©CWoOoO~NO OB~ W N P

23
24
25
26
27
28
29
30
31

| 32
33

| 34
35
36
37

KGML-ag: A Modeling Framework of Knowledge-Guided Machine
Learning to Simulate Agroecosystems: A Case Study of Estimating
N2O Emission using Data from Mesocosm Experiments

Licheng Liu*, Shaoming Xu?, Jinyun Tang®*, Kaiyu Guan®*®%%’, Timothy J. Griffis’®, Matthew D.
Erickson’®, Alexander L. Frie’®, Xiaowei Jia®®, Taegon Kim2, Lee T. Miller’®, Bin Peng*°¢% Shaowei
Wu'?, Yufeng Yang?, Wang Zhou>**, Vipin Kumar?, Zhenong Jin'*

!Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN, 55108, USA
2Department of Computer Science and Engin ity of Minnesota, Minneapolis, MN, 55455, USA

e on-the o y A

“45Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-
Champaign, Urbana, IL 61801, USA

Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
61801, USA

"National Center for Supercomputing Applications, University of lllinois at Urbana-Champaign, Urbana, 1L 61801, USA
“8Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN 55108, USA

89Department of Computer Science, University of Pittsburgh, Pittsburgh, PA, 15260, USA

9Department of Smart Farm, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Koreg, -

9School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA

U|nstitute on the Environment, University of Minnesota, Saint Paul, MN, 55108, USA, -

Correspondence to: Zhenong Jin (jinzn@umn.edu)

Abstract.

Agricultural nitrous oxide (N2O) emission accounts for a non-trivial fraction of global greenhouse gases (GHGs) budget. To
date, estimating N>O fluxes from cropland remains a challenging task because the related microbial processes (e.g., nitrification
and denitrification) are controlled by complex interactions among climate, soil, plant and human activities. Existing approaches
such as process-based (PB) models have well-known limitations due to insufficient representations of the processes or
uncertaintieseenstraints of model parameters, and to leverage recent advances in machine learning (ML) a new method is
needed to unlock the “black box™ to overcome its limitations such asdue-te low interpretability, out-of-sample failure and
massive data demand. In this study, we developed a first--of--theits-kind knowledge-guided machine learning model for
agroecosystems (KGML-ag), by incorporating biogeophysical/chemical domain knowledge from an advanced PB model,
ecosys, and tested it by comparing simulating daily NoO fluxes with real observed data from mesocosm experiments. The
Gated Recurrent Unit (GRU) was used as the basis to build the model structure. To optimize the model performance, we have
investigated a range of ideas, including: 1) Using initial values of intermediate variables (IMVSs) instead of time series as model

input to reduce data demand; 2) Building hierarchical structures to explicitly estimate IMVs for further N.O prediction; 3)
Using multitask learning to balance the simultaneous training on multiple variables; and 4) Pretraining with millions of

synthetic data generated from ecosys and fine tuning with mesocosm observations. Six other pure ML models were developed
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using the same mesocosm data to serve as the benchmark for the KGML-ag model. Results show that KGML-ag did an
excellent job in reproducing the mesocosm N.O fluxes (overall r? = 0.81, and RMSE = 3.6 mg N m? day! from cross-
validation). Importantly KGML-ag always outperforms the PB model and ML models in predicting N,O fluxes, especially for
complex temporal dynamics and emission peaks. Besides, KGML-ag goes beyond the pure ML models by providing more
interpretable predictions as well as pinpointing desired new knowledge and data to further empower the current KGML-ag.
We believe the KGML-ag development in this study will stimulate a new body of research on interpretable ML for

biogeochemistry and other related geoscience processes.

1 Introduction

Nitrous oxide (N20O), with its global warming potential 273 + 118 times greater than that of carbon dioxide (CO) for a 100-
year time horizon, is one of the majorimpertant greenhouse gases (IPCC6; Forster et al., 2021). The increasing rate of
atmospheric N2O concentration during the period 2010-2015 is 44% higher than during 2000-2005, mainly driven by increased
anthropogenic sources that have increased total global N,O emissions to ~17 Tg N yr™* (Syakila and Kroeze, 2011; Thompson
et al., 2019). It is estimated that approximately 60% of the contemporary N.O emission increases are from agriculture
management at global scale (Pachauri et al., 2014; Robertson et al., 2014; Tian et al., 2020), but the estimation uncertainty can
exceed 300% (Barton et al., 2015; Solazzo et al., 2021). Quantifying N,O emissions from agricultural soils is extremely
challenging, partly because the related microbial processes, mainly about incomplete denitrification and nitrification, are
controlled by many environment and management factors such as temperature/water conditions, soil/crop properties, and N
fertilization rate, all of which together have collectively led to large temporal and spatial variabilities of N>O emissions
(Butterbach-Bahl et al., 2013; Grant et al., 2016).

Process-based (PB) models are often used for simulating N2O fluxes from the-agroecosystems, but they have some inherent
limitations, including incomplete knowledge of the processes, low accuracy due to the under-constrained parameters,
expensive computing cost, and rigid structure for further improvements, that we could not resolve by using PB model itself.
For example, an advanced agroecosystem model, ecosys (Grant et al., 2003, 2006, 2016), simulates N.O production rates
through nitrification and denitrification processes when oxygen (O2) is limited, with equations considering the influence from
related substrate concentrations (e.g., NO2", N2O, and COy), nitrifier and denitrifier populations, and soil thermal, hydrological
physical and chemical conditions. The produced N2O accumulates, transfers in gaseous phase, aqueous phase, over different
soil layers, and eventually exchanges with atmosphere at the soil surface. Other PB models, including DNDC (Zhang et al.,
2002; Zhang and Niu, 2016), DAYCENT (Del Grosso et al., 2000; Necpélova et al., 2015), and APSIM (Keating et al., 2003;
Holzworth et al., 2014), have also included processes to simulate N-O production, but adopt different parameterizations using
static partition parameters to estimate N.O emission from nitrification, and other empirical parameters to control the influence

on nitrification from soil water content, pH, temperature and substrate concentrations. Besides, N-O is intimately connected
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with the soil organic carbon (SOC) dynamics, because soil nitrifiers and denitrifiers interact strongly with aerobic and
anaerobic heterotrophs that process SOC evolution, and all of these microbes are driven by shared environmental variables
including soil temperature, moisture, redox status, and physical and chemical properties (Thornley et al., 2007). As expected,
these connections make it difficult for PB models, even the most advanced ones like ecosys, to find sufficient representations
of the physical and biogeochemical processes or obtain enough data to calibrate a large number of model parameters with
strong spatio-temporal variations. Thus, novel approaches are needed for addressing the big challenge of agricultural N>O flux
simulations.

Machine learning (ML) models can automatically learn patterns and relationships from data. Recent studies have investigated
the potential to predict agricultural N2O emission with ML models, including random forest (RF, Saha et al., 2021),
metamodelling with extreme gradient boosting (XGBoost) (Kim et al., 2021), and deep learning neural network (DNN)
(Hamrani et al., 2020). Notably, Hamrani et al. (2020) compared nine widely used ML models for predicting agricultural N2O.
That study pointed out that the long short term memory (LSTM) model with recurrent networks containing memory cells as
building blocks will be most suitable for N2O predictions, but the challenge remains with respect to the ability of capturing the
sharp peak of N,O fluxes and lag time between N fertilizer application and the emission peak. Although there is an increasing
interest in leveraging recent advances in machine learning, capturing this opportunity requires going beyond the ML
limitations, including limited generalizability to out-of-sample scenarios, demand for massive training data, and low
interpretability due to the “black-box” use of ML (Karpatne et al., 2017). PB models with their transparent structures built by
representations of physical and biogeochemical processes, seem to be exact complementary to ML models. Thus, combining
the power of ML model and PB model understanding innovatively is likely a path forward.

The above need to integrate ML and PB models can be potentiallyssibly addressed by the newly proposed framework of
Knowledge-guided Machine Learning (KGML) models. In the review by Willard et al. (2021), five research frontiers have
been identified regarding the development of KGML for diverse disciplines including earth system science, they are: 1) Loss
function design according to physical or chemical laws (Jia et al., 2019, 2021; Read et al., 2019); 2) Knowledge-guided
initialization through pretraining ML models with synthetic data generated from PB models (Jia et al., 2019, 2021; Read et al.,
2019); 3) Architecture design according to causal relations or adding dense layers containing domain knowledge (Khandelwal
etal., 2020; Beucler et al., 2019, 2021); 4) Residual modeling with ML models to reduce the bias between PB model outputs
and observations (Hanson et al., 2020); and 5) Other hybrid modeling approaches combining PB and ML models (Kraft et al.,
2021). These recent advances in KGML pave the pathway to a more efficient, accurate and interpretable solution for estimating
N0 fluxes from the agroecosystem.

