, all of which together have collectively led to large temporal and spatial variabilities of N2O emissions 55 

(Butterbach-Bahl et al., 2013; Grant et al., 2016). 56 

 57 

Process-based (PB) models are often used for simulating N2O fluxes from the agroecosystems, but they have some inherent 58 

limitations, including incomplete knowledge of the processes, low accuracy due to the under-constrained parameters, 59 

expensive computing cost, and rigid structure for further improvements, that we could not resolve by using PB model itself. 60 

For example, an advanced agroecosystem model, ecosys (Grant et al., 2003, 2006, 2016), simulates N2O production rates 61 

through nitrification and denitrification processes when oxygen (O2) is limited, with equations considering the influence from 62 

related substrate concentrations (e.g., NO2
-, N2O, and CO2), nitrifier and denitrifier populations, and soil thermal, hydrological 63 

physical and chemical conditions. The produced N2O accumulates, transfers in gaseous phase, aqueous phase, over different 64 

soil layers, and eventually exchanges with atmosphere at the soil surface. Other PB models, including DNDC (Zhang et al., 65 

2002; Zhang and Niu, 2016), DAYCENT (Del Grosso et al., 2000; Necpálová et al., 2015), and APSIM (Keating et al., 2003; 66 

Holzworth et al., 2014), have also included processes to simulate N2O production, but adopt different parameterizations using 67 

static partition parameters to estimate N2O emission from nitrification, and other empirical parameters to control the influence 68 

on nitrification from soil water content, pH, temperature and substrate concentrations. Besides, N2O is intimately connected 69 



3 
 

with the soil organic carbon (SOC) dynamics, because soil nitrifiers and denitrifiers interact strongly with aerobic and 70 

anaerobic heterotrophs that process SOC evolution, and all of these microbes are driven by shared environmental variables 71 

including soil temperature, moisture, redox status, and physical and chemical properties (Thornley et al., 2007). As expected, 72 

these connections make it difficult for PB models, even the most advanced ones like ecosys, to find sufficient representations 73 

of the physical and biogeochemical processes or obtain enough data to calibrate a large number of model parameters with 74 

strong spatio-temporal variations. Thus, novel approaches are needed for addressing the big challenge of agricultural N2O flux 75 

simulations. 76 

 77 

Machine learning (ML) models can automatically learn patterns and relationships from data. Recent studies have investigated 78 

the potential to predict agricultural N2O emission with ML models, including random forest (RF, Saha et al., 2021), 79 

metamodelling with extreme gradient boosting (XGBoost) (Kim et al., 2021), and deep learning neural network (DNN) 80 

(Hamrani et al., 2020). Notably, Hamrani et al. (2020) compared nine widely used ML models for predicting agricultural N2O. 81 

That study pointed out that the long short term memory (LSTM) model with recurrent networks containing memory cells as 82 

building blocks will be most suitable for N2O predictions, but the challenge remains with respect to the ability of capturing the 83 

sharp peak of N2O fluxes and lag time between N fertilizer application and the emission peak. Although there is an increasing 84 

interest in leveraging recent advances in machine learning, capturing this opportunity requires going beyond the ML 85 

limitations, including limited generalizability to out-of-sample scenarios, demand for massive training data, and low 86 

interpretability due to the “black-box” use of ML (Karpatne et al., 2017). PB models with their transparent structures built by 87 

representations of physical and biogeochemical processes, seem to be exact complementary to ML models. Thus, combining 88 

the power of ML model and PB model understanding innovatively is likely a path forward. 89 

 90 

The above need to integrate ML and PB models can be potentiallyssibly addressed by the newly proposed framework of 91 

Knowledge-guided Machine Learning (KGML) models. In the review by Willard et al. (2021), five research frontiers have 92 

been identified regarding the development of KGML for diverse disciplines including earth system science, they are: 1) Loss 93 

function design according to physical or chemical laws (Jia et al., 2019, 2021; Read et al., 2019); 2) Knowledge-guided 94 

initialization through pretraining ML models with synthetic data generated from PB models (Jia et al., 2019, 2021; Read et al., 95 

2019); 3) Architecture design according to causal relations or adding dense layers containing domain knowledge (Khandelwal 96 

et al., 2020; Beucler et al., 2019, 2021); 4) Residual modeling with ML models to reduce the bias between PB model outputs 97 

and observations (Hanson et al., 2020); and 5) Other hybrid modeling approaches combining PB and ML models (Kraft et al., 98 

2021). These recent advances in KGML pave the pathway to a more efficient, accurate and interpretable solution for estimating 99 

N2O fluxes from the agroecosystem.  100 

 101 

In this study, we present athe first-of-its-kind attempt of developing athe KGML for agricultural GHG fluxes prediction 102 

(KGML-ag) with knowledge-guided initialization and architecture design, and demonstrate the potential of KGML-ag with a 103 
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case study on quantifying N2O flux observed by a multi-year mesocosm experiments. We designed the KGML-ag structure 104 

based on the causal relations of related N2O processes informed by an advanced agroecosystem model, ecosys (Grant et al., 105 

2003, 2006, 2016). We used the synthetic data generated from ecosys to design the KGML-ag input/output, and to pre-train 106 

the KGML-ag model to learn the basic patterns of each variable. Observations from multi-season controlled-environment 107 

mesocosm chambers (Miller, 2021, thesis; Miller et al., 2021, in review) were used to refine the pretrained KGML-ag and 108 

evaluate the model performance. Since there is limited literature that guides the development of KGML-ag and not a one that 109 

directly addressed GHG fluxes, we investigated a range of ideas to optimize the model performance, including: 1) Using initial 110 

values of intermediate variables (IMVs) instead of sequences as model input to reduce data demand; 2) Building hierarchical 111 

structures to explicitly estimate IMVs for further N2O prediction; 3) Using multitask learning to balance the simultaneous 112 

training on multiple variables; and 4) Pretraining with millions of synthetic data generated from ecosys and fine tuning with 113 

mesocosm observations. Although we evaluated the KGML-ag models with real measurements only from a mesocosm 114 

experiment, the lessons learned from the development process and various KGML-ag structures can be transferred to other 115 

data, other variables and large scale simulations, therefore have broader implications on further KGML related research in 116 

agriculture. We believe this study will stimulate a new body of research on interpretable machine learning for biogeochemistry 117 

and other related topics in geoscience. 118 

2 Methods 119 

2.1 Experimental design overview 120 

To develop and evaluate the KGML-ag models and compare their performance with pure ML models, we designed the 121 

following experiments: 122 

1) With the synthetic data, we developed and pretrained multiple KGML-ag models to learn general patterns and 123 

interactions among variables, and evaluated their model performance (Fig. S2, Table 1); 124 

2) With the observed data, we finetuned multiple KGML-ag models to adapt real-world situations, and evaluated their 125 

model performance (Fig. 2-3; Fig. S3-5; Table 2-3); 126 

3) We further benchmarked KGML-ag models and uncertainties with other pure ML models without considering 127 

temporal dependence, including Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB) from the sklearn 128 

package (https://scikit-learn.org/stable/), Extreme Gradient Boosting (XGB) from the XGBoost package 129 

(https://xgboost.readthedocs.io/en/latest/) and a 6-linear-layer artificial neural network (ANN) with the mesocosm 130 

experiment data by 10 times ensemble experiments (Fig. 4-5; Fig. S6-8); 131 

4) We conducted a few small experiments to further investigate how various model configurations, such as the 132 

pretraining process, data augmentation and IMV initial values would influence KGML-ag model performance (Table 133 

3). 134 

https://scikit-learn.org/stable/
https://xgboost.readthedocs.io/en/latest/
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2.2 KGML-ag structure development 135 

2.2.1 Generating synthetic data with ecosys 136 

We generated synthetic data using a PB model, ecosys. The ecosys model is an advanced agroecosystem model constructed 137 

from detailed biophysical and biogeochemical rules instead of using empirical relations (Grant et al., 2001). It represents N2O 138 

evolution in the microbe-engaged processes of nitrification-denitrification using substrate kinetics that are sensitive to soil 139 

nitrogen availability, soil temperature, soil moisture, and soil oxygen status (Grant and Pattey 2008). Two groups of microbial 140 

populations, autotrophic nitrifiers and heterotrophic denitrifiers, produce N2O with specific competitive or cooperative 141 

relations in ecosys when O2 availability fails to meet O2 demand for their respirations and NO2
- become alternative electron 142 

acceptors. N2O transfer within soil layers and from soil to the atmosphere is driven by concentration gradient using diffusion-143 

convection-dispersion equations, in the forms of gaseous and aqueous N2O under control of volatilization-dissolution (Grant 144 

et al., 2016). Unlike the pipeline model described by Davidson et al. (2000) , which mainly consider the correlations of N2O 145 

production with nitrogen availability and of N2O emissionsemisiontsting with soil water content, ecosys enables integrative 146 

effects of energy, water, nitrogen availability on N2O production and N2O transfer via the microbial population dynamics and 147 

their interactions with soil, plant, and atmospheric dynamics, under diverse meteorological and anthropogenic disturbances 148 

