
Response Letter

We are grateful to all comments and suggestions from three reviewers and have carefully addressed their
concerns point by point. Major changes include:

(1) We have conducted uncertainty analysis for all pure machine learning models and KGML models
presented in out study to include the machine learning model uncertainties;

(2) The uncertainties of process-based model ecosys and its performance over various ecosystem for
N2O and CO2 have been added into the maintext;

(3) We have added LSTM results into the supplement and comparing with all other models for
reference;

(4) We have added a new paragraph in discussion to address the concerns of KGML-ag limitations;

(5) We have clarified all the confusing parts which have been pointed out by reviewers, and corrected
typo and grammatical errors.

By changing these major concerns and many other minor comments and suggestions, we believe the
quality of this manuscript is improved. Below, please find our detailed responses point-by-point.

Please be aware of the formatting of all responses:
1. Reviewer comment in black, response in blue and quotation from the main text in red;
2. The line number is based on the clean version of the revised manuscript, not the track change version.



To Reviewer 1

Liu et al. presented a promising predictive framework that combined a process-based model (physical
knowledge and pre-train dataset) and a machine learning model for agroecosystem N2O emission
estimate. The modeling framework is robust and thoroughly validated. This work will be an important
milestone towards a better understanding, monitoring, and predicting agroecosystem greenhouse gas
emissions.

The paper is well organized and written. Below are some of my comments that may help elucidate the
strength and limitations of the proposed KGML-ag framework.

Response: We really appreciate that the reviewer recognized our efforts in developing the proper
knowledge guided machine learning framework for agroecosystem. To improve the quality of this study,
we have carefully revised the manuscript based on the reviewer's comments and suggestions shown as
below:

1. Robustness of physical (prior) knowledge

ecosys model plays a central role in guiding the ML model in terms of structure and providing a pre-train
dataset. It will be important to discuss the structure uncertainty in ecosys N2O module, including e.g.,
underlying theories, major processes, difference/similarity to the classic leaky pipe type model (Davidson
et al., 2000), and so on.

Reference:
Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V., & Veldkamp, E. (2000). Testing a conceptual
model of soil emissions of nitrous and nitric oxides: using two functions based on soil nitrogen
availability and soil water content, the hole-in-the-pipe model characterizes a large fraction of the
observed variation of nitric oxide and nitrous oxide emissions from soils. Bioscience, 50(8), 667-680.

Response: Thank you so much for this suggestion. In this revision, we have added a detailed description
on the major processes of N2O production and transfer in ecosys model, and on the differences between
traditional pipeline N2O model and ecosys model. You can find the description in the manuscript section
2.2.1  (from Line 136 to 147) as:

“It represents N2O evolution in the microbe-engaged processes of nitrification-denitrification using
substrate kinetics that are sensitive to soil nitrogen availability, soil temperature, soil moisture, and soil
oxygen status (Grant and Pattey 2008). Two groups of microbial populations, autotrophic nitrifiers and
heterotrophic denitrifiers, produce N2O with specific competitive or cooperative relations in ecosys when
O2 availability fails to meet O2 demand for their respirations and NO2

- become alternative electron
acceptors. N2O transfer within soil layers and from soil to the atmosphere is driven by concentration
gradient using diffusion-convection-dispersion equations, in the forms of gaseous and aqueous N2O under
control of volatilization-dissolution (Grant et al., 2016). Unlike the pipeline model described by Davidson
et al. (2000) , which mainly consider the correlations of N2O production with nitrogen availability and of
N2O emitting with soil water content, ecosys enables integrative effects of energy, water, nitrogen
availability on N2O production and N2O transfer via the microbial population dynamics and their



interactions with soil, plant, and atmospheric dynamics, under diverse meteorological and anthropogenic
disturbances (e.g. runoff, drainage, tillage, irrigation, soil erosion).”

Again ecosys provides pretrain dataset, which has its own uncertainty and biases. It’s worthwhile to at
least show some ecosys model performance across various different conditions at agroecosystems. For
example, does ecosys pick up the high-frequency signals (fluctuation) of CO2/N2O flux that are observed
in the chambers data? If not, is that the reason why PGML-ag could not capture the high fluctuation of
CO2/N2O emissions in the field?

Response: We really appreciate this comment which suggests to show the capability of ecosys model as
the domain knowledge provider. To show the ecosys model performance on simulation of CO2 and N2O
emissions at field, we have added detailed quantitative comparisons between model simulations and
observations in the manuscript section 2.2.1 (from line 149 to 154):

“For the agricultural ecosystems in the US Midwest, whose simulations are used for synthetic data in this
study, the performance of ecosys on CO2 and N2O fluxes have been extensively benchmarked, including
CO2 exchange (NEE, R2 = 0.87) and leaf area index (LAI, R2 = 0.78) from six flux towers, USDA census
reported corn yield (R2 = 0.83) and soybean yield (R2 = 0.80), satellite-derived GPP for corn (R2 = 0.83)
and soybean (R2 = 0.85) from Illinois, Iowa and Indiana, and cumulative N2O emissions (R2 = 0.36)
across eight Midwestern states (Wang et al., 2021; Yang et al., 2022).”