In this study, we present athe first-of-its-kind attempt of developing athe KGML for agricultural GHG fluxes prediction
(KGML-ag) with knowledge-guided initialization and architecture design, and demonstrate the potential of KGML-ag with a
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case study on quantifying N,O flux observed by a multi-year mesocosm experiments. We designed the KGML-ag structure
based on the causal relations of related N,O processes informed by an advanced agroecosystem model, ecosys (Grant et al.,
2003, 2006, 2016). We used the synthetic data generated from ecosys to design the KGML-ag input/output, and to pre-train
the KGML-ag model to learn the basic patterns of each variable. Observations from multi-season controlled-environment
mesocosm chambers (Miller, 2021, thesis; Miller et al., 2021, in review) were used to refine the pretrained KGML-ag and
evaluate the model performance. Since there is limited literature that guides the development of KGML-ag and not a one that
directly addressed GHG fluxes, we investigated a range of ideas to optimize the model performance, including: 1) Using initial
values of intermediate variables (IMVs) instead of sequences as model input to reduce data demand; 2) Building hierarchical
structures to explicitly estimate IMVs for further N>O prediction; 3) Using multitask learning to balance the simultaneous
training on multiple variables; and 4) Pretraining with millions of synthetic data generated from ecosys and fine tuning with
mesocosm observations. Although we evaluated the KGML-ag models with real measurements_only from a mesocosm
experiment, the lessons learned from the development process and various KGML-ag structures can be transferred to other
data, other variables and large scale simulations, therefore have broader implications on further KGML related research in
agriculture. We believe this study will stimulate a new body of research on interpretable machine learning for biogeochemistry
and other related topics in geoscience.

2 Methods
2.1 Experimental design overview

To develop and evaluate the KGML-ag models and compare their performance with pure ML models, we designed the
following experiments:
1) With the synthetic data, we developed and pretrained multiple KGML-ag models to learn general patterns and
interactions among variables, and evaluated their model performance (Fig. S2, Table 1);
2) With the observed data, we finetuned multiple KGML-ag models to adapt real-world situations, and evaluated their
model performance (Fig. 2-3; Fig. S3-5; Table 2-3);
3) We further benchmarked KGML-ag models and uncertainties with other pure ML models without considering
temporal dependence, including Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB) from the sklearn
package (https:/scikit-learn.org/stable/), Extreme Gradient Boosting (XGB) from the XGBoost package

(https://xgboost.readthedocs.io/en/latest/) and a 6-linear-layer artificial neural network (ANN) with the mesocosm

experiment data by 10 times ensemble experiments (Fig. 4-5; Fig. S6-8);

4) We conducted a few small experiments to further investigate how various model configurations, such as the
pretraining process, data augmentation and IMV initial values would influence KGML-ag model performance (Table
3).



https://scikit-learn.org/stable/
https://xgboost.readthedocs.io/en/latest/

135

136

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

2.2 KGML-ag structure development
2.2.1 Generating synthetic data with ecosys

We generated synthetic data using a PB model, ecosys. [The ecosys model is an advanced agroecosystem model constructed
from detailed biophysical and biogeochemical rules instead of using empirical relations (Grant et al., 2001). It represents N.O

evolution in the microbe-engaged processes of nitrification-denitrification using substrate kinetics that are sensitive to soil

nitrogen availability, soil temperature, soil moisture, and soil oxygen status (Grant and Pattey 2008). Two groups of microbial

populations, autotrophic nitrifiers and heterotrophic denitrifiers, produce N.O with specific competitive or cooperative

relations in ecosys when O, availability fails to meet O, demand for their respirations and NO,~ become alternative electron

acceptors. N,O transfer within soil layers and from soil to the atmosphere is driven by concentration gradient using diffusion-

convection-dispersion equations, in the forms of gaseous and aqueous N>O under control of volatilization-dissolution (Grant

et al., 2016). Unlike the pipeline model described by Davidson et al. (2000) , which mainly consider the correlations of N,O

production with nitrogen availability and of N2O emissionsemisientsting with soil water content, ecosys enables integrative

effects of energy, water, nitrogen availability on N.O production and N»O transfer via the microbial population dynamics and

their interactions with soil, plant, and atmospheric dynamics, under diverse meteorological and anthropogenic disturbances

(e.0. runoff, drainage, tillage, irrigation, soil erosion){| Many previous studies have demonstrated its robustness in simulating | -
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The generated synthetic data were then processed for further use by KGML-ag development. Meanwhile, the hourly weather
forcings were converted to seven daily variables, including the maximum air temperature (TMAX_AIR, °C), difference
between the maximum and the minimum air temperature (TDIF_AIR, °C), the maximum humidity (HMAX_AIR, fraction),
difference between the maximum and the minimum humidity (HDIF_AIR, fraction), surface downward shortwave radiation
(RADN, W m), precipitation (PREC, mm day™), and wind speed (WIND, m s*). Six soil properties were retrieved from the
SSURGO database, including total averaged (depth weighted averaged for all layers) bulk density (TBKDS, Mg m3), sand
content (TCSAND, g kg?), silt content (TCSILT, g kg?), pH (TPH), cation exchange capacity (TCEC, cmol* kg?) and soil
organic carbon (TSOC, g C kg™); and two crop properties were retrieved, including planting day of the year (PDOY) and crop
type (CROPT, 1 for corn and 0 for soybean). Finally, each synthetic data sample has daily N2O flux, 76 selected IMVs, 7
weather forcings (W), 1 N fertilization rate (FN, g N m?) and 8 soil/crop properties (SCP) (Fig. 1.a; Table S1). The periods
from April 1st to July 31st (122 days) were selected to cover the mesocosm observations (around 30 days before and 90 days
after N fertilizer date). The total amount of synthetic data sample is 122 days x 18 years x 99 counties x 20 N fertilizer rates
(about 4.3 million data points). We randomly selected the samples from 70 counties for training, 10 counties for validation,
and 19 counties for testing.

2.2.2 Mesocosm experiments for KGML-ag model fine-tuning and evaluation

Observations were acquired from a controlled-environment mesocosm facility on the St. Paul campus of the University of
Minnesota. Soil samples were sourced in 2015 from a farm in Goodhue County, MN (44.2339° N and 92.8976° W), which had
been under corn-soybean rotation for 25 years. Six chambers with a soil surface area of 2 m? and column depth of 1.1 m were
used to plant continuous corn during 2015-2018 and monitor the N,O flux response to different precipitation treatments. The
experiment also measured other environmental variables including air temperature and photosynthetically active radiation
(PAR), which were controlled to mimic the outdoor ambient environment. Granular urea fertilizer was hand broadcasted and
incorporated to a depth of 0.05 m to each chamber at a rate of 22.4 g N m2 (200 Ib N ac) on May 1st of 2015, May 4th of
2016 and May 3rd of 2017, and 10.3 g N m?2(92 Ib N ac™) on May 8th of 2018. Corn hybrid (DKC-53-56RIB) were hand
planted to a depth of 0.05 m in two rows spaced 0.76 m apart 3-5 days after fertilizer application, at a seeding rate of 35,000
seeds ac? in 2015 to 2017, and 70,000 seeds ac™ in 2018 but thinned upon emergence to ensure 100 percent emergence at
35,000 seeds ac™. Crops were harvested at the end of September by cutting the stover five inches above the soil. Hourly N,O
fluxes (mg N m2 h?) and CO; fluxes (g C m? h'') were measured using non-steady-state flux chambers with a CO;, analyzer
(L1-10820 for 2016 and LI-7000 for 2017 and 2018, LI-COR Biosciences, Lincoln, NE) and a N.O analyzer (Teledyne
M320EU, Teledyne Technologies International Corp, Thousand Oaks, CA) (Detail method can be retrieved from Fassbinder
etal., 2012, 2013). We also collected soil moisture at 15 cm depth (VWC as abbreviation of volumetric water content, m® m-
%), weekly 0-15 cm depth soil NOs™ + NO2 concentration (NOs™ for short in the following text, g N Mg?), soil NH4*
concentration (NH4*, g N Mg), and related environment variables including air temperature, radiation, humidity and soil/crop
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properties from three growing seasons during 2016-2018 and six mesocosm chambers (Fig. S1). The magnitude of N,O flux

and NOs’ soil concentration and their responses following fertilizer application from this mesocosm experiment are consistent
with several field studies of agricultural soils (Fassbinder et al., 2013; Grant et al., 1999, 2006, 2008; Hamrani et al., 2020;
Venterea et al., 2011) More details about the mesocosm facility and experimental design can be found in the thesis of Miller
L. (2021).

