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Abstract 21 
 22 

A new dynamical core, known as the Finite Volume Cubed-Sphere (FV3) and developed 23 

at both NASA and NOAA, is used in NOAA’s Global Forecast System (GFS) and in limited 24 

area models (LAMs) for regional weather and air quality applications. NOAA has also 25 

upgraded the operational FV3GFS to version 16 (GFSv16), and includes a number of 26 

significant developmental advances to the model configuration, data assimilation, and 27 

underlying model physics, particularly for atmospheric composition to weather feedback.  28 

Concurrent with the GFSv16 upgrade, we couple the GFSv16 with the Community 29 

Multiscale Air Quality (CMAQ) model to form an advanced version of the National Air 30 

Quality Forecast Capability (NAQFC) that will continue to protect human and ecosystem 31 

health in the U.S.  Here we describe the development of the FV3GFSv16 coupling with a 32 

“state-of-the-science” CMAQ model version 5.3.1. The GFS-CMAQ coupling is made 33 

possible by the seminal version of the NOAA-ARL Atmosphere-Chemistry Coupler 34 
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(NACC), which became the next operational NAQFC system (i.e., NACC-CMAQ) on July 35 

20, 2021.  NACC-CMAQ has a number of scientific advancements that include satellite-36 

based data acquisition technology to improve land cover and soil characteristics, and inline 37 

wildfire smoke and dust predictions that are vital to predictions of fine particulate matter 38 

(PM2.5) concentrations during hazardous events affecting society, ecosystems, and human 39 

health.  The GFS-driven NACC-CMAQ model has significantly different meteorological and 40 

chemical predictions than the previous operational NAQFC, where evaluation of NACC-41 

CMAQ shows generally improved near-surface ozone and PM2.5 predictions and diurnal 42 

patterns, both of which are extended to a 72-hour (3-day) forecast with this system.   43 

 44 
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1. Introduction 58 
 59 

Air quality is defined as the degree in which the ambient air is free of pollutants--which are 60 

either directly emitted into the atmosphere (primary air pollutants) or formed within the 61 

atmosphere itself (secondary air pollutants)--that cause degradation to human health, visibility, 62 

and/or ecological systems (WHO, 2005).  Air quality is as ubiquitous and important as weather 63 

impacts, where outdoor air pollution is responsible for ~4.2 million early deaths globally each 64 

year (https://www.who.int/health-topics/air-pollution#tab=tab_1). To put this into perspective: 65 

this is over three times the number of people who die from HIV/AIDS and over eight times the 66 

number of homicides each year (2017 Global Burden of Disease Study: 67 

https://www.thelancet.com/gbd).  Air pollution is costly, and leads to huge economic damage 68 

(Landrigan et al., 2018).  There are also disproportionate impacts of air pollution across poorer 69 

people and some racial and ethnic groups, who are among those who often face higher exposure 70 

and potential responses to pollutants (Institute of Medicine, 1999; American Lung Association, 71 

2001; O’Neil et al., 2003; Finkelstein et al., 2003; Zeka et al., 2006).    72 

Air pollutants are composed of both gaseous and particulate species, which under prolonged 73 

exposure can cause non-carcinogenic (Lee et al., 2014) and/or carcinogenic adverse health 74 

effects (Demetirou and Vineis, 2015).   High ground-level ozone (O3) concentrations (i.e., smog) 75 

for example, can lead to decreased lung function and cause respiratory symptoms.  These 76 

symptoms are particularly dangerous for sensitive groups such as young children, the elderly, 77 

and those with preexisting conditions that include asthma, chronic obstructive pulmonary disease 78 

(COPD), lung cancer, and respiratory infection (Kar Kurt et al., 2016).  79 

To protect against the health and environmental impacts of air pollution, world agencies have 80 

developed regulations and standards on the allowable amount of primary and secondary air 81 
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pollution measured at different spatiotemporal scales (e.g., seconds to months and local to global 82 

scales), which largely depend on the atmospheric lifetime of specific air components (WHO, 83 

2005, 2010). Typically, the world’s most extreme air pollution occurs near global megacities 84 

where population density is highest (Marlier et al., 2016).  Rapid economic growth in China, for 85 

example has led to extremely high air pollution levels over the past decade (Zhou et al., 2017; 86 

Liu and Wang, 2020), necessitating significant efforts to implement air pollution prevention and 87 

control plans (Chinese State Council, 2013; Zhao et al., 2014). The U.S. Environmental 88 

Protection Agency (EPA) defines ambient concentration limits for primary pollutants such as 89 

sulfur dioxide (SO2), oxides of nitrogen (NOx = NO+NO2), carbon monoxide (CO), lead (Pb), 90 

and total (carbonaceous and non-carbonaceous) particulate matter (PM).  Other important 91 

primary pollutants include total volatile organic compounds (VOCs), which have many sources 92 