If you are interested in the more detailed performance of field level N2O emission simulation using ecosys
model, you may review 1) the papers of Grant et al (2006, 2008) to find the influences of fertilizer rate
and temperature on N2O emissions in fertilized agriculture soil; 2) the paper of Grant et al (1999) to find
the influences of spring thawing; and 3) the papers of Grant et al (2010, 2016) to check the N2O
simulation performances at managed forest and grassland.

2. It’s not obvious which variables are used as inputs or intermediate variables and how that relates to
the feature importance ranking. It will be better to show each variable in Figure 1. For example, W
will be temperature and precipitation. Furthermore, feature importance analysis highlight NH3, H2,
N2, O2, CH4, ET, CO2 are important variables that drive N2O emission (~ L230). It’s not clear in the
main text, how this feature importance ranking helps the design of PGML-ag. What can we get out of
this feature importance analysis?

Response: Thanks for pointing out the confusing part of how feature importance related to KGML model
development. In this revision, we have extended descriptions in Figure 1 caption to explain W, SCP and
IMVs that are used in our study.

“Figure 1: The model structures. a) The ecosys model; b) Gated recurrent unit (GRU) model; c)
KGML-ag1 model with a hierarchical structure; d) KGML-ag2 model with a hierarchical structure using
separated GRU modules for IMV predictions. Specifically, in our KGML model design, weather forcings
(W) include temperature (TMAX, TDIF), precipitation (PRECN), radiation (RADN), humidity (HMAX
and HDIF) and wind speed (WIND); soil/crop properties (SCP) include bulk density (TBKDS), sand
content (TCSAND), silt content (TCSILT), pH (TPH), cation exchange capacity (TCEC), soil organic



carbon (TSOC), planting day of the year (PDOY) and crop type (CROPT); IMVs include CO2 flux, soil
NO3

- concentration,  soil NH4
+concentration, and soil volumetric water content (VWC).”

Feature importance analysis was the first step in our study to learn the knowledge from synthetic data
generated by the ecosys model and to investigate the correlation between input/intermediate variables and
N2O fluxes. The importance rankings help us to put low/median/high attention to available variables
during model development (e.g. CO2 was tested as a higher ranking variable than others so that we paid
high attention to it by testing two different combinations of IMVs w/o CO2). In addition, the rankings will
provide guidance of future N2O related measurement, which is discussed in section 4.3. We have revised
paragraph two in section 2.2.4 to highlight how feature importance rankings help our model development
(from line 252 to 258).

“Variables ranked high in feature importance analysis are considered with priority during model
development. To develop a functionable KGML-ag, we further investigated the feature importance of four
IMVs that are available from mesocosm observations including CO2, NO3

-, VWC and NH4
+, which were

ranked 7th, 20th, 58th, 60th respectively in 92 input features of synthetic data (Fig. S2a). We used these
four available IMVs to create two input combinations: 1) CO2 flux, NO3

-, VWC and NH4
+ (IMVcb1), and

2) NO3
-, VWC and NH4

+ (IMVcb2). The objective of building IMVcb2 was to investigate the importance
of highly ranked variable CO2 flux (by removing it from the inputs), and the impact of mixing-up flux and
non-flux variables on model performance. ”

3. There is a lack of discussion on uncertainty in PGML-ag, which is fundamentally important for
predictive modeling. Also, what about chamber measurements uncertainty?

Response: Thank you for pointing out this concern for predictive modeling. To address the uncertainty of
the machine learning models and KGML-ag model, we have conducted 10 ensemble experiments for
different model structures (DT, RF, GB, XGB, ANN, GRU, KGML-ag1 and KGML-ag2). Corresponding
method part in section 2.1 has been updated (from line 125 to 129).

“We further benchmarked KGML-ag models and uncertainties with other pure ML models without
considering temporal dependence, including Decision Tree (DT), Random Forest (RF), Gradient Boosting
(GB) from the sklearn package (https://scikit-learn.org/stable/), Extreme Gradient Boosting (XGB) from
the XGBoost package (https://xgboost.readthedocs.io/en/latest/) and a 6-linear-layer artificial neural
network (ANN) with the mesocosm experiment data by 10 times ensemble experiments (Fig. 4-5; Fig.
S6-8);”

The new results have been updated in Figure 4 and Figure 5 (also as Figure R1 and R2 below) in the main
text and Figure S6-S7 (also as Figure R3 and R4 below) in the supplementary. We have also updated
values in section 3.3 accordingly. For chamber measurement uncertainty, we have cited the original thesis
(Miller L., 2021) including the mesocosm experiment settings, instruments and related measurement
uncertainties (e.g. Figure 2.2 in the thesis). In our study, we also used a data augmentation method to
cover the uncertainties caused by converting hourly observations to daily observations. The data
augmentation method has been described in section 2.2.2 paragraph 3.