The observed data were then processed to fine-tune and evaluate the KGML-ag models. The N2O flux and four IMVs and
weather variables were collected from the measurements in the selected period (i.e., April 1st to July 31st). Weekly NOs" (short
for soil NO3™ within 0-15 cm depth), and NH4* (short for soil NH4* within 0-15 cm) were linearly interpolated to the daily time
scale on days containing VWC (short for soil VWC in 15 cm) data. Hourly air temperature, net radiation, N.O (short for N.O
fluxes from soil), CO; (short for CO- fluxes from soil) and VWC were resampled to daily scale. All SCP were derived from
mesocosm measurements except that TCEC was derived from the SSURGO database according to the soil origin. We used the
leave-one-out cross-validation (LOOCV) method for the finetuning and evaluation process. Each time we used one chamber

data for validation and another five chambers’ data for model finetuning.

To reduce overfitting and increase the generalization of the trained model based on the small amount of mesocosm

data, we applied the following method to augment the experimental measurements and weather forcings to 1000

times larger by sampling hourly data and averaging them to daily scale. In this method, 16 hours (or maximum

valid hours) of data are randomly selected from 24 hours of data to compute their mean as the daily value. Since

3/4 of the day are covered by the selected data (16 hours /24 hours), the augmented daily values should be

representative enough for the source day and meanwhile present slight variations. Furthermore, the observation

ratio, (24 hours - missing hours) / 24 hours, can be used as the weights in loss function to inject the data quality

information in model optimization. If the day has more than 16 hours missing values, we consider the observations

Commented [10]: @xu000114@umn.edu Hi Shaoming, |
may need your help here to clarify the data augmentation
method. You may modify this part as many as you want but
with a track. The basic strategy is to answer the three
questions from Referee#2. The related comments list below:

**recommend that the paragraph starting at line 194 be
rewritten for clarity. First, data augmentation is a class of
methods, not a single method. Second, Meyer et al. use
copula-based models in particular to augment datasets. Do
you use copula-based methods? The way this reference is
cited suggests that you follow their approach. Third, do you
randomly sample observed data, or synthetically generated
data, or both? Do you randomly sample only the data which
are hourly, e.g., air temperature, net radiation, N20, CO2, and
VWC? How is the daily value calculated from the sampled
data? | did not find the answers to these questions to be clear
from the text.

_Assigned to Shaoming Xu_




238

239
|24o
241
242
243
244
245
246
|247
248

249

259

260
261

in that day as not trustworthy and drop the day by setting the weight to 0. This method can not only augment the

data to 1000 times larger but also deal with the missing values in observed data inherently. The total amount of

observed mesocosm data and related weather forcings are augmented to 122 days x 3 years x 6 chambers x 1000

data samples in this study. |

2.2.3 Gated Recurrent Unit (GRU) as the basis of KGML-ag

Hamrani et al. (2020) compared different models and reported that LSTM provided the highest accuracy in predicting N2O
fluxes, because N2O flux is time dependent by its production/consumption nature and LSTM simulates target variablesvariable
by considering both current and historical states. The LSTM model, proposed by Hochreiter and Schmidhuber (1997), uses a
cell state as an internal memory to preserve the historical information. At each time step, it creates a set of gating variables to
filter the input and historical information and then uses the processed data to update the cell state. Similar to LSTM, GRU is a
gated recurrent neural network but only keeps one hidden state (Cho et al., 2014). Though simpler than LSTM, GRU is proved
to have similar performance (Chung et al., 2014). Our preliminary test on synthetic data for N,O prediction showed that GRU
indeed provided similar or higher accuracy and model efficiency under different model settings than LSTM (Table S2). This
is possibletikely because simpler models with fewer weights and hyperparameters are more robust in combating the overfitting

problem. Therefore, we choose GRU as the basis of KGML-ag development.

2.2.4 Incorporating domain knowledge to the development of KGML-ag

To quantitatively reveal the correlations between N2O fluxes and IMVs and guide the KGML-ag development, we conducted
the-feature importance analysis by a customized 4-layer GRU ML model (Fig. 1b). Each layer of the model has a GRU cell
with 64 hidden units. The 4-layer structure makes the model deeper and capable of capturing complex interactions. Between
each GRU cell, 20% of the output hidden states are randomly dropped by replacing them with zero values (so called 20%
dropout) to avoid overfitting. A linear dense layer is used to map the final output to N»O. We first trained GRU models usingby
synthetic data with different combinations of IMVs as inputs to predict the N2O fluxes (original-test, Table S2). The feature

importance analysis of well-trained models was then implemented by replacing one input feature with a Gaussian noise with
mean p=0 and standard deviation 6=0.01, while keeping others untouched (new-test). The importance score was calculated by

the new-test’s root mean square error (RMSE) (replacing one feature) minus the original-test’s RMSE (no replacing). RMSE

¥ i-vin? . . . .
was calculated by J+ where N is the total number of observations across time and space, y; is i-th measurement

from synthetic data or observed data and y;’ is its corresponding prediction.
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To find important variables for N,O flux prediction in an ideal situation wherethat all variables are available, we conducted a

feature importance analysis for GRU models with all IMVs and basic inputs including FN, 7 W and 8 SCP (Fig. S2a). Results
indicated that flux variables including NHs, Ha, N2, O, CHa4, evapotranspiration (ET) and CO, had significant influence on the
model performance. Variables ranked high in feature importance analysis areshetld-be primarily-considered with priority

during model development. To develop a functionable KGML-ag-in-real-werld, we further investigated the feature importance

of four IMVs that are available from mesocosm observations including CO,, NOs, VWC and NH,*, which were ranked 7th,
20th, 58th, 60th respectively in 92 input features of synthetic data (Fig. S2a). We used these four available IMVs to create two
input combinations: 1) CO; flux, NOs,, VWC and NH4* (IMVcb1), and 2) NOs,, VWC and NH4* (IMVcb2). The objective of
building IMVch2 was to investigate the importance of highly ranked variable CO, flux (by removing it from the inputs), and
the impact of mixing-up flux and non-flux variables on model performance. We tested the feature importance of the GRU
models built with IMVcb1 and IMVch2 to check whether they would help in N>O prediction (Fig. S2b-c). All the feature
importance results above indicated the correlation intensity between N>O and many other variables, which would help the
KGML-ag model development and interpretation in this study (rest of this section and Sec. 3.1), and would guide future N,O
related measurements and KGML model development (discussed in Sec. 4.34).

Next we used the knowledge learned from synthetic data to develop the structure of KGML-ag (Fig. 1cb-de). Previous studies
for KGML models have used physical laws, e.g., conservation of mass or energy, to design the loss function for constraining
the ML model to produce physically consistent results (Read et al., 2019; Khandelwal et al., 2020). However, for complex
systems like agroecosystems, it is challenging to incorporate physical laws, such as mass balance for N2O, into the loss function
due to the incomplete understanding of the processes and the lack of mass balance related data for validation. An alternative
solution is to incorporate such information in the design of the neural network (Willard et al., 2021). Effectiveness of such an
approach was demonstrated by Khandelwal et al. (2020) in the context of modeling stream flow in a river basin using Soil &
Water Assessment Tool (SWAT). They used a hierarchical neural network to explicitly model IMVs (e.g., soil moisture, snow
cover) and their relationships with the target variable (streamflow) and showed that this model is much more effective than a
neural network that attempts to directly learn the relationship between input drivers and the target variables. Following this

idea, we identified four desired features of an effective KGML-ag model, including: 1) We used initial_values instead of

sequence of the IMVs from synthetic data or observed data to provide a solid starting state for the ML system and reduce the
IMV data demand, and then used the rest of the data to further constrain the prediction of IMVs; 2) We built a hierarchical
structure based on the structure of process representation incausal-relations-derived-from ecosys to first predict IMVs and then
simulate N>O with predicted IMVs; 3) We trained all variables together using multitask learning to reach the best prediction

scores, which generalized the model and incorporated interactions between IMVs and N2O; 4) We initialized the KGML-ag
model by pretraining withusing synthetic data before using real observed data to transfer physical knowledge, which further
reduced the demand on large training samples and aided in faster convergence for fine-tuning.
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To meet these desired features, we proposed two KGML-ag models (Fig. 1c-d). The first model, KGML-ag1, is a hierarchical
structure containing two modules to simulate IMVs and N»O sequentially. Each module is a 2-layer 64 units GRU ML model.
The inputs to the module of the KGML-ag1l model for IMV predictions (KGML-agl-IMV module) are FN, 7W and 8SCP
together with the initial_values of IMVs, and the outputs are IMV predictions. The inputs to the module of the KGML-agl
model for N2O predictions (KGML-ag1-N,O module) are FN, 7W, 8SCP and predicted IMVs from KGML-ag1-IMV, and the
output is the target variable N,O. Linear dense layers were coded for both modules to map output states to IMVs or N,O. The

dropout method was applied to drop 20% of the state output between GRU cells and dense layers. The second model, KGML-
ag2, is also a hierarchical structure similar to KGML-ag1, but has multiple KGML-ag2-IMV modules to explicitly simulate
IMVs by tuning them separately in the fine-tuning process (discussed in Sec. 2.2.5). Each KGML-ag2-IMV module in KGML-
ag2 is a 2-layer 64 units GRU cell with the inputs of FN+7W+8SCP and one IMV initial value, and the output of one IMV
prediction. The KGML-ag2-N,O module collects the IMV predictions from KGML-ag2-IMV modules and predicts the N,O
with inputs of FN+7W+8SCP and predicted IMVs.