(both natural and anthropogenic) and serve as vital precursor gases to secondary pollutants such 93 

as ground-level O3 and the formation of fine particulate matter with an aerodynamic diameter of 94 

less than 2.5 μm (PM2.5).  Ground level O3 and PM2.5 are two of the six U.S. EPA “criteria 95 

pollutants” that are regulated for their concentrations, exposure level, and health impacts.  This is 96 

largely because there is a relatively mature understanding of their sources, formation, and 97 

characteristics (e.g., Sillman et al., 1990; Sillman 1995, 1999; Pinder et al., 2008; Kim et al., 98 

2011a, 2011b; Zhang et al., 2009a, 2009b; Campbell et al., 2015; Karamchandani, et al. 2017).  99 

There is also a widespread ability to compare observed and simulated ambient ozone 100 

concentrations over both short-term (McKeen et al., 2004, 2007, 2009) and dynamic long-term 101 

periods (e.g., Astitha et al., 2017), which has helped lead to an understanding of their well-102 

attributable health impacts (e.g., WHO 2006, Sun et al., 2015; Zhang et al., 2018).   103 
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To address prolific air pollution concerns in the U.S. during the 1950s-1960s, the first 104 

development and application of real-time air quality forecast (RT-AQF) models began in the 105 

1970s-1980s (i.e., the 1st and 2nd generation air quality models) coincident  with the 106 

establishment of the U.S. EPA by President Nixon.  Initially the models were based on empirical 107 

approaches and statistical models (Zhang et al., 2012a); however, by the 1990s and early 2000s, 108 

RT-AQF models underwent a significant evolution and evolved to more complex 3-D numerical 109 

air quality models (3rd and 4th generation air quality models).  These RT-AQF models involved 110 

more sophisticated techniques including increasingly complex parameterizations and chemistry, 111 

bias correction methods and data fusion, chemical data assimilation, and hybrid statistical or 112 

numerical methods with artificial intelligence/machine learning algorithms to improve RT-AQF 113 

model efficiency and predictions (Zhang et al., 2012b; Bai et al., 2018). RT-AQF models have 114 

become vital tools to improve our understanding and prediction of how air pollutants form, 115 

disperse, and deposit to the surface, and are used by local health and air managers to assess the 116 

air quality conditions to make informed decisions on mitigation measures to reduce public 117 

exposure. 118 

To address the nation’s need for reducing the adverse health effects of air pollution and 119 

associated costly medical expenses, in 2002 Congress addressed the National Oceanic and 120 

Atmospheric Administration (NOAA) to provide National AQF guidance (H.R. Energy Policy 121 

Act of 2002 - Senate Amendment S. 517, SA1383, Forecasts and Warnings).  A joint project 122 

emerged from this amendment between NOAA and the EPA to develop and establish the initial 123 

phase of a RT-AQF system, which consisted of the coupled NOAA's Eta meteorological model 124 

(Black, 1994; Rogers et al., 1996) with EPA's Models-3 Community Multiscale Air Quality 125 

(CMAQ) model (Byun and Ching, 1999; Byun and Schere, 2006).  This “offline-coupled” model 126 
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provided O3 forecast guidance for the northeastern U.S states (Kang et al., 2005; Otte et al., 127 

2005; Eder et al., 2006) and formed the early version of the National Air Quality Forecast 128 

Capability (NAQFC) that was first implemented for operations in September 2004 129 

(https://www.weather.gov/sti/stimodeling_airquality_predictions).    The NAQFC was further 130 

developed at NOAA and collaborating laboratories (Mathur et al., 2008; McKeen et al., 2004, 131 

2007, 2009), and was comprehensively evaluated in Eder et al. (2009).  The NAQFC has been 132 

continuously advanced to provide both O3 and PM2.5 forecast guidance for the entire 133 

conterminous U.S. (CONUS), expanded its predictions to both Alaska and Hawaii, and provided 134 

pivotal air quality forecast guidance to a multitude of stakeholders to help protect human health 135 

and the environment (Stajner et al., 2011; Lee et al., 2017; Huang et al., 2017). Prior to the 136 

advanced version described in this paper, the NAQFC used the offline-coupled North American 137 

Mesoscale Model Forecast System on the B-Grid (NMMB) (Black, 1994; Janjic and Gall, 2012) 138 

and CMAQv5.0.2 (U.S. EPA, 2014).  The NAQFC provides forecast guidance for O3, PM2.5, 139 

wildfire smoke, and dust at a horizontal grid spacing of 12 km over a domain centered on the 140 

CONUS, Alaska, and Hawaii domains.     141 

NOAA’s National Weather Service (NWS) transitioned operationally in June 2019 to use a 142 

new dynamical core known as the Finite Volume Cubed-Sphere (FV3) in the Global Forecast 143 

System (GFS) model.  Both the National Aeronautics and Space Administration (NASA) and 144 

NOAA’s Geophysical Fluid Dynamics Laboratory (GFDL; https://www.gfdl.noaa.gov/) have 145 

developed and advanced FV3 over the past few decades (Lin et al., 1994; Lin and Rood, 1996; 146 