Figure R1: The comparisons of overall prediction accuracy for N2O value (a), 1st order gradient (slope, b)
and 2nd order gradient (curvature, c) between four tree-based ML models (DT, RF, GB and XGB), two
deep learning models (ANN, GRU), and KGML-ag models. Different color symbols represent the
different models. The x- and y-error bars are coming from the maximum and minimum scores of
ensemble experiments. The dot represents the mean score of the ensemble experiments.



Figure R2: The comparisons of N2O flux prediction accuracy r2 (a) and (b) RMSE, between four
tree-based ML models (DT, RF, GB and XGB), two deep learning models (ANN and GRU), and
KGML-ag models in 6 chambers. The gray error bars are coming from the maximum and minimum
scores of ensemble experiments.

Figure R3: The comparisons of N2O 1st order gradient prediction accuracy r2 (a) and (b) RMSE, between

four tree-based ML models (DT, RF, GB and XGB), two deep learning models (ANN and GRU) and

KGML-ag models in 6 chambers. The gray error bars are coming from the maximum and minimum

scores of ensemble experiments.



Figure R4: The comparisons of N2O 2nd order gradient prediction accuracy r2 (a) and (b) RMSE, between
four tree-based ML models (DT, RF, GB and XGB), two deep learning models (ANN and GRU) and
KGML-ag models in 6 chambers. The gray error bars are coming from the maximum and minimum
scores of ensemble experiments.

L254 based on the structure of process representation in ecosys

Response: We have revised the sentence based on your suggestion (Line 276 to 278).

“We built a hierarchical structure based on the structure of process representation in ecosys to first predict
IMVs and then simulate N2O with predicted IMVs;”

References:

Grant, R. F., Black, T. A., Jassal, R. S., & Bruemmer, C.: Changes in net ecosystem productivity and
greenhouse gas exchange with fertilization of Douglas fir: Mathematical modeling in ecosys. Journal of
Geophysical Research: Biogeosciences, 115(G4),  2010.



Grant, R. F., & Pattey, E.: Mathematical modeling of nitrous oxide emissions from an agricultural field
during spring thaw. Global Biogeochemical Cycles, 13(2), 679-694, 1999.

Grant, R. F., & Pattey, E.: Temperature sensitivity of N2O emissions from fertilized agricultural soils:
Mathematical modeling in ecosys. Global biogeochemical cycles, 22(4), 2008.

Grant, R. F., Neftel, A., & Calanca, P.: Ecological controls on N2O emission in surface litter and
near-surface soil of a managed grassland: modelling and measurements, Biogeosciences, 13(12),
3549-3571, 2016.

Grant, R. F., Pattey, E., Goddard, T. W., Kryzanowski, L. M., & Puurveen, H.: Modeling the effects of
fertilizer application rate on nitrous oxide emissions, Soil Science Society of America Journal, 70(1),
235-248, 2006.



To Reviewer 2

General comments

This manuscript presents a new method for estimating N2O flux from cropland. The inputs to the method
are known fertilization rate, weather forcings, soil and crop properties. The method also requires initial
concentrations of nitrate ions, ammonium ions, and water in the soil, and optionally CO2 flux. The
method employs gated recurrent networks organized in a hierarchical structure to mirror the
time-dependence and causality present in the process.A process-based model provides pre-training data,
and fine-tuning is done using observations from mesocosm experiments. The trained neural network
models outperform the process-based model and many basic machine learning approaches.

The methodology employed is both novel and sound. The use of GRUs in hierarchical structures is
well-justified and appropriate to the problem. The models have been well-validated, and various alternate
choices for model architecture have been explored. I believe this work represent a substantive advance in
modelling science. Below I list specific comments which I hope will serve to improve the manuscript.

Response: We really appreciate the reviewer's recognition of our work and all other valuable comments
and suggestions mentioned below. Just as the reviewer summarized, we want to incorporate the domain
knowledge learned from agroecosystem process-based model ecosys to the advanced machine learning
models to combine the advantages from both kinds of state-of-art works. This effort is trying to build a
new body of research for simulating the agriculture ecosystem and KGML-ag in this study is a
demonstration case simulating N2O flux from mesocosm experiments. To further improve our study, we
have carefully revised the manuscript to address all reviewer’s comments. The specific responses can be
found in the following letters.

Specific comments

1. The use of the term "initials" confuses me. Upon first reading I thought it referred to the acronyms for
various intermediate variables. I think it actually refers to the initial values of a sequence. Is this
usage standard? If not, I recommend a different phrase such as "initial values" in place of the word
"initials." Alternatively, clarify the meaning of the term in the manuscript.