2.2.5 Strategies for pretraining and fine-tuning processes

*x-
o

To increase the efficiency of the training process, we used the Z-normalization (=== ). where X is the vector of a particular

variable over all the data samples in the data set; u is the mean value of X; o is the standard deviation of X) method to normalize
each variable separately on synthetic data. Then the scaling factors (u, o) derived from ecosys synthetic data for each variable
were used to Z-normalize observed data into the same ranges as synthetic data. As mentioned in Sec. 2.2.1, the TDIF_AIR,
HDIF_AIR were used instead of absolute min temperature (TMIN_AIR) and humidity (HMIN_AIR). This is done because
TMIN_AIR and HMIN_AIR follow similar trends as TMAX_AIR and HMAX_AIR, making Z-normalization numerically
poorly defined. Using the difference between maximum and minimum can provide a clearer information of daily air

temperature/humidity variation.

During the pretraining process, we initialized the IMV of KGML-ag using the first day value of synthetic IMV time series.
Adam optimizer with a start learning rate of 0.0001 was used for the training process. The learning rate would decay by 0.5
times after every 600 training epochs. At each epoch, synthetic data samples were randomly shuffled before being input to the
model to predict N2O (and IMVs if any). The mean square error (MSE) loss (calculation was equal to the square of RMSE) or
sum of MSE loss (if multitask learning) between predictions and ecosys synthetic observations were calculated to optimize the
weights of GRU cells. After the training process updated the model’s weights, the validation process was performed to evaluate
the model performance based on untouched samples with RMSE and the square of Pearson correlation coefficient (r?). r2was

@i G- yini-y))?
calculated as ———————="—

SR T— where y; is the i-th measurement from synthetic data or observed data, y;" is its
i i'=YiN i~ Yi.
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corresponding prediction, y; is the mean of the measurement y in diagnosing space and y;" is the mean of the predicted y" in
diagnosing space. If both validated r> and RMSE were better than the best values in previous epochs, the updated model in this
epoch would be saved. Normalized RMSE (NRMSE, calculated by RMSE/(max-min) of each variable observation) was
introduced to evaluate IMV predictions between variables with different value ranges.

During the fine-tuning process, we used estimated IMV initial values of 1.0 g C m?, 0.2 m*m, 0.0 g N Mg, and 20.0 g N
Mg for CO,, VWC, NH4*, and NOj respectively, from starting day (April 1st) to the day before the first day of real
observations, as input to KGML-ag models. Then the first-day values of observed IMVs were input into KGML-ag during the

rest days of the period as IMV initial values. In addition, as described in Sec. 2.2.2, we used a data augmentation method to

augment the total amount of data 1000 times larger for the fine-tuning process. The purpose of this data augmentation method
was to increase the generalization of the fine-tuned model and to overcome the overfitting due to small sample size. The mask
matrix was elementarily multiplied to the output matrix to calculate the MSE, r> and RMSE only for days with observations.
The similar optimizer was used with an initial learning rate of 0.00005 and decay fraction of 0.5 per 200 epochs. Other
training/validation methods in each epoch were similar to the pretraining process. Specifically, in the KGML-ag1l model
finetuning process, we first froze the KGML-ag1-N,O module and only trained the KGML-ag1-IMV module for IMVs. After
finishing the KGML-ag1-IMV module training, we froze the KGML-ag1-IMV module and trained the KGML-ag1-N.O
module for N2O. In the KGML-ag2 fine-tuning process, the similar freezing method was used but different KGML-ag2-IMV
modules were trained separately one by one.

2.3 Development environment description

We used the Pytorch 1.6.0  (https:/pytorch.org/get-started/previous-versions/) ~ and  python  3.7.9

(https://www.python.org/downloads/release/python-379/) as the programing environment for the model development. In order

to use the GPU to speed-up the training process, we installed cudatoolkit 10.2.89 (https://developer.nvidia.com/cuda-toolkit).

A desktop with Nvidia 2080 super GPU was used for code development and testing. The Mangi cluster
(https://www.msi.umn.edu/mangi) from High Performance Computing of Minnesota Supercomputing Institute (HPC-MSI,

https://www.msi.umn.edu/content/hpc) with 2-way Nvidia Tesla V100 GPU was used in training processes which consumed

longer time and bigger memories.

3 Results
3.1 Pretraining experiments using synthetic data from ecosys

In the pretraining stage, the GRU model with 76 IMVs achieved the best performance in predicting N2O fluxes (r>=0.98, RMSE
=0.54 mg N m day* and normalized RMSE (NRMSE) = 0.01) on the test set of synthetic data generated from ecosys (Table

11
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1). The high performance was due to some flux IMVs such as NHs, Hz, O, CO, and ET, which are highly correlated to N,O
(Fig. S2a), were used as input to the model. The good performance of GRU with all IMVs indicates that ML models are able
to perfectly mimic ecosys when sufficient information about IMVs is available. The GRU model with only basic input of N
fertilizer rate, 7 weather forcings, and 8 soil/crop properties (FN+7W+8SCP) had the accuracy of r>=0.89 and RMSE = 1.37
mg N m? day* (Table 1). The relatively low performance is likely because this model failed to capture several highly nonlinear
pathways that are employed by ecosys to predict N2O (e.g., one influence pathway from precipitation to N2O can be:
Precipitation — soil moisture = N components solubility/concentration — nitrification/denitrification rate/amount — soil
N20O concentration — gas N2O flux). When adding sequences of IMV combinations (i.e., IMVcb1 of CO; flux, NOg', NH4*
and VWC, and IMVch2 of NOs', NH4* and VWC), the GRU models performed slightly better than the GRU model using only
basic inputs, achieving r? of 0.92 and 0.90, respectively (Table 1). The KGML-ag1 with IMVcb1 and IMVcb2 initial values
provided better performance (both r2 = 0.90) than GRU with basic input and comparable performance to the GRU with inputs
of IMVcb1 and IMVch2 sequence. Besides, KGML-agl provided predicted IMVs of CO,, NOs", NH.*, and VWC with r? over
0.91, and NRMSE below 0.06 (Table 1). KGML-ag2 also provided comparable N-O performance but relatively better IMVs
performance of r? over 0.92 and NRMSE below 0.05. Results indicated that KGML-ag models with IMV initial values as extra

input performed similar or better than pure ML models in synthetic data.

3.2 KGML-ag evaluation using observed data from mesocosm

After being fine-tuned with observed data, KGML-ag1 had N,O prediction overall accuracy of r?=0.81 and RMSE=3.6 mg N
m2 day?!, while non-pretrained GRU model provided r>=0.78 and RMSE=4.0 mg N m? day™, and pretrained GRU model
provided r?=0.80 and RMSE=3.77 mg N m day™ (Table 3). The time series of N,O predictions from KGML-ag1 and the non-
pretrained GRU model were further compared (Fig. 2), from which we found at least two advantages of using KGML-ag1 for
N0 predictions: 1) For the region without observation data (normally before day 25), KGML-ag1 predicted stable N2O fluxes
close to 0 mg N m? day* (which is close to the reality in the experiment setting) while GRU caused anomalous peaks of fluxes.
This is because KGML-ag1l has learned knowledge “commen-sense™for the whole period from the pretraining process with
ecosys model generated synthetic data, but GRU model has no prior knowledge for the period without any data in observations;
2) Although KGML-agl had a lower accuracy than GRU in some chambers, KGML-agl can better capture the temporal
dynamics of N,O fluxes compare to GRU, especially when the fluxes are highly variable (e.g. Fig 2 chamber 2).