(e.g. runoff, drainage, tillage, irrigation, soil erosion).. Many previous studies have demonstrated its robustness in simulating 149 

agricultural carbon and nitrogen cyclings at different spatial/temporal scales, and under different management practices (Grant 150 

et al., 2003, 2006, 2016; Metivier et al., 2009; Zhou et al., 2021).  For the agricultural ecosystems in the US Midwest, whose 151 

simulations are used for synthetic data in this study, the performance of ecosys on CO2 and N2O fluxes have been extensively 152 

benchmarked, including CO2 exchange (NEE, R2 = 0.87) and leaf area index (LAI, R2 = 0.78) from six flux towers, USDA 153 

census reported corn yield (R2 = 0.83) and soybean yield (R2 = 0.80), satellite-derived GPP for corn (R2 = 0.83) and soybean 154 

(R2 = 0.85) from Illinois, Iowa and Indiana, and cumulative N2O emissions (R2 = 0.36) across eight Midwestern states (Wang 155 

et al., 2021; Yang et al., 2022). Therefore, ecosys is an appropriate choice of domain knowledge provider and synthetic data 156 

generator in the development of KGML models. We generated daily synthetic data including N2O flux and 76 IMVs (e.g. CO2 157 

flux from soil, layerwise soil NO3
- concentration, layerwise soil temperature, and layerwise soil moisture; detailed in Table 158 

S1) from ecosys simulations for 2000-2018 over 99 randomly selected counties in Iowa, Illinois, and Indiana, USA. We used 159 

hourly meteorological inputs (downward shortwave radiation, air temperature, precipitation, relative humidity, and wind 160 

speed) from the phase 2 of North American Land Data Assimilation System (NLDAS-2, Xia et al., 2012) and layerwise soil 161 

properties (e.g.  bulk density, texture, pH, SOC concentration) from the SSURGO database (Soil Survey Staff, 2020) as inputs 162 

to ecosys. Crop management except N fertilization rates were configured to the same settings as mesocosm experiments 163 

(described in Sec 2.2.2). To increase the variability in synthetic data, we implemented 20 different N fertilization rates ranging 164 

from 0 to 33.6 g N m-2 (i.e. 0 to 300 lb N ac-1) in each simulation of 99 counties, and more detailed information for model 165 

setup refers to Zhou et al. (2021). 166 
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 167 

The generated synthetic data were then processed for further use by KGML-ag development. Meanwhile, the hourly weather 168 

forcings were converted to seven daily variables, including the maximum air temperature (TMAX_AIR, oC), difference 169 

between the maximum and the minimum air temperature (TDIF_AIR, oC), the maximum humidity (HMAX_AIR, fraction), 170 

difference between the maximum and the minimum humidity (HDIF_AIR, fraction), surface downward shortwave radiation 171 

(RADN, W m-2), precipitation (PREC, mm day-1), and wind speed (WIND, m s-1). Six soil properties were retrieved from the 172 

SSURGO database, including total averaged (depth weighted averaged for all layers) bulk density (TBKDS, Mg m-3), sand 173 

content (TCSAND, g kg-1), silt content (TCSILT, g kg-1), pH (TPH), cation exchange capacity (TCEC, cmol+ kg-1) and soil 174 

organic carbon (TSOC, g C kg-1); and two crop properties were retrieved, including planting day of the year (PDOY) and crop 175 

type (CROPT, 1 for corn and 0 for soybean). Finally, each synthetic data sample has daily N2O flux, 76 selected IMVs, 7 176 

weather forcings (W), 1 N fertilization rate (FN, g N m-2) and 8 soil/crop properties (SCP) (Fig. 1.a; Table S1). The periods 177 

from April 1st to July 31st (122 days) were selected to cover the mesocosm observations (around 30 days before and 90 days 178 

after N fertilizer date). The total amount of synthetic data sample is 122 days x 18 years x 99 counties x 20 N fertilizer rates 179 

(about 4.3 million data points). We randomly selected the samples from 70 counties for training, 10 counties for validation, 180 

and 19 counties for testing. 181 

2.2.2 Mesocosm experiments for KGML-ag model fine-tuning and evaluation 182 

Observations were acquired from a controlled-environment mesocosm facility on the St. Paul campus of the University of 183 

Minnesota. Soil samples were sourced in 2015 from a farm in Goodhue County, MN (44.2339o N and 92.8976o W), which had 184 

been under corn-soybean rotation for 25 years. Six chambers with a soil surface area of 2 m2 and column depth of 1.1 m were 185 

used to plant continuous corn during 2015-2018 and monitor the N2O flux response to different precipitation treatments. The 186 

experiment also measured other environmental variables including air temperature and photosynthetically active radiation 187 

(PAR), which were controlled to mimic the outdoor ambient environment. Granular urea fertilizer was hand broadcasted and 188 

incorporated to a depth of 0.05 m to each chamber at a rate of 22.4 g N m-2 (200 lb N ac-1) on May 1st of 2015, May 4th of 189 

2016 and May 3rd of 2017, and 10.3 g N m-2 (92 lb N ac-1) on May 8th of 2018. Corn hybrid (DKC-53-56RIB) were hand 190 

planted to a depth of 0.05 m in two rows spaced 0.76 m apart 3-5 days after fertilizer application, at a seeding rate of 35,000 191 

seeds ac-1 in 2015 to 2017, and 70,000 seeds ac-1 in 2018 but thinned upon emergence to ensure 100 percent emergence at 192 

35,000 seeds ac-1. Crops were harvested at the end of September by cutting the stover five inches above the soil. Hourly N2O 193 

fluxes (mg N m-2 h-1) and CO2 fluxes (g C m-2 h-1) were measured using non-steady-state flux chambers with a CO2 analyzer 194 

(LI-10820 for 2016 and LI-7000 for 2017 and 2018, LI-COR Biosciences, Lincoln, NE) and a N2O analyzer (Teledyne 195 

M320EU, Teledyne Technologies International Corp, Thousand Oaks, CA) (Detail method can be retrieved from Fassbinder 196 

et al., 2012, 2013). We also collected soil moisture at 15 cm depth (VWC as abbreviation of volumetric water content, m3 m-197 

3), weekly 0-15 cm depth soil NO3
- + NO2

- concentration (NO3
- for short in the following text, g N Mg-1), soil NH4

+ 198 

concentration (NH4
+, g N Mg-1), and related environment variables including air temperature, radiation, humidity and soil/crop 199 
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properties from three growing seasons during 2016-2018 and six mesocosm chambers (Fig. S1). The magnitude of N2O flux 200 

and NO3
- soil concentration and their responses following fertilizer application from this mesocosm experiment are consistent 201 

with several field studies of agricultural soils (Fassbinder et al., 2013; Grant et al., 1999, 2006, 2008; Hamrani et al., 2020;  202 

Venterea et al., 2011) More details about the mesocosm facility and experimental design can be found in the thesis of Miller 203 

L. (2021). 204 

 205 

The observed data were then processed to fine-tune and evaluate the KGML-ag models. The N2O flux and four IMVs and 206 

weather variables were collected from the measurements in the selected period (i.e., April 1st to July 31st). Weekly NO3
- (short 207 

for soil NO3
- within 0-15 cm depth), and NH4

+ (short for soil NH4
+ within 0-15 cm) were linearly interpolated to the daily time 208 

scale on days containing VWC (short for soil VWC in 15 cm) data. Hourly air temperature, net radiation, N2O (short for N2O 209 

fluxes from soil), CO2 (short for CO2 fluxes from soil) and VWC were resampled to daily scale. All SCP were derived from 210 

mesocosm measurements except that TCEC was derived from the SSURGO database according to the soil origin. We used the 211 

leave-one-out cross-validation (LOOCV) method for the finetuning and evaluation process. Each time we used one chamber 212 

data for validation and another five chambers’ data for model finetuning.  213 

 214 

To increase the model generalization and avoid overfitting, we used the data augmentation method to enrich the finetuning 215 

data set to be 1000 times larger. Data augmentation is a typical practice in ML when training data is limited (Meyer et al., 216 