Response: Thanks so much for pointing out this term which may cause confusion. Just as you said, the
term “initials” in the manuscript are most referring to the “initial values”. It indeed will cause some
confusion since we also use the term “initial” as a verb for the knowledge guided initialization. Thus we
have replaced “initials” to “initial values” throughout the manuscript.

2. Another possible explanation for why KGML-ag2 better predicts IMVs but does not predict N2O as
well is that KGML-ag1 may learn to use the IMVs as a kind of extra hidden layer, encoding
information relevant to N2O predictions in them.

Response: We really appreciate your interesting explanation about why KGML-ag2 predicts better IMVs
but worse N2O fluxes. In both KGML-ag1 and KGML-ag2, the IMVs were first predicted from
KGML-ag-IMV modules and then input into the KGML-ag-N2O modules. The only difference between



KGML-ag1 and KGML-ag2 is that KGML-ag2 explicitly simulates each IMV by using individual
KGML-ag-IMV modules. Thus, using IMVs as a kind of extra hidden layer may happen in both models in
KGML-ag-N2O modules. But since KGML-ag1 has interactions between predicted IMVs and lower
complexity, it may be easier for the KGML-ag1-N2O module to get the useful knowledge from IMVs.
Moreover, your valuable thought draws us to deeply review the model structures and data qualities. The
observational data, including the IMVs of CO2, NH4

+, NO3
- and VWC, are not perfect and may have many

noises or be lacking some key information. KGML-ag2-IMV module may only follow what we have for
IMVs to generate accurate IMV predictions without any extra information, while KGML-ag1-IMV
module may perform like an encoding layer to predict IMVs with extra information relevant to N2O flux,
just as you mentioned.
In this revision, we decided to keep our explanation to make our discussion more focused and accessible
to a broader audience. But we will find a larger dataset to test both explanations in subsequent
ML-oriented technical papers.

3. Why not include KGML-ag2 in Figure 4? I can see simplifying the comparison by choosing only the
best-performing model.

Response: The reviewer is right that we excluded KGML-ag2 in the previous Figure 4 to simplify the
comparison. To address the reviewer’s concern, we have added similar 10 ensemble experiments for
KGML-ag2 and updated Figure 4 (also as Figure R5 below). We can see that although KGML-ag2 has
similar mean performance as the KGML-ag1 but it has much larger uncertainties. Moreover, the best
scores for slope and curvature are all from KGML-ag1.

Figure R5: The comparisons of overall prediction accuracy for N2O value (a), 1st order gradient (slope, b)
and 2nd order gradient (curvature, c) between four tree-based ML models (DT, RF, GB and XGB), two
deep learning models (ANN, GRU), and KGML-ag models. Different color symbols represent the
different models. The x- and y-error bars are coming from the maximum and minimum scores of
ensemble experiments. The dot represents the mean score of the ensemble experiments.

We have also updated the corresponding figures including Figure 5, Figure S6-S7, and section 3.3 (From
line 399 to 405).



“The results from eight different models showed that KGML-ag1 comparing with other pure ML models
consistently provided the lowest RMSE (3.59-3.94 mg N m-2 day-1, 1.14-1.23 mg N m-2 day-2, and
0.84-0.89 mg N m-2 day-3) and highest r2 (0.78-0.81, 0.48-0.56, and 0.23-0.31) for N2O fluxes, slope and
curvature, respectively (Fig. 4). This indicated that KGML-ag1 outperformed other pure ML models in
capturing both the magnitude and dynamics of N2O flux. KGML-ag2 presented slightly better mean
scores for N2O flux predictions than KGML-ag1, but worse scores for slope and curvature and larger
uncertainties. This proved the hypothesis discussed in section 3.2 that KGML-ag2 didn’t benefit the
magnitude and dynamics predictions of N2O flux with its more complex structure and less connections
between IMVs”

4. Many standard deep learning models were included for comparison, but an LSTM was not among
them. I would expect the LSTM to perform similarly to the GRU. I don't think it is crucial that an
LSTM be included in this comparison. However, if the GRU outperforms an LSTM, it could provide
further justification for choosing to use a GRU instead of an LSTM. Again, I could understand
simplifying the comparison by including only one recurrent neural network.

Response: We fully agree with your comments on LSTM. We have tested both GRU and LSTM as
mentioned in section 2.2.3, and preliminary results showed similar performance between the two neural
network structures. However, to simplify the comparison and streamline the discussion, we fixed GRU as
the basis for pure machine learning models and the KGML models.