To validate KGML-ag1 robustness, we further investigated the KGML-ag1 and GRU model performance in different temporal
windows, shrinking from the whole period to the N2O peak occurrence time (days 1-122, day 30-80, day 40-65 and day 45-60
for year 2016-2018), and performance in N,O flux, first order gradient of N»O (slope) and second order gradient of the N,O

(curvature) (Table 2). Slope represents the speed of N,O flux changes through time and curvature represents the acceleration.

Assessing prediction performance withen these two metrics will reveal the model robustness on capture variable dynamics

12
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which is critical when predicting fast-change variables with hot moments like N,O. First of all, the overall r> and RMSE of

KGML-ag1 for values, slope and curvature were always better than GRU. In particular, KGML-ag1 captured the peak region
(e.g., days 45-60) much better than GRU in both magnitude and dynamics (Table 2, Fig 2). Even for chamber 2 and 5 in
which KGML-agl made worse N,O predictions than GRU (Ar? ranging from -0.07 to -0.03), it better captured temporal
dynamics than GRU in terms of slope (Ar? ranging from 0.08 to 0.16) and curvature (Ar? from 011 to 0.23) (Table 2). For other
chambers, KGML-ag1l outperformed GRU consistently. For chamber 1, KGML-ag1l had worse N,O predictions RMSE than
GRU but the Ar? increased as the window shrinks to the peak emission time (0.07 — 0.13). The slope and curvature for
chamber 1 also indicated that KGML-ag1 captured the dynamics much better than GRU. For chamber 3, KGML-ag1l
predicted better N2O but presented worse slope and curvature RMSE than GRU (Table 2). However, when explicitly
investigating the time series of N,O flux, slope and curvature in each year, KGML-ag1 outperformed GRU more significantly

in 2017, the year with more complex temporal dynamics of N2O fluxes, than in 2016 and 2018, especially for chamber 3 (Fig.
2; Fig. S3-4). This investigation supported that KGML-ag1l was more capable for complex dynamics predictions.

Interestingly, the fine-tuned KGML-ag1 model predicted reasonable IMVs including CO2, NOs", NH4*, and VWC with overall
r2 of 0.37, 0.39, 0.60, and 0.33 and NRMSE of 0.14, 0.21, 0.09 and 0.18, respectively (Table 3). The time series comparisons
between IMV predictions and observations further indicated that KGML-agl could reasonably capture both magnitude and
dynamics (Fig. 3). KGML-ag2 presented better IMVs predictions than KGML-agl, with overall r? of CO,, NOs", NH4*, and
VWC increasing by 0.37, 0.17, 0.06 and 0.51, and NRMSE decreasing by 0.05, 0.03, 0.01 and 0.10, respectively, but a slightly
lower r? (decreasing 0.02) of N,O (Table 3; Fig. S5). This indicated that explicitly simulating each IMV with separated KGML-
ag2-IMV modules did not benefit the N2O flux prediction accuracy, likely due to increasing model complexity which resulted

in reduceding &tabilit)ﬂ and ignoring the IMV interactions. In addition, we also found all KGML-ag models would perform

better by using IMVcb1 (with CO,) than using IMVcbh2 (without CO5) in real data tests, indicating feature importance analysis

based on synthetic data can be a reasonable substitute for analysis with the often limited real-world data.

3.3 KGML-ag comparing with other pure ML models

The results from eightseven different models showed that KGML-agl comparing with other pure ML models consistently
provided the lowest RMSE (3.59-3.9460 mg N m day?, 1.14-1.2320 mg N m? day?, and 0.84-0.897 mg N m day®) and
highest r? (0.78-0.81, 0.48-0.5651, and 0.23-0.318) for N,O fluxes, slope and curvature, respectively (Fig. 4). This indicated
that KGML-ag1 outperformed other pure ML models in beth-capturing both the magnitude and dynamics of N>O flux. KGML-

ag2 presented slightly better mean scores for N,O flux predictions than KGML-ag1, but worse scores for slope and curvature

and larger uncertainties. This proved the hypothesis discussed in section 3.2 that KGML-ag2 didn’t benefit the magnitude and

dynamics predictions of N,O flux with its more complex structure and less connections between IMVs.
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Within the tree-based models (DT, RF, GB and XGB), the simplest model DT provided the worst predictions for N,O flux,
slope and curvature. The XGB model provided the highest N,O flux accuracy with r? of 0.61-0.632 and RMSE of 5.07-5.1741
mg N m? day™, while the GB model provided best slope and curvature predictions with r? of 0.38-0.4042 and 0.23-0.268, and
RMSE of 1.34-1.374 mg N m? day? and 0.91-0.9588 mg N m2 day3, respectively. The highest N,O flux accuracy and

relatively low slope and curvature accuracy of the XGB model implied that there is a trade-off between the abilities of capturing

dynamics and magnitude.

In the group of deep learning models including ANN, GRU and KGML-ag1, ANN provided the worst predictions. Even with
the better N2O flux predictions than most tree-based models (except XGB), the slope and curvature predictions of ANN were
the worst among all eightseven models. This implied that the trade-off between accurately capturing N2O dynamics to
magnitude in ANN was significant. But when considering the temporal dependence, deep learning model GRU and KGML-
agl outperformed all other models in flux, slope and curvature predictions. This indicated that without considering temporal
dependence the improvement in N>O flux prediction accuracy could be risky by causing the performance drop in capturing
dynamics.

The detailed model comparisons in each chamber are shown in Fig. 5 (N2O flux) and Fig. S6-7 (N2O slope and curvature),
where the results are found to follow the same pattern as described above. In addition, time series comparisons of chamber 3
and 4 in 2017 between different models are presented in Fig. S8 as two examples. From these comparisons, we infer that
without considering temporal dependence and pretraining process, the tree-based model including DT, RF, GB and XGB and
deep learning model ANN predicted erratic peaks in almost every missing data point, while GRU model was stable in small
gaps and only presented poor performance in long missing period (before 25 day). This improvement by GRU model can be
attributed to the structure of GRU that naturally keeps the historical information using hidden states, which enables GRU to
consider the temporal dependence and make consistent predictions over time.

3.4 Influence of pretraining process, data augmentation and using IMV initial_values as input feature

After we pretrained the GRU model with synthetic data, the overall r? of N,O flux predictions in observed data increased by
0.02, 0.12 and 0.14, and RMSE decreased by 0.23 mg N m? day?, 0.15 mg N m? day?and 0.02 mg N m day for flux, slope
and curvature predictions, respectively, compared to non-pretrained GRU (Table 3 gray region). The gap between the GRU
model with pretrain and KGML-ag1 in N,O value prediction shows the improvement resulting from architecture change (r?
increases by 0.01 and RMSE decreases by 0.17 mg N m2 day™). Although pretrained GRU had higher slope and curvature
prediction accuracy than KGML-ag models, it still couldn’t achieve the current N2O value prediction accuracy of KGML-ag1l.
Besides, the KGML-ag models had relatively shallow N,O prediction modules (2-layer GRU KGML-ag-N,O module of
KGML-ag models vs 4-layer GRU) but included modules for IMV predictions, which therefore increased the model
interpretability.

14
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It's worth noting that prediction accuracy of all KGML-ag models dropped without augmenting the training dataset in the fine-
tuning process (Table 3 blue region). Moreover, the maximum training epochs increased from 800 to 20000, which resulted in
overfitting on the small data set. This indicated that the data augmentation indeed helped the models become more

generalizable and gain better accuracy.

Experiments using zero initial values presented a significant drop in every variable’s prediction accuracy (Table 3 yellow
region). This indicated that the IMV initial values input into the KGML-ag-IMV modules of KGML-ag models influenced not
only the IMV prediction but also the N,O prediction of the KGML-ag-N,O module. This shows that there is useful information
transferred from IMVs in the KGML-ag-IMV module to the KGML-ag-N.O module.

4 Discussion

In the previous section, we showed that KGML-ag models can outperform ML models, by invoking architectural constraints
and PB model synthetic data initialization. Compared to traditional PB models such as ecosys, KGML-ag models provide
computationally more accurate and efficient predictions (KGML-ag few seconds vs ecosys half hour), which is similar to
traditional ML surrogate models (Fig. S9). But KGML-ag goes beyond that by providing more interpretable predictions than
pure ML models.