Lin, 2004; Putman and Lin, 2007; Chen et al., 2013; Harris and Lin, 2013; Harris et al., 2016; 147 

Zhou et al., 2019).   Overall, the switch to a FV3-based dynamical core with advancements to 148 

GFS’s observation quality control, data assimilation, and model physical parameterizations (from 149 

https://www.gfdl.noaa.gov/
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the National Center for Environmental Prediction) significantly increases the accuracy of 1-2 day 150 

and longer (e.g., 3-7 day) weather forecasts (Chen et al., 2019).  Other advantages of FV3GFS 151 

are improved computational efficiency and adaptable scaling, enhanced and flexible vertical 152 

resolution, and improved representation of atmospheric circulation and weather patterns across 153 

different horizontal scales (Yang et al., 2020; 154 

https://www.weather.gov/media/notification/pns20-44gfs_v16.pdf; 155 

https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs.php; 156 

https://ufscommunity.org/wp-157 

content/uploads/2020/10/UFS_Webnair_GFSv16_20201022_FanglinYang.pdf).   158 

The improved representation of atmospheric conditions, circulation/transport, and 159 

precipitation in GFS are pivotal to the accuracy of chemical predictions when coupled to RT-160 

AQF models.  Since 2017, there also has been significant efforts at NOAA to use version 15 of 161 

FV3GFS (hereafter, GFSv15) rather than NMMB as the meteorological driver for CMAQ in the 162 

NAQFC (Huang et al., 2018, 2019, 2020).  Huang et al. (2020) and Chen et al. (2021) 163 

demonstrated that a version of the GFS-driven CMAQv5.0.2 (GFSv15-CMAQ) forecasting 164 

system had partly improved O3 predictions compared to the NMMB-driven CMAQ (NMMB-165 

CMAQ) system, but that the GFSv15-CMAQ had large biases for PM2.5 that still need 166 

improvement. 167 

Concurrently at NOAA, there has been a major upgrade of GFS from version 15 to 16 168 

(GFSv16), which includes a number of major developmental advances to the system (see Section 169 

2 of this paper).  Thus, there was an opportunity to simultaneously upgrade and streamline the 170 

meteorological coupling between the GFSv16 and a more updated, “state-of-the-science” version 171 

of CMAQ at the U.S. EPA (U.S. EPA, 2019; Appel et al., 2021).  The current CMAQv5.0.2 used 172 

https://www.weather.gov/media/notification/pns20-44gfs_v16.pdf
https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs.php
https://ufscommunity.org/wp-content/uploads/2020/10/UFS_Webnair_GFSv16_20201022_FanglinYang.pdf
https://ufscommunity.org/wp-content/uploads/2020/10/UFS_Webnair_GFSv16_20201022_FanglinYang.pdf
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in the NMMB-CMAQ and experimental GFSv15-CMAQ is outdated scientifically with 173 

numerous deficiencies, many of which led to the elevated biases and error as described in Huang 174 

et al. (2017; 2020) and Chen et al. (2021).  Hence, there is a need to update the NAQFC to 175 

actively developing versions of both FV3GFS and CMAQ.    176 

The main objectives of this manuscript are to describe the development of the GFSv16 177 

coupling with a state-of-the-science CMAQ model for the advanced updates to NAQFC that 178 

includes numerous other RT-AQF science advances (Section 2).  We also describe the new 179 

simulation design and input observations, and evaluate the meteorological and air quality 180 

predictions across the U.S. compared to the now discontinued NMMB-CMAQ system for 181 

NAQFC (Sections 3 and 4).  We conclude with a summary of NACC-CMAQ serving as the 182 

current (since July 20, 2021) operational NAQFC, as well as longer-term goals (Section 5).  We 183 

hypothesize that advancing to closer state-of-the-science meteorological and chemical transport 184 

models will improve atmospheric-chemical composition predictions, and the resulting air quality 185 

forecasts will better protect human health across the U.S.    186 

2.  Methods  187 
 188 

2.1  Updated Meteorological and Surface Drivers 189 
 190 

2.1.1 The Global Forecast System Version 16 191 
 192 

The Environmental Modeling Center (EMC) at NOAA continuously develops and 193 

improves the GFS model, which has been in operation at the National Weather Service since 194 

1980.  EMC has recently upgraded the GFS model from v15.3 to v16 in February 2021, and the 195 

major upgrade improves the model forecast performance while also providing enhanced forecast 196 

products.  Some of the major structural changes to GFSv16 (compared to previous GFS versions) 197 

include increased vertical layers/resolution from 64 to 127 (Figure 1) and an extended model top 198 
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from 54 (upper stratosphere) to 80 km (mesopause).  GFSv16 also has a thinner first model layer 199 

thickness (20 m) and higher resolution global horizontal grids of ~ 25 and 13 km (Yang et al., 200 