To address the reviewer’s concern, we have conducted similar 10 ensemble experiments of LSTM
and the comparisons are presented here in Figure R1 and in the supplement Figure S8 (best model in
ensemble experiment). We can see in Figure R1 that the LSTM is slightly better than GRU in predicting
N2O flux value and similar as KGML-ag1. But for slope and curvature predictions, LSTM is similar to
GRU and KGML-ag1 can always outperform LSTM. From Figure S8 demonstration case, the LSTM
with rL

2 of 0.72 and rU
2 of 0.73 is better than GRU model (rL

2 of 0.60 and rU
2 of 0.57) but worse than

KGML-ag1 (rL
2 of 0.78 and rU

2 of 0.86). This further proved our conclusion that KGML-ag1 better
represents complex dynamics of N2O flux than other pure machine learning models.

5. You tested two input combinations, IMVcb1 and IMVcb2, but it is not clear how that test informed
the model development.

Response: Thank you for finding this unclear part in our manuscript. We have added more descriptions to
clarify why we have tested two combinations in section 2.2.4 paragraph 2 (From line 252 to 258).

“Variables ranked high in feature importance analysis should be primarily considered during model
development. To develop a functionable KGML-ag in real world, we further investigated the feature
importance of four IMVs that are available from mesocosm observations including CO2, NO3

-, VWC and
NH4

+, which were ranked 7th, 20th, 58th, 60th respectively in 92 input features of synthetic data (Fig.
S2a). We used these four available IMVs to create two input combinations: 1) CO2 flux, NO3

-, VWC and
NH4

+ (IMVcb1), and 2) NO3
-, VWC and NH4

+ (IMVcb2). The objective of building IMVcb2 was to
investigate the importance of highly ranked variable CO2 flux (by removing it from the inputs), and the
impact of mixing-up flux and non-flux variables on model performance. ”



Moreover, tests using IMVcb1 (with CO2) and IMVcb2 (without CO2) indicate that high ranking variables
detected from feature importance analysis based on synthetic data (like CO2 flux ranks 7th in 92 input
features ) can also be similarly important in N2O predictions with real observed data. Therefore the
feature importance results could benefit feature selection in real data. We have added the results and
discussion in section 3.2 last paragraph (From line 395 to 397).

“In addition, we also found all KGML-ag models would perform better by using IMVcb1 (with CO2) than
using IMVcb2 (without CO2) in real data tests, indicating feature importance analysis based on synthetic
data can be a reasonable substitute for analysis with the often limited real-world data.”

6. The reason for evaluating slope and curvature in addition to N2O value could be stated more clearly.

Response: We have added more explanations in section 3.2 paragraph 2 (From line 373 to 375).

“Slope represents the speed of N2O flux changes through time and curvature represents the acceleration.
Assessing prediction performance with these two metrics will reveal the model robustness on capture
variable dynamics, which is critical when predicting fast-change variables with hot moments like N2O.”

7. I recommend that the paragraph starting at line 194 be rewritten for clarity. First, data augmentation is
a class of methods, not a single method. Second, Meyer et al. use copula-based models in particular to
augment datasets. Do you use copula-based methods? The way this reference is cited suggests that
you follow their approach. Third, do you randomly sample observed data, or synthetically generated
data, or both? Do you randomly sample only the data which are hourly, e.g., air temperature, net
radiation, N2O, CO2, and VWC? How is the daily value calculated from the sampled data? I did not
find the answers to these questions to be clear from the text.

Response: We really appreciate your detailed comments on the data augmentation method. In this
revision, we have deleted the confusing sentence “Data augmentation is a typical practice in ML when
training data is limited (Meyer et al., 2021)” because we did not intend to highlight one particular method,
but only to explain the data augmentation concept using one recent citation. To your second question, the
augmentation method is only used on observed data and corresponding weather forcings. To your third
question, we only randomly sample the data which are hourly. Lastly, we used the average of the 16 hours
(or maximum valid hours) of data to represent the daily values. We have addressed all those questions in
the new paragraph in section 2.2.2 (from line 213 to 223):

“To reduce overfitting and increase the generalization of the trained model based on the small amount of
mesocosm data, we applied the following method to augment the experimental measurements and
weather forcings to 1000 times larger by sampling hourly data and averaging them to daily scale. In this
method, 16 hours (or maximum valid hours) of data are randomly selected from 24 hours of data to
compute their mean as the daily value. Since 3/4 of the day are covered by the selected data (16 hours /24
hours), the augmented daily values should be representative enough for the source day and meanwhile
present slight variations. Furthermore, the observation ratio, (24 hours - missing hours) / 24 hours, can be
used as the weights in loss function to inject the data quality information in model optimization. If the day



has more than 16 hours missing values, we consider the observations in that day as not trustworthy and
drop the day by setting the weight to 0. This method can not only augment the data to 1000 times larger
but also deal with the missing values in observed data inherently. The total amount of observed mesocosm
data and related weather forcings are augmented to 122 days x 3 years x 6 chambers x 1000 data samples
in this study.”

8. How well does the model perform out-of-sample? Out-of-sample performance is mentioned in the
introduction, but the discussion does not address it.

