
Response Letter

We are grateful to all comments and suggestions from three reviewers and have carefully addressed their
concerns point by point. Major changes include:

(1) We have conducted uncertainty analysis for all pure machine learning models and KGML models
presented in out study to include the machine learning model uncertainties;

(2) The uncertainties of process-based model ecosys and its performance over various ecosystem for
N2O and CO2 have been added into the maintext;

(3) We have added LSTM results into the supplement and comparing with all other models for
reference;

(4) We have added a new paragraph in discussion to address the concerns of KGML-ag limitations;

(5) We have clarified all the confusing parts which have been pointed out by reviewers, and corrected
typo and grammatical errors.

By changing these major concerns and many other minor comments and suggestions, we believe the
quality of this manuscript is improved. Below, please find our detailed responses point-by-point.

Please be aware of the formatting of all responses:
1. Reviewer comment in black, response in blue and quotation from the main text in red;
2. The line number is based on the clean version of the revised manuscript, not the track change version.



To Reviewer 1

Liu et al. presented a promising predictive framework that combined a process-based model (physical
knowledge and pre-train dataset) and a machine learning model for agroecosystem N2O emission
estimate. The modeling framework is robust and thoroughly validated. This work will be an important
milestone towards a better understanding, monitoring, and predicting agroecosystem greenhouse gas
emissions.

The paper is well organized and written. Below are some of my comments that may help elucidate the
strength and limitations of the proposed KGML-ag framework.

Response: We really appreciate that the reviewer recognized our efforts in developing the proper
knowledge guided machine learning framework for agroecosystem. To improve the quality of this study,
we have carefully revised the manuscript based on the reviewer's comments and suggestions shown as
below:

1. Robustness of physical (prior) knowledge

ecosys model plays a central role in guiding the ML model in terms of structure and providing a pre-train
dataset. It will be important to discuss the structure uncertainty in ecosys N2O module, including e.g.,
underlying theories, major processes, difference/similarity to the classic leaky pipe type model (Davidson
et al., 2000), and so on.

Reference:
Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V., & Veldkamp, E. (2000). Testing a conceptual
model of soil emissions of nitrous and nitric oxides: using two functions based on soil nitrogen
availability and soil water content, the hole-in-the-pipe model characterizes a large fraction of the
observed variation of nitric oxide and nitrous oxide emissions from soils. Bioscience, 50(8), 667-680.

Response: Thank you so much for this suggestion. In this revision, we have added a detailed description
on the major processes of N2O production and transfer in ecosys model, and on the differences between
traditional pipeline N2O model and ecosys model. You can find the description in the manuscript section
2.2.1  (from Line 136 to 147) as:

“It represents N2O evolution in the microbe-engaged processes of nitrification-denitrification using
substrate kinetics that are sensitive to soil nitrogen availability, soil temperature, soil moisture, and soil
oxygen status (Grant and Pattey 2008). Two groups of microbial populations, autotrophic nitrifiers and
heterotrophic denitrifiers, produce N2O with specific competitive or cooperative relations in ecosys when
O2 availability fails to meet O2 demand for their respirations and NO2

- become alternative electron
acceptors. N2O transfer within soil layers and from soil to the atmosphere is driven by concentration
gradient using diffusion-convection-dispersion equations, in the forms of gaseous and aqueous N2O under
control of volatilization-dissolution (Grant et al., 2016). Unlike the pipeline model described by Davidson
et al. (2000) , which mainly consider the correlations of N2O production with nitrogen availability and of
N2O emitting with soil water content, ecosys enables integrative effects of energy, water, nitrogen
availability on N2O production and N2O transfer via the microbial population dynamics and their



interactions with soil, plant, and atmospheric dynamics, under diverse meteorological and anthropogenic
disturbances (e.g. runoff, drainage, tillage, irrigation, soil erosion).”

Again ecosys provides pretrain dataset, which has its own uncertainty and biases. It’s worthwhile to at
least show some ecosys model performance across various different conditions at agroecosystems. For
example, does ecosys pick up the high-frequency signals (fluctuation) of CO2/N2O flux that are observed
in the chambers data? If not, is that the reason why PGML-ag could not capture the high fluctuation of
CO2/N2O emissions in the field?

Response: We really appreciate this comment which suggests to show the capability of ecosys model as
the domain knowledge provider. To show the ecosys model performance on simulation of CO2 and N2O
emissions at field, we have added detailed quantitative comparisons between model simulations and
observations in the manuscript section 2.2.1 (from line 149 to 154):

“For the agricultural ecosystems in the US Midwest, whose simulations are used for synthetic data in this
study, the performance of ecosys on CO2 and N2O fluxes have been extensively benchmarked, including
CO2 exchange (NEE, R2 = 0.87) and leaf area index (LAI, R2 = 0.78) from six flux towers, USDA census
reported corn yield (R2 = 0.83) and soybean yield (R2 = 0.80), satellite-derived GPP for corn (R2 = 0.83)
and soybean (R2 = 0.85) from Illinois, Iowa and Indiana, and cumulative N2O emissions (R2 = 0.36)
across eight Midwestern states (Wang et al., 2021; Yang et al., 2022).”

If you are interested in the more detailed performance of field level N2O emission simulation using ecosys
model, you may review 1) the papers of Grant et al (2006, 2008) to find the influences of fertilizer rate
and temperature on N2O emissions in fertilized agriculture soil; 2) the paper of Grant et al (1999) to find
the influences of spring thawing; and 3) the papers of Grant et al (2010, 2016) to check the N2O
simulation performances at managed forest and grassland.

2. It’s not obvious which variables are used as inputs or intermediate variables and how that relates to
the feature importance ranking. It will be better to show each variable in Figure 1. For example, W
will be temperature and precipitation. Furthermore, feature importance analysis highlight NH3, H2,
N2, O2, CH4, ET, CO2 are important variables that drive N2O emission (~ L230). It’s not clear in the
main text, how this feature importance ranking helps the design of PGML-ag. What can we get out of
this feature importance analysis?

Response: Thanks for pointing out the confusing part of how feature importance related to KGML model
development. In this revision, we have extended descriptions in Figure 1 caption to explain W, SCP and
IMVs that are used in our study.

“Figure 1: The model structures. a) The ecosys model; b) Gated recurrent unit (GRU) model; c)
KGML-ag1 model with a hierarchical structure; d) KGML-ag2 model with a hierarchical structure using
separated GRU modules for IMV predictions. Specifically, in our KGML model design, weather forcings
(W) include temperature (TMAX, TDIF), precipitation (PRECN), radiation (RADN), humidity (HMAX
and HDIF) and wind speed (WIND); soil/crop properties (SCP) include bulk density (TBKDS), sand
content (TCSAND), silt content (TCSILT), pH (TPH), cation exchange capacity (TCEC), soil organic



carbon (TSOC), planting day of the year (PDOY) and crop type (CROPT); IMVs include CO2 flux, soil
NO3

- concentration,  soil NH4
+concentration, and soil volumetric water content (VWC).”

Feature importance analysis was the first step in our study to learn the knowledge from synthetic data
generated by the ecosys model and to investigate the correlation between input/intermediate variables and
N2O fluxes. The importance rankings help us to put low/median/high attention to available variables
during model development (e.g. CO2 was tested as a higher ranking variable than others so that we paid
high attention to it by testing two different combinations of IMVs w/o CO2). In addition, the rankings will
provide guidance of future N2O related measurement, which is discussed in section 4.3. We have revised
paragraph two in section 2.2.4 to highlight how feature importance rankings help our model development
(from line 252 to 258).

“Variables ranked high in feature importance analysis are considered with priority during model
development. To develop a functionable KGML-ag, we further investigated the feature importance of four
IMVs that are available from mesocosm observations including CO2, NO3

-, VWC and NH4
+, which were

ranked 7th, 20th, 58th, 60th respectively in 92 input features of synthetic data (Fig. S2a). We used these
four available IMVs to create two input combinations: 1) CO2 flux, NO3

-, VWC and NH4
+ (IMVcb1), and

2) NO3
-, VWC and NH4

+ (IMVcb2). The objective of building IMVcb2 was to investigate the importance
of highly ranked variable CO2 flux (by removing it from the inputs), and the impact of mixing-up flux and
non-flux variables on model performance. ”

3. There is a lack of discussion on uncertainty in PGML-ag, which is fundamentally important for
predictive modeling. Also, what about chamber measurements uncertainty?

Response: Thank you for pointing out this concern for predictive modeling. To address the uncertainty of
the machine learning models and KGML-ag model, we have conducted 10 ensemble experiments for
different model structures (DT, RF, GB, XGB, ANN, GRU, KGML-ag1 and KGML-ag2). Corresponding
method part in section 2.1 has been updated (from line 125 to 129).

“We further benchmarked KGML-ag models and uncertainties with other pure ML models without
considering temporal dependence, including Decision Tree (DT), Random Forest (RF), Gradient Boosting
(GB) from the sklearn package (https://scikit-learn.org/stable/), Extreme Gradient Boosting (XGB) from
the XGBoost package (https://xgboost.readthedocs.io/en/latest/) and a 6-linear-layer artificial neural
network (ANN) with the mesocosm experiment data by 10 times ensemble experiments (Fig. 4-5; Fig.
S6-8);”

The new results have been updated in Figure 4 and Figure 5 (also as Figure R1 and R2 below) in the main
text and Figure S6-S7 (also as Figure R3 and R4 below) in the supplementary. We have also updated
values in section 3.3 accordingly. For chamber measurement uncertainty, we have cited the original thesis
(Miller L., 2021) including the mesocosm experiment settings, instruments and related measurement
uncertainties (e.g. Figure 2.2 in the thesis). In our study, we also used a data augmentation method to
cover the uncertainties caused by converting hourly observations to daily observations. The data
augmentation method has been described in section 2.2.2 paragraph 3.



Figure R1: The comparisons of overall prediction accuracy for N2O value (a), 1st order gradient (slope, b)
and 2nd order gradient (curvature, c) between four tree-based ML models (DT, RF, GB and XGB), two
deep learning models (ANN, GRU), and KGML-ag models. Different color symbols represent the
different models. The x- and y-error bars are coming from the maximum and minimum scores of
ensemble experiments. The dot represents the mean score of the ensemble experiments.



Figure R2: The comparisons of N2O flux prediction accuracy r2 (a) and (b) RMSE, between four
tree-based ML models (DT, RF, GB and XGB), two deep learning models (ANN and GRU), and
KGML-ag models in 6 chambers. The gray error bars are coming from the maximum and minimum
scores of ensemble experiments.

Figure R3: The comparisons of N2O 1st order gradient prediction accuracy r2 (a) and (b) RMSE, between

four tree-based ML models (DT, RF, GB and XGB), two deep learning models (ANN and GRU) and

KGML-ag models in 6 chambers. The gray error bars are coming from the maximum and minimum

scores of ensemble experiments.



Figure R4: The comparisons of N2O 2nd order gradient prediction accuracy r2 (a) and (b) RMSE, between
four tree-based ML models (DT, RF, GB and XGB), two deep learning models (ANN and GRU) and
KGML-ag models in 6 chambers. The gray error bars are coming from the maximum and minimum
scores of ensemble experiments.

L254 based on the structure of process representation in ecosys

Response: We have revised the sentence based on your suggestion (Line 276 to 278).

“We built a hierarchical structure based on the structure of process representation in ecosys to first predict
IMVs and then simulate N2O with predicted IMVs;”

References:

Grant, R. F., Black, T. A., Jassal, R. S., & Bruemmer, C.: Changes in net ecosystem productivity and
greenhouse gas exchange with fertilization of Douglas fir: Mathematical modeling in ecosys. Journal of
Geophysical Research: Biogeosciences, 115(G4),  2010.



Grant, R. F., & Pattey, E.: Mathematical modeling of nitrous oxide emissions from an agricultural field
during spring thaw. Global Biogeochemical Cycles, 13(2), 679-694, 1999.

Grant, R. F., & Pattey, E.: Temperature sensitivity of N2O emissions from fertilized agricultural soils:
Mathematical modeling in ecosys. Global biogeochemical cycles, 22(4), 2008.

Grant, R. F., Neftel, A., & Calanca, P.: Ecological controls on N2O emission in surface litter and
near-surface soil of a managed grassland: modelling and measurements, Biogeosciences, 13(12),
3549-3571, 2016.

Grant, R. F., Pattey, E., Goddard, T. W., Kryzanowski, L. M., & Puurveen, H.: Modeling the effects of
fertilizer application rate on nitrous oxide emissions, Soil Science Society of America Journal, 70(1),
235-248, 2006.



To Reviewer 2

General comments

This manuscript presents a new method for estimating N2O flux from cropland. The inputs to the method
are known fertilization rate, weather forcings, soil and crop properties. The method also requires initial
concentrations of nitrate ions, ammonium ions, and water in the soil, and optionally CO2 flux. The
method employs gated recurrent networks organized in a hierarchical structure to mirror the
time-dependence and causality present in the process.A process-based model provides pre-training data,
and fine-tuning is done using observations from mesocosm experiments. The trained neural network
models outperform the process-based model and many basic machine learning approaches.

The methodology employed is both novel and sound. The use of GRUs in hierarchical structures is
well-justified and appropriate to the problem. The models have been well-validated, and various alternate
choices for model architecture have been explored. I believe this work represent a substantive advance in
modelling science. Below I list specific comments which I hope will serve to improve the manuscript.