2021). In particular, we randomly sampled 16 hours of data from a 24-hours period in each day and chamber, and then used 217 

the sampled data to calculate the daily value. If less than 16 missing values existed in 24 hours, we used the above method to 218 

sample the data and calculated a fraction number (24-missing value number)/24 to record valid data fraction in the mask 219 

matrix. If more than 16 missing values were found, we dropped this point and recorded 0 in the mask matrix. The final sample 220 

has daily N2O flux, 4 IMVs, 7 weather forcing variables and 8 static soil/crop properties (similar to synthetic data). The total 221 

amount of augmented observed data sample is 122 days x 3 years x 6 chambers x 1000 data augmentations. The mask matrix 222 

is of the same size as the observed data sample but its elements range from 0 to 1. 223 

 224 

To reduce overfitting and increase the generalization of the trained model based on the small amount of mesocosm 225 

data, we applied the following method to augment the experimental measurements and weather forcings to 1000 226 

times larger by sampling hourly data and averaging them to daily scale. In this method, 16 hours (or maximum 227 

valid hours) of data are randomly selected from 24 hours of data to compute their mean as the daily value. Since 228 

3/4 of the day are covered by the selected data (16 hours /24 hours), the augmented daily values should be 229 

representative enough for the source day and meanwhile present slight variations. Furthermore, the observation 230 

ratio, (24 hours - missing hours) / 24 hours, can be used as the weights in loss function to inject the data quality 231 

information in model optimization. If the day has more than 16 hours missing values, we consider the observations 232 
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in that day as not trustworthy and drop the day by setting the weight to 0. This method can not only augment the 233 

data to 1000 times larger but also deal with the missing values in observed data inherently. The total amount of 234 

observed mesocosm data and related weather forcings are augmented to 122 days x 3 years x 6 chambers x 1000 235 

data samples in this study.  236 

 237 

2.2.3 Gated Recurrent Unit (GRU) as the basis of KGML-ag 238 

Hamrani et al. (2020) compared different models and reported that LSTM provided the highest accuracy in predicting N2O 239 

fluxes, because N2O flux is time dependent by its production/consumption nature and LSTM simulates target variablesvariable 240 

by considering both current and historical states. The LSTM model, proposed by Hochreiter and Schmidhuber (1997), uses a 241 

cell state as an internal memory to preserve the historical information. At each time step, it creates a set of gating variables to 242 

filter the input and historical information and then uses the processed data to update the cell state. Similar to LSTM, GRU is a 243 

gated recurrent neural network but only keeps one hidden state (Cho et al., 2014). Though simpler than LSTM, GRU is proved 244 

to have similar performance (Chung et al., 2014). Our preliminary test on synthetic data for N2O prediction showed that GRU 245 

indeed provided similar or higher accuracy and model efficiency under different model settings than LSTM (Table S2). This 246 

is possiblelikely because simpler models with fewer weights and hyperparameters are more robust in combating the overfitting 247 

problem. Therefore, we choose GRU as the basis of KGML-ag development. 248 

2.2.4 Incorporating domain knowledge to the development of KGML-ag 249 

To quantitatively reveal the correlations between N2O fluxes and IMVs and guide the KGML-ag development, we conducted 250 

the feature importance analysis by a customized 4-layer GRU ML model (Fig. 1b). Each layer of the model has a GRU cell 251 

with 64 hidden units. The 4-layer structure makes the model deeper and capable of capturing complex interactions. Between 252 

each GRU cell, 20% of the output hidden states are randomly dropped by replacing them with zero values (so called 20% 253 

dropout) to avoid overfitting. A linear dense layer is used to map the final output to N2O. We first trained GRU models usingby 254 

synthetic data with different combinations of IMVs as inputs to predict the N2O fluxes (original-test, Table S2). The feature 255 

importance analysis of well-trained models was then implemented by replacing one input feature with a Gaussian noise with 256 

mean μ=0 and standard deviation σ=0.01, while keeping others untouched (new-test). The importance score was calculated by 257 

the new-test’s root mean square error (RMSE) (replacing one feature) minus the original-test’s RMSE (no replacing). RMSE 258 

was calculated by 
√∑𝑁

1 (𝑦𝑖−𝑦𝑖′)2

𝑁
 where 𝑁 is the total number of observations across time and space, 𝑦𝑖 is i-th measurement 259 

from synthetic data or observed data and 𝑦𝑖′ is its corresponding prediction.  260 

 261 
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To find important variables for N2O flux prediction in an ideal situation wherethat all variables are available, we conducted a 262 

feature importance analysis for GRU models with all IMVs and basic inputs including FN, 7 W and 8 SCP (Fig. S2a). Results 263 

indicated that flux variables including NH3, H2, N2, O2, CH4, evapotranspiration (ET) and CO2 had significant influence on the 264 

model performance. Variables ranked high in feature importance analysis areshould be primarily considered with priority 265 

during model development. To develop a functionable KGML-ag in real world, we further investigated the feature importance 266 

of four IMVs that are available from mesocosm observations including CO2, NO3
-, VWC and NH4

+, which were ranked 7th, 267 

20th, 58th, 60th respectively in 92 input features of synthetic data (Fig. S2a). We used these four available IMVs to create two 268 

input combinations: 1) CO2 flux, NO3
-, VWC and NH4

+ (IMVcb1), and 2) NO3
-, VWC and NH4

+ (IMVcb2). The objective of 269 

building IMVcb2 was to investigate the importance of highly ranked variable CO2 flux (by removing it from the inputs), and 270 

the impact of mixing-up flux and non-flux variables on model performance. We tested the feature importance of the GRU 271 

models built with IMVcb1 and IMVcb2 to check whether they would help in N2O prediction (Fig. S2b-c). All the feature 272 

importance results above indicated the correlation intensity between N2O and many other variables, which would help the 273 

KGML-ag model development and interpretation in this study (rest of this section and Sec. 3.1), and would guide future N2O 274 

related measurements and KGML model development (discussed in Sec. 4.34). 275 

 276 

Next we used the knowledge learned from synthetic data to develop the structure of KGML-ag (Fig. 1cb-dc). Previous studies 277 

for KGML models have used physical laws, e.g., conservation of mass or energy, to design the loss function for constraining 278 

the ML model to produce physically consistent results (Read et al., 2019; Khandelwal et al., 2020). However, for complex 279 

systems like agroecosystems, it is challenging to incorporate physical laws, such as mass balance for N2O, into the loss function 280 

due to the incomplete understanding of the processes and the lack of mass balance related data for validation. An alternative 281 

solution is to incorporate such information in the design of the neural network (Willard et al., 2021). Effectiveness of such an 282 

approach was demonstrated by Khandelwal et al. (2020) in the context of modeling stream flow in a river basin using Soil & 283 

Water Assessment Tool (SWAT). They used a hierarchical neural network to explicitly model IMVs (e.g., soil moisture, snow 284 

cover) and their relationships with the target variable (streamflow) and showed that this model is much more effective than a 285 

neural network that attempts to directly learn the relationship between input drivers and the target variables. Following this 286 

idea, we identified four desired features of an effective KGML-ag model, including: 1) We used initial values instead of 287 

sequence of the IMVs from synthetic data or observed data to provide a solid starting state for the ML system and reduce the 288 

IMV data demand, and then used the rest of the data to further constrain the prediction of IMVs; 2) We built a hierarchical 289 

structure based on the structure of process representation incausal relations derived from ecosys to first predict IMVs and then 290 

simulate N2O with predicted IMVs; 3) We trained all variables together using multitask learning to reach the best prediction 291 

scores, which generalized the model and incorporated interactions between IMVs and N2O; 4) We initialized the KGML-ag 292 

model by pretraining withusing synthetic data before using real observed data to transfer physical knowledge, which further 293 

reduced the demand on large training samples and aided in faster convergence for fine-tuning. 294 
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 295 

To meet these desired features, we proposed two KGML-ag models (Fig. 1c-d). The first model, KGML-ag1, is a hierarchical 296 

structure containing two modules to simulate IMVs and N2O sequentially. Each module is a 2-layer 64 units GRU ML model. 297 

The inputs to the module of the KGML-ag1 model for IMV predictions (KGML-ag1-IMV module) are FN, 7W and 8SCP 298 

together with the initial values of IMVs, and the outputs are IMV predictions. The inputs to the module of the KGML-ag1 299 

model for N2O predictions (KGML-ag1-N2O module) are FN, 7W, 8SCP and predicted IMVs from KGML-ag1-IMV, and the 300 

output is the target variable N2O. Linear dense layers were coded for both modules to map output states to IMVs or N2O. The 301 

dropout method was applied to drop 20% of the state output between GRU cells and dense layers. The second model, KGML-302 

ag2, is also a hierarchical structure similar to KGML-ag1, but has multiple KGML-ag2-IMV modules to explicitly simulate 303 