Response: We totally agree with the reviewer that out-of-sample performance would be critical for
predictive models. Thus we have mentioned in the introduction that out-of-scenario ability is the
limitation of machine learning models. In our study, we have compared the out-of-sample performance
between different models using the period without any observation data in section 3.2 paragraph 1 (from
line 363 to 366):
“For the region without observation data (normally before day 25), KGML-ag1 predicted stable N2O
fluxes close to 0 mg N m-2 day-1 (which is close to the reality in the experiment setting) while GRU
caused anomalous peaks of fluxes. This is because KGML-ag1 has learned knowledge for the whole
period from the pretraining process with ecosys model generated synthetic data, but GRU model has no
prior knowledge for the period without any data in observations;”
and section 3.3 last paragraph (from 424 to 429):
“From these comparisons, we infer that without considering temporal dependence and pretraining
process, the tree-based model including DT, RF, GB and XGB and deep learning model ANN predicted
erratic peaks in almost every missing data point, while GRU model was stable in small gaps and only
presented poor performance in long missing period (before 25 day). This improvement by GRU model
can be attributed to the structure of GRU that naturally keeps the historical information using hidden
states, which enables GRU to consider the temporal dependence and make consistent predictions over
time.”
Moreover, the objective for this study is to explore ways to incorporate knowledge into ML models for
improving agriculture ecosystem simulation. The mesocosm experiment measured many inputs and
intermediate variables in addition to the output of N2O fluxes, thus serving as a unique testbed.
Continuous N2O flux data with a comprehensive set of input and intermediate variables, especially those
at hourly or daily scales, are very limited. Some recent projects funded by the US Department of Energy
have started to collect such datasets in real-world fields, but the data has not been released. While we
fully understand the importance of out-of-sample testing, working with another dataset is beyond the
scope of this manuscript.

Technical corrections

● At line 239, Sec. 4.4 does not exist.

Response: We have corrected the sentence by replacing 4.4 to existing 4.3..
“... and would guide future N2O related measurements and KGML model development (discussed in Sec.
4.3).”



● At line 240, I believe this should refer to Fig. 1c and 1d, not 1b and 1c.

Response: We have corrected this mistake (line 264).
“Next we used the knowledge learned from synthetic data to develop the structure of KGML-ag (Fig.
1c-d).”

● Tables 1 and 2 have identical captions but different contents.

Response: We have corrected this by replacing the right caption.
“Table 2: Prediction accuracy comparisons between non-pretrained GRU model and KGML-ag1.”

● Sections 4.1 and 4.2 are both entitled "Interpretability of KGML-ag."

Response: We have replaced the section 4.2 title to “Lessons for KGML-ag development”



To Reviewer 3

The authors are proposing the development of a new approach KGML-ag to machine learning in
estimating N2O emissions from fertilized agricultural fields. This approach involves using data generated
from a process model and a mesocosm experiment to tune the relationships and their parameters among
input and intermediate variables by which N2O emissions are thought to be governed. The advantages of
this approach over process models are simplified input data requirements, more rapid model execution,
and possibly more accurate simulation of N2O fluxes measured in experiments for which the model is
tuned.
Response: We really appreciate the reviewer correctly recognizing our efforts and achievements. We want
to incorporate the domain knowledge learned from agroecosystem process-based model ecosys to the
advanced machine learning models to combine the advantages from both. Developing KGML-ag is one of
the very first few attempts to realize the concept of hybrid modeling (Reichstein et al. 2019 Nature) in
simulating agroecosystem biogeochemistry. To further improve our manuscript, we have carefully revised
the content based on all reviewers’ comments and suggestions.

The ability of this approach to simulate N2O emission events under controlled laboratory conditions is
impressive. It should be noted that the N2O emissions in Fig. 2 and the soil NO3 contents in Fig. 3 are
much larger than those commonly encountered in field conditions. However the relationships and their
parameters upon which this approach is based are not disclosed to the reader, and so remain a ‘black box’.
For example, in section 4.1 the processes governing the time course of N2O emissions following a urea
application are described, but the method by which these processes were represented in KGML is not.

Response: We have double checked the N2O emission and NO3
- concentration magnitude from mesocosm

and comparing with other field studies under similar conditions (Fassbinder et al., 2013; Grant et al.,
1999, 2006, 2008; Hamrani et al., 2020; Venterea et al., 2011). It turned out that our magnitude for N2O
(peak value around 20 mg N m-2 day-1) and NO3

- (peak value around 50 g N m-2) are within the field
observed ranges for managed crop soils. The reviewer’s impression that these values being “too large” is
likely because of the different units we used. Here all units are converted to daily scale as a default setting
in ecosys, while other studies often report N fluxes using mg N m-2 h-1 for N2O flux and mg N kg-1 for
NO3

- concentration (in this case, peak values in our experiment are 1 mg N m-2 h-1 and 40 mg N kg-1). To
avoid future misunderstandings of the data, we first add a sentence in data description section 2.2.2 to
include the comparisons with other studies (From line 198 to 201) and then add units in Figure 2 and
Figure 3 caption to notify readers about the different units being used.