2020; https://www.weather.gov/media/notification/pns20-44gfs_v16.pdf; 201 

https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs.php; 202 

https://ufscommunity.org/wp-203 

content/uploads/2020/10/UFS_Webnair_GFSv16_20201022_FanglinYang.pdf). 204 

Figure 1.  The a) native FV3 gnomonic cubed-sphere grid at C48 (2-degree) resolution (image 206 
courtesy of Dusan Jovic, NOAA) and b) vertical resolution (P vs. dP) for the upgraded GFSv16 207 
(green) compared to the previous GFSv15.3 (blue) and the European Centre for Medium-Range 208 
Weather Forecasts (ECMWF) model (black).   209 
 210 
 211 
 The GFSv16 has significantly improved its physical parameterizations (e.g., Planetary 212 

Boundary Layer (PBL), gravity wave, radiation, clouds and precipitation, land surface, and 213 

surface layer schemes) and upgraded to the Global Data Assimilation System (GDAS) Version 214 

16 (Yang et al., 2020; https://www.weather.gov/media/notification/pns20-44gfs_v16.pdf; 215 

https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs.php; 216 

https://www.weather.gov/media/notification/pns20-44gfs_v16.pdf
https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs.php
https://ufscommunity.org/wp-content/uploads/2020/10/UFS_Webnair_GFSv16_20201022_FanglinYang.pdf
https://ufscommunity.org/wp-content/uploads/2020/10/UFS_Webnair_GFSv16_20201022_FanglinYang.pdf
https://www.weather.gov/media/notification/pns20-44gfs_v16.pdf
https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs.php
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https://ufscommunity.org/wp-217 

content/uploads/2020/10/UFS_Webnair_GFSv16_20201022_FanglinYang.pdf).     218 

  The global GFSv16 has changed format of forecast output history files from binary 219 

(nemsio) to netCDF with zlib compression (data volume reduced by about 60%), and provides 220 

the hourly (important for CMAQ predictions) output for a 72-hour (3-day) forecast each day.  221 

The prior operational NAQFC (NMMB-CMAQ) forecast is only out to 48 hours (2-day).  The 222 

netCDF output is available (via live disk and archives) to all of NOAA’s downstream model 223 

applications, and is in the form of a Gaussian, rectangular grid with a global-uniform grid 224 

resolution of ~13 km (referred to as “C768”), with a set number of latitude and longitude 225 

coordinates. The NOAA GFDL website provides more information about FV3 and its grids 226 

(https://www.gfdl.noaa.gov/fv3/).  There are additional new surface fields in the GFSv16 output, 227 

which include plant canopy surface water, surface temperature and moisture at four below-228 

ground levels (0-0.1, 0.1-0.4, 0.4-1, 1-2 m), surface roughness,  soil and vegetation type, and 229 

friction velocity.   230 

2.1.2 The NOAA-EPA Atmosphere Chemistry Coupler (NACC) 231 
 232 

The meteorological-chemical coupling of the GFSv16 to the regional, state-of-the-science 233 

CMAQ v5.3.1 model (U.S. EPA, 2019; Appel et al., 2021) is achieved via the NOAA-EPA 234 

Atmosphere Chemistry Coupler (NACC) version 1 (NACC, i.e., “knack”:  meaning an acquired 235 

skill), which is adapted from the U.S. EPA’s Meteorology-Chemistry Interface Processor (MCIP) 236 

version 5 (Otte and Pleim, 2010; https://github.com/USEPA/CMAQ).  The NACC and CMAQ 237 

coupling (hereafter referred to as NACC-CMAQ) involves a number of structural and scientific 238 

advancements (Figure 2; “The Advanced NAQFC”) compared to the previous operational 239 

NMMB-CMAQ; hereafter referred to as “prior NAQFC”.   240 

https://ufscommunity.org/wp-content/uploads/2020/10/UFS_Webnair_GFSv16_20201022_FanglinYang.pdf
https://ufscommunity.org/wp-content/uploads/2020/10/UFS_Webnair_GFSv16_20201022_FanglinYang.pdf
https://www.gfdl.noaa.gov/fv3/
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Figure 2.  Schematic of the advanced NAQFC based on NACC-CMAQ.   242 
 243 
  The major structural changes to NACC-CMAQ include a variable-dependent bilinear or 244 

nearest-neighbor horizontal interpolation of the GFSv16 Gaussian gridded (~13 km) fields (e.g., 245 

2-m temperature, 2-meter specific humidity, 10-m wind speed and direction, and sea level 246 

pressure) to Lambert Conic Conformal (LCC) at 12-km horizontal grid spacing (same as the 247 

prior NAQFC) (Figures 3a-b).   NACC-CMAQ also includes a redefined vertical structure based 248 

on vertical interpolation (i.e., collapsing) to a 35-layer configuration (Figure 3c) that is identical 249 

to the prior NAQFC.   250 

 251 
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Figure 3.  Examples of the NACC-CMAQ a) GFSv16 Gaussian grid surface temperature 253 
(C768~13 km) and b) associated bilinear horizontal interpolation NACC LCC output (12 km), 254 
and c) Skew-T Log-P diagram of both GFSv16 native (127 layers; solid) and NACC interpolated 255 
(35 layers; dashed) profiles of temperature (black) and dewpoint (blue), and wind speed/direction 256 
(wind barbs; native=black and collapsed=red).  The example sounding pertains to a date of 257 
September 24, 2020 at the closest model grid square to 39.07°N and 95.62°W (black dot in a)-258 
b)).   259 