Response: We really appreciate the reviewer's recognition of our work and all other valuable comments
and suggestions mentioned below. Just as the reviewer summarized, we want to incorporate the domain
knowledge learned from agroecosystem process-based model ecosys to the advanced machine learning
models to combine the advantages from both kinds of state-of-art works. This effort is trying to build a
new body of research for simulating the agriculture ecosystem and KGML-ag in this study is a
demonstration case simulating N2O flux from mesocosm experiments. To further improve our study, we
have carefully revised the manuscript to address all reviewer’s comments. The specific responses can be
found in the following letters.

Specific comments

1. The use of the term "initials" confuses me. Upon first reading I thought it referred to the acronyms for
various intermediate variables. I think it actually refers to the initial values of a sequence. Is this
usage standard? If not, I recommend a different phrase such as "initial values" in place of the word
"initials." Alternatively, clarify the meaning of the term in the manuscript.

Response: Thanks so much for pointing out this term which may cause confusion. Just as you said, the
term “initials” in the manuscript are most referring to the “initial values”. It indeed will cause some
confusion since we also use the term “initial” as a verb for the knowledge guided initialization. Thus we
have replaced “initials” to “initial values” throughout the manuscript.

2. Another possible explanation for why KGML-ag2 better predicts IMVs but does not predict N2O as
well is that KGML-ag1 may learn to use the IMVs as a kind of extra hidden layer, encoding
information relevant to N2O predictions in them.

Response: We really appreciate your interesting explanation about why KGML-ag2 predicts better IMVs
but worse N2O fluxes. In both KGML-ag1 and KGML-ag2, the IMVs were first predicted from
KGML-ag-IMV modules and then input into the KGML-ag-N2O modules. The only difference between



KGML-ag1 and KGML-ag2 is that KGML-ag2 explicitly simulates each IMV by using individual
KGML-ag-IMV modules. Thus, using IMVs as a kind of extra hidden layer may happen in both models in
KGML-ag-N2O modules. But since KGML-ag1 has interactions between predicted IMVs and lower
complexity, it may be easier for the KGML-ag1-N2O module to get the useful knowledge from IMVs.
Moreover, your valuable thought draws us to deeply review the model structures and data qualities. The
observational data, including the IMVs of CO2, NH4

+, NO3
- and VWC, are not perfect and may have many

noises or be lacking some key information. KGML-ag2-IMV module may only follow what we have for
IMVs to generate accurate IMV predictions without any extra information, while KGML-ag1-IMV
module may perform like an encoding layer to predict IMVs with extra information relevant to N2O flux,
just as you mentioned.
In this revision, we decided to keep our explanation to make our discussion more focused and accessible
to a broader audience. But we will find a larger dataset to test both explanations in subsequent
ML-oriented technical papers.

3. Why not include KGML-ag2 in Figure 4? I can see simplifying the comparison by choosing only the
best-performing model.

Response: The reviewer is right that we excluded KGML-ag2 in the previous Figure 4 to simplify the
comparison. To address the reviewer’s concern, we have added similar 10 ensemble experiments for
KGML-ag2 and updated Figure 4 (also as Figure R5 below). We can see that although KGML-ag2 has
similar mean performance as the KGML-ag1 but it has much larger uncertainties. Moreover, the best
scores for slope and curvature are all from KGML-ag1.

Figure R5: The comparisons of overall prediction accuracy for N2O value (a), 1st order gradient (slope, b)
and 2nd order gradient (curvature, c) between four tree-based ML models (DT, RF, GB and XGB), two
deep learning models (ANN, GRU), and KGML-ag models. Different color symbols represent the
different models. The x- and y-error bars are coming from the maximum and minimum scores of
ensemble experiments. The dot represents the mean score of the ensemble experiments.

We have also updated the corresponding figures including Figure 5, Figure S6-S7, and section 3.3 (From
line 399 to 405).



“The results from eight different models showed that KGML-ag1 comparing with other pure ML models
consistently provided the lowest RMSE (3.59-3.94 mg N m-2 day-1, 1.14-1.23 mg N m-2 day-2, and
0.84-0.89 mg N m-2 day-3) and highest r2 (0.78-0.81, 0.48-0.56, and 0.23-0.31) for N2O fluxes, slope and
curvature, respectively (Fig. 4). This indicated that KGML-ag1 outperformed other pure ML models in
capturing both the magnitude and dynamics of N2O flux. KGML-ag2 presented slightly better mean
scores for N2O flux predictions than KGML-ag1, but worse scores for slope and curvature and larger
uncertainties. This proved the hypothesis discussed in section 3.2 that KGML-ag2 didn’t benefit the
magnitude and dynamics predictions of N2O flux with its more complex structure and less connections
between IMVs”

4. Many standard deep learning models were included for comparison, but an LSTM was not among
them. I would expect the LSTM to perform similarly to the GRU. I don't think it is crucial that an
LSTM be included in this comparison. However, if the GRU outperforms an LSTM, it could provide
further justification for choosing to use a GRU instead of an LSTM. Again, I could understand
simplifying the comparison by including only one recurrent neural network.

Response: We fully agree with your comments on LSTM. We have tested both GRU and LSTM as
mentioned in section 2.2.3, and preliminary results showed similar performance between the two neural
network structures. However, to simplify the comparison and streamline the discussion, we fixed GRU as
the basis for pure machine learning models and the KGML models.

To address the reviewer’s concern, we have conducted similar 10 ensemble experiments of LSTM
and the comparisons are presented here in Figure R6 and in the supplement Figure S8 (best model in
ensemble experiment). From Figure R6 demonstration case, the LSTM with rL

2 of 0.72 and rU
2 of 0.73 is

better than GRU model (rL
2 of 0.60 and rU

2 of 0.57) but worse than KGML-ag1 (rL
2 of 0.78 and rU

2 of
0.86). This further proved our conclusion that KGML-ag1 better represents complex dynamics of N2O
flux than other pure machine learning models.



Figure R6: N2O flux time series comparisons between KGML-ag1 predictions (red solid line), pure ML
models (other colored dashed line) and observations (black-dot line) from cross-validation on two
representative panels of chamber 3 and 4 in 2016. The r2 value was calculated between observations and
model simulations. r2

U represents the r2 value from upper panel (chamber 3) and r2
L represents the r2 value

from lower panel (chamber 4). The LSTM model has been tested by similar 10 ensemble experiments as
GRU. The best LSTM model was chosen to present here compared with other models.

5. You tested two input combinations, IMVcb1 and IMVcb2, but it is not clear how that test informed
the model development.



Response: Thank you for finding this unclear part in our manuscript. We have added more descriptions to
clarify why we have tested two combinations in section 2.2.4 paragraph 2 (From line 252 to 258).

“Variables ranked high in feature importance analysis should be primarily considered during model
development. To develop a functionable KGML-ag in real world, we further investigated the feature
importance of four IMVs that are available from mesocosm observations including CO2, NO3

-, VWC and
NH4

+, which were ranked 7th, 20th, 58th, 60th respectively in 92 input features of synthetic data (Fig.
S2a). We used these four available IMVs to create two input combinations: 1) CO2 flux, NO3

-, VWC and
NH4

+ (IMVcb1), and 2) NO3
-, VWC and NH4

+ (IMVcb2). The objective of building IMVcb2 was to
investigate the importance of highly ranked variable CO2 flux (by removing it from the inputs), and the
impact of mixing-up flux and non-flux variables on model performance. ”

Moreover, tests using IMVcb1 (with CO2) and IMVcb2 (without CO2) indicate that high ranking variables
detected from feature importance analysis based on synthetic data (like CO2 flux ranks 7th in 92 input
features ) can also be similarly important in N2O predictions with real observed data. Therefore the
feature importance results could benefit feature selection in real data. We have added the results and
discussion in section 3.2 last paragraph (From line 395 to 397).

“In addition, we also found all KGML-ag models would perform better by using IMVcb1 (with CO2) than
using IMVcb2 (without CO2) in real data tests, indicating feature importance analysis based on synthetic
data can be a reasonable substitute for analysis with the often limited real-world data.”

6. The reason for evaluating slope and curvature in addition to N2O value could be stated more clearly.

Response: We have added more explanations in section 3.2 paragraph 2 (From line 373 to 375).

“Slope represents the speed of N2O flux changes through time and curvature represents the acceleration.
Assessing prediction performance with these two metrics will reveal the model robustness on capture
variable dynamics, which is critical when predicting fast-change variables with hot moments like N2O.”

7. I recommend that the paragraph starting at line 194 be rewritten for clarity. First, data augmentation is
a class of methods, not a single method. Second, Meyer et al. use copula-based models in particular to
augment datasets. Do you use copula-based methods? The way this reference is cited suggests that
you follow their approach. Third, do you randomly sample observed data, or synthetically generated
data, or both? Do you randomly sample only the data which are hourly, e.g., air temperature, net
radiation, N2O, CO2, and VWC? How is the daily value calculated from the sampled data? I did not
find the answers to these questions to be clear from the text.

Response: We really appreciate your detailed comments on the data augmentation method. In this
revision, we have deleted the confusing sentence “Data augmentation is a typical practice in ML when
training data is limited (Meyer et al., 2021)” because we did not intend to highlight one particular method,
but only to explain the data augmentation concept using one recent citation. To your second question, the



augmentation method is only used on observed data and corresponding weather forcings. To your third
question, we only randomly sample the data which are hourly. Lastly, we used the average of the 16 hours
(or maximum valid hours) of data to represent the daily values. We have addressed all those questions in
the new paragraph in section 2.2.2 (from line 213 to 223):

“To reduce overfitting and increase the generalization of the trained model based on the small amount of
mesocosm data, we applied the following method to augment the experimental measurements and
weather forcings to 1000 times larger by sampling hourly data and averaging them to daily scale. In this
method, 16 hours (or maximum valid hours) of data are randomly selected from 24 hours of data to
compute their mean as the daily value. Since 3/4 of the day are covered by the selected data (16 hours /24
hours), the augmented daily values should be representative enough for the source day and meanwhile
present slight variations. Furthermore, the observation ratio, (24 hours - missing hours) / 24 hours, can be
used as the weights in loss function to inject the data quality information in model optimization. If the day
has more than 16 hours missing values, we consider the observations in that day as not trustworthy and
drop the day by setting the weight to 0. This method can not only augment the data to 1000 times larger
but also deal with the missing values in observed data inherently. The total amount of observed mesocosm
data and related weather forcings are augmented to 122 days x 3 years x 6 chambers x 1000 data samples
in this study.”

8. How well does the model perform out-of-sample? Out-of-sample performance is mentioned in the
introduction, but the discussion does not address it.

Response: We totally agree with the reviewer that out-of-sample performance would be critical for
predictive models. Thus we have mentioned in the introduction that out-of-scenario ability is the
limitation of machine learning models. In our study, we have compared the out-of-sample performance
between different models using the period without any observation data in section 3.2 paragraph 1 (from
line 363 to 366):
“For the region without observation data (normally before day 25), KGML-ag1 predicted stable N2O
fluxes close to 0 mg N m-2 day-1 (which is close to the reality in the experiment setting) while GRU
caused anomalous peaks of fluxes. This is because KGML-ag1 has learned knowledge for the whole
period from the pretraining process with ecosys model generated synthetic data, but GRU model has no
prior knowledge for the period without any data in observations;”
and section 3.3 last paragraph (from 424 to 429):
“From these comparisons, we infer that without considering temporal dependence and pretraining
process, the tree-based model including DT, RF, GB and XGB and deep learning model ANN predicted
erratic peaks in almost every missing data point, while GRU model was stable in small gaps and only
presented poor performance in long missing period (before 25 day). This improvement by GRU model
can be attributed to the structure of GRU that naturally keeps the historical information using hidden
states, which enables GRU to consider the temporal dependence and make consistent predictions over
time.”
Moreover, the objective for this study is to explore ways to incorporate knowledge into ML models for
improving agriculture ecosystem simulation. The mesocosm experiment measured many inputs and
intermediate variables in addition to the output of N2O fluxes, thus serving as a unique testbed.
Continuous N2O flux data with a comprehensive set of input and intermediate variables, especially those



at hourly or daily scales, are very limited. Some recent projects funded by the US Department of Energy
have started to collect such datasets in real-world fields, but the data has not been released. While we
fully understand the importance of out-of-sample testing, working with another dataset is beyond the
scope of this manuscript.

Technical corrections

● At line 239, Sec. 4.4 does not exist.

Response: We have corrected the sentence by replacing 4.4 to existing 4.3 (Line 262).
“... and would guide future N2O related measurements and KGML model development (discussed in Sec.
4.3).”

● At line 240, I believe this should refer to Fig. 1c and 1d, not 1b and 1c.

Response: We have corrected this mistake (line 264).
“Next we used the knowledge learned from synthetic data to develop the structure of KGML-ag (Fig.
1c-d).”

● Tables 1 and 2 have identical captions but different contents.

Response: We have corrected this by replacing the right caption.
“Table 2: Prediction accuracy comparisons between non-pretrained GRU model and KGML-ag1.”

● Sections 4.1 and 4.2 are both entitled "Interpretability of KGML-ag."

Response: We have replaced the section 4.2 title to “Lessons for KGML-ag development”



To Reviewer 3

The authors are proposing the development of a new approach KGML-ag to machine learning in
estimating N2O emissions from fertilized agricultural fields. This approach involves using data generated
from a process model and a mesocosm experiment to tune the relationships and their parameters among
input and intermediate variables by which N2O emissions are thought to be governed. The advantages of
this approach over process models are simplified input data requirements, more rapid model execution,
and possibly more accurate simulation of N2O fluxes measured in experiments for which the model is
tuned.
Response: We really appreciate the reviewer correctly recognizing our efforts and achievements. We want
to incorporate the domain knowledge learned from agroecosystem process-based model ecosys to the
advanced machine learning models to combine the advantages from both. Developing KGML-ag is one of
the very first few attempts to realize the concept of hybrid modeling (Reichstein et al. 2019 Nature) in
simulating agroecosystem biogeochemistry. To further improve our manuscript, we have carefully revised
the content based on all reviewers’ comments and suggestions.