“The magnitude of N2O flux and NO3
- soil concentration and their responses following fertilizer

application from this mesocosm experiment are consistent with several field studies of agricultural soils
(Fassbinder et al., 2013; Grant et al., 1999, 2006, 2008; Hamrani et al., 2020;  Venterea et al., 2011).”
“Figure 2: N2O flux time series comparisons among pure non-pretrained GRU predictions (blue line),
KGML-ag1 predictions (red line) and observations (black line-dot) from cross-validation. The N2O flux
unit is mg N m-2 day-1.”
“Figure 3: IMVs prediction from KGML-ag1. The black-dot line represents observations and the red line
represents the results from KGML-ag1. Chmb is the abbreviation for chamber. r2 and RMSE are



calculated and present in each year and chamber. The CO2 flux and soil NO3- concentration units are g C
m-2 day-1 and g N m-2, respectively.”
“Figure 3 Contd.: IMVs prediction from KGML-ag1. The black-dot line represents observations and the
red line represents the results from KGML-ag1. Chmb is the abbreviation for chamber. r2 and RMSE are
calculated and present in each year and chamber. The soil NH4

+ concentration and soil VWC units are g N
m-2 and m3 m-3, respectively.”

We would like to note that this study is one significant step towards none-black box use of
machine learning, but fully opening the black box is one of the frontiers in ML research that still has a
long way to go. We partially opened the black box by incorporating domain knowledge into a completely
black box ML model via three efforts: 1) building a hierarchical structure (with black-box GRU model as
basis) to simulate the important intermediate variables (IMVs) first; then the predicted IMVs are used as
the additional inputs in target variable simulation (e.g. N2O), which will provide an opportunity to track
those IMVs during the simulation period; 2) pretraining the KGML model with a process-based model so
that the KGML model can perform as a surrogate model of the process-based model; 3) other techniques
like using initial values to preserve state, feature importance analysis and stepwise training and fine
tuning etc. With these implementations, our KGML model not only outperformed pure ML models but
also was more interpretable. The ability to predict IMVs also shed light on model improvement, which is
not possible  or much more complicated with pure ML models.

Regarding the relationships and parameters, we will make the KGML-ag code and neural network
weights open through Github once the review process is done. But explicitly describing these like what is
often done for process-based models is not practical because KGML-ag is essentially a neural network
model, and readers are not able to infer much directly from layers, nodes and weights.

Finally, we agree with the reviewer that in some cases why KGML performed so well needs to be
explained, but this would not deny our contribution towards opening the “black box”. To reflect the
reviewer’s concern, we have added in the discussion section 4.3 last paragraph (from line 558 to 562)
that:

“Finally, at the current stage we can not claim to have completely opened the black box of KGML-ag, but
this framework is a significant step towards this goal. For example, some ideas implemented in our study,
such as using pretraining to transfer knowledge from PB model to ML model, incorporating causal
relations by hierarchical structure, predicting IMVs for tracking middle changes and using initial values as
input to reduce data demand, would shed light on the future KGML-ag model improvement.”

As for all black box approaches to modelling, it is vitally important that KGML be subjected to tests with
truly independent datasets, i.e. datasets that are completely separate, and preferably very different, from
those used in model calibration. Impressive results can always be achieved by calibrating enough
parameters, but are these parameters robust? The extent to which such testing of KGML was conducted in
this paper is not clear. At the very least, for this paper to be publishable, calibration and validation of
KGML must be clearly distinguished, and clear evidence of independent testing must be provided.
Further description of the key relationships and their parameters that govern N2O emissions in the model
should also be provided so as to improve confidence in its robustness.



Response: We agree with the reviewer that out-of-sample testing is critical for model development. In this
work all results reported in Figure 4 and Figure 5 are from leave-one-out experiment. For example, we
trained KGML with data from chamber 1-5 and tested it against the left out chamber 6 as the model
performance. Another out-of-sample test is by comparing the prediction performance during the periods
without any chamber observation data (i.e. before April 25th of each year). Results show that KGML-ag1
predicted stable N2O fluxes close to 0 mg N m-2 day-1 (which is close to the reality in the experiment
setting) while GRU caused anomalous peaks of fluxes. This highlighted the power of KGML because
KGML-ag1 has learned “knowledge” for the whole period from the pretraining process using ecosys
model generated synthetic data. Relevant text can be found in 363-366:
“For the region without observation data (normally before day 25), KGML-ag1 predicted stable N2O
fluxes close to 0 mg N m-2 day-1 (which is close to the reality in the experiment setting) while GRU
caused anomalous peaks of fluxes. This is because KGML-ag1 has learned knowledge for the whole
period from the pretraining process with ecosys model generated synthetic data, but GRU model has no
prior knowledge for the period without any data in observations;”
and in lines 424-429:
“From these comparisons, we infer that without considering temporal dependence and pretraining
process, the tree-based model including DT, RF, GB and XGB and deep learning model ANN predicted
erratic peaks in almost every missing data point, while GRU model was stable in small gaps and only
presented poor performance in long missing period (before 25 day). This improvement by GRU model
can be attributed to the structure of GRU that naturally keeps the historical information using hidden
states, which enables GRU to consider the temporal dependence and make consistent predictions over
time.”