Time-splitting techniques based on Message Passing Interface (MPI) commands 260 

parallelize the GFSv16-to-NACC input and output (IO), which vastly improves the 261 

computational efficiency for the updated 72-hr forecast period.   The NACC-CMAQ coupling is 262 

more unified and streamlined compared to prior NAQFC (Stajner et al., 2011; Lee et al., 2017; 263 

Huang et al., 2017) and experimental GFSv15-CMAQ (Huang et al., 2018; 2019) applications, 264 

while eliminating multiple pre- and post-processing steps.   The NACC-CMAQ processing steps 265 

are therefore subject to less uncertainty/error that comes with multiple grid interpolations and 266 

restructuring used previously, and are more computationally efficient for the 72-hr forecast 267 

window.  Furthermore, the vertical interpolation from 127 to 35 layers results in an excellent 268 

agreement in the vertical structure of key atmospheric state variables (Figure 3c). While this 269 

example is only for the central U.S., other model grid cell locations in the east and west U.S. also 270 
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demonstrate excellent agreement in the native and collapsed vertical structure in NACC (not 271 

shown). While NACC-CMAQ domains for Alaska and Hawaii are also available for NAQFC, 272 

this paper focuses only on the results inside the CONUS domain. 273 

 The left side of Figure 2 shows that NACC-CMAQ incorporates high resolution satellite 274 

data for a 2018-2020 climatological (12-month) averaged leaf area index (LAI), which is based 275 

on the Visible Infrared Imager Radiometer Suite (VIIRS) 8-day, Level 4 Global 500 m SIN Grid, 276 

V001 product (Myneni and Knyazikhin, 2018; https://lpdaac.usgs.gov/products/vnp15a2hv001/).  277 

This is a substantial update from the prior NAQFC, which assumed an unrealistic static value of 278 

LAI = 4 across the entire domain.  The NOAA product for near-real-time (NRT) greenness 279 

vegetation fraction (GVF) from VIIRS (Ding and Zhu, 2018; 280 

https://www.ospo.noaa.gov/Products/land/gvf/) is used as a dynamic, direct input in NACC-281 

CMAQ instead of using the GFSv16 vegetation fraction (VEG).   Both VIIRS LAI and GVF are 282 

preprocessed, and NACC performs nearest-neighbor interpolation to the NAQFC grid.  283 

More realistic land cover characteristics have shown to improve modeled meteorology, 284 

chemistry, and surface-atmosphere exchange processes in the coupled Weather Research and 285 

Forecasting (WRF; Powers et al., 2017; Skamarock & Klemp, 2008)-CMAQ  model (e.g., Ran et 286 

al., 2016; Campbell et al., 2019).  Test results here show that rapid-refresh of high resolution 287 

VIIRS LAI and GVF in NACC have distinct differences compared to an older 2010 MODIS-288 

International Geosphere-Biosphere Programme (IGBP) LAI climatology and GFSv16-based 289 

VEG, respectively (Figs. S1-S2).  The updated, dynamic LAI and GVF alter biogenic emissions, 290 

dry deposition, and resulting concentrations of gases and aerosols in NACC-CMAQ, particularly 291 

during the fall transition month of October 2020 (Fig. S3).    292 

https://lpdaac.usgs.gov/products/vnp15a2hv001/
https://www.ospo.noaa.gov/Products/land/gvf/
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NACC-CMAQ also uses global, gridded soil information based on the 2019 SoilGridsTM 293 

250-m resolution data (https://www.isric.org/explore/soilgrids) to drive an inline FENGSHA 294 

Windblown dust model (Fu et al., 2014; Huang et al., 2015; Dong et al., 2016) in NACC-CMAQ 295 

(Figure 2). Section 2.2 below provides more information on the specific parameters used in 296 

FENGSHA.  297 

As in the prior NAQFC, the chemical initial conditions (beginning on July 20, 2021 for 298 

NACC-CMAQ) are taken from the previous day’s (CMAQ) forecast output, and a NRT bias-299 

correction using AirNow surface observations (https://www.airnow.gov/) is applied to the 72-hr 300 

predictions of O3 and PM2.5 (Figure 2). Huang et al. (2017) provides more information on the 301 

bias-correction technique.   302 

2.2 Updated Chemistry, Emissions, and Air-Surface Exchange Processes 303 
 304 
2.2.1 The Community Multiscale Air Quality (CMAQ) Model, Version 5.3.1 305 

 306 
A major update in NACC-CMAQ is coupling the GFSv16 to a “state-of-the-science” 307 

chemical transport model, CMAQv5.3.1 (U.S. EPA, 2019; Appel et al., 2021) (Figure 2).  The 308 

prior NAQFC and experimental GFSv15-CMAQ both use CMAQv5.0.2, released in April 2014 309 