The ability of this approach to simulate N2O emission events under controlled laboratory conditions is
impressive. It should be noted that the N2O emissions in Fig. 2 and the soil NO3 contents in Fig. 3 are
much larger than those commonly encountered in field conditions. However the relationships and their
parameters upon which this approach is based are not disclosed to the reader, and so remain a ‘black box’.
For example, in section 4.1 the processes governing the time course of N2O emissions following a urea
application are described, but the method by which these processes were represented in KGML is not.

Response: We have double checked the N2O emission and NO3
- concentration magnitude from mesocosm

and comparing with other field studies under similar conditions (Fassbinder et al., 2013; Grant et al.,
1999, 2006, 2008; Hamrani et al., 2020; Venterea et al., 2011). It turned out that our magnitude for N2O
(peak value around 20 mg N m-2 day-1) and NO3

- (peak value around 50 g N m-2) are within the field
observed ranges for managed crop soils. The reviewer’s impression that these values being “too large” is
likely because of the different units we used. Here all units are converted to daily scale as a default setting
in ecosys, while other studies often report N fluxes using mg N m-2 h-1 for N2O flux and mg N kg-1 for
NO3

- concentration (in this case, peak values in our experiment are 1 mg N m-2 h-1 and 40 mg N kg-1). To
avoid future misunderstandings of the data, we first add a sentence in data description section 2.2.2 to
include the comparisons with other studies (From line 198 to 201) and then add units in Figure 2 and
Figure 3 caption to notify readers about the different units being used.

“The magnitude of N2O flux and NO3
- soil concentration and their responses following fertilizer

application from this mesocosm experiment are consistent with several field studies of agricultural soils
(Fassbinder et al., 2013; Grant et al., 1999, 2006, 2008; Hamrani et al., 2020;  Venterea et al., 2011).”
“Figure 2: N2O flux time series comparisons among pure non-pretrained GRU predictions (blue line),
KGML-ag1 predictions (red line) and observations (black line-dot) from cross-validation. The N2O flux
unit is mg N m-2 day-1.”
“Figure 3: IMVs prediction from KGML-ag1. The black-dot line represents observations and the red line
represents the results from KGML-ag1. Chmb is the abbreviation for chamber. r2 and RMSE are



calculated and present in each year and chamber. The CO2 flux and soil NO3- concentration units are g C
m-2 day-1 and g N m-2, respectively.”
“Figure 3 Contd.: IMVs prediction from KGML-ag1. The black-dot line represents observations and the
red line represents the results from KGML-ag1. Chmb is the abbreviation for chamber. r2 and RMSE are
calculated and present in each year and chamber. The soil NH4

+ concentration and soil VWC units are g N
m-2 and m3 m-3, respectively.”

We would like to note that this study is one significant step towards none-black box use of
machine learning, but fully opening the black box is one of the frontiers in ML research that still has a
long way to go. We partially opened the black box by incorporating domain knowledge into a completely
black box ML model via three efforts: 1) building a hierarchical structure (with black-box GRU model as
basis) to simulate the important intermediate variables (IMVs) first; then the predicted IMVs are used as
the additional inputs in target variable simulation (e.g. N2O), which will provide an opportunity to track
those IMVs during the simulation period; 2) pretraining the KGML model with a process-based model so
that the KGML model can perform as a surrogate model of the process-based model; 3) other techniques
like using initial values to preserve state, feature importance analysis and stepwise training and fine
tuning etc. With these implementations, our KGML model not only outperformed pure ML models but
also was more interpretable. The ability to predict IMVs also shed light on model improvement, which is
not possible  or much more complicated with pure ML models.

Regarding the relationships and parameters, we will make the KGML-ag code and neural network
weights open through Github once the review process is done. But explicitly describing these like what is
often done for process-based models is not practical because KGML-ag is essentially a neural network
model, and readers may not be able to infer much directly from layers, nodes and weights.

Finally, we agree with the reviewer that in some cases why KGML performed so well needs to be
explained, but this would not deny our contribution towards opening the “black box”. To reflect the
reviewer’s concern, we have added in the discussion section 4.3 last paragraph (from line 558 to 562)
that:

“Finally, at the current stage we can not claim to have completely opened the black box of KGML-ag, but
this framework is a significant step towards this goal. For example, some ideas implemented in our study,
such as using pretraining to transfer knowledge from PB model to ML model, incorporating causal
relations by hierarchical structure, predicting IMVs for tracking middle changes and using initial values as
input to reduce data demand, would shed light on the future KGML-ag model improvement.”

As for all black box approaches to modelling, it is vitally important that KGML be subjected to tests with
truly independent datasets, i.e. datasets that are completely separate, and preferably very different, from
those used in model calibration. Impressive results can always be achieved by calibrating enough
parameters, but are these parameters robust? The extent to which such testing of KGML was conducted in
this paper is not clear. At the very least, for this paper to be publishable, calibration and validation of
KGML must be clearly distinguished, and clear evidence of independent testing must be provided.
Further description of the key relationships and their parameters that govern N2O emissions in the model
should also be provided so as to improve confidence in its robustness.



Response: We agree with the reviewer that out-of-sample testing is critical for model development. In this
work all results reported in Figure 4 and Figure 5 are from leave-one-out experiment. For example, we
trained KGML with data from chamber 1-5 and tested it against the left out chamber 6 as the model
performance. Another out-of-sample test is by comparing the prediction performance during the periods
without any chamber observation data (i.e. before April 25th of each year). Results show that KGML-ag1
predicted stable N2O fluxes close to 0 mg N m-2 day-1 (which is close to the reality in the experiment
setting) while GRU caused anomalous peaks of fluxes. This highlighted the power of KGML because
KGML-ag1 has learned “knowledge” for the whole period from the pretraining process using ecosys
model generated synthetic data. Relevant text can be found in 363-366:
“For the region without observation data (normally before day 25), KGML-ag1 predicted stable N2O
fluxes close to 0 mg N m-2 day-1 (which is close to the reality in the experiment setting) while GRU
caused anomalous peaks of fluxes. This is because KGML-ag1 has learned knowledge for the whole
period from the pretraining process with ecosys model generated synthetic data, but GRU model has no
prior knowledge for the period without any data in observations;”
and in lines 424-429:
“From these comparisons, we infer that without considering temporal dependence and pretraining
process, the tree-based model including DT, RF, GB and XGB and deep learning model ANN predicted
erratic peaks in almost every missing data point, while GRU model was stable in small gaps and only
presented poor performance in long missing period (before 25 day). This improvement by GRU model
can be attributed to the structure of GRU that naturally keeps the historical information using hidden
states, which enables GRU to consider the temporal dependence and make consistent predictions over
time.”

We understand these two out-of-sample tests are not in the sense of being “very different” from
what the KGML model was developed. However, this is so far the best data we can access. The
mesocosm experiment data we used in this study has provided a comprehensive set of inputs and
intermediate variables in addition to the output of N2O fluxes, thus serving as a unique testbed.
Continuous N2O flux measurements along with a comprehensive set of input and intermediate variables,
especially those at hourly or daily scales, almost do not exist or are not publicly accessible. Some recent
projects funded by the US Department of Energy have started to collect such gold standard dataset under
field conditions, but the data needs to be accumulated for another one or two years before release. We
anticipate that gold standard data will significantly benefit the development of the KGML-ag model.

Finally, we argue that the novelty and robustness of our study can be justified in a different
perspective. Our results show that a well-calibrated ecosys is not able to reproduce many dynamics of
observed N2O fluxes (Fig. S9) regardless how we tune ecosys parameters. A pure ML model can better
reproduce the time series, but still has missed several key peaks in growing season while falsely predicted
spring peak emissions even though fertilizers were not applied until several days later (Fig. 2). The
KGML-ag1 leveraged the advantage of ecosys and the pure ML model, and outperformed both (Fig. 2).
These nested comparisons clearly demonstrate the power of KGML as a framework. While we do not
argue that KGML-ag is a perfect model that would be directly applicable to other places, sharing our
approach will provide food-for-thought to the community on how to build a hybrid biogeochemical model
that is computationally more efficient and more robust than both process-based and ML-based models.
We have added new discussions about this concern in the last paragraph of section 4.3 (from line 562 to
566).



“Besides, we acknowledge the importance of further testing the KGML-ag over completely independent
datasets, but results presented in this manuscript are sufficient to justify the power of KGML as a
framework. The mesocosm experiment data we used in this study has provided a comprehensive set of
inputs and intermediate variables in addition to the output of N2O fluxes, thus serving as a unique testbed.
We expect our validation results will be more solid once more gold standard data of N2O fluxes along
with other relevant inputs and intermediate variables become publicly available.”

In the Discussion, the authors rightfully address some of the factors that may limit the robustness of
KGML. These limitations will likely become more apparent when the authors conduct tests of KGML
under field conditions. Addressing these factors, as described by the authors, appears to require that
KGML more closely resemble process-based models, and may reduce the computational advantages
claimed for the KGML approach.

Response: The reviewer’s concern on decreased performance in field application is legit, and is a good
hypothesis to test when more dataset become available. At this stage, we do not know whether or not
these limitations will become more apparent under field conditions. But we are currently collecting new
gold standard data of inputs, intermediate and N2O fluxes from both field and lab experiments, which will
be used to test the reviewer’s hypothesis. We would also like to acknowledge that KGML-ag’s limitations
apply to both pure ML model and process-based models under field conditions, so it is very likely
KGML-ag will continue to outperform both.

Another concern by the reviewer is that further development of KGML will make it resemble
process-based models, thereby reducing the computational advantages. We argue this is unlikely because
the application of neural networks is faster than process-based models by multiple orders. To surrogate as
many components of process-based models as possible is one research frontier in hybrid modeling for
earth system science (Reichstein et al. 2019 Nature; Irrgang et al. 2021 Nature Machine Intelligence),
with latest advances occurred in weather forecast (Bauer et al. 2021 Nature Computational Science). By
using a hybrid model, computationally inefficient components of PB can be identified one by one, and be
replaced with more efficient ML-based surrogates to eventually obtain the most efficient model, thereby
resolving the concern raised by the reviewer. We have added the new discussion at the end of section 4.3
to address the reviewer’s concern (from line 566 to 573).
“Moreover, incorporating more and more domain knowledge into KGML-ag will be inevitable in further
improvement, but we don’t think KGML-ag will become inefficient as it becomes more like the PB
model. In fact, to efficiently surrogate components of PB models has been proposed as a research frontier
in hybrid modeling for earth system science (Reichstein et al., 2019; Irrgang et al., 2021), with latest
advances occurring in weather forecasts (Bauer et al., 2021). By using a hybrid model, computationally
inefficient components of PB can be identified one by one, and be replaced with more efficient ML-based
surrogates to eventually obtain the most efficient model. Further KGML-ag model development will also
need to balance efficiency, accuracy and interpretability.”
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Abstract.  23 

Agricultural nitrous oxide (N2O) emission accounts for a non-trivial fraction of global greenhouse gases (GHGs) budget. To 24 

date, estimating N2O fluxes from cropland remains a challenging task because the related microbial processes (e.g., nitrification 25 

and denitrification) are controlled by complex interactions among climate, soil, plant and human activities. Existing approaches 26 

such as process-based (PB) models have well-known limitations due to insufficient representations of the processes or 27 

uncertaintiesconstraints of model parameters, and to leverage recent advances in machine learning (ML) a  new method is 28 

needed to unlock the “black box” to overcome its limitations such asdue to low interpretability, out-of-sample failure and 29 

massive data demand. In this study, we developed a first- of- theits kind knowledge-guided machine learning model for 30 

agroecosystems (KGML-ag), by incorporating biogeophysical/chemical domain knowledge from an advanced PB model, 31 

ecosys, and tested it by comparing simulating daily N2O fluxes with real observed data from mesocosm experiments. The 32 

Gated Recurrent Unit (GRU) was used as the basis to build the model structure. To optimize the model performance, we have 33 

investigated a range of ideas, including: 1) Using initial values of intermediate variables (IMVs) instead of time series as model 34 

input to reduce data demand; 2) Building hierarchical structures to explicitly estimate IMVs for further N2O prediction; 3) 35 

Using multitask learning to balance the simultaneous training on multiple variables; and 4) Pretraining with millions of 36 

synthetic data generated from ecosys and fine tuning with mesocosm observations. Six other pure ML models were developed 37 
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using the same mesocosm data to serve as the benchmark for the KGML-ag model. Results show that KGML-ag did an 38 

excellent job in reproducing the mesocosm N2O fluxes (overall r2 = 0.81, and RMSE = 3.6 mg N m-2 day-1 from cross-39 

validation). Importantly KGML-ag always outperforms the PB model and ML models in predicting N2O fluxes, especially for 40 

complex temporal dynamics and emission peaks. Besides, KGML-ag goes beyond the pure ML models by providing more 41 

interpretable predictions as well as pinpointing desired new knowledge and data to further empower the current KGML-ag. 42 