IMVs by tuning them separately in the fine-tuning process (discussed in Sec. 2.2.5). Each KGML-ag2-IMV module in KGML-304 

ag2 is a 2-layer 64 units GRU cell with the inputs of FN+7W+8SCP and one IMV initial value, and the output of one IMV 305 

prediction. The KGML-ag2-N2O module collects the IMV predictions from KGML-ag2-IMV modules and predicts the N2O 306 

with inputs of FN+7W+8SCP and predicted IMVs. 307 

2.2.5 Strategies for pretraining and fine-tuning processes 308 

To increase the efficiency of the training process, we used the Z-normalization ( 
(𝑋− 𝜇)

𝜎
, where 𝑋 is the vector of a particular 309 

variable over all the data samples in the data set; 𝜇 is the mean value of 𝑋; 𝜎 is the standard deviation of 𝑋) method to normalize 310 

each variable separately on synthetic data. Then the scaling factors (𝜇, 𝜎) derived from ecosys synthetic data for each variable 311 

were used to Z-normalize observed data into the same ranges as synthetic data. As mentioned in Sec. 2.2.1, the TDIF_AIR, 312 

HDIF_AIR were used instead of absolute min temperature (TMIN_AIR) and humidity (HMIN_AIR). This is done because 313 

TMIN_AIR and HMIN_AIR follow similar trends as TMAX_AIR and HMAX_AIR, making Z-normalization numerically 314 

poorly defined. Using the difference between maximum and minimum can provide a clearer information of daily air 315 

temperature/humidity variation.  316 

 317 

During the pretraining process, we initialized the IMV of KGML-ag using the first day value of synthetic IMV time series. 318 

Adam optimizer with a start learning rate of 0.0001 was used for the training process. The learning rate would decay by 0.5 319 

times after every 600 training epochs. At each epoch, synthetic data samples were randomly shuffled before being input to the 320 

model to predict N2O (and IMVs if any). The mean square error (MSE) loss (calculation was equal to the square of RMSE) or 321 

sum of MSE loss (if multitask learning) between predictions and ecosys synthetic observations were calculated to optimize the 322 

weights of GRU cells. After the training process updated the model’s weights, the validation process was performed to evaluate 323 

the model performance based on untouched samples with RMSE and the square of Pearson correlation coefficient (r2). r2 was 324 

calculated as 
(∑𝑖 (𝑦𝑖′− 𝑦𝑖′)(𝑦𝑖− 𝑦𝑖))2

∑𝑖 (𝑦𝑖′− 𝑦𝑖′)2(𝑦𝑖− 𝑦𝑖)2
, where 𝑦𝑖 is the i-th measurement from synthetic data or observed data, 𝑦𝑖′ is its 325 
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corresponding prediction, 𝑦𝑖 is the mean of the measurement 𝑦  in diagnosing space and  𝑦𝑖′ is the mean of the predicted 𝑦′ in 326 

diagnosing space. If both validated r2 and RMSE were better than the best values in previous epochs, the updated model in this 327 

epoch would be saved. Normalized RMSE (NRMSE, calculated by RMSE/(max-min) of each variable observation) was 328 

introduced to evaluate IMV predictions between variables with different value ranges. 329 

 330 

During the fine-tuning process, we used estimated IMV initial values of 1.0 g C m-2, 0.2 m3 m-3, 0.0 g N Mg-1, and 20.0 g N 331 

Mg-1 for CO2, VWC, NH4
+, and NO3

- respectively, from starting day (April 1st) to the day before the first day of real 332 

observations, as input to KGML-ag models. Then the first-day values of observed IMVs were input into KGML-ag during the 333 

rest days of the period as IMV initial values. In addition, as described in Sec. 2.2.2, we used a data augmentation method to 334 

augment the total amount of data 1000 times larger for the fine-tuning process. The purpose of this data augmentation method 335 

was to increase the generalization of the fine-tuned model and to overcome the overfitting due to small sample size. The mask 336 

matrix was elementarily multiplied to the output matrix to calculate the MSE, r2 and RMSE only for days with observations. 337 

The similar optimizer was used with an initial learning rate of 0.00005 and decay fraction of 0.5 per 200 epochs. Other 338 

training/validation methods in each epoch were similar to the pretraining process. Specifically, in the KGML-ag1 model 339 

finetuning process, we first froze the KGML-ag1-N2O module and only trained the KGML-ag1-IMV module for IMVs. After 340 

finishing the KGML-ag1-IMV module training, we froze the KGML-ag1-IMV module and trained the KGML-ag1-N2O 341 

module for N2O. In the KGML-ag2 fine-tuning process, the similar freezing method was used but different KGML-ag2-IMV 342 

modules were trained separately one by one. 343 

2.3 Development environment description 344 

We used the Pytorch 1.6.0 (https://pytorch.org/get-started/previous-versions/) and python 3.7.9 345 

(https://www.python.org/downloads/release/python-379/) as the programing environment for the model development. In order 346 

to use the GPU to speed-up the training process, we installed cudatoolkit 10.2.89 (https://developer.nvidia.com/cuda-toolkit). 347 

A desktop with Nvidia 2080 super GPU was used for code development and testing. The Mangi cluster 348 

(https://www.msi.umn.edu/mangi) from High Performance Computing of Minnesota Supercomputing Institute (HPC-MSI, 349 

https://www.msi.umn.edu/content/hpc) with 2-way Nvidia Tesla V100 GPU was used in training processes which consumed 350 

longer time and bigger memories. 351 

3 Results 352 

3.1 Pretraining experiments using synthetic data from ecosys 353 

In the pretraining stage, the GRU model with 76 IMVs achieved the best performance in predicting N2O fluxes (r2=0.98, RMSE 354 

=0.54 mg N m-2 day-1 and normalized RMSE (NRMSE) = 0.01) on the test set of synthetic data generated from ecosys (Table 355 

https://pytorch.org/get-started/previous-versions/
https://www.python.org/downloads/release/python-379/
https://developer.nvidia.com/cuda-toolkit
https://www.msi.umn.edu/mangi
https://www.msi.umn.edu/content/hpc
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1). The high performance was due to some flux IMVs such as NH3, H2, O2, CO2 and ET, which are highly correlated to N2O 356 

(Fig. S2a), were used as input to the model. The good performance of GRU with all IMVs indicates that ML models are able 357 

to perfectly mimic ecosys when sufficient information about IMVs is available. The GRU model with only basic input of N 358 

fertilizer rate, 7 weather forcings, and 8 soil/crop properties (FN+7W+8SCP) had the accuracy of r2=0.89 and RMSE = 1.37 359 

mg N m-2 day-1 (Table 1). The relatively low performance is likely because this model failed to capture several highly nonlinear 360 

pathways that are employed by ecosys to predict N2O (e.g., one influence pathway from precipitation to N2O can be: 361 

Precipitation → soil moisture → N components solubility/concentration → nitrification/denitrification rate/amount → soil 362 

N2O concentration → gas N2O flux). When adding sequences of IMV combinations (i.e., IMVcb1 of CO2 flux, NO3
-, NH4

+ 363 

and VWC, and IMVcb2 of NO3
-, NH4

+ and VWC), the GRU models performed slightly better than the GRU model using only 364 

basic inputs, achieving r2 of 0.92 and 0.90, respectively (Table 1). The KGML-ag1 with IMVcb1 and IMVcb2 initial values 365 

provided better performance (both r2 = 0.90) than GRU with basic input and comparable performance to the GRU with inputs 366 

of IMVcb1 and IMVcb2 sequence. Besides, KGML-ag1 provided predicted IMVs of CO2, NO3
-, NH4

+, and VWC with r2 over 367 

0.91, and NRMSE below 0.06 (Table 1). KGML-ag2 also provided comparable N2O performance but relatively better IMVs 368 

performance of r2 over 0.92 and NRMSE below 0.05. Results indicated that KGML-ag models with IMV initial values as extra 369 

input performed similar or better than pure ML models in synthetic data. 370 

3.2 KGML-ag evaluation using observed data from mesocosm 371 

After being fine-tuned with observed data, KGML-ag1 had N2O prediction overall accuracy of r2=0.81 and RMSE=3.6 mg N 372 

m-2 day-1, while non-pretrained GRU model provided r2=0.78 and RMSE=4.0 mg N m-2 day-1, and pretrained GRU model 373 

provided r2=0.80 and RMSE=3.77 mg N m-2 day-1 (Table 3). The time series of N2O predictions from KGML-ag1 and the non-374 

pretrained GRU model were further compared (Fig. 2), from which we found at least two advantages of using KGML-ag1 for 375 