4.1 Interpretability of KGML-ag

The proposed KGML-ag models incorporate causal relations among N»O related variables/processes as shown in Fig. S10.
Managements, weather forcings and initial values of IMVs influence soil water, soil temperature and soil properties, which
influence the availability of O, and N as well as the microbe populations in soil, and further influence the nitrification and
denitrification rates. N>O is produced during both nitrification and denitrification when soil O, concentration is limited. Our
KGML-ag follows this hierarchical structure by designing KGML-ag-IMV modules representing the soil processes for IMVs
predictions (Fig. 1c-d).

To better explain the time series predictions of N,O flux (Fig. S1; Fig. 2-3), we separated the observations of each year into
three periods: leading period (before N»O increasing), increasing period (increasing to the peak) and decreasing period (peak
decreasing to near zero). During the leading period, both NH4*and CO, were increasing immediately in the following few days
following urea N fertilizer application, indicating that urea was decomposing into NH,;* and CO; in soil water. With
accumulating NH4* in soil, nitrification started producing NOs™ and consuming O.. N2O didn’t respond to the fertilizer
immediately due to enough O: in soil. Then when the soil became sufficiently hypoxic, N2O fluxes entered an increasing
period with N>O being produced by nitrification and denitrification processes. CO; fluxes were relatively low and NH,* kept
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decreasing during this period. Finally, when soil NH4* was exhausted and NOs™ started decreasing due to denitrification, N.O
fluxes then entered the decreasing period. CO> flux was related to urea decomposition during the leading period, and was more
closely related to O, demand in other periods. The KGML-ag predictions of N,O and IMV captured the three periods and
transition points, demonstrating the connections between those variables following the description as above (Fig. 3; Fig. S5).
Although KGML-ag1 obtained lower IMVs prediction accuracy compared to KGML-ag2, it captured the general trends and
was doing better for transitions, especially in NH4* predictions. KGML-ag2 overfitted on the observations and ignored the
correlations between IMVs, which resulted in loss in pretrain knowledge, poorer performance in the leading period, and erratic

predictions in the period with missing observations (before day 25).

4.2 Lessons for KGML -ag developmentirterpretabilityof KGML-ag

The development of KGML-ag in our study is suitable to predict not only N,O but also other variables, such as CO,, CH, and
ET, with complicated generation processes relying on the historical states. To develop a capable KGML model, we need to
carefully address three questions:

What kind of ML model is suitable for developing KGML? The answer could be determined by the dominant variation type
of the target variable in the data. If the dominant type is temporal variance, like flux variables in high temporal resolution (e.g.,
daily, or hourly), we should consider ML models with temporal dependency. RNN models such as GRU used in this study,
and CNN models such as casual CNN (Oord et al., 2016) can be good starting ML models. If the dominant type is spatial
variation, like variables in coarse temporal resolution (e.g., monthly or annually) but with high diversity due to soil property,
land cover and climate, we should consider ML models with the ability to deal with edges, hotpoints and categories, such as
CNN;

What physical/chemical constraints can be used to build KGML models? Although physical rules such as mass balance or
energy balance are conceptually straightforward and were proved capable of constraining KGML in predicting lake phosphorus
and temperature dynamics (Hanson et al., 2020; Read et al., 2019), they were excluded in this study according to our
preliminary analysis. The reason is that the mass balance equation of N in the agriculture ecosystem includes too many
unknown and unobservable components such as N> flux, NHs flux, N leaching, microbial N, plant N and soil/plant exchange,
which collectively introduce large uncertainties in balance equations and make them hard to be directly applied in the KGM[L—
ag framework. Other related physical (e.g., diffusion, solution) or chemical (e.g., nitrification, denitrification) processes cannot

be easily added into the KGML-ag structure as rules due to lack of understanding of the process. Instead, as mentioned in Sect.
2.2.4, we used hierarchical structure to enforce an architectural constraint and causal relations among variables, and pretraining
processes to infuse knowledge from ecosys to KGML-ag models.
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How to involve PB models in the KGML development? An advanced PB model like ecosys built upon biophysical and
biochemical rules instead of empirical relations will be a good basis to learn the process, guide the structure and provide the
constraints for KGML. The generated synthetic data in this study helped us get some knowledge about variables such as their
general trends, dynamics and correlations. Such knowledge can be transferred to KGML models from synthetic data in the
pretraining process, which can reduce the efforts to collect large numbers of real-world observation data. Moreover, while
KGML shows great potential beyond PB models, we reckon that equally important for improving N2O modeling is to continue
improving our understanding of the related processes and mechanisms. Novel data collection and incorporating new
understanding into PB models (e.g., ecosys) could provide foundation to further empower KGML (see further discussion in
Sect. 4.3).

4.3 Limitation and possible improvement

First, the KGML-ag models in this study are limited by the available observed data. Some IMVs with high feature importance
scores (e.g., Oz flux, N2 flux) or at different depths (e.g., soil NOs™ at 5 cm depth, VWC at 5 cm depth), and data out of growing
seasons are not included. The direct consequences are that some important processes cannot be well represented by the current
KGML-ag (e.g., O, demand and N availability for nitrification and denitrification). Further improvement of KGML should
consider three categories of data: target variable N»O flux, IMVs and basic inputs (Fig. 1a). For N2O flux observation, we lack
sub-hourly to sub-daily observations to capture the hot moment of emission during 0-30 days after N fertilizer applications.
Besides, the non-growing season can provide 35-65% of the annual direct N>,O emissions from seasonally frozen croplands
and lead to a 17-28 % underestimate of the global agricultural N-O budget if ignoring its contribution (Wagner-Riddle et al.,
2017), but we can barely find observations from non-growing seasons. For IMVs, we found oxygen demand indicator (e.g.,
O concentration or flux, CO flux, CHa flux), N mass balance related variables (e.g., N2 flux, soil NOs", soil NH4*, N leaching)
and soil water and temperature, can be used to better constrain the processes and therefore improve the KGML performance.
Rohe et al. (2021) also indicated the importance of O,, CO, and N soil fluxes for N,O predictions. In addition, the layerwise
soil observations (e.g., soil NOgz", soil VWC) at 0-30 cm depth can be used to significantly improve the KGML model quality,
according to our feature importance analysis (Fig. S2a). Moreover, continuous monitoring on these variables during the whole
year is preferred rather than only during the growing season, since N»O flux is largely influenced by previous states. To apply
the KGML-ag to large scale, other observational data including basic inputs of soil/crop properties (e.g., soil bulk density, pH,
crop type), management information (e.g., fertilizer, irrigation, tillage) and weather forcings along with NO flux observations
are critical for fine-tuning and validating the developed KGML-ag and therefore explicitly simulating the N.O or IMVs
dynamics under specific conditions. Recent advances in remote sensing and machine learning have enabled estimating these
variables with high-resolution at a large scale (Peng et al., 2020)
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Second, the physical/chemical constraints can be more comprehensive in KGML-ag models. Although current KGML-ag
models are well-initialized with ecosys synthetic data and constrained by causal relations of processes with hierarchical
structure, the predicted N-O flux and IMVs can still violate some basic physical rules like mass balance. As we discussed in
Sec. 4.2, it will be challenging to add physical rules like mass balance equation for N in a complicated agriculture ecosystem
due to data limitations such as missing observations on certain key variables. Using inequalities instead of equations for mass
balance may be one alternative solution. For example, we could use ReLU to add in a limitation for N mass balance residues
which are calculated from known terms not larger than an empirical static value. Besides, better understanding of processes in
the N cycle from fieldworks and lab experiments can also help us design new constraints. This limitation is also partially
related to the data limitation and can be overcomed by involving more complete N,O data to introduce more powerful
constraints to KGML-ag.

Third, the KGML-ag currently are suffering from dealing with physical/chemicalehamical boundary transitions. Boundary
transitions are common in the real world, such as phase change, volume solubility, and soil porosity etc. A detailed PB model
generally coded plenty of “if/else/switch” statements inside to deal with the boundaries. But KGML-ag models based on the
GRU are better at capturing continuous changes, rather than discrete changes. One solution is to include data with boundary
information. In this study, involving IMVs like O, CO and N2, which already have boundary information like water freezing
point, N pool volumes and other complicated boundaries related to soil/crop properties, can significantly improve the model
performance. The data with boundary information could be continuous observation or estimated value from existing data. By
using initial_values to predict IMVs, KGML-ag in this study can partially solve the boundary transition problem when
observation data is limited. Another solution is designing new structures of KGML-ag, such as combining ReLU function or
including CNN model which are robust for discrete situations to the RNN models, or designing new constraints to limit the
model working within the thresholds.