We believe the KGML-ag development in this study will stimulate a new body of research on interpretable ML for 43 

biogeochemistry and other related geoscience processes. 44 

1 Introduction 45 

Nitrous oxide (N2O), with its global warming potential 273 ± 118 times greater than that of carbon dioxide (CO2) for a 100-46 

year time horizon, is one of the majorimportant greenhouse gases (IPCC6; Forster et al., 2021). The increasing rate of 47 

atmospheric N2O concentration during the period 2010-2015 is 44% higher than during 2000-2005, mainly driven by increased 48 

anthropogenic sources that have increased total global N2O emissions to ~17 Tg N yr−1 (Syakila and Kroeze, 2011; Thompson 49 

et al., 2019). It is estimated that approximately 60% of the contemporary N2O emission increases are from agriculture 50 

management at global scale (Pachauri et al., 2014; Robertson et al., 2014; Tian et al., 2020), but the estimation uncertainty can 51 

exceed 300% (Barton et al., 2015; Solazzo et al., 2021). Quantifying N2O emissions from agricultural soils is extremely 52 

challenging, partly because the related microbial processes, mainly about incomplete denitrification and nitrification, are 53 

controlled by many environment and management factors such as temperature/water conditions, soil/crop properties, and N 54 

fertilization rate, all of which together have collectively led to large temporal and spatial variabilities of N2O emissions 55 

(Butterbach-Bahl et al., 2013; Grant et al., 2016). 56 

 57 

Process-based (PB) models are often used for simulating N2O fluxes from the agroecosystems, but they have some inherent 58 

limitations, including incomplete knowledge of the processes, low accuracy due to the under-constrained parameters, 59 

expensive computing cost, and rigid structure for further improvements, that we could not resolve by using PB model itself. 60 

For example, an advanced agroecosystem model, ecosys (Grant et al., 2003, 2006, 2016), simulates N2O production rates 61 

through nitrification and denitrification processes when oxygen (O2) is limited, with equations considering the influence from 62 

related substrate concentrations (e.g., NO2
-, N2O, and CO2), nitrifier and denitrifier populations, and soil thermal, hydrological 63 

physical and chemical conditions. The produced N2O accumulates, transfers in gaseous phase, aqueous phase, over different 64 

soil layers, and eventually exchanges with atmosphere at the soil surface. Other PB models, including DNDC (Zhang et al., 65 

2002; Zhang and Niu, 2016), DAYCENT (Del Grosso et al., 2000; Necpálová et al., 2015), and APSIM (Keating et al., 2003; 66 

Holzworth et al., 2014), have also included processes to simulate N2O production, but adopt different parameterizations using 67 

static partition parameters to estimate N2O emission from nitrification, and other empirical parameters to control the influence 68 

on nitrification from soil water content, pH, temperature and substrate concentrations. Besides, N2O is intimately connected 69 
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with the soil organic carbon (SOC) dynamics, because soil nitrifiers and denitrifiers interact strongly with aerobic and 70 

anaerobic heterotrophs that process SOC evolution, and all of these microbes are driven by shared environmental variables 71 

including soil temperature, moisture, redox status, and physical and chemical properties (Thornley et al., 2007). As expected, 72 

these connections make it difficult for PB models, even the most advanced ones like ecosys, to find sufficient representations 73 

of the physical and biogeochemical processes or obtain enough data to calibrate a large number of model parameters with 74 

strong spatio-temporal variations. Thus, novel approaches are needed for addressing the big challenge of agricultural N2O flux 75 

simulations. 76 

 77 

Machine learning (ML) models can automatically learn patterns and relationships from data. Recent studies have investigated 78 

the potential to predict agricultural N2O emission with ML models, including random forest (RF, Saha et al., 2021), 79 

metamodelling with extreme gradient boosting (XGBoost) (Kim et al., 2021), and deep learning neural network (DNN) 80 

(Hamrani et al., 2020). Notably, Hamrani et al. (2020) compared nine widely used ML models for predicting agricultural N2O. 81 

That study pointed out that the long short term memory (LSTM) model with recurrent networks containing memory cells as 82 

building blocks will be most suitable for N2O predictions, but the challenge remains with respect to the ability of capturing the 83 

sharp peak of N2O fluxes and lag time between N fertilizer application and the emission peak. Although there is an increasing 84 

interest in leveraging recent advances in machine learning, capturing this opportunity requires going beyond the ML 85 

limitations, including limited generalizability to out-of-sample scenarios, demand for massive training data, and low 86 

interpretability due to the “black-box” use of ML (Karpatne et al., 2017). PB models with their transparent structures built by 87 

representations of physical and biogeochemical processes, seem to be exact complementary to ML models. Thus, combining 88 

the power of ML model and PB model understanding innovatively is likely a path forward. 89 

 90 

The above need to integrate ML and PB models can be potentiallyssibly addressed by the newly proposed framework of 91 

Knowledge-guided Machine Learning (KGML) models. In the review by Willard et al. (2021), five research frontiers have 92 

been identified regarding the development of KGML for diverse disciplines including earth system science, they are: 1) Loss 93 

function design according to physical or chemical laws (Jia et al., 2019, 2021; Read et al., 2019); 2) Knowledge-guided 94 

initialization through pretraining ML models with synthetic data generated from PB models (Jia et al., 2019, 2021; Read et al., 95 

2019); 3) Architecture design according to causal relations or adding dense layers containing domain knowledge (Khandelwal 96 

et al., 2020; Beucler et al., 2019, 2021); 4) Residual modeling with ML models to reduce the bias between PB model outputs 97 

and observations (Hanson et al., 2020); and 5) Other hybrid modeling approaches combining PB and ML models (Kraft et al., 98 

2021). These recent advances in KGML pave the pathway to a more efficient, accurate and interpretable solution for estimating 99 

N2O fluxes from the agroecosystem.  100 

 101 

In this study, we present athe first-of-its-kind attempt of developing athe KGML for agricultural GHG fluxes prediction 102 

(KGML-ag) with knowledge-guided initialization and architecture design, and demonstrate the potential of KGML-ag with a 103 
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case study on quantifying N2O flux observed by a multi-year mesocosm experiments. We designed the KGML-ag structure 104 

based on the causal relations of related N2O processes informed by an advanced agroecosystem model, ecosys (Grant et al., 105 

2003, 2006, 2016). We used the synthetic data generated from ecosys to design the KGML-ag input/output, and to pre-train 106 

the KGML-ag model to learn the basic patterns of each variable. Observations from multi-season controlled-environment 107 

mesocosm chambers (Miller, 2021, thesis; Miller et al., 2021, in review) were used to refine the pretrained KGML-ag and 108 

evaluate the model performance. Since there is limited literature that guides the development of KGML-ag and not a one that 109 

directly addressed GHG fluxes, we investigated a range of ideas to optimize the model performance, including: 1) Using initial 110 

values of intermediate variables (IMVs) instead of sequences as model input to reduce data demand; 2) Building hierarchical 111 

structures to explicitly estimate IMVs for further N2O prediction; 3) Using multitask learning to balance the simultaneous 112 

training on multiple variables; and 4) Pretraining with millions of synthetic data generated from ecosys and fine tuning with 113 

mesocosm observations. Although we evaluated the KGML-ag models with real measurements only from a mesocosm 114 

experiment, the lessons learned from the development process and various KGML-ag structures can be transferred to other 115 

data, other variables and large scale simulations, therefore have broader implications on further KGML related research in 116 

agriculture. We believe this study will stimulate a new body of research on interpretable machine learning for biogeochemistry 117 

and other related topics in geoscience. 118 

2 Methods 119 

2.1 Experimental design overview 120 

To develop and evaluate the KGML-ag models and compare their performance with pure ML models, we designed the 121 

following experiments: 122 

1) With the synthetic data, we developed and pretrained multiple KGML-ag models to learn general patterns and 123 

interactions among variables, and evaluated their model performance (Fig. S2, Table 1); 124 

2) With the observed data, we finetuned multiple KGML-ag models to adapt real-world situations, and evaluated their 125 

model performance (Fig. 2-3; Fig. S3-5; Table 2-3); 126 

3) We further benchmarked KGML-ag models and uncertainties with other pure ML models without considering 127 

temporal dependence, including Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB) from the sklearn 128 

package (https://scikit-learn.org/stable/), Extreme Gradient Boosting (XGB) from the XGBoost package 129 

(https://xgboost.readthedocs.io/en/latest/) and a 6-linear-layer artificial neural network (ANN) with the mesocosm 130 

experiment data by 10 times ensemble experiments (Fig. 4-5; Fig. S6-8); 131 

4) We conducted a few small experiments to further investigate how various model configurations, such as the 132 

pretraining process, data augmentation and IMV initial values would influence KGML-ag model performance (Table 133 

3). 134 

https://scikit-learn.org/stable/
https://xgboost.readthedocs.io/en/latest/
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2.2 KGML-ag structure development 135 

2.2.1 Generating synthetic data with ecosys 136 

We generated synthetic data using a PB model, ecosys. The ecosys model is an advanced agroecosystem model constructed 137 

from detailed biophysical and biogeochemical rules instead of using empirical relations (Grant et al., 2001). It represents N2O 138 

evolution in the microbe-engaged processes of nitrification-denitrification using substrate kinetics that are sensitive to soil 139 

nitrogen availability, soil temperature, soil moisture, and soil oxygen status (Grant and Pattey 2008). Two groups of microbial 140 

populations, autotrophic nitrifiers and heterotrophic denitrifiers, produce N2O with specific competitive or cooperative 141 

relations in ecosys when O2 availability fails to meet O2 demand for their respirations and NO2
- become alternative electron 142 

acceptors. N2O transfer within soil layers and from soil to the atmosphere is driven by concentration gradient using diffusion-143 

convection-dispersion equations, in the forms of gaseous and aqueous N2O under control of volatilization-dissolution (Grant 144 

et al., 2016). Unlike the pipeline model described by Davidson et al. (2000) , which mainly consider the correlations of N2O 145 

production with nitrogen availability and of N2O emissionsemisiontsting with soil water content, ecosys enables integrative 146 

effects of energy, water, nitrogen availability on N2O production and N2O transfer via the microbial population dynamics and 147 

their interactions with soil, plant, and atmospheric dynamics, under diverse meteorological and anthropogenic disturbances 148 

(e.g. runoff, drainage, tillage, irrigation, soil erosion).. Many previous studies have demonstrated its robustness in simulating 149 

agricultural carbon and nitrogen cyclings at different spatial/temporal scales, and under different management practices (Grant 150 

et al., 2003, 2006, 2016; Metivier et al., 2009; Zhou et al., 2021).  For the agricultural ecosystems in the US Midwest, whose 151 

simulations are used for synthetic data in this study, the performance of ecosys on CO2 and N2O fluxes have been extensively 152 

benchmarked, including CO2 exchange (NEE, R2 = 0.87) and leaf area index (LAI, R2 = 0.78) from six flux towers, USDA 153 

census reported corn yield (R2 = 0.83) and soybean yield (R2 = 0.80), satellite-derived GPP for corn (R2 = 0.83) and soybean 154 

(R2 = 0.85) from Illinois, Iowa and Indiana, and cumulative N2O emissions (R2 = 0.36) across eight Midwestern states (Wang 155 

et al., 2021; Yang et al., 2022). Therefore, ecosys is an appropriate choice of domain knowledge provider and synthetic data 156 

generator in the development of KGML models. We generated daily synthetic data including N2O flux and 76 IMVs (e.g. CO2 157 

flux from soil, layerwise soil NO3
- concentration, layerwise soil temperature, and layerwise soil moisture; detailed in Table 158 

S1) from ecosys simulations for 2000-2018 over 99 randomly selected counties in Iowa, Illinois, and Indiana, USA. We used 159 

hourly meteorological inputs (downward shortwave radiation, air temperature, precipitation, relative humidity, and wind 160 

speed) from the phase 2 of North American Land Data Assimilation System (NLDAS-2, Xia et al., 2012) and layerwise soil 161 

properties (e.g.  bulk density, texture, pH, SOC concentration) from the SSURGO database (Soil Survey Staff, 2020) as inputs 162 

to ecosys. Crop management except N fertilization rates were configured to the same settings as mesocosm experiments 163 

(described in Sec 2.2.2). To increase the variability in synthetic data, we implemented 20 different N fertilization rates ranging 164 

from 0 to 33.6 g N m-2 (i.e. 0 to 300 lb N ac-1) in each simulation of 99 counties, and more detailed information for model 165 

setup refers to Zhou et al. (2021). 166 
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 167 

The generated synthetic data were then processed for further use by KGML-ag development. Meanwhile, the hourly weather 168 

forcings were converted to seven daily variables, including the maximum air temperature (TMAX_AIR, oC), difference 169 

between the maximum and the minimum air temperature (TDIF_AIR, oC), the maximum humidity (HMAX_AIR, fraction), 170 

difference between the maximum and the minimum humidity (HDIF_AIR, fraction), surface downward shortwave radiation 171 

(RADN, W m-2), precipitation (PREC, mm day-1), and wind speed (WIND, m s-1). Six soil properties were retrieved from the 172 

SSURGO database, including total averaged (depth weighted averaged for all layers) bulk density (TBKDS, Mg m-3), sand 173 

content (TCSAND, g kg-1), silt content (TCSILT, g kg-1), pH (TPH), cation exchange capacity (TCEC, cmol+ kg-1) and soil 174 

organic carbon (TSOC, g C kg-1); and two crop properties were retrieved, including planting day of the year (PDOY) and crop 175 

type (CROPT, 1 for corn and 0 for soybean). Finally, each synthetic data sample has daily N2O flux, 76 selected IMVs, 7 176 

weather forcings (W), 1 N fertilization rate (FN, g N m-2) and 8 soil/crop properties (SCP) (Fig. 1.a; Table S1). The periods 177 

from April 1st to July 31st (122 days) were selected to cover the mesocosm observations (around 30 days before and 90 days 178 

after N fertilizer date). The total amount of synthetic data sample is 122 days x 18 years x 99 counties x 20 N fertilizer rates 179 

(about 4.3 million data points). We randomly selected the samples from 70 counties for training, 10 counties for validation, 180 

and 19 counties for testing. 181 

2.2.2 Mesocosm experiments for KGML-ag model fine-tuning and evaluation 182 

Observations were acquired from a controlled-environment mesocosm facility on the St. Paul campus of the University of 183 