N2O predictions: 1) For the region without observation data (normally before day 25), KGML-ag1 predicted stable N2O fluxes 376 

close to 0 mg N m-2 day-1 (which is close to the reality in the experiment setting) while GRU caused anomalous peaks of fluxes. 377 

This is because KGML-ag1 has learned knowledge “common sense” for the whole period from the pretraining process with 378 

ecosys model generated synthetic data, but GRU model has no prior knowledge for the period without any data in observations; 379 

2) Although KGML-ag1 had a lower accuracy than GRU in some chambers, KGML-ag1 can better capture the temporal 380 

dynamics of N2O fluxes compare to GRU, especially when the fluxes are highly variable (e.g. Fig 2 chamber 2).  381 

 382 

To validate KGML-ag1 robustness, we further investigated the KGML-ag1 and GRU model performance in different temporal 383 

windows, shrinking from the whole period to the N2O peak occurrence time (days 1-122, day 30-80, day 40-65 and day 45-60 384 

for year 2016-2018), and performance in N2O flux, first order gradient of N2O (slope) and second order gradient of the N2O 385 

(curvature) (Table 2). Slope represents the speed of N2O flux changes through time and curvature represents the acceleration. 386 

Assessing prediction performance withon these two metrics will reveal the model robustness on capture variable dynamics, 387 
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which is critical when predicting fast-change variables with hot moments like N2O. First of all, the overall r2 and RMSE of 388 

KGML-ag1 for values, slope and curvature were always better than GRU. In particular, KGML-ag1 captured the peak region 389 

(e.g., days 45-60) much better than GRU in both magnitude and dynamics (Table 2, Fig 2). Even for chamber 2 and 5 in 390 

which KGML-ag1 made worse N2O predictions than GRU (Δr2 ranging from -0.07 to -0.03), it better captured temporal 391 

dynamics than GRU in terms of slope (Δr2 ranging from 0.08 to 0.16) and curvature (Δr2 from 011 to 0.23) (Table 2). For other 392 

chambers, KGML-ag1 outperformed GRU consistently. For chamber 1, KGML-ag1 had worse N2O predictions RMSE than 393 

GRU but the Δr2 increased as the window shrinks to the peak emission time (0.07 → 0.13). The slope and curvature for 394 

chamber 1 also indicated that KGML-ag1 captured the dynamics much better than GRU. For chamber 3, KGML-ag1 395 

predicted better N2O but presented worse slope and curvature RMSE than GRU (Table 2).  However, when explicitly 396 

investigating the time series of N2O flux, slope and curvature in each year, KGML-ag1 outperformed GRU more significantly 397 

in 2017, the year with more complex temporal dynamics of N2O fluxes, than in 2016 and 2018, especially for chamber 3 (Fig. 398 

2; Fig. S3-4). This investigation supported that KGML-ag1 was more capable for complex dynamics predictions. 399 

 400 

Interestingly, the fine-tuned KGML-ag1 model predicted reasonable IMVs including CO2, NO3
-, NH4

+, and VWC with overall 401 

r2 of 0.37, 0.39, 0.60, and 0.33 and NRMSE of 0.14, 0.21, 0.09 and 0.18, respectively (Table 3). The time series comparisons 402 

between IMV predictions and observations further indicated that KGML-ag1 could reasonably capture both magnitude and 403 

dynamics (Fig. 3). KGML-ag2 presented better IMVs predictions than KGML-ag1, with overall r2 of CO2, NO3
-, NH4

+, and 404 

VWC increasing by 0.37, 0.17, 0.06 and 0.51, and NRMSE decreasing by 0.05, 0.03, 0.01 and 0.10, respectively, but a slightly 405 

lower r2 (decreasing 0.02) of N2O (Table 3; Fig. S5). This indicated that explicitly simulating each IMV with separated KGML-406 

ag2-IMV modules did not benefit the N2O flux prediction accuracy, likely due to increasing model complexity which resulted 407 

in reduceding stability and ignoring the IMV interactions. In addition, we also found all KGML-ag models would perform 408 

better by using IMVcb1 (with CO2) than using IMVcb2 (without CO2) in real data tests, indicating feature importance analysis 409 

based on synthetic data can be a reasonable substitute for analysis with the often limited real-world data. 410 

3.3 KGML-ag comparing with other pure ML models 411 

The results from eightseven different models showed that KGML-ag1 comparing with other pure ML models consistently 412 

provided the lowest RMSE (3.59-3.9460 mg N m-2 day-1, 1.14-1.2320 mg N m-2 day-2, and 0.84-0.897 mg N m-2 day-3) and 413 

highest r2 (0.78-0.81, 0.48-0.5651, and 0.23-0.318) for N2O fluxes, slope and curvature, respectively (Fig. 4). This indicated 414 

that KGML-ag1 outperformed other pure ML models in both capturing both the magnitude and dynamics of N2O flux. KGML-415 

ag2 presented slightly better mean scores for N2O flux predictions than KGML-ag1, but worse scores for slope and curvature 416 

and larger uncertainties. This proved the hypothesis discussed in section 3.2 that KGML-ag2 didn’t benefit the magnitude and 417 

dynamics predictions of N2O flux with its more complex structure and less connections between IMVs. 418 

 419 
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Within the tree-based models (DT, RF, GB and XGB), the simplest model DT provided the worst predictions for N2O flux, 420 

slope and curvature. The XGB model provided the highest N2O flux accuracy with r2 of 0.61-0.632 and RMSE of 5.07-5.1711 421 

mg N m-2 day-1, while the GB model provided best slope and curvature predictions with r2 of 0.38-0.4042 and 0.23-0.268, and 422 

RMSE of 1.34-1.371 mg N m-2 day-2 and 0.91-0.9588 mg N m-2 day-3, respectively. The highest N2O flux accuracy and 423 

relatively low slope and curvature accuracy of the XGB model implied that there is a trade-off between the abilities of capturing 424 

dynamics and magnitude.  425 

 426 

In the group of deep learning models including ANN, GRU and KGML-ag1, ANN provided the worst predictions. Even with 427 

the better N2O flux predictions than most tree-based models (except XGB), the slope and curvature predictions of ANN were 428 

the worst among all eightseven models. This implied that the trade-off between accurately capturing N2O dynamics to 429 

magnitude in ANN was significant. But when considering the temporal dependence, deep learning model GRU and KGML-430 

ag1 outperformed all other models in flux, slope and curvature predictions. This indicated that without considering temporal 431 

dependence the improvement in N2O flux prediction accuracy could be risky by causing the performance drop in capturing 432 

dynamics.  433 

 434 

The detailed model comparisons in each chamber are shown in Fig. 5 (N2O flux) and Fig. S6-7 (N2O slope and curvature), 435 

where the results are found to follow the same pattern as described above. In addition, time series comparisons of chamber 3 436 

and 4 in 2017 between different models are presented in Fig. S8 as two examples. From these comparisons, we infer that 437 

without considering temporal dependence and pretraining process, the tree-based model including DT, RF, GB and XGB and 438 

deep learning model ANN predicted erratic peaks in almost every missing data point, while GRU model was stable in small 439 

gaps and only presented poor performance in long missing period (before 25 day). This improvement by GRU model can be 440 

attributed to the structure of GRU that naturally keeps the historical information using hidden states, which enables GRU to 441 

consider the temporal dependence and make consistent predictions over time. 442 

3.4 Influence of pretraining process, data augmentation and using IMV initial values as input feature 443 

After we pretrained the GRU model with synthetic data, the overall r2 of N2O flux predictions in observed data increased by 444 

0.02, 0.12 and 0.14, and RMSE decreased by 0.23 mg N m-2 day-1, 0.15 mg N m-2 day-2 and 0.02 mg N m-2 day-3 for flux, slope 445 

and curvature predictions, respectively, compared to non-pretrained GRU (Table 3 gray region). The gap between the GRU 446 

model with pretrain and KGML-ag1 in N2O value prediction shows the improvement resulting from architecture change (r2 447 

increases by 0.01 and RMSE decreases by 0.17 mg N m-2 day-1). Although pretrained GRU had higher slope and curvature 448 

prediction accuracy than KGML-ag models, it still couldn’t achieve the current N2O value prediction accuracy of KGML-ag1. 449 