Finally, at the current stage we can not claim to have completely opened the black box of KGML-ag, but this framework is a

significant step towards this goal. For example, some ideas implemented in our study, such as using pretraining to transfer

knowledge from PB model to ML model, incorporating causal relations by hierarchical structure, predicting IMVs for tracking

middle changes and using initial values as input to reduce data demand, would shed light on the future KGML-ag framework

improvement. Besides, we acknowledge the importance of further testing the KGML-ag over completely independent datasets,
but results presented in this manuscript are sufficient to justify the power of KGML as a framework. The mesocosm experiment
data we used in this study has provided a comprehensive set of inputs and intermediate variables in addition to the output of
N0 fluxes, thus serving as a unique testbed. We expect our validation results will be more solid once more gold standard data
of N,O fluxes along with other relevant inputs and intermediate variables become publicly available. Moreover, incorporating
more and more domain knowledge into KGML-ag will be inevitable in further improvement, but we don’t think KGML-ag
will become inefficient as it becomes more like the PB model. In fact, to efficiently surrogate components of PB models has
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been proposed as a research frontier in hybrid modeling for earth system science (Reichstein et al., 2019; Irrgang et al., 2021),
with latest advances occurring in weather forecasts (Bauer et al., 2021). By using a hybrid model, computationally inefficient
components of PB can be identified one by one, and be replaced with more efficient ML-based surrogates to eventually obtain
the most efficient model. Further KGML-ag model development will also need to balance efficiency, accuracy and
interpretability.

5 Conclusions

In this study, two KGML-ag models have been developed, validated, and tested for agricultural soil N,O flux prediction using
synthetic data generated by the PB model ecosys and observational data from a mesocosm facility. The results show that
KGML-ag models can outperform PB and pure ML models in N,O prediction in not only magnitude (KGML-agl r> = 0.81 vs
best ML model GRU r? = 0.78) but also dynamics (KGML-agl accuracy minus GRU accuracy, slope Ar? = 0.06 and curvature
Ar? = 0.08). KGML-ag can also defeat the PB model ecosys in efficiency by completing ecosys’s half-hour job within a few
seconds. Compared to ML models, KGML-ag models can better represent complex dynamics and high peaks of N2O flux.
Moreover, with IMV predictions and hierarchical structures, KGML-ag models can provide biogeophysical/chemical
information about key processes controlling N.O fluxes, which will be useful for interpretable forecasting and developing
mitigation strategies. Data demand for the KGML-ag models is significantly reduced due to involving IMV initial values and
pretrain processes with synthetic data. This study demonstrated that the potential of KGML-ag application in the complex
agriculture ecosystem is high and illustrates possible pathways of KGML-ag development for similar tasks. Further
improvement of our KGML-ag models can involve general principles to further constrain the predictions through loss functions
or architectures, but call for more detailed, high temporal resolution N>O observation data from field measurements.
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Figure 1: The model structuresframes. a) The ecosys model-frame; b) Gated recurrent unit (GRU) model-frame; ¢) KGML-agl
model_with a -frame-of-hierarchical structure; d) KGML-ag2 model with a frame-of-hierarchical structure with separated GRU
modules for IMV predictions. Specifically, in our KGML model design, weather forcings include temperature (TMAX, TDIF
precipitation (PRECN), radiation (RADN), humidity (HMAX and HDIF) and wind speed (WIND); soil/crop properties (SCP)
include bulk density (TBKDS), sand content (TCSAND), silt content (TCSILT), pH (TPH), cation exchange capacity (TCEC), soil
organic carbon (TSOC), planting day of the year (PDOY) and crop type (CROPT); IMVs include CO flux, soil NO3” concentration
soil NH4*concentration, and soil volumetric water content (VWC).

24



Year 2016 Year 2017 Year 2018

¥ KGML-agl: ﬁ KGML-agl
5 — r’=0.86 r=048s
520 Iy RMSE=4.76 | 20 1 RMSE=2.44 | 20
E __ GRU: =073 __ GRU: =067
s 10 RMSE=2.83 | 19 RMSE=3.37 10
E)
E A

0 0
T :ZGMLragl.: Lo ;GML—aql

— =096 — =076

20 RMsE=142 | 20 ] RMsE=359 | 20
' __ GRU: =096 GRU: r?=0.86
S 10 RMSE=1.25 10 RMSE=3.17 10
)
E 2

0 0

KGML-agl:
— r?=0.92
RMSE=2.97
GRU: r’=0.89
RMSE=1.48

KGML-agL
=091
RMSE=2.61

GRU: r#=0.90
RMSE=2.95

10 KGML-agl: KGML-agl: KGML-agl:
— r’=0.96 ri=078 ri=0.91
RMSE=3.47 20 RMSE=2.76 20 RMSE=1.57

GRU: r?=0.82
RMSE=2.36

GRU: r*=0.60
RMSE=4.56 10

GRU: r?=0.97
RMSE=2.72

Chamber 6 Chamber5 Chamber4 Chamber3 Chamber2 Chamber 1l

0 0 0
1 60 'j KGML-agl: KGML-ag1: KGML-agl:
E) 1 — =092 ! — =086 =092
= 20 [} RMSE=10.00 | 20 RMSE=3.06 20§ RMSE=1.61
£ " __ GRU: r=0.93 __ GRU: =057 GRU: r*=0.90
z 20 RMSE=1214 | 10 RMSE=5.73 | 19 RMSE=1.62
2
£
0 o 0
- KGML-ag1: KGML-agl: KGML-ag1:
H — r?=0.92 =075 r’=0a7
=20 RMSE=2.48 20 RMSE=3.97 20 RMSE=4.30
L __ GRU: =092 GRU: r?=0.75 GRU: r=0.93
Z10 RMSE=209 | 10 RMSE=3.82 | 19 RMSE=3.27
£ A\ -
0 ‘o 0
[} KGML-agl: KGML-ag1: KGML-ag1:
H — r?=0.98 — =091 — =092
=20 RMSE=1.54 20 RMSE=1.64 20 RMSE=1.76
L __ GRU: r?=0.97 __ GRU: =085 __ GRU: =090
Z10 RMSE=1.39 10 W RMSE=1.92 10 \ RMSE=2.11
g . AN
0 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 0 20 40 60 80 100 120
Days after April 1st —— Observed N,O flux
747
748 Figure 2: N2O flux time series comparisons among pure non-pretrained GRU predictions (blue line), KGML-agl predictions (red
49 line) and observations (black line-dot) from cross-validation. The N,O flux unitis mg N m? day™.
750

25



(a) CO; flux

Year 2016 ) Year 2017 Year 2018
7 - -
.E 3 2=0.39 r2=0.02 r2=0.02
< 2 A RMSE=0.57 RMSE=0.65 RMSE=0.57
° )] Ay
ﬁ 4
] 3 IJU 2=0.35 2=0.00 2=0.00
E 2 p RMSE=0.72 RMSE=0.93 RMSE=0.82
S . Wi
o ' |
o (O r?=072 | r=0.15 r2=0.14
_E 3 2 " RMSE=0.49 | RMSE=0.41 RMSE=0.67
SRR i -
o« O a | fJ
5 2 s =076 | r=0.08 v r?=0.01
ji]
E 5 2 RMSE=0.53 RMSE=0.54 . RMSE=0.99
(8] 1 t
wn 4 |
H 3 =029 | =017 7=0.01
E 2 TNate v RMSE=0.52 \! RMSE=0.55 RMSE=0.54
o 1 |
E ¢ 2. |
E 5 ‘ =050 | 2=0.02 2=0.04
_E 2L\JWMRMSE=D.45 | RMSE=0.65 RMSE=0.50
o 1 Ny |
) soil NO;
100
r’=nan r’=0.07 r’=0.68

50 |
M\_\ RMSE=nan RMSE=36.42 RMSE=13.55

100

100

r’=nan r’=0.66 r’=0.97

r?=nan r2=0.67 r?=0.66
RMSE=nan I RMSE=15.39 RMSE=13.49

br4 Chmbr3 Chmbr2 Chmbrl z

7‘5 RMSE=nan | RMSE=15.96 N‘kms&ms
2
© 100 I
B
£ r?=nan r2=0.59 r2=0.02
S s t
5 RMSE=nan RMSE=19.50 RMSE=43.05
O
100 Il
n
r r=nan r?=0.58 =072
50 il
k /\\/\/\/\Rm&nan RMSE=19.14 RMSE=10.70
O
100
©
£ r’=nan r’=0.68 r’=0.92
50 il
i RMSE=nan RMSE=14.36 RMSE=7.24
(&
20 40 60 80 100 120 0 20 a0 60 80 100 120 20 40 60 80 100 120
Days after April 1st — KGML-agl —— Observed Corresponding Variable