(U.S. EPA, 2014).  The major release of CMAQv5.3 incorporates significant improvements to 310 

gas chemistry (e.g., halogen-mediated ozone loss), aerosol modules (e.g., improved secondary 311 

organic aerosol formation), photolysis rates, aqueous and heterogeneous chemistry, transport 312 

processes, air-surface exchange, emissions, and other structural and computational improvements 313 

(Appel et al., 2021).  The use of CMAQv5.3.1 in NACC-CMAQ also contains a number of bug 314 

fixes to v5.3.  Version 6 of the Carbon Bond (CB6) mechanism is used for gas-phase chemistry 315 

(Yarwood et al., 2010), and the updated U.S. EPA’s AERO7 module is used for aerosol 316 

formation in NACC-CMAQ.  The U.S. EPA’s GitHub webpage 317 

https://www.isric.org/explore/soilgrids
https://www.airnow.gov/
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(https://github.com/USEPA/CMAQ/blob/master/DOCS/Release_Notes/README.md) contains 318 

the CMAQv5.3 and v5.3.1 release notes, mechanism descriptions, and enhancements. 319 

2.2.2 National Emissions Inventory Collaborative (NEIC) 2016v1 Emissions 320 
 321 
The anthropogenic emissions modeling data may be the most influential input for chemical 322 

transport model predictions in any AQF system (Matthias et al., 2018).  The model emissions are 323 

updated from National Emissions Inventory (NEI) 2014 version 2 that is used by the prior 324 

NAQFC to NEI Collaborative (NEIC) 2016v1 Emissions Modeling Platform (NEIC, 2019), 325 

which is based on updated models and datasets applied to the U.S. Environmental Protection 326 

Agency’s (EPA) NEI2014v2. The prior NAQFC uses an older NEI2014v2 emissions dataset.  327 

There have been substantial updates to the NEIC2016v1, which include emission decreases for 328 

CO, NOx, SO2, and PM2.5, and increases in total VOC and ammonia (NH3) emissions compared 329 

to the NEI2014v2 (NEIC, 2019).  The intermittent, “event-based” emissions from wildfires and 330 

windblown dust, as well as persistent biogenic emissions sources are not from the NEIC2016v1, 331 

but rather are dynamically predicted inline within NACC-CMAQ (described in following 332 

sections).  The NEIC2016v1 area-source (i.e., 2-D) emissions are gridded, netCDF/IOAPI format 333 

that are interpolated to the 12-km NAQFC domain.  The NEIC2016v1 also provides major point 334 

source (i.e., 3D) emissions from six sectors:  Commercial Marine Vehicles (CMV12 and 335 

CMV3), Electricity Generating Units (EGUs), Non-EGUs, Oil-Gas sources, and “Other” point 336 

sources. The anthropogenic point source plume rise is calculated inline within NACC-CMAQ 337 

using the Briggs plume rise method (Briggs, 1965).     Slight adjustments are made to reduce the 338 

anthropogenic aerosol/fugitive dust emissions over snow and wet soil surfaces to account for 339 

different forecasted meteorology in GFSv16 compared to the conditions used in generating the 340 

NEIC2016v1.   341 

https://github.com/USEPA/CMAQ/blob/master/DOCS/Release_Notes/README.md
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We note that the NEIC2016v1 emissions are not projected into the actual forecast year, with 342 

the time lag being a long-recognized issue in NAQFC (e.g., Tong et al., 2012).  Thus, the 343 

NACC-CMAQ air quality simulations for the fall of 2020 and the winter of 2021 are impacted 344 

by the COVID-19 pandemic, which resulted in spatiotemporal changes to emission patterns and 345 

ozone formation over the U.S. in 2020 and beyond (Campbell et al., 2021). In addition, mobile 346 

source emissions have continued to decline since 2016 so it is likely that the emissions used in 347 

the analysis do not entirely reflect recent changes to the emissions compared to 2016 (almost  5 348 

years earlier).  We are actively working to improve the representativeness of anthropogenic 349 

emissions sources in NACC-CMAQ and next-generation versions of the NAQFC. 350 

    2.2.3 Inline Biogenic Emissions and Bidirectional NH3 Fluxes  351 

NACC-CMAQ uses the latest version of the Biogenic Emission Inventory System (BEIS) 352 

v3.6.1 (Vukovich and Pierce, 2002; Schwede, 2005) for estimating the biogenic VOC (BVOC) 353 

emissions.  BEISv3.6.1 includes updated vegetation inputs and advanced two-layer canopy 354 

model formulations for estimating leaf (sun and shade) temperatures and vegetation data (Weiss 355 

and Norman, 1985; Campbell and Norman, 1998; Niinemets et al., 2010; Bash et al., 2015).   356 

NACC-CMAQ also uses the revised Biogenic Emissions Landuse Dataset v5 (BELD5), which 357 

includes a newer version of the Forest Inventory and Analysis (FIA) version 8.0 and updated 358 

agricultural land use from the 2017 U.S. Department of Agriculture (USDA) crop data layer.  359 