Besides, the KGML-ag models had relatively shallow N2O prediction modules (2-layer GRU KGML-ag-N2O module of 450 

KGML-ag models vs 4-layer GRU) but included modules for IMV predictions, which therefore increased the model 451 

interpretability.  452 
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 453 

It's worth noting that prediction accuracy of all KGML-ag models dropped without augmenting the training dataset in the fine-454 

tuning process (Table 3 blue region). Moreover, the maximum training epochs increased from 800 to 20000, which resulted in 455 

overfitting on the small data set. This indicated that the data augmentation indeed helped the models become more 456 

generalizable and gain better accuracy.  457 

 458 

Experiments using zero initial values presented a significant drop in every variable’s prediction accuracy (Table 3 yellow 459 

region). This indicated that the IMV initial values input into the KGML-ag-IMV modules of KGML-ag models influenced not 460 

only the IMV prediction but also the N2O prediction of the KGML-ag-N2O module. This shows that there is useful information 461 

transferred from IMVs in the KGML-ag-IMV module to the KGML-ag-N2O module. 462 

4 Discussion 463 

In the previous section, we showed that KGML-ag models can outperform ML models, by invoking architectural constraints 464 

and PB model synthetic data initialization. Compared to traditional PB models such as ecosys, KGML-ag models provide 465 

computationally more accurate and efficient predictions (KGML-ag few seconds vs ecosys half hour), which is similar to 466 

traditional ML surrogate models (Fig. S9). But KGML-ag goes beyond that by providing more interpretable predictions than 467 

pure ML models. 468 

4.1 Interpretability of KGML-ag 469 

The proposed KGML-ag models incorporate causal relations among N2O related variables/processes as shown in Fig. S10. 470 

Managements, weather forcings and initial values of IMVs influence soil water, soil temperature and soil properties, which 471 

influence the availability of O2 and N as well as the microbe populations in soil, and further influence the nitrification and 472 

denitrification rates. N2O is produced during both nitrification and denitrification when soil O2 concentration is limited. Our 473 

KGML-ag follows this hierarchical structure by designing KGML-ag-IMV modules representing the soil processes for IMVs 474 

predictions (Fig. 1c-d).  475 

 476 

To better explain the time series predictions of N2O flux (Fig. S1; Fig. 2-3), we separated the observations of each year into 477 

three periods: leading period (before N2O increasing), increasing period (increasing to the peak) and decreasing period (peak 478 

decreasing to near zero). During the leading period, both NH4
+ and CO2 were increasing immediately in the following few days 479 

following urea N fertilizer application, indicating that urea was decomposing into NH4
+ and CO2 in soil water. With 480 

accumulating NH4
+ in soil, nitrification started producing NO3

- and consuming O2. N2O didn’t respond to the fertilizer 481 

immediately due to enough O2 in soil. Then when the soil became sufficiently hypoxic, N2O fluxes entered an increasing 482 

period with N2O being produced by nitrification and denitrification processes. CO2 fluxes were relatively low and NH4
+ kept 483 
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decreasing during this period. Finally, when soil NH4
+ was exhausted and NO3

- started decreasing due to denitrification, N2O 484 

fluxes then entered the decreasing period. CO2 flux was related to urea decomposition during the leading period, and was more 485 

closely related to O2 demand in other periods. The KGML-ag predictions of N2O and IMV captured the three periods and 486 

transition points, demonstrating the connections between those variables following the description as above (Fig. 3; Fig. S5). 487 

Although KGML-ag1 obtained lower IMVs prediction accuracy compared to KGML-ag2, it captured the general trends and 488 

was doing better for transitions, especially in NH4
+ predictions. KGML-ag2 overfitted on the observations and ignored the 489 

correlations between IMVs, which resulted in loss in pretrain knowledge, poorer performance in the leading period, and erratic 490 

predictions in the period with missing observations (before day 25). 491 

4.2 Lessons for KGML-ag developmentInterpretability of KGML-ag 492 

The development of KGML-ag in our study is suitable to predict not only N2O but also other variables, such as CO2, CH4 and 493 

ET, with complicated generation processes relying on the historical states. To develop a capable KGML model, we need to 494 

carefully address three questions:  495 

 496 

What kind of ML model is suitable for developing KGML? The answer could be determined by the dominant variation type 497 

of the target variable in the data. If the dominant type is temporal variance, like flux variables in high temporal resolution (e.g., 498 

daily, or hourly), we should consider ML models with temporal dependency. RNN models such as GRU used in this study, 499 

and CNN models such as casual CNN (Oord et al., 2016) can be good starting ML models. If the dominant type is spatial 500 

variation, like variables in coarse temporal resolution (e.g., monthly or annually) but with high diversity due to soil property, 501 

land cover and climate, we should consider ML models with the ability to deal with edges, hotpoints and categories, such as 502 

CNN; 503 

 504 

What physical/chemical constraints can be used to build KGML models? Although physical rules such as mass balance or 505 

energy balance are conceptually straightforward and were proved capable of constraining KGML in predicting lake phosphorus 506 

and temperature dynamics (Hanson et al., 2020; Read et al., 2019), they were excluded in this study according to our 507 

preliminary analysis. The reason is that the mass balance equation of N in the agriculture ecosystem includes too many 508 

unknown and unobservable components such as N2 flux, NH3 flux, N leaching, microbial N, plant N and soil/plant exchange, 509 

which collectively introduce large uncertainties in balance equations and make them hard to be directly applied in the KGML-510 

ag framework. Other related physical (e.g., diffusion, solution) or chemical (e.g., nitrification, denitrification) processes cannot 511 

be easily added into the KGML-ag structure as rules due to lack of understanding of the process. Instead, as mentioned in Sect. 512 

2.2.4, we used hierarchical structure to enforce an architectural constraint and causal relations among variables, and pretraining 513 

processes to infuse knowledge from ecosys to KGML-ag models. 514 

 515 

Commented [14]: as a personal side comment: I think part 
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How to involve PB models in the KGML development? An advanced PB model like ecosys built upon biophysical and 516 

biochemical rules instead of empirical relations will be a good basis to learn the process, guide the structure and provide the 517 

constraints for KGML. The generated synthetic data in this study helped us get some knowledge about variables such as their 518 

general trends, dynamics and correlations. Such knowledge can be transferred to KGML models from synthetic data in the 519 

pretraining process, which can reduce the efforts to collect large numbers of real-world observation data. Moreover, while 520 

KGML shows great potential beyond PB models, we reckon that equally important for improving N2O modeling is to continue 521 

improving our understanding of the related processes and mechanisms. Novel data collection and incorporating new 522 

understanding into PB models (e.g., ecosys) could provide foundation to further empower KGML (see further discussion in 523 

Sect. 4.3). 524 

 525 

4.3 Limitation and possible improvement 526 

First, the KGML-ag models in this study are limited by the available observed data. Some IMVs with high feature importance 527 

scores (e.g., O2 flux, N2 flux) or at different depths (e.g., soil NO3
- at 5 cm depth, VWC at 5 cm depth), and data out of growing 528 

seasons are not included. The direct consequences are that some important processes cannot be well represented by the current 529 

KGML-ag (e.g., O2 demand and N availability for nitrification and denitrification). Further improvement of KGML should 530 

consider three categories of data: target variable N2O flux, IMVs and basic inputs (Fig. 1a). For N2O flux observation, we lack 531 

sub-hourly to sub-daily observations to capture the hot moment of emission during 0-30 days after N fertilizer applications. 532 

Besides, the non-growing season can provide 35-65% of the annual direct N2O emissions from seasonally frozen croplands 533 

and lead to a 17–28 % underestimate of the global agricultural N2O budget if ignoring its contribution (Wagner-Riddle et al., 534 

2017), but we can barely find observations from non-growing seasons. For IMVs, we found oxygen demand indicator (e.g., 535 

O2 concentration or flux, CO2 flux, CH4 flux), N mass balance related variables (e.g., N2 flux, soil NO3
-, soil NH4

+, N leaching) 536 

and soil water and temperature, can be used to better constrain the processes and therefore improve the KGML performance. 537 