We understand these two out-of-sample tests are not in the sense of being “very different” from
what the KGML model was developed. However, this is so far the best data we can access. The
mesocosm experiment data we used in this study has provided a comprehensive set of inputs and
intermediate variables in addition to the output of N2O fluxes, thus serving as a unique testbed.
Continuous N2O flux measurements along with a comprehensive set of input and intermediate variables,
especially those at hourly or daily scales, almost do not exist or are not publicly accessible. Some recent
projects funded by the US Department of Energy have started to collect such gold standard dataset under
field conditions, but the data needs to be accumulated for another one or two years before release. We
anticipate that gold standard data will significantly benefit the development of the KGML-ag model.

Finally, we argue that the novelty and robustness of our study can be justified in a different
perspective. Our results show that a well-calibrated ecosys is not able to reproduce many dynamics of
observed N2O fluxes (Fig. S9) regardless how we tune ecosys parameters. A pure ML model can better
reproduce the time series, but still has missed several key peaks in growing season while falsely predicted
spring peak emissions even though fertilizers were not applied until several days later (Fig. 2). The
KGML-ag1 leveraged the advantage of ecosys and the pure ML model, and outperformed both (Fig. 2).
These nested comparisons clearly demonstrate the power of KGML as a framework. While we do not
argue that KGML-ag is a perfect model that would be directly applicable to other places, sharing our
approach will provide food-for-thought to the community on how to build a hybrid biogeochemical model
that is computationally more efficient and more robust than both process-based and ML-based models.
We have added new discussions about this concern in the last paragraph of section 4.3 (from line 562 to
566).



“Besides, we acknowledge the importance of further testing the KGML-ag over completely independent
datasets, but results presented in this manuscript are sufficient to justify the power of KGML as a
framework. The mesocosm experiment data we used in this study has provided a comprehensive set of
inputs and intermediate variables in addition to the output of N2O fluxes, thus serving as a unique testbed.
We expect our validation results will be more solid once more gold standard data of N2O fluxes along
with other relevant inputs and intermediate variables become publicly available.”

In the Discussion, the authors rightfully address some of the factors that may limit the robustness of
KGML. These limitations will likely become more apparent when the authors conduct tests of KGML
under field conditions. Addressing these factors, as described by the authors, appears to require that
KGML more closely resemble process-based models, and may reduce the computational advantages
claimed for the KGML approach.

Response: The reviewer’s concern on decreased performance in field application is legit, and is a good
hypothesis to test when more dataset become available. At this stage, we do not know whether or not
these limitations will become more apparent under field conditions. But we are currently collecting new
gold standard data of inputs, intermediate and N2O fluxes from both field and lab experiments, which will
be used to test the reviewer’s hypothesis. We would also like to acknowledge that KGML-ag’s limitations
apply to both pure ML model and process-based models under field conditions, so it is very likely
KGML-ag will continue to outperform both.

Another concern by the reviewer is that further development of KGML will make it resemble
process-based models, thereby reducing the computational advantages. We argue this is unlikely because
the application of neural networks is faster than process-based models by multiple orders. To surrogate as
many components of process-based models as possible is one research frontier in hybrid modeling for
earth system science (Reichstein et al. 2019 Nature; Irrgang et al. 2021 Nature Machine Intelligence),
with latest advances occurred in weather forecast (Bauer et al. 2021 Nature Computational Science). By
using a hybrid model, computationally inefficient components of PB can be identified one by one, and be
replaced with more efficient ML-based surrogates to eventually obtain the most efficient model, thereby
resolving the concern raised by the reviewer. We have added the new discussion at the end of section 4.3
to address the reviewer’s concern (from line 566 to 573).
“Moreover, incorporating more and more domain knowledge into KGML-ag will be inevitable in further
improvement, but we don’t think KGML-ag will become inefficient as it becomes more like the PB
model. In fact, to efficiently surrogate components of PB models has been proposed as a research frontier
in hybrid modeling for earth system science (Reichstein et al., 2019; Irrgang et al., 2021), with latest
advances occurring in weather forecasts (Bauer et al., 2021). By using a hybrid model, computationally
inefficient components of PB can be identified one by one, and be replaced with more efficient ML-based
surrogates to eventually obtain the most efficient model. Further KGML-ag model development will also
need to balance efficiency, accuracy and interpretability.”
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