Minnesota. Soil samples were sourced in 2015 from a farm in Goodhue County, MN (44.2339o N and 92.8976o W), which had 184 

been under corn-soybean rotation for 25 years. Six chambers with a soil surface area of 2 m2 and column depth of 1.1 m were 185 

used to plant continuous corn during 2015-2018 and monitor the N2O flux response to different precipitation treatments. The 186 

experiment also measured other environmental variables including air temperature and photosynthetically active radiation 187 

(PAR), which were controlled to mimic the outdoor ambient environment. Granular urea fertilizer was hand broadcasted and 188 

incorporated to a depth of 0.05 m to each chamber at a rate of 22.4 g N m-2 (200 lb N ac-1) on May 1st of 2015, May 4th of 189 

2016 and May 3rd of 2017, and 10.3 g N m-2 (92 lb N ac-1) on May 8th of 2018. Corn hybrid (DKC-53-56RIB) were hand 190 

planted to a depth of 0.05 m in two rows spaced 0.76 m apart 3-5 days after fertilizer application, at a seeding rate of 35,000 191 

seeds ac-1 in 2015 to 2017, and 70,000 seeds ac-1 in 2018 but thinned upon emergence to ensure 100 percent emergence at 192 

35,000 seeds ac-1. Crops were harvested at the end of September by cutting the stover five inches above the soil. Hourly N2O 193 

fluxes (mg N m-2 h-1) and CO2 fluxes (g C m-2 h-1) were measured using non-steady-state flux chambers with a CO2 analyzer 194 

(LI-10820 for 2016 and LI-7000 for 2017 and 2018, LI-COR Biosciences, Lincoln, NE) and a N2O analyzer (Teledyne 195 

M320EU, Teledyne Technologies International Corp, Thousand Oaks, CA) (Detail method can be retrieved from Fassbinder 196 

et al., 2012, 2013). We also collected soil moisture at 15 cm depth (VWC as abbreviation of volumetric water content, m3 m-197 

3), weekly 0-15 cm depth soil NO3
- + NO2

- concentration (NO3
- for short in the following text, g N Mg-1), soil NH4

+ 198 

concentration (NH4
+, g N Mg-1), and related environment variables including air temperature, radiation, humidity and soil/crop 199 
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properties from three growing seasons during 2016-2018 and six mesocosm chambers (Fig. S1). The magnitude of N2O flux 200 

and NO3
- soil concentration and their responses following fertilizer application from this mesocosm experiment are consistent 201 

with several field studies of agricultural soils (Fassbinder et al., 2013; Grant et al., 1999, 2006, 2008; Hamrani et al., 2020;  202 

Venterea et al., 2011). More details about the mesocosm facility and experimental design can be found in the thesis of Miller 203 

L. (2021). 204 

 205 

The observed data were then processed to fine-tune and evaluate the KGML-ag models. The N2O flux and four IMVs and 206 

weather variables were collected from the measurements in the selected period (i.e., April 1st to July 31st). Weekly NO3
- (short 207 

for soil NO3
- within 0-15 cm depth), and NH4

+ (short for soil NH4
+ within 0-15 cm) were linearly interpolated to the daily time 208 

scale on days containing VWC (short for soil VWC in 15 cm) data. Hourly air temperature, net radiation, N2O (short for N2O 209 

fluxes from soil), CO2 (short for CO2 fluxes from soil) and VWC were resampled to daily scale. All SCP were derived from 210 

mesocosm measurements except that TCEC was derived from the SSURGO database according to the soil origin. We used the 211 

leave-one-out cross-validation (LOOCV) method for the finetuning and evaluation process. Each time we used one chamber 212 

data for validation and another five chambers’ data for model finetuning.  213 

 214 

To increase the model generalization and avoid overfitting, we used the data augmentation method to enrich the finetuning 215 

data set to be 1000 times larger. Data augmentation is a typical practice in ML when training data is limited (Meyer et al., 216 

2021). In particular, we randomly sampled 16 hours of data from a 24-hours period in each day and chamber, and then used 217 

the sampled data to calculate the daily value. If less than 16 missing values existed in 24 hours, we used the above method to 218 

sample the data and calculated a fraction number (24-missing value number)/24 to record valid data fraction in the mask 219 

matrix. If more than 16 missing values were found, we dropped this point and recorded 0 in the mask matrix. The final sample 220 

has daily N2O flux, 4 IMVs, 7 weather forcing variables and 8 static soil/crop properties (similar to synthetic data). The total 221 

amount of augmented observed data sample is 122 days x 3 years x 6 chambers x 1000 data augmentations. The mask matrix 222 

is of the same size as the observed data sample but its elements range from 0 to 1. 223 

 224 

To reduce overfitting and increase the generalization of the trained model based on the small amount of mesocosm 225 

data, we applied the following method to augment the experimental measurements and weather forcings to 1000 226 

times larger by sampling hourly data and averaging them to daily scale. In this method, 16 hours (or maximum 227 

valid hours) of data are randomly selected from 24 hours of data to compute their mean as the daily value. Since 228 

3/4 of the day are covered by the selected data (16 hours /24 hours), the augmented daily values should be 229 

representative enough for the source day and meanwhile present slight variations. Furthermore, the observation 230 

ratio, (24 hours - missing hours) / 24 hours, can be used as the weights in loss function to inject the data quality 231 

information in model optimization. If the day has more than 16 hours missing values, we consider the observations 232 
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in that day as not trustworthy and drop the day by setting the weight to 0. This method can not only augment the 233 

data to 1000 times larger but also deal with the missing values in observed data inherently. The total amount of 234 

observed mesocosm data and related weather forcings are augmented to 122 days x 3 years x 6 chambers x 1000 235 

data samples in this study.  236 

 237 

2.2.3 Gated Recurrent Unit (GRU) as the basis of KGML-ag 238 

Hamrani et al. (2020) compared different models and reported that LSTM provided the highest accuracy in predicting N2O 239 

fluxes, because N2O flux is time dependent by its production/consumption nature and LSTM simulates target variablesvariable 240 

by considering both current and historical states. The LSTM model, proposed by Hochreiter and Schmidhuber (1997), uses a 241 

cell state as an internal memory to preserve the historical information. At each time step, it creates a set of gating variables to 242 

filter the input and historical information and then uses the processed data to update the cell state. Similar to LSTM, GRU is a 243 

gated recurrent neural network but only keeps one hidden state (Cho et al., 2014). Though simpler than LSTM, GRU is proved 244 

to have similar performance (Chung et al., 2014). Our preliminary test on synthetic data for N2O prediction showed that GRU 245 

indeed provided similar or higher accuracy and model efficiency under different model settings than LSTM (Table S2). This 246 

is possiblelikely because simpler models with fewer weights and hyperparameters are more robust in combating the overfitting 247 

problem. Therefore, we choose GRU as the basis of KGML-ag development. 248 

2.2.4 Incorporating domain knowledge to the development of KGML-ag 249 

To quantitatively reveal the correlations between N2O fluxes and IMVs and guide the KGML-ag development, we conducted 250 

the feature importance analysis by a customized 4-layer GRU ML model (Fig. 1b). Each layer of the model has a GRU cell 251 

with 64 hidden units. The 4-layer structure makes the model deeper and capable of capturing complex interactions. Between 252 

each GRU cell, 20% of the output hidden states are randomly dropped by replacing them with zero values (so called 20% 253 

dropout) to avoid overfitting. A linear dense layer is used to map the final output to N2O. We first trained GRU models usingby 254 

synthetic data with different combinations of IMVs as inputs to predict the N2O fluxes (original-test, Table S2). The feature 255 

importance analysis of well-trained models was then implemented by replacing one input feature with a Gaussian noise with 256 

mean μ=0 and standard deviation σ=0.01, while keeping others untouched (new-test). The importance score was calculated by 257 

the new-test’s root mean square error (RMSE) (replacing one feature) minus the original-test’s RMSE (no replacing). RMSE 258 

was calculated by 
√∑ (𝑦𝑖−𝑦𝑖′)2𝑁

1

𝑁
 where 𝑁 is the total number of observations across time and space, 𝑦𝑖 is i-th measurement from 259 

synthetic data or observed data and 𝑦𝑖′ is its corresponding prediction.  260 

 261 
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To find important variables for N2O flux prediction in an ideal situation wherethat all variables are available, we conducted a 262 

feature importance analysis for GRU models with all IMVs and basic inputs including FN, 7 W and 8 SCP (Fig. S2a). Results 263 

indicated that flux variables including NH3, H2, N2, O2, CH4, evapotranspiration (ET) and CO2 had significant influence on the 264 

model performance. Variables ranked high in feature importance analysis areshould be primarily considered with priority 265 

during model development. To develop a functionable KGML-ag in real world, we further investigated the feature importance 266 

of four IMVs that are available from mesocosm observations including CO2, NO3
-, VWC and NH4

+, which were ranked 7th, 267 

20th, 58th, 60th respectively in 92 input features of synthetic data (Fig. S2a). We used these four available IMVs to create two 268 

input combinations: 1) CO2 flux, NO3
-, VWC and NH4

+ (IMVcb1), and 2) NO3
-, VWC and NH4

+ (IMVcb2). The objective of 269 

building IMVcb2 was to investigate the importance of highly ranked variable CO2 flux (by removing it from the inputs), and 270 

the impact of mixing-up flux and non-flux variables on model performance. We tested the feature importance of the GRU 271 

models built with IMVcb1 and IMVcb2 to check whether they would help in N2O prediction (Fig. S2b-c). All the feature 272 

importance results above indicated the correlation intensity between N2O and many other variables, which would help the 273 

KGML-ag model development and interpretation in this study (rest of this section and Sec. 3.1), and would guide future N2O 274 

related measurements and KGML model development (discussed in Sec. 4.34). 275 

 276 

Next we used the knowledge learned from synthetic data to develop the structure of KGML-ag (Fig. 1cb-dc). Previous studies 277 

for KGML models have used physical laws, e.g., conservation of mass or energy, to design the loss function for constraining 278 

the ML model to produce physically consistent results (Read et al., 2019; Khandelwal et al., 2020). However, for complex 279 

systems like agroecosystems, it is challenging to incorporate physical laws, such as mass balance for N2O, into the loss function 280 

due to the incomplete understanding of the processes and the lack of mass balance related data for validation. An alternative 281 

solution is to incorporate such information in the design of the neural network (Willard et al., 2021). Effectiveness of such an 282 

approach was demonstrated by Khandelwal et al. (2020) in the context of modeling stream flow in a river basin using Soil & 283 

Water Assessment Tool (SWAT). They used a hierarchical neural network to explicitly model IMVs (e.g., soil moisture, snow 284 

cover) and their relationships with the target variable (streamflow) and showed that this model is much more effective than a 285 

neural network that attempts to directly learn the relationship between input drivers and the target variables. Following this 286 

idea, we identified four desired features of an effective KGML-ag model, including: 1) We used initial values instead of 287 

sequence of the IMVs from synthetic data or observed data to provide a solid starting state for the ML system and reduce the 288 

IMV data demand, and then used the rest of the data to further constrain the prediction of IMVs; 2) We built a hierarchical 289 

structure based on the structure of process representation incausal relations derived from ecosys to first predict IMVs and then 290 

simulate N2O with predicted IMVs; 3) We trained all variables together using multitask learning to reach the best prediction 291 

scores, which generalized the model and incorporated interactions between IMVs and N2O; 4) We initialized the KGML-ag 292 

model by pretraining withusing synthetic data before using real observed data to transfer physical knowledge, which further 293 

reduced the demand on large training samples and aided in faster convergence for fine-tuning. 294 
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 295 

To meet these desired features, we proposed two KGML-ag models (Fig. 1c-d). The first model, KGML-ag1, is a hierarchical 296 

structure containing two modules to simulate IMVs and N2O sequentially. Each module is a 2-layer 64 units GRU ML model. 297 

The inputs to the module of the KGML-ag1 model for IMV predictions (KGML-ag1-IMV module) are FN, 7W and 8SCP 298 

together with the initial values of IMVs, and the outputs are IMV predictions. The inputs to the module of the KGML-ag1 299 

model for N2O predictions (KGML-ag1-N2O module) are FN, 7W, 8SCP and predicted IMVs from KGML-ag1-IMV, and the 300 

output is the target variable N2O. Linear dense layers were coded for both modules to map output states to IMVs or N2O. The 301 

dropout method was applied to drop 20% of the state output between GRU cells and dense layers. The second model, KGML-302 

ag2, is also a hierarchical structure similar to KGML-ag1, but has multiple KGML-ag2-IMV modules to explicitly simulate 303 

IMVs by tuning them separately in the fine-tuning process (discussed in Sec. 2.2.5). Each KGML-ag2-IMV module in KGML-304 

ag2 is a 2-layer 64 units GRU cell with the inputs of FN+7W+8SCP and one IMV initial value, and the output of one IMV 305 

prediction. The KGML-ag2-N2O module collects the IMV predictions from KGML-ag2-IMV modules and predicts the N2O 306 

with inputs of FN+7W+8SCP and predicted IMVs. 307 

2.2.5 Strategies for pretraining and fine-tuning processes 308 

To increase the efficiency of the training process, we used the Z-normalization ( 
(𝑋− 𝜇)

𝜎
, where 𝑋 is the vector of a particular 309 

variable over all the data samples in the data set; 𝜇 is the mean value of 𝑋; 𝜎 is the standard deviation of 𝑋) method to 310 

normalize each variable separately on synthetic data. Then the scaling factors (𝜇, 𝜎) derived from ecosys synthetic data for 311 

each variable were used to Z-normalize observed data into the same ranges as synthetic data. As mentioned in Sec. 2.2.1, the 312 