Rohe et al. (2021) also indicated the importance of O2, CO2 and N2 soil fluxes for N2O predictions. In addition, the layerwise 538 

soil observations (e.g., soil NO3
-, soil VWC) at 0-30 cm depth can be used to significantly improve the KGML model quality, 539 

according to our feature importance analysis (Fig. S2a). Moreover, continuous monitoring on these variables during the whole 540 

year is preferred rather than only during the growing season, since N2O flux is largely influenced by previous states. To apply 541 

the KGML-ag to large scale, other observational data including basic inputs of soil/crop properties (e.g., soil bulk density, pH, 542 

crop type), management information (e.g., fertilizer, irrigation, tillage) and weather forcings along with N2O flux observations 543 

are critical for fine-tuning and validating the developed KGML-ag and therefore explicitly simulating the N2O or IMVs 544 

dynamics under specific conditions. Recent advances in remote sensing and machine learning have enabled estimating these 545 

variables with high-resolution at a large scale (Peng et al., 2020) 546 

  547 
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Second, the physical/chemical constraints can be more comprehensive in KGML-ag models. Although current KGML-ag 548 

models are well-initialized with ecosys synthetic data and constrained by causal relations of processes with hierarchical 549 

structure, the predicted N2O flux and IMVs can still violate some basic physical rules like mass balance. As we discussed in 550 

Sec. 4.2, it will be challenging to add physical rules like mass balance equation for N in a complicated agriculture ecosystem 551 

due to data limitations such as missing observations on certain key variables. Using inequalities instead of equations for mass 552 

balance may be one alternative solution. For example, we could use ReLU to add in a limitation for N mass balance residues 553 

which are calculated from known terms not larger than an empirical static value. Besides, better understanding of processes in 554 

the N cycle from fieldworks and lab experiments can also help us design new constraints. This limitation is also partially 555 

related to the data limitation and can be overcomed by involving more complete N2O data to introduce more powerful 556 

constraints to KGML-ag. 557 

 558 

Third, the KGML-ag currently are suffering from dealing with physical/chemicalchamical boundary transitions. Boundary 559 

transitions are common in the real world, such as phase change, volume solubility, and soil porosity etc. A detailed PB model 560 

generally coded plenty of “if/else/switch” statements inside to deal with the boundaries. But KGML-ag models based on the 561 

GRU are better at capturing continuous changes, rather than discrete changes. One solution is to include data with boundary 562 

information. In this study, involving IMVs like O2, CO2 and N2, which already have boundary information like water freezing 563 

point, N pool volumes and other complicated boundaries related to soil/crop properties, can significantly improve the model 564 

performance. The data with boundary information could be continuous observation or estimated value from existing data. By 565 

using initial values to predict IMVs, KGML-ag in this study can partially solve the boundary transition problem when 566 

observation data is limited. Another solution is designing new structures of KGML-ag, such as combining ReLU function or 567 

including CNN model which are robust for discrete situations to the RNN models, or designing new constraints to limit the 568 

model working within the thresholds. 569 

 570 

Finally, at the current stage we can not claim to have completely opened the black box of  KGML-ag, but this framework is a 571 

significant step towards this goal. For example, some ideas implemented in our study, such as using pretraining to transfer 572 

knowledge from PB model to ML model, incorporating causal relations by hierarchical structure, predicting IMVs for tracking 573 

middle changes and using initial values as input to reduce data demand, would shed light on the future KGML-ag framework 574 

improvement. Besides, we acknowledge the importance of further testing the KGML-ag over completely independent datasets, 575 

but results presented in this manuscript are sufficient to justify the power of KGML as a framework. The mesocosm experiment 576 

data we used in this study has provided a comprehensive set of inputs and intermediate variables in addition to the output of 577 

N2O fluxes, thus serving as a unique testbed. We expect our validation results will be more solid once more gold standard data 578 

of N2O fluxes along with other relevant inputs and intermediate variables become publicly available. Moreover, incorporating 579 

more and more domain knowledge into KGML-ag will be inevitable in further improvement, but we don’t think KGML-ag 580 

will become inefficient as it becomes more like the PB model. In fact, to efficiently surrogate components of PB models has 581 
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been proposed as a research frontier in hybrid modeling for earth system science (Reichstein et al., 2019; Irrgang et al., 2021), 582 

with latest advances occurring in weather forecasts (Bauer et al., 2021). By using a hybrid model, computationally inefficient 583 

components of PB can be identified one by one, and be replaced with more efficient ML-based surrogates to eventually obtain 584 

the most efficient model. Further KGML-ag model development will also need to balance efficiency, accuracy and 585 

interpretability. 586 

5 Conclusions 587 

In this study, two KGML-ag models have been developed, validated, and tested for agricultural soil N2O flux prediction using 588 

synthetic data generated by the PB model ecosys and observational data from a mesocosm facility. The results show that 589 

KGML-ag models can outperform PB and pure ML models in N2O prediction in not only magnitude (KGML-ag1 r2 = 0.81 vs 590 

best ML model GRU r2 = 0.78) but also dynamics (KGML-ag1 accuracy minus GRU accuracy, slope Δr2 = 0.06 and curvature 591 

Δr2 = 0.08). KGML-ag can also defeat the PB model ecosys in efficiency by completing ecosys’s half-hour job within a few 592 

seconds. Compared to ML models, KGML-ag models can better represent complex dynamics and high peaks of N2O flux. 593 

Moreover, with IMV predictions and hierarchical structures, KGML-ag models can provide biogeophysical/chemical 594 

information about key processes controlling N2O fluxes, which will be useful for interpretable forecasting and developing 595 

mitigation strategies. Data demand for the KGML-ag models is significantly reduced due to involving IMV initial values and 596 

pretrain processes with synthetic data. This study demonstrated that the potential of KGML-ag application in the complex 597 

agriculture ecosystem is high and illustrates possible pathways of KGML-ag development for similar tasks. Further 598 

improvement of our KGML-ag models can involve general principles to further constrain the predictions through loss functions 599 

or architectures, but call for more detailed, high temporal resolution N2O observation data from field measurements.  600 
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 738 

Figure 1: The model structuresframes. a) The ecosys model frame; b) Gated recurrent unit (GRU) model frame; c) KGML-ag1 739 
model with a  frame of hierarchical structure; d) KGML-ag2 model with a frame of hierarchical structure with separated GRU 740 
modules for IMV predictions. Specifically, in our KGML model design, weather forcings (W) include temperature (TMAX, TDIF), 741 
precipitation (PRECN), radiation (RADN), humidity (HMAX and HDIF) and wind speed (WIND); soil/crop properties (SCP) 742 
include bulk density (TBKDS), sand content (TCSAND), silt content (TCSILT), pH (TPH), cation exchange capacity (TCEC), soil 743 
organic carbon (TSOC), planting day of the year (PDOY) and crop type (CROPT); IMVs include CO2 flux, soil NO3

- concentration,  744 
soil NH4

+concentration, and soil volumetric water content (VWC). 745 

  746 
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 747 

Figure 2: N2O flux time series comparisons among pure non-pretrained GRU predictions (blue line), KGML-ag1 predictions (red 748 
line) and observations (black line-dot) from cross-validation. The N2O flux unit is mg N m-2 day-1. 749 
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Figure 3: IMVs prediction from KGML-ag1. The black-dot line represents observations and the red line represents the results from 752 
KGML-ag1. Chmb is the abbreviation for chamber. r2 and RMSE are calculated and present in each year and chamber. The CO2 753 
flux and soil NO3

- concentration units are g C m-2 day-1 and g N m-2, respectively. 754 
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 757 

Figure 3 Contd.: IMVs prediction from KGML-ag1. The black-dot line represents observations and the red line represents the 758 
results from KGML-ag1. Chmb is the abbreviation for chamber. r2 and RMSE are calculated and present in each year and chamber. 759 
The soil NH4

+ concentration and soil VWC units are g N m-2 and m3 m-3, respectively. 760 

 761 

Commented [16]: A typo of VWC units has been fixed. 