The BELD5 dataset also uses a MODIS 21-category land use dataset with lakes identified 360 

separately from oceans.  The prior NAQFC used a much older BELD3 version. 361 

The prior NAQFC also only considered summer factors in BEIS, and did not capture 362 

seasonal (summer and winter) changes to the normalized biogenic emissions factors (vegetation 363 

species-specific).  NACC-CMAQ is improved and uses a new “vegetation frost switch” that 364 
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adjusts between summer and winter normalized emission factors in BEISv3.6.1 based on the 365 

calendar date and 2-m temperature (TEMP2).  In NACC, a new time-dependent variable, 366 

‘SEASON’ is equal to one during the growing season, or equal to zero outside the growing 367 

season. The SEASON is (boreal) summer if the calendar date is on or between 15 April  and 15 368 

October, but switches to winter if TEMP2 drops below 28°F, and is winter if the date is on or 369 

between 16 October and 14 April, but switches to summer if TEMP2 rises above 32°F.   Thus, 370 

the SEASON variable in NACC-CMAQ differs from typical retrospective CMAQ applications, 371 

and is more dynamic with hourly variability based on the GFSv16 forecasted TEMP2.  Test 372 

results show generally improved model performance for all U.S. regions in December 2020 373 

(winter) with vegetation frost switch compared to using only summer season normalized 374 

emissions (Table S1).  Using BELD5 further improves model performance and reduces the error 375 

in all CONUS regions compared to the older BELD3 used in December 2020 tests (Table S1).  376 

NACC-CMAQ includes bidirectional NH3 (BIDI-NH3) for NH3 fluxes (i.e., both 377 

deposition and evasion) in the CMAQv5.3.1 “M3Dry” deposition model (Nemitz et al., 2000; 378 

Cooter et al., 2010; Massad et al., 2010; Pleim and Ran, 2011; Bash et al., 2010, 2013; Pleim et 379 

al., 2013; 2019). Here, the NH3 fertilizer emissions are removed from the base NEIC2016v1 380 

inventory to avoid double counting, as the inline BIDI-NH3 module calculates these fluxes.  The 381 

BIDI-NH3 module typically requires daily inputs (e.g., soil ammonia content, soil pH, soil 382 

moisture, and other soil characteristics) from the USDA’s Environmental Policy Integrated 383 

Climate (EPIC) agroecosystem model (https://epicapex.tamu.edu/epic/; Williams et al., 1995) to 384 

calculate the soil ammonia concentrations that are combined with air concentrations in CMAQ to 385 

calculate BIDI-NH3 fluxes.  Typically, the Fertilizer Emission Scenario Tool (FEST‐C, 386 

https://www.cmascenter.org/fest‐c/) processes the necessary meteorological conditions for 387 

https://epicapex.tamu.edu/epic/
https://www.cmascenter.org/fest%E2%80%90c/
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integration with the EPIC simulation for input to CMAQ (Ran et al., 2011; Cooter et al., 2012).   388 

Use of the EPIC/FEST-C system is not feasible in an NRT operational forecasting model, and 389 

thus we use a pre-generated, full-year 2011 EPIC/FEST-C simulation based on Campbell et al. 390 

(2019) for the daily inputs to BIDI-NH3 in NACC-CMAQ.  NACC-CMAQ directly uses the 391 

GFSv16 soil moisture conditions in place of the FEST-C processed soil conditions required for 392 

the latest version of BIDI-NH3 in CMAQv5.3.1 (Pleim et al., 2019).   393 

2.2.4 Inline Wildfire Smoke and Windblown Dust Emissions  394 
 395 
 Wildfires have been increasing in size (Westerling et al., 2006) and potentially in severity 396 

(Miller et al., 2009) over the past decades.  Wildfire smoke outbreaks can lead to extreme 397 

concentrations of PM2.5 and enhanced O3, and are major concerns for air quality forecasting and 398 

consequential human and ecosystem health impacts.   NACC-CMAQ includes a new inline 399 

calculation of wildfire smoke emissions based on the Blended Global Biomass Burning 400 

Emissions Product (GBBEPx V3; Zhang et al., 2012, 2014).  GBBEPx provides daily global 401 

biomass burning emissions (PM2.5, BC, OC, NOx, NH3, CO, and SO2).  It blends fire 402 

observations from two sensors, including the Moderate Resolution Imaging Spectroradiometer 403 

(MODIS) on the NASA Terra and Aqua satellites, and the Visible Infrared Imaging 404 

Spectrometer (VIIRS) on the Suomi National Polar-orbiting Partnership (SNPP) and Joint Polar-405 

orbiting Satellite System 1 (JPSS1) satellites. The GBBEPx data are further processed to prepare 406 

model-ready emission datasets. First, the 0.1 x 0.1 degree latitude/longitude data are converted 407 

into the NAQFC LCC projection.   U.S. EPA-based Sparse Matrix Operator Kernel Emissions 408 