TDIF_AIR, HDIF_AIR were used instead of absolute min temperature (TMIN_AIR) and humidity (HMIN_AIR). This is done 313 

because TMIN_AIR and HMIN_AIR follow similar trends as TMAX_AIR and HMAX_AIR, making Z-normalization 314 

numerically poorly defined. Using the difference between maximum and minimum can provide a clearer information of daily 315 

air temperature/humidity variation.  316 

 317 

During the pretraining process, we initialized the IMV of KGML-ag using the first day value of synthetic IMV time series. 318 

Adam optimizer with a start learning rate of 0.0001 was used for the training process. The learning rate would decay by 0.5 319 

times after every 600 training epochs. At each epoch, synthetic data samples were randomly shuffled before being input to the 320 

model to predict N2O (and IMVs if any). The mean square error (MSE) loss (calculation was equal to the square of RMSE) or 321 

sum of MSE loss (if multitask learning) between predictions and ecosys synthetic observations were calculated to optimize the 322 

weights of GRU cells. After the training process updated the model’s weights, the validation process was performed to evaluate 323 

the model performance based on untouched samples with RMSE and the square of Pearson correlation coefficient (r2). r2 was 324 

calculated as 
(∑ (𝑦𝑖′− 𝑦𝑖′)(𝑦𝑖− 𝑦𝑖))𝑖

2

∑ (𝑦𝑖′− 𝑦𝑖′)2(𝑦𝑖− 𝑦𝑖)2
𝑖

, where 𝑦𝑖  is the i-th measurement from synthetic data or observed data, 𝑦𝑖′  is its 325 
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corresponding prediction, 𝑦𝑖 is the mean of the measurement 𝑦  in diagnosing space and  𝑦𝑖′ is the mean of the predicted 𝑦′ in 326 

diagnosing space. If both validated r2 and RMSE were better than the best values in previous epochs, the updated model in this 327 

epoch would be saved. Normalized RMSE (NRMSE, calculated by RMSE/(max-min) of each variable observation) was 328 

introduced to evaluate IMV predictions between variables with different value ranges. 329 

 330 

During the fine-tuning process, we used estimated IMV initial values of 1.0 g C m-2, 0.2 m3 m-3, 0.0 g N Mg-1, and 20.0 g N 331 

Mg-1 for CO2, VWC, NH4
+, and NO3

- respectively, from starting day (April 1st) to the day before the first day of real 332 

observations, as input to KGML-ag models. Then the first-day values of observed IMVs were input into KGML-ag during the 333 

rest days of the period as IMV initial values. In addition, as described in Sec. 2.2.2, we used a data augmentation method to 334 

augment the total amount of data 1000 times larger for the fine-tuning process. The purpose of this data augmentation method 335 

was to increase the generalization of the fine-tuned model and to overcome the overfitting due to small sample size. The mask 336 

matrix was elementarily multiplied to the output matrix to calculate the MSE, r2 and RMSE only for days with observations. 337 

The similar optimizer was used with an initial learning rate of 0.00005 and decay fraction of 0.5 per 200 epochs. Other 338 

training/validation methods in each epoch were similar to the pretraining process. Specifically, in the KGML-ag1 model 339 

finetuning process, we first froze the KGML-ag1-N2O module and only trained the KGML-ag1-IMV module for IMVs. After 340 

finishing the KGML-ag1-IMV module training, we froze the KGML-ag1-IMV module and trained the KGML-ag1-N2O 341 

module for N2O. In the KGML-ag2 fine-tuning process, the similar freezing method was used but different KGML-ag2-IMV 342 

modules were trained separately one by one. 343 

2.3 Development environment description 344 

We used the Pytorch 1.6.0 (https://pytorch.org/get-started/previous-versions/) and python 3.7.9 345 

(https://www.python.org/downloads/release/python-379/) as the programing environment for the model development. In order 346 

to use the GPU to speed-up the training process, we installed cudatoolkit 10.2.89 (https://developer.nvidia.com/cuda-toolkit). 347 

A desktop with Nvidia 2080 super GPU was used for code development and testing. The Mangi cluster 348 

(https://www.msi.umn.edu/mangi) from High Performance Computing of Minnesota Supercomputing Institute (HPC-MSI, 349 

https://www.msi.umn.edu/content/hpc) with 2-way Nvidia Tesla V100 GPU was used in training processes which consumed 350 

longer time and bigger memories. 351 

3 Results 352 

3.1 Pretraining experiments using synthetic data from ecosys 353 

In the pretraining stage, the GRU model with 76 IMVs achieved the best performance in predicting N2O fluxes (r2=0.98, RMSE 354 

=0.54 mg N m-2 day-1 and normalized RMSE (NRMSE) = 0.01) on the test set of synthetic data generated from ecosys (Table 355 

https://pytorch.org/get-started/previous-versions/
https://www.python.org/downloads/release/python-379/
https://developer.nvidia.com/cuda-toolkit
https://www.msi.umn.edu/mangi
https://www.msi.umn.edu/content/hpc
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1). The high performance was due to some flux IMVs such as NH3, H2, O2, CO2 and ET, which are highly correlated to N2O 356 

(Fig. S2a), were used as input to the model. The good performance of GRU with all IMVs indicates that ML models are able 357 

to perfectly mimic ecosys when sufficient information about IMVs is available. The GRU model with only basic input of N 358 

fertilizer rate, 7 weather forcings, and 8 soil/crop properties (FN+7W+8SCP) had the accuracy of r2=0.89 and RMSE = 1.37 359 

mg N m-2 day-1 (Table 1). The relatively low performance is likely because this model failed to capture several highly nonlinear 360 

pathways that are employed by ecosys to predict N2O (e.g., one influence pathway from precipitation to N2O can be: 361 

Precipitation → soil moisture → N components solubility/concentration → nitrification/denitrification rate/amount → soil 362 

N2O concentration → gas N2O flux). When adding sequences of IMV combinations (i.e., IMVcb1 of CO2 flux, NO3
-, NH4

+ 363 

and VWC, and IMVcb2 of NO3
-, NH4

+ and VWC), the GRU models performed slightly better than the GRU model using only 364 

basic inputs, achieving r2 of 0.92 and 0.90, respectively (Table 1). The KGML-ag1 with IMVcb1 and IMVcb2 initial values 365 

provided better performance (both r2 = 0.90) than GRU with basic input and comparable performance to the GRU with inputs 366 

of IMVcb1 and IMVcb2 sequence. Besides, KGML-ag1 provided predicted IMVs of CO2, NO3
-, NH4

+, and VWC with r2 over 367 

0.91, and NRMSE below 0.06 (Table 1). KGML-ag2 also provided comparable N2O performance but relatively better IMVs 368 

performance of r2 over 0.92 and NRMSE below 0.05. Results indicated that KGML-ag models with IMV initial values as extra 369 

input performed similar or better than pure ML models in synthetic data. 370 

3.2 KGML-ag evaluation using observed data from mesocosm 371 

After being fine-tuned with observed data, KGML-ag1 had N2O prediction overall accuracy of r2=0.81 and RMSE=3.6 mg N 372 

m-2 day-1, while non-pretrained GRU model provided r2=0.78 and RMSE=4.0 mg N m-2 day-1, and pretrained GRU model 373 

provided r2=0.80 and RMSE=3.77 mg N m-2 day-1 (Table 3). The time series of N2O predictions from KGML-ag1 and the non-374 

pretrained GRU model were further compared (Fig. 2), from which we found at least two advantages of using KGML-ag1 for 375 

N2O predictions: 1) For the region without observation data (normally before day 25), KGML-ag1 predicted stable N2O fluxes 376 

close to 0 mg N m-2 day-1 (which is close to the reality in the experiment setting) while GRU caused anomalous peaks of fluxes. 377 

This is because KGML-ag1 has learned knowledge “common sense” for the whole period from the pretraining process with 378 

ecosys model generated synthetic data, but GRU model has no prior knowledge for the period without any data in observations; 379 

2) Although KGML-ag1 had a lower accuracy than GRU in some chambers, KGML-ag1 can better capture the temporal 380 

dynamics of N2O fluxes compare to GRU, especially when the fluxes are highly variable (e.g. Fig 2 chamber 2).  381 

 382 

To validate KGML-ag1 robustness, we further investigated the KGML-ag1 and GRU model performance in different temporal 383 

windows, shrinking from the whole period to the N2O peak occurrence time (days 1-122, day 30-80, day 40-65 and day 45-60 384 

for year 2016-2018), and performance in N2O flux, first order gradient of N2O (slope) and second order gradient of the N2O 385 

(curvature) (Table 2). Slope represents the speed of N2O flux changes through time and curvature represents the acceleration. 386 

Assessing prediction performance withon these two metrics will reveal the model robustness on capture variable dynamics, 387 

which is critical when predicting fast-change variables with hot moments like N2O. First of all, the overall r2 and RMSE of 388 
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KGML-ag1 for values, slope and curvature were always better than GRU. In particular, KGML-ag1 captured the peak region 389 

(e.g., days 45-60) much better than GRU in both magnitude and dynamics (Table 2, Fig 2). Even for chamber 2 and 5 in 390 

which KGML-ag1 made worse N2O predictions than GRU (Δr2 ranging from -0.07 to -0.03), it better captured temporal 391 

dynamics than GRU in terms of slope (Δr2 ranging from 0.08 to 0.16) and curvature (Δr2 from 011 to 0.23) (Table 2). For other 392 

chambers, KGML-ag1 outperformed GRU consistently. For chamber 1, KGML-ag1 had worse N2O predictions RMSE than 393 

GRU but the Δr2 increased as the window shrinks to the peak emission time (0.07 → 0.13). The slope and curvature for 394 

chamber 1 also indicated that KGML-ag1 captured the dynamics much better than GRU. For chamber 3, KGML-ag1 predicted 395 

better N2O but presented worse slope and curvature RMSE than GRU (Table 2).  However, when explicitly investigating the 396 

time series of N2O flux, slope and curvature in each year, KGML-ag1 outperformed GRU more significantly in 2017, the year 397 

with more complex temporal dynamics of N2O fluxes, than in 2016 and 2018, especially for chamber 3 (Fig. 2; Fig. S3-4). 398 

This investigation supported that KGML-ag1 was more capable for complex dynamics predictions. 399 

 400 

Interestingly, the fine-tuned KGML-ag1 model predicted reasonable IMVs including CO2, NO3
-, NH4

+, and VWC with overall 401 

r2 of 0.37, 0.39, 0.60, and 0.33 and NRMSE of 0.14, 0.21, 0.09 and 0.18, respectively (Table 3). The time series comparisons 402 

between IMV predictions and observations further indicated that KGML-ag1 could reasonably capture both magnitude and 403 

dynamics (Fig. 3). KGML-ag2 presented better IMVs predictions than KGML-ag1, with overall r2 of CO2, NO3
-, NH4

+, and 404 

VWC increasing by 0.37, 0.17, 0.06 and 0.51, and NRMSE decreasing by 0.05, 0.03, 0.01 and 0.10, respectively, but a slightly 405 

lower r2 (decreasing 0.02) of N2O (Table 3; Fig. S5). This indicated that explicitly simulating each IMV with separated KGML-406 

ag2-IMV modules did not benefit the N2O flux prediction accuracy, likely due to increasing model complexity which resulted 407 

in reduceding stability and ignoring the IMV interactions. In addition, we also found all KGML-ag models would perform 408 

better by using IMVcb1 (with CO2) than using IMVcb2 (without CO2) in real data tests, indicating feature importance analysis 409 

based on synthetic data can be a reasonable substitute for analysis with the often limited real-world data. 410 

3.3 KGML-ag comparing with other pure ML models 411 

The results from eightseven different models showed that KGML-ag1 comparing with other pure ML models consistently 412 

provided the lowest RMSE (3.59-3.9460 mg N m-2 day-1, 1.14-1.2320 mg N m-2 day-2, and 0.84-0.897 mg N m-2 day-3) and 413 

highest r2 (0.78-0.81, 0.48-0.5651, and 0.23-0.318) for N2O fluxes, slope and curvature, respectively (Fig. 4). This indicated 414 

that KGML-ag1 outperformed other pure ML models in both capturing both the magnitude and dynamics of N2O flux. KGML-415 

ag2 presented slightly better mean scores for N2O flux predictions than KGML-ag1, but worse scores for slope and curvature 416 

and larger uncertainties. This proved the hypothesis discussed in section 3.2 that KGML-ag2 didn’t benefit the magnitude and 417 

dynamics predictions of N2O flux with its more complex structure and less connections between IMVs. 418 

 419 

Within the tree-based models (DT, RF, GB and XGB), the simplest model DT provided the worst predictions for N2O flux, 420 

slope and curvature. The XGB model provided the highest N2O flux accuracy with r2 of 0.61-0.632 and RMSE of 5.07-5.1711 421 
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mg N m-2 day-1, while the GB model provided best slope and curvature predictions with r2 of 0.38-0.4042 and 0.23-0.268, and 422 