30 
 

 762 

 763 

Figure 4: The comparisons of overall prediction accuracy for N2O value (a), 1st order gradient (slope, b) and 2nd order gradient 764 
(curvature, c) between four tree-based ML models (DT, RF, GB and XGB), two deep learning models (ANN and GRU) and KGML-765 
ag1 models. Different color symbols represent the different models. The x- and y-error bars are coming from the maximum and 766 
minimum scores of ensemble experiments. The dot represents the mean score of the ensemble experiments. 767 
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 769 

Figure 5: The comparisons of N2O flux prediction accuracy r2 (a) and (b) RMSE, between four tree-based ML models (DT, RF, GB 770 
and XGB), two deep learning models (ANN and GRU) and KGML-ag1 models in 6 chambers. The gray error bars are coming from 771 
the maximum and minimum scores of ensemble experiments. 772 
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Table 1: Pretrain results for different model and IMV combinations using ecosys synthetic data. 774 

      N2O CO2 NO3
- NH4

+ VWC 

No. Pretrain Model Input Feature N r2 RMSE  r2 NRMSE  r2 NRMSE  r2 NRMSE  r2 NRMSE  

1 GRU+76IMVs 76 IMVs+FN+7Ws+8SCP 0.98 0.54 --a -- -- -- -- -- -- -- 

2 GRU+IMVcb1 4 IMVs+FN+7Ws+8SCP 0.92 1.15 -- -- -- -- -- -- -- -- 

3 GRU+IMVcb2 3 IMVs+FN+7Ws+8SCP 0.90 1.26 -- -- -- -- -- -- -- -- 

4 GRU  FN+7Ws+8SCP 0.89 1.37 -- -- -- -- -- -- -- -- 

5 KGML-ag1+IMVcb1_ini FN+7Ws+8SCP+4IMV_ini 0.90 1.24 0.91 0.06 0.95 0.03 0.98 0.03 0.95 0.04 

6 KGML-ag1+IMVcb2_ini FN+7Ws+8SCP+3IMV_ini 0.90 1.26 -- -- 0.94 0.03 0.97 0.03 0.95 0.04 

7 KGML-ag2+IMVcb1_ini FN+7Ws+8SCP+4IMV_ini 0.90 1.27 0.92 0.05 0.95 0.02 0.98 0.03 0.96 0.04 

8 KGML-ag2+IMVcb2_ini FN+7Ws+8SCP+3IMV_ini 0.91 1.19 -- -- 0.95 0.00 0.99 0.02 0.95 0.04 

aThe empty slot indicates that the model does not predict that variable. 775 

 776 

Table 2: Prediction accuracy comparisons between non-pretrained GRU model and KGML-ag1.Pretrain results for different model 777 
and IMV combinations using ecosys synthetic data. 778 

   N2O, KGML-ag1 minus GRU N2O 1st order gradient, 

KGML-ag1 minus GRU 

N2O 2nd order gradient, 

KGML-ag1 minus GRU 

  No. All timeb Day 

30-80 

Day 

40-65 

Day 

45-60 

All 

time 

Day 

30-80 

Day 

40-65 

Day 

45-60 

All 

time 

Day 30-

80 

Day 40-

65 

Day  

45-60 

Δr2 a 

All data 0.03c 0.04 0.07 0.10 0.07 0.07 0.07 0.15 0.08 0.08 0.09 0.11 

Chamber1 0.07 0.10 0.20 0.13 0.18 0.18 0.19 0.14 0.08 0.09 0.09 0.02 

Chamber2 -0.04 -0.05 -0.07 -0.05 0.08 0.09 0.09 0.16 0.20 0.20 0.20 0.23 

Chamber3 0.06 0.06 0.08 0.06 0.04 0.04 0.04 0.13 -0.01 -0.01 -0.01 0.07 

Chamber4 0.06 0.08 0.12 0.07 0.05 0.05 0.05 0.14 0.07 0.07 0.08 0.12 

Chamber5 -0.05 -0.06 -0.07 -0.03 0.09 0.09 0.10 0.16 0.13 0.13 0.15 0.11 

Chamber6 0.03 0.04 0.08 0.17 0.14 0.14 0.15 0.22 0.12 0.13 0.14 0.23 

ΔRMSEa 

All data -0.41 -0.56 -0.84 -1.19 -0.07 -0.10 -0.14 -0.20 -0.03 -0.05 -0.07 -0.08 

Chamber1 0.80 1.06 1.21 1.70 0.00 0.00 -0.02 0.00 0.05 0.07 0.10 0.18 

Chamber2 0.08 0.11 0.07 -0.04 -0.10 -0.13 -0.18 -0.14 -0.10 -0.14 -0.19 -0.22 

Chamber3 -0.71 -0.96 -1.30 -2.09 0.03 0.04 0.07 -0.25 0.09 0.13 0.17 0.08 

Chamber4 -1.68 -2.27 -3.09 -3.81 -0.11 -0.15 -0.21 -0.26 -0.05 -0.07 -0.09 -0.16 

Chamber5 0.53 0.69 0.86 0.99 -0.10 -0.14 -0.20 -0.23 -0.09 -0.12 -0.18 -0.14 

Chamber6 -0.20 -0.27 -0.37 -0.61 -0.14 -0.20 -0.29 -0.33 -0.07 -0.10 -0.15 -0.19 

aThe difference of r2 (Δr2), and difference of RMSE (ΔRMSE, units are mg N m-2 day-1, mg N m-2 day-2, mg N m-2 day-3 for N2O value, 1st 779 

order gradient and 2nd order gradient, respectively) were calculated by values from KGML-ag1 minus values from GRU. 780 

bResults from different time windows of different chambers during the period of April 1st-July31st (Days1-122) were detected. 781 

cBlue cells mean KGML-ag1 outperforms GRU, while yellow cells mean the opposite. 782 

 783 
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 784 

Table 3: Experiments for measuring GRU and KGML-ag models performance, and influence of pretraining process, training data 785 
augmentation and IMV initial values. 786 

      

N2O 

N2O 1st order 

gradient 

N2O 2nd order 

gradient CO2 NO3
- NH4

+ VWC 

No. Retrain Model Experiment r2 RMSE  r2 RMSE  r2 RMSE  r2 NRMSE  r2 NRMSE  r2 NRMSE  r2 NRMSE  

1 GRU, baselinea No Pretrain 0.78 4.00 0.45 1.27 0.20 0.90 --b -- -- -- -- -- -- -- 

2 GRU Pretrain 0.80 3.77 0.57 1.12 0.34 0.82 -- -- -- -- -- -- -- -- 

3 KGML-ag1+ 

IMVcb1_ini 

Original 

setting 

0.81 3.60 0.51 1.20 0.28 0.87 0.37 0.14 0.39 0.21 0.60 0.09 0.33 0.18 

4 KGML-ag1+ 

IMVcb2_ini 

Original 

setting 

0.80 3.71 0.49 1.22 0.21 0.91 -- -- 0.37 0.22 0.53 0.10 0.33 0.19 

5 KGML-ag2+ 

IMVcb1_ini 

Original 

setting 

0.79 3.77 0.48 1.23 0.22 0.90 0.74 0.09 0.46 0.18 0.66 0.08 0.84 0.08 

6 KGML-ag2+ 

IMVcb2_ini 

Original 

setting 

0.78 3.91 0.47 1.24 0.20 0.91 -- -- 0.49 0.18 0.69 0.08 0.84 0.08 

7 KGML-ag1+ 

IMVcb1_ini 

No 

augmentation  

0.80 3.73 0.49 1.22 0.22 0.90 0.38 0.14 0.38 0.21 0.61 0.09 0.37 0.17 

8 KGML-ag1+ 

IMVcb2_ini 

No 

augmentation  

0.77 4.04 0.41 1.31 0.13 0.95 -- -- 0.38 0.21 0.53 0.10 0.35 0.18 

9 KGML-ag2+ 

IMVcb1_ini 

No 

augmentation  

0.76 4.06 0.45 1.27 0.16 0.95 0.69 0.10 0.21 0.25 0.60 0.09 0.80 0.09 

10 KGML-ag2+ 

IMVcb2_ini 

No 

augmentation  

0.74 4.27 0.48 1.23 0.21 0.90 -- -- 0.40 0.21 0.60 0.09 0.81 0.09 

11 KGML-ag1+ 

IMVcb1_ini 

Zero initial 

values 

0.48 6.27 0.26 1.49 0.08 1.00 0.19 0.16 0.25 0.25 0.47 0.12 0.14 0.25 

12 KGML-ag1+ 

IMVcb2_ini 

Zero initial 

values 

0.49 5.94 0.31 1.41 0.13 0.95 -- -- 0.31 0.25 0.38 0.13 0.24 0.25 

13 KGML-ag2+ 

IMVcb1_ini 

Zero initial 

values 

0.48 6.05 0.12 1.66 0.01 1.09 0.58 0.12 0.34 0.25 0.21 0.13 0.56 0.31 

14 KGML-ag2+ 

IMVcb2_ini 

Zero initial 

values 

0.39 6.60 0.15 1.59 0.04 1.01 -- -- 0.16 0.27 0.27 0.12 0.53 0.31 

aGray region includes the experiments with original simulation settings as described in Sec. 2 and dark gray refers to the baseline GRU 787 

simulation; Blue region includes the experiments without data augmentation during the finetuning process; And yellow region includes the 788 

experiments of replacing original  IMV initial values with zeros. 789 

bThe empty slot indicates that the model does not predict that variable. 790 

 791 