26



752 Figure 3: IMVs prediction from KGML-agl. The black-dot line represents observations and the red line represents the results from
53 KGML-agl. Chmb is the abbreviation for chamber. r? and RMSE are calculated and present in each year and chamber._The CO,
54 flux and soil NO3” concentration units are g C m? day* and g N m, respectively.
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Figure 3 Contd.: IMVs prediction from KGML-agl. The black-dot line represents observations and the red line represents the
results from KGML-agl. Chmb is the abbreviation for chamber. r2and RMSE are calculated and present in each year and chamber.
The soil NH,* concentration and soil VWC units are g N m? and m®

m=, respectively.
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Figure 4: The comparisons of overall prediction accuracy for N.O value (a), 1st order gradient (slope, b) and 2nd order gradient
(curvature, c) between four tree-based ML models (DT, RF, GB and XGB), two deep learning models (ANN and GRU) and KGML-
agt models. Different color symbols represent the different models._The x- and y-error bars are coming from the maximum and
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Table 1: Pretrain results for different model and IMV combinations using ecosys synthetic data.

N20 CO2 NOs NH4* VWC
No. Pretrain Model Input Feature N > RMSE r? NRMSE r2 NRMSE r2 NRMSE r?> NRMSE
1 GRU+76IMVs 76 IMVs+FN+7Ws+8SCP 0.98 0.54 -2 - -- - - - -- -
2 GRU+IMVcbl 4 IMVs+FN+7Ws+8SCP 0.92 1.15 -- - -- - - - -- -
3 GRU+IMVcbh2 3 IMVs+FN+7Ws+8SCP  0.90 1.26 -- -- - -- -- -- - --
4 GRU FN+7Ws+8SCP 089 137 -- -- -- - - -- -- --
5  KGML-agl+IMVcbl_ini FN+7Ws+8SCP+4IMV_ini 0.90 1.24 0.91 0.06 0.95 0.03 0.98 0.03 095 0.04
6 KGML-agl+IMVcb2_ini  FN+7Ws+8SCP+3IMV_ini 0.90 1.26 -- - 0.94 0.03 097 0.03 0.95 0.04
7  KGML-ag2+IMVcbl_ini FN+7Ws+8SCP+4IMV_ini 0.90 1.27 0.92 0.05 0.95 0.02 0.98 0.03 096 0.04
8  KGML-ag2+IMVch2_ini FN+7Ws+8SCP+3IMV_ini 0.91 1.19 -- -- 095 000 099 0.02 0.95 0.04

775
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aThe empty slot indicates that the model does not predict that variable.

77
78

N.0O, KGML-agl minus GRU

N,O 1st order gradient,
KGML-agl minus GRU

N-O 2nd order gradient,
KGML-agl minus GRU

No. Alltime® Day Day Day | All Day Day Day | All Day30-Day40- Day
30-80 40-65 45-60 | time 30-80 40-65 45-60 | time 80 65  45-60
All data 0.03° 0.04 0.07 0.0 | 0.07 0.07 007 015 | 008 0.08 009 0.11
Chamberl | 0.07 010 020 013|018 0.18 019 0.14 | 0.08 0.09 0.9 0.02
Chamber2 | -0.04 -0.05 -0.07 -005|0.08 0.09 009 016 | 020 020 020 0.23
Ar2a | Chamber3 0.06 0.06 0.08 0.06 | 0.04 0.04 0.04 013 |-0.01 -001 -0.01 0.07
Chamber4 | 0.06 0.08 012 007 | 005 005 0.05 014 | 007 0.07 008 0.12
Chamber5| -0.05 -0.06 -0.07 -003| 009 0.09 010 016 | 013 013 015 0.11
Chamber6 | 0.03 0.04 0.08 017 | 014 014 015 0.22| 012 013 014 0.23
All data -041 -056 -084 -1.19|-007 -010 -0.14 -0.20| -0.03 -0.05 -0.07 -0.08
Chamberl 0.80 106 121 170|000 000 -002 0.00 | 005 0.07 0.10 0.18
Chamber2 0.08 0.11 0.07 -0.04|-0.10 -0.13 -0.18 -0.14 | -0.10 -0.14 -0.19 -0.22
ARMSE? | Chamber3 | -0.71  -0.96 -1.30 -2.09| 0.03 0.04 007 -025| 009 013 0.17 0.08
Chamber4 | -1.68 -227 -3.09 -381|-011 -015 -0.21 -0.26 | -0.05 -0.07 -0.09 -0.16
Chamber5| 0.53 0.69 0.86 099 |-010 -0.14 -020 -023| -009 -0.12 -0.18 -0.14
Chamber6 | -0.20 -0.27 -037 -061|-0.14 -020 -0.29 -0.33|-0.07 -010 -0.15 -0.19
779 aThe difference of r? (Ar?), and difference of RMSE (ARMSE, units are mg N m day!, mg N m? day2, mg N m day= for N2O value, 1st
780 order gradient and 2nd order gradient, respectively) were calculated by values from KGML-ag1 minus values from GRU.
781 bResults from different time windows of different chambers during the period of April 1st-July31st (Days1-122) were detected.
782 Blue cells mean KGML-ag1 outperforms GRU, while yellow cells mean the opposite.
783
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Table 2: Prediction accuracy comparisons between non-pretrained GRU model and KGML-agl.Pretrain-resuttsfor-differentmodel
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787
788
|789
790
791

Table 3: Experiments for measuring GRU and KGML-ag models performance, and influence of pretraining process, training data
’786 augmentation and IMV initial values.

N20 1st order

N20 2nd order

N20 gradient gradient CO2 NO3 NH4" VWC

No. Retrain Model Experiment r> RMSE r?> RMSE r? RMSE r?> NRMSE r?> NRMSE r?> NRMSE r> NRMSE

1 GRU, baseline? No Pretrain 0.78 4.00 045 127 0.20 0.90 --b - - - - - - -

2 GRU Pretrain 080 377 057 112 034 0.82 — -- - - -- -- - -

3 KGML-agl+ Original 081 3.60 051 120 028 0.87 0.37 0.14 0.39 0.21 0.60 0.09 0.33 0.18
IMVcb1_ini setting

4  KGML-agl+ Original 0.80 371 049 122 021 0.91 = = 0.37 0.22 0.53 0.10 0.33 0.19
IMVcb2_ini setting

5 KGML-ag2+ Original 079 377 048 123 022 0.90 0.74 0.09 0.46 0.18 0.66 0.08 0.84 0.08
IMVcb1_ini setting

6 KGML-ag2+ Original 0.78 391 047 124 020 0.91 - -- 0.49 0.18 0.69 0.08 0.84 0.08
IMVcb2_ini setting

7  KGML-agl+ No 080 373 049 122 022 090 038 014 038 021 061 009 037 017
IMVcb1_ini augmentation

8 KGML-agl+ No 077 4.04 041 131 013 0.95 - - 038 021 053 010 035 018
IMVcb2_ini  augmentation

9 KGML-ag2+ No 076 406 045 127 016 095 069 010 021 025 060 009 080 0.09
IMVcb1_ini augmentation

10 KGML-ag2+ No 074 427 048 123 021 0.90 - - 040 021 060 009 081 0.09
IMVcb2_ini augmentation

11 KGML-agl+ Zeroinitial 0.48 6.27 0.26 149 0.08 1.00 0.19 0.16 0.25 0.25 0.47 0.12 0.14 0.25
IMVcb1_ini values

12 KGML-agl+ Zeroinitial 049 594 031 141 0.13 0.95 - -- 0.31 0.25 0.38 0.13 0.24 0.25
IMVch2_ini values

13 KGML-ag2+ Zeroinitial 048 6.05 0.12 166 0.01 1.09 0.58 0.12 0.34 0.25 0.21 0.13 0.56 0.31
IMVchb1_ini values

14 KGML-ag2+ Zeroinitial 0.39 6.60 0.15 159 0.04 1.01 - -- 0.16 0.27 0.27 0.12 0.53 0.31
IMVcbh2_ini values

2Gray region includes the experiments with original simulation settings as described in Sec. 2 and dark gray refers to the baseline GRU

simulation; Blue region includes the experiments without data augmentation during the finetuning process; And yellow region includes the

experiments of replacing original IMV initial values with zeros.

"The empty slot indicates that the model does not predict that variable.
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