RMSE of 1.34-1.371 mg N m-2 day-2 and 0.91-0.9588 mg N m-2 day-3, respectively. The highest N2O flux accuracy and 423 

relatively low slope and curvature accuracy of the XGB model implied that there is a trade-off between the abilities of capturing 424 

dynamics and magnitude.  425 

 426 

In the group of deep learning models including ANN, GRU and KGML-ag1, ANN provided the worst predictions. Even with 427 

the better N2O flux predictions than most tree-based models (except XGB), the slope and curvature predictions of ANN were 428 

the worst among all eightseven models. This implied that the trade-off between accurately capturing N2O dynamics to 429 

magnitude in ANN was significant. But when considering the temporal dependence, deep learning model GRU and KGML-430 

ag1 outperformed all other models in flux, slope and curvature predictions. This indicated that without considering temporal 431 

dependence the improvement in N2O flux prediction accuracy could be risky by causing the performance drop in capturing 432 

dynamics.  433 

 434 

The detailed model comparisons in each chamber are shown in Fig. 5 (N2O flux) and Fig. S6-7 (N2O slope and curvature), 435 

where the results are found to follow the same pattern as described above. In addition, time series comparisons of chamber 3 436 

and 4 in 2017 between different models are presented in Fig. S8 as two examples. From these comparisons, we infer that 437 

without considering temporal dependence and pretraining process, the tree-based model including DT, RF, GB and XGB and 438 

deep learning model ANN predicted erratic peaks in almost every missing data point, while GRU model was stable in small 439 

gaps and only presented poor performance in long missing period (before 25 day). This improvement by GRU model can be 440 

attributed to the structure of GRU that naturally keeps the historical information using hidden states, which enables GRU to 441 

consider the temporal dependence and make consistent predictions over time. 442 

3.4 Influence of pretraining process, data augmentation and using IMV initial values as input feature 443 

After we pretrained the GRU model with synthetic data, the overall r2 of N2O flux predictions in observed data increased by 444 

0.02, 0.12 and 0.14, and RMSE decreased by 0.23 mg N m-2 day-1, 0.15 mg N m-2 day-2 and 0.02 mg N m-2 day-3 for flux, slope 445 

and curvature predictions, respectively, compared to non-pretrained GRU (Table 3 gray region). The gap between the GRU 446 

model with pretrain and KGML-ag1 in N2O value prediction shows the improvement resulting from architecture change (r2 447 

increases by 0.01 and RMSE decreases by 0.17 mg N m-2 day-1). Although pretrained GRU had higher slope and curvature 448 

prediction accuracy than KGML-ag models, it still couldn’t achieve the current N2O value prediction accuracy of KGML-ag1. 449 

Besides, the KGML-ag models had relatively shallow N2O prediction modules (2-layer GRU KGML-ag-N2O module of 450 

KGML-ag models vs 4-layer GRU) but included modules for IMV predictions, which therefore increased the model 451 

interpretability.  452 

 453 
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It's worth noting that prediction accuracy of all KGML-ag models dropped without augmenting the training dataset in the fine-454 

tuning process (Table 3 blue region). Moreover, the maximum training epochs increased from 800 to 20000, which resulted in 455 

overfitting on the small data set. This indicated that the data augmentation indeed helped the models become more 456 

generalizable and gain better accuracy.  457 

 458 

Experiments using zero initial values presented a significant drop in every variable’s prediction accuracy (Table 3 yellow 459 

region). This indicated that the IMV initial values input into the KGML-ag-IMV modules of KGML-ag models influenced not 460 

only the IMV prediction but also the N2O prediction of the KGML-ag-N2O module. This shows that there is useful information 461 

transferred from IMVs in the KGML-ag-IMV module to the KGML-ag-N2O module. 462 

4 Discussion 463 

In the previous section, we showed that KGML-ag models can outperform ML models, by invoking architectural constraints 464 

and PB model synthetic data initialization. Compared to traditional PB models such as ecosys, KGML-ag models provide 465 

computationally more accurate and efficient predictions (KGML-ag few seconds vs ecosys half hour), which is similar to 466 

traditional ML surrogate models (Fig. S9). But KGML-ag goes beyond that by providing more interpretable predictions than 467 

pure ML models. 468 

4.1 Interpretability of KGML-ag 469 

The proposed KGML-ag models incorporate causal relations among N2O related variables/processes as shown in Fig. S10. 470 

Managements, weather forcings and initial values of IMVs influence soil water, soil temperature and soil properties, which 471 

influence the availability of O2 and N as well as the microbe populations in soil, and further influence the nitrification and 472 

denitrification rates. N2O is produced during both nitrification and denitrification when soil O2 concentration is limited. Our 473 

KGML-ag follows this hierarchical structure by designing KGML-ag-IMV modules representing the soil processes for IMVs 474 

predictions (Fig. 1c-d).  475 

 476 

To better explain the time series predictions of N2O flux (Fig. S1; Fig. 2-3), we separated the observations of each year into 477 

three periods: leading period (before N2O increasing), increasing period (increasing to the peak) and decreasing period (peak 478 

decreasing to near zero). During the leading period, both NH4
+ and CO2 were increasing immediately in the following few days 479 

following urea N fertilizer application, indicating that urea was decomposing into NH4
+ and CO2 in soil water. With 480 

accumulating NH4
+ in soil, nitrification started producing NO3

- and consuming O2. N2O didn’t respond to the fertilizer 481 

immediately due to enough O2 in soil. Then when the soil became sufficiently hypoxic, N2O fluxes entered an increasing 482 

period with N2O being produced by nitrification and denitrification processes. CO2 fluxes were relatively low and NH4
+ kept 483 

decreasing during this period. Finally, when soil NH4
+ was exhausted and NO3

- started decreasing due to denitrification, N2O 484 
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fluxes then entered the decreasing period. CO2 flux was related to urea decomposition during the leading period, and was more 485 

closely related to O2 demand in other periods. The KGML-ag predictions of N2O and IMV captured the three periods and 486 

transition points, demonstrating the connections between those variables following the description as above (Fig. 3; Fig. S5). 487 

Although KGML-ag1 obtained lower IMVs prediction accuracy compared to KGML-ag2, it captured the general trends and 488 

was doing better for transitions, especially in NH4
+ predictions. KGML-ag2 overfitted on the observations and ignored the 489 

correlations between IMVs, which resulted in loss in pretrain knowledge, poorer performance in the leading period, and erratic 490 

predictions in the period with missing observations (before day 25). 491 

4.2 Lessons for KGML-ag developmentInterpretability of KGML-ag 492 

The development of KGML-ag in our study is suitable to predict not only N2O but also other variables, such as CO2, CH4 and 493 

ET, with complicated generation processes relying on the historical states. To develop a capable KGML model, we need to 494 

carefully address three questions:  495 

 496 

What kind of ML model is suitable for developing KGML? The answer could be determined by the dominant variation type 497 

of the target variable in the data. If the dominant type is temporal variance, like flux variables in high temporal resolution (e.g., 498 

daily, or hourly), we should consider ML models with temporal dependency. RNN models such as GRU used in this study, 499 

and CNN models such as casual CNN (Oord et al., 2016) can be good starting ML models. If the dominant type is spatial 500 

variation, like variables in coarse temporal resolution (e.g., monthly or annually) but with high diversity due to soil property, 501 

land cover and climate, we should consider ML models with the ability to deal with edges, hotpoints and categories, such as 502 

CNN; 503 

 504 

What physical/chemical constraints can be used to build KGML models? Although physical rules such as mass balance or 505 

energy balance are conceptually straightforward and were proved capable of constraining KGML in predicting lake phosphorus 506 

and temperature dynamics (Hanson et al., 2020; Read et al., 2019), they were excluded in this study according to our 507 

preliminary analysis. The reason is that the mass balance equation of N in the agriculture ecosystem includes too many 508 

unknown and unobservable components such as N2 flux, NH3 flux, N leaching, microbial N, plant N and soil/plant exchange, 509 

which collectively introduce large uncertainties in balance equations and make them hard to be directly applied in the KGML-510 

ag framework. Other related physical (e.g., diffusion, solution) or chemical (e.g., nitrification, denitrification) processes cannot 511 

be easily added into the KGML-ag structure as rules due to lack of understanding of the process. Instead, as mentioned in Sect. 512 

2.2.4, we used hierarchical structure to enforce an architectural constraint and causal relations among variables, and pretraining 513 

processes to infuse knowledge from ecosys to KGML-ag models. 514 

 515 

How to involve PB models in the KGML development? An advanced PB model like ecosys built upon biophysical and 516 

biochemical rules instead of empirical relations will be a good basis to learn the process, guide the structure and provide the 517 
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constraints for KGML. The generated synthetic data in this study helped us get some knowledge about variables such as their 518 

general trends, dynamics and correlations. Such knowledge can be transferred to KGML models from synthetic data in the 519 

pretraining process, which can reduce the efforts to collect large numbers of real-world observation data. Moreover, while 520 

KGML shows great potential beyond PB models, we reckon that equally important for improving N2O modeling is to continue 521 

improving our understanding of the related processes and mechanisms. Novel data collection and incorporating new 522 

understanding into PB models (e.g., ecosys) could provide foundation to further empower KGML (see further discussion in 523 

Sect. 4.3). 524 

 525 

4.3 Limitation and possible improvement 526 

First, the KGML-ag models in this study are limited by the available observed data. Some IMVs with high feature importance 527 

scores (e.g., O2 flux, N2 flux) or at different depths (e.g., soil NO3
- at 5 cm depth, VWC at 5 cm depth), and data out of growing 528 

seasons are not included. The direct consequences are that some important processes cannot be well represented by the current 529 

KGML-ag (e.g., O2 demand and N availability for nitrification and denitrification). Further improvement of KGML should 530 

consider three categories of data: target variable N2O flux, IMVs and basic inputs (Fig. 1a). For N2O flux observation, we lack 531 

sub-hourly to sub-daily observations to capture the hot moment of emission during 0-30 days after N fertilizer applications. 532 

Besides, the non-growing season can provide 35-65% of the annual direct N2O emissions from seasonally frozen croplands 533 

and lead to a 17–28 % underestimate of the global agricultural N2O budget if ignoring its contribution (Wagner-Riddle et al., 534 

2017), but we can barely find observations from non-growing seasons. For IMVs, we found oxygen demand indicator (e.g., 535 

O2 concentration or flux, CO2 flux, CH4 flux), N mass balance related variables (e.g., N2 flux, soil NO3
-, soil NH4

+, N leaching) 536 

and soil water and temperature, can be used to better constrain the processes and therefore improve the KGML performance. 537 

Rohe et al. (2021) also indicated the importance of O2, CO2 and N2 soil fluxes for N2O predictions. In addition, the layerwise 538 

soil observations (e.g., soil NO3
-, soil VWC) at 0-30 cm depth can be used to significantly improve the KGML model quality, 539 

according to our feature importance analysis (Fig. S2a). Moreover, continuous monitoring on these variables during the whole 540 

year is preferred rather than only during the growing season, since N2O flux is largely influenced by previous states. To apply 541 

the KGML-ag to large scale, other observational data including basic inputs of soil/crop properties (e.g., soil bulk density, pH, 542 

crop type), management information (e.g., fertilizer, irrigation, tillage) and weather forcings along with N2O flux observations 543 

are critical for fine-tuning and validating the developed KGML-ag and therefore explicitly simulating the N2O or IMVs 544 

dynamics under specific conditions. Recent advances in remote sensing and machine learning have enabled estimating these 545 

variables with high-resolution at a large scale (Peng et al., 2020) 546 

  547 

Second, the physical/chemical constraints can be more comprehensive in KGML-ag models. Although current KGML-ag 548 

models are well-initialized with ecosys synthetic data and constrained by causal relations of processes with hierarchical 549 

structure, the predicted N2O flux and IMVs can still violate some basic physical rules like mass balance. As we discussed in 550 



18 
 

Sec. 4.2, it will be challenging to add physical rules like mass balance equation for N in a complicated agriculture ecosystem 551 

due to data limitations such as missing observations on certain key variables. Using inequalities instead of equations for mass 552 

balance may be one alternative solution. For example, we could use ReLU to add in a limitation for N mass balance residues 553 

which are calculated from known terms not larger than an empirical static value. Besides, better understanding of processes in 554 

the N cycle from fieldworks and lab experiments can also help us design new constraints. This limitation is also partially 555 

related to the data limitation and can be overcomed by involving more complete N2O data to introduce more powerful 556 

constraints to KGML-ag. 557 

 558 

Third, the KGML-ag currently are suffering from dealing with physical/chemicalchamical boundary transitions. Boundary 559 

transitions are common in the real world, such as phase change, volume solubility, and soil porosity etc. A detailed PB model 560 

generally coded plenty of “if/else/switch” statements inside to deal with the boundaries. But KGML-ag models based on the 561 

GRU are better at capturing continuous changes, rather than discrete changes. One solution is to include data with boundary 562 

information. In this study, involving IMVs like O2, CO2 and N2, which already have boundary information like water freezing 563 

point, N pool volumes and other complicated boundaries related to soil/crop properties, can significantly improve the model 564 

performance. The data with boundary information could be continuous observation or estimated value from existing data. By 565 

using initial values to predict IMVs, KGML-ag in this study can partially solve the boundary transition problem when 566 

observation data is limited. Another solution is designing new structures of KGML-ag, such as combining ReLU function or 567 

including CNN model which are robust for discrete situations to the RNN models, or designing new constraints to limit the 568 

model working within the thresholds. 569 

 570 

Finally, at the current stage we can not claim to have completely opened the black box of KGML-ag, but this framework is a 571 

significant step towards this goal. For example, some ideas implemented in our study, such as using pretraining to transfer 572 

knowledge from PB model to ML model, incorporating causal relations by hierarchical structure, predicting IMVs for tracking 573 

middle changes and using initial values as input to reduce data demand, would shed light on the future KGML-ag framework 574 

improvement. Besides, we acknowledge the importance of further testing the KGML-ag over completely independent datasets, 575 

but results presented in this manuscript are sufficient to justify the power of KGML as a framework. The mesocosm experiment 576 

data we used in this study has provided a comprehensive set of inputs and intermediate variables in addition to the output of 577 