(SMOKE) fire speciation and diurnal profiles provide the PM speciation and diurnal patterns in 409 

NACC-CMAQ, respectively, while both landuse and region are used to identify fire types.   The 410 

fire duration persists for the 72-hour forecast period (with scaling of 1.0, 0.25, and 0.25 for day 411 
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1, 2, and 3, respectively) for wildfires identified when the grid cell forest fraction is > 0.4.  In the 412 

eastern U.S. (longitude east of 100°W), however, the fires are assumed to be mainly prescribed 413 

burns in forested regions that only persist for the first 24-hours.  The wildfire plume rise is 414 

calculated inline within NACC-CMAQ using either the Briggs (1965) or Sofiev et al. (2012) 415 

algorithms (Wilkins et al. 2019); currently the Briggs method is used by default.  416 

 Climate models project warming and drying trends in the southwestern U.S., where 417 

intermittent windblown dust storms are becoming more frequent with the occurrence of drought 418 

(Tong et al., 2017), or even “megadrought” conditions (Williams et al., 2020).  Windblown dust 419 

storms can lead to extreme levels of coarse mode particulate matter (i.e., PM10), and cause 420 

detrimental effects to human and agroecosystem health and visibility.  NACC-CMAQ includes a 421 

novel inline methodology for calculating windblown dust, based on the FENGSHA model 422 

(Huang et al., 2015; Dong et al., 2016).  In NACC-CMAQ, the potential for vertical dust flux in 423 

FENGSHA is generally controlled by the sediment supply map (SSM), and the magnitude of the 424 

friction velocity (USTAR) compared to a threshold friction velocity (UTHR) that determines the 425 

USTAR needed to transfer dust from soil surfaces to the atmosphere. The UTHR is dependent on 426 

the land cover and soil type, as well as the soil moisture.  The SoilGridsTM 250-m high-resolution 427 

dataset (https://www.isric.org/explore/soilgrids) provides the necessary clay, silt, and sand 428 

fractions used to calculate the SSM.   429 

2.3  Updated Dynamic Aerosol Boundary Conditions   430 
 431 

The chemical lateral boundary conditions (CLBCs) are critical to the prediction accuracy of 432 

regional chemical transport models, particularly during intrusion events (Tang et al., 2009; 433 

2021).  The CLBCs represent the spatiotemporal distribution of chemical species along the 434 

lateral boundaries of the domain of a regional model.  NACC-CMAQ uses methods described in 435 

https://www.isric.org/explore/soilgrids
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Tang et al. (2021) and implements dynamic CLBCs (updated every 6-hours) for dust and smoke 436 

aerosol data that are extracted (and mapped to CMAQ CB6-Aero7 species) from the NOAA 437 

operational global atmospheric aerosol model, known as the Global Ensemble Forecast-Aerosols 438 

(GEFS-Aerosols) member (Figure 2).  GEFS-Aerosols is also based on the FV3GFS dynamical 439 

core, which uses the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model for 440 

its sulfate, dust, BC, OC, and sea-salt aerosol predictions (Chin et al.; 2000; 2002; Ginoux et al., 441 

2001). GEFS-Aerosols uses the same wildfire smoke and windblown dust dataset/algorithms as 442 

in NACC-CMAQ.   The operational version of GEFS-Aerosols is run by the NWS as a special 443 

unperturbed forecast of the Global Ensemble Forecast System version 12 444 

(https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-ensemble-forecast-445 

system-gefs), which provides an ensemble forecast product four times per day. Dynamic CLBCs 446 

capture the signals of aerosol intrusion events such as biomass burning or windblown dust 447 

plumes from outside the domain, which can improve the prediction accuracy of downstream O3 448 

and PM2.5 concentrations at the surface (Tang et al., 2021).   449 

3.  Simulation Design and Evaluation Protocol 450 
 451 

Table 1 summarizes the GFSv16/NACC-CMAQv5.3.1 model configuration described in 452 

Section 2, as well as some additional model details. The model components and configurations 453 

used in prior NAQFC system are summarized in Table S2 (based on Lee et al., 2017) for 454 

comparison.  455 

Table 1.  GFSv16/NACC-CMAQv5.3.1 model components and configurations. 456 

Model Attribute Configuration Reference 

Domain Contiguous U.S.;  

Center = 40°N;97°W 

n/a 

Horizontal Resolution 12 km n/a 
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Vertical Resolution 35 Layers from near-surface to 
about 14 km (~ 60 hPa) 

n/a 

Meteorological ICs and BCs FV3GFSv 16  https://nws.weather.gov/  

Chemical ICs and BCs  2006 GEOS-Chem Simulation 
&  

GEFS-Aerosol Dynamic 
Smoke and Dust Aerosol 
CLBCs 

http://acmg.seas.harvard.edu/geos/ 

Tang et al. (2021) 

Anthropogenic Emissions  NEIC 2016v1 Platform NEIC (2019) 

Biogenic Emissions  Inline BEISv3.6.1 & BELD5  Vukovich and Pierce (2002); Schwede et al. (2005