N2O fluxes, thus serving as a unique testbed. We expect our validation results will be more solid once more gold standard data 578 

of N2O fluxes along with other relevant inputs and intermediate variables become publicly available. Moreover, incorporating 579 

more and more domain knowledge into KGML-ag will be inevitable in further improvement, but we don’t think KGML-ag 580 

will become inefficient as it becomes more like the PB model. In fact, to efficiently surrogate components of PB models has 581 

been proposed as a research frontier in hybrid modeling for earth system science (Reichstein et al., 2019; Irrgang et al., 2021), 582 

with latest advances occurring in weather forecasts (Bauer et al., 2021). By using a hybrid model, computationally inefficient 583 

components of PB can be identified one by one, and be replaced with more efficient ML-based surrogates to eventually obtain 584 
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the most efficient model. Further KGML-ag model development will also need to balance efficiency, accuracy and 585 

interpretability. 586 

5 Conclusions 587 

In this study, two KGML-ag models have been developed, validated, and tested for agricultural soil N2O flux prediction using 588 

synthetic data generated by the PB model ecosys and observational data from a mesocosm facility. The results show that 589 

KGML-ag models can outperform PB and pure ML models in N2O prediction in not only magnitude (KGML-ag1 r2 = 0.81 vs 590 

best ML model GRU r2 = 0.78) but also dynamics (KGML-ag1 accuracy minus GRU accuracy, slope Δr2 = 0.06 and curvature 591 

Δr2 = 0.08). KGML-ag can also defeat the PB model ecosys in efficiency by completing ecosys’s half-hour job within a few 592 

seconds. Compared to ML models, KGML-ag models can better represent complex dynamics and high peaks of N2O flux. 593 

Moreover, with IMV predictions and hierarchical structures, KGML-ag models can provide biogeophysical/chemical 594 

information about key processes controlling N2O fluxes, which will be useful for interpretable forecasting and developing 595 

mitigation strategies. Data demand for the KGML-ag models is significantly reduced due to involving IMV initial values and 596 

pretrain processes with synthetic data. This study demonstrated that the potential of KGML-ag application in the complex 597 

agriculture ecosystem is high and illustrates possible pathways of KGML-ag development for similar tasks. Further 598 

improvement of our KGML-ag models can involve general principles to further constrain the predictions through loss functions 599 

or architectures, but call for more detailed, high temporal resolution N2O observation data from field measurements.  600 
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 741 

Figure 1: The model structuresframes. a) The ecosys model frame; b) Gated recurrent unit (GRU) model frame; c) KGML-ag1 742 
model with a  frame of hierarchical structure; d) KGML-ag2 model with a frame of hierarchical structure with separated GRU 743 
modules for IMV predictions. Specifically, in our KGML model design, weather forcings (W) include temperature (TMAX, TDIF), 744 
precipitation (PRECN), radiation (RADN), humidity (HMAX and HDIF) and wind speed (WIND); soil/crop properties (SCP) 745 
include bulk density (TBKDS), sand content (TCSAND), silt content (TCSILT), pH (TPH), cation exchange capacity (TCEC), soil 746 
organic carbon (TSOC), planting day of the year (PDOY) and crop type (CROPT); IMVs include CO2 flux, soil NO3

- concentration,  747 
soil NH4+concentration, and soil volumetric water content (VWC). 748 

  749 
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 750 

Figure 2: N2O flux time series comparisons among pure non-pretrained GRU predictions (blue line), KGML-ag1 predictions (red 751 
line) and observations (black line-dot) from cross-validation. The N2O flux unit is mg N m-2 day-1. 752 
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Figure 3: IMVs prediction from KGML-ag1. The black-dot line represents observations and the red line represents the results from 755 
KGML-ag1. Chmb is the abbreviation for chamber. r2 and RMSE are calculated and present in each year and chamber. The CO2 756 
flux and soil NO3

- concentration units are g C m-2 day-1 and g N m-2, respectively. 757 
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 760 

Figure 3 Contd.: IMVs prediction from KGML-ag1. The black-dot line represents observations and the red line represents the 761 
results from KGML-ag1. Chmb is the abbreviation for chamber. r2 and RMSE are calculated and present in each year and chamber. 762 
The soil NH4

+ concentration and soil VWC units are g N m-2 and m3 m-3, respectively. 763 

 764 

Commented [16]: A typo of VWC units has been fixed. 
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 765 

 766 

Figure 4: The comparisons of overall prediction accuracy for N2O value (a), 1st order gradient (slope, b) and 2nd order gradient 767 
(curvature, c) between four tree-based ML models (DT, RF, GB and XGB), two deep learning models (ANN and GRU) and KGML-768 
ag1 models. Different color symbols represent the different models. The x- and y-error bars are coming from the maximum and 769 
minimum scores of ensemble experiments. The dot represents the mean score of the ensemble experiments. 770 
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 772 

Figure 5: The comparisons of N2O flux prediction accuracy r2 (a) and (b) RMSE, between four tree-based ML models (DT, RF, GB 773 
and XGB), two deep learning models (ANN and GRU) and KGML-ag1 models in 6 chambers. The gray error bars are coming from 774 
the maximum and minimum scores of ensemble experiments. 775 
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Table 1: Pretrain results for different model and IMV combinations using ecosys synthetic data. 777 

      N2O CO2 NO3
- NH4

+ VWC 

No. Pretrain Model Input Feature N r2 RMSE  r2 NRMSE  r2 NRMSE  r2 NRMSE  r2 NRMSE  

1 GRU+76IMVs 76 IMVs+FN+7Ws+8SCP 0.98 0.54 --a -- -- -- -- -- -- -- 

2 GRU+IMVcb1 4 IMVs+FN+7Ws+8SCP 0.92 1.15 -- -- -- -- -- -- -- -- 

3 GRU+IMVcb2 3 IMVs+FN+7Ws+8SCP 0.90 1.26 -- -- -- -- -- -- -- -- 

4 GRU  FN+7Ws+8SCP 0.89 1.37 -- -- -- -- -- -- -- -- 

5 KGML-ag1+IMVcb1_ini FN+7Ws+8SCP+4IMV_ini 0.90 1.24 0.91 0.06 0.95 0.03 0.98 0.03 0.95 0.04 

6 KGML-ag1+IMVcb2_ini FN+7Ws+8SCP+3IMV_ini 0.90 1.26 -- -- 0.94 0.03 0.97 0.03 0.95 0.04 

7 KGML-ag2+IMVcb1_ini FN+7Ws+8SCP+4IMV_ini 0.90 1.27 0.92 0.05 0.95 0.02 0.98 0.03 0.96 0.04 

8 KGML-ag2+IMVcb2_ini FN+7Ws+8SCP+3IMV_ini 0.91 1.19 -- -- 0.95 0.00 0.99 0.02 0.95 0.04 

aThe empty slot indicates that the model does not predict that variable. 778 

 779 

Table 2: Prediction accuracy comparisons between non-pretrained GRU model and KGML-ag1.Pretrain results for different model 780 
and IMV combinations using ecosys synthetic data. 781 

   N2O, KGML-ag1 minus GRU N2O 1st order gradient, 

KGML-ag1 minus GRU 

N2O 2nd order gradient, 

KGML-ag1 minus GRU 

  No. All timeb Day 

30-80 

Day 

40-65 

Day 

45-60 

All 

time 

Day 

30-80 

Day 

40-65 

Day 

45-60 

All 

time 

Day 30-

80 

Day 40-

65 

Day  

45-60 

Δr2 a 

All data 0.03c 0.04 0.07 0.10 0.07 0.07 0.07 0.15 0.08 0.08 0.09 0.11 

Chamber1 0.07 0.10 0.20 0.13 0.18 0.18 0.19 0.14 0.08 0.09 0.09 0.02 

Chamber2 -0.04 -0.05 -0.07 -0.05 0.08 0.09 0.09 0.16 0.20 0.20 0.20 0.23 

Chamber3 0.06 0.06 0.08 0.06 0.04 0.04 0.04 0.13 -0.01 -0.01 -0.01 0.07 

Chamber4 0.06 0.08 0.12 0.07 0.05 0.05 0.05 0.14 0.07 0.07 0.08 0.12 

Chamber5 -0.05 -0.06 -0.07 -0.03 0.09 0.09 0.10 0.16 0.13 0.13 0.15 0.11 

Chamber6 0.03 0.04 0.08 0.17 0.14 0.14 0.15 0.22 0.12 0.13 0.14 0.23 

ΔRMSEa 

All data -0.41 -0.56 -0.84 -1.19 -0.07 -0.10 -0.14 -0.20 -0.03 -0.05 -0.07 -0.08 

Chamber1 0.80 1.06 1.21 1.70 0.00 0.00 -0.02 0.00 0.05 0.07 0.10 0.18 

Chamber2 0.08 0.11 0.07 -0.04 -0.10 -0.13 -0.18 -0.14 -0.10 -0.14 -0.19 -0.22 

Chamber3 -0.71 -0.96 -1.30 -2.09 0.03 0.04 0.07 -0.25 0.09 0.13 0.17 0.08 

Chamber4 -1.68 -2.27 -3.09 -3.81 -0.11 -0.15 -0.21 -0.26 -0.05 -0.07 -0.09 -0.16 

Chamber5 0.53 0.69 0.86 0.99 -0.10 -0.14 -0.20 -0.23 -0.09 -0.12 -0.18 -0.14 

Chamber6 -0.20 -0.27 -0.37 -0.61 -0.14 -0.20 -0.29 -0.33 -0.07 -0.10 -0.15 -0.19 

aThe difference of r2 (Δr2), and difference of RMSE (ΔRMSE, units are mg N m-2 day-1, mg N m-2 day-2, mg N m-2 day-3 for N2O value, 1st 782 

order gradient and 2nd order gradient, respectively) were calculated by values from KGML-ag1 minus values from GRU. 783 

bResults from different time windows of different chambers during the period of April 1st-July31st (Days1-122) were detected. 784 

cBlue cells mean KGML-ag1 outperforms GRU, while yellow cells mean the opposite. 785 

 786 
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 787 

Table 3: Experiments for measuring GRU and KGML-ag models performance, and influence of pretraining process, training data 788 
augmentation and IMV initial values. 789 

      

N2O 

N2O 1st order 

gradient 

N2O 2nd order 

gradient CO2 NO3
- NH4

+ VWC 

No. Retrain Model Experiment r2 RMSE  r2 RMSE  r2 RMSE  r2 NRMSE  r2 NRMSE  r2 NRMSE  r2 NRMSE  

1 GRU, baselinea No Pretrain 0.78 4.00 0.45 1.27 0.20 0.90 --b -- -- -- -- -- -- -- 

2 GRU Pretrain 0.80 3.77 0.57 1.12 0.34 0.82 -- -- -- -- -- -- -- -- 

3 KGML-ag1+ 

IMVcb1_ini 

Original 

setting 

0.81 3.60 0.51 1.20 0.28 0.87 0.37 0.14 0.39 0.21 0.60 0.09 0.33 0.18 

4 KGML-ag1+ 

IMVcb2_ini 

Original 

setting 

0.80 3.71 0.49 1.22 0.21 0.91 -- -- 0.37 0.22 0.53 0.10 0.33 0.19 

5 KGML-ag2+ 

IMVcb1_ini 

Original 

setting 

0.79 3.77 0.48 1.23 0.22 0.90 0.74 0.09 0.46 0.18 0.66 0.08 0.84 0.08 

6 KGML-ag2+ 

IMVcb2_ini 

Original 

setting 

0.78 3.91 0.47 1.24 0.20 0.91 -- -- 0.49 0.18 0.69 0.08 0.84 0.08 

7 KGML-ag1+ 

IMVcb1_ini 

No 

augmentation  

0.80 3.73 0.49 1.22 0.22 0.90 0.38 0.14 0.38 0.21 0.61 0.09 0.37 0.17 

8 KGML-ag1+ 

IMVcb2_ini 

No 

augmentation  

0.77 4.04 0.41 1.31 0.13 0.95 -- -- 0.38 0.21 0.53 0.10 0.35 0.18 

9 KGML-ag2+ 

IMVcb1_ini 

No 

augmentation  

0.76 4.06 0.45 1.27 0.16 0.95 0.69 0.10 0.21 0.25 0.60 0.09 0.80 0.09 

10 KGML-ag2+ 

IMVcb2_ini 

No 

augmentation  

0.74 4.27 0.48 1.23 0.21 0.90 -- -- 0.40 0.21 0.60 0.09 0.81 0.09 

11 KGML-ag1+ 

IMVcb1_ini 

Zero initial 

values 

0.48 6.27 0.26 1.49 0.08 1.00 0.19 0.16 0.25 0.25 0.47 0.12 0.14 0.25 

12 KGML-ag1+ 

IMVcb2_ini 

Zero initial 

values 

0.49 5.94 0.31 1.41 0.13 0.95 -- -- 0.31 0.25 0.38 0.13 0.24 0.25 

13 KGML-ag2+ 

IMVcb1_ini 

Zero initial 

values 

0.48 6.05 0.12 1.66 0.01 1.09 0.58 0.12 0.34 0.25 0.21 0.13 0.56 0.31 

14 KGML-ag2+ 

IMVcb2_ini 

Zero initial 

values 

0.39 6.60 0.15 1.59 0.04 1.01 -- -- 0.16 0.27 0.27 0.12 0.53 0.31 

aGray region includes the experiments with original simulation settings as described in Sec. 2 and dark gray refers to the baseline GRU 790 

simulation; Blue region includes the experiments without data augmentation during the finetuning process; And yellow region includes the 791 

experiments of replacing original  IMV initial values with zeros. 792 

bThe empty slot indicates that the model does not predict that variable. 793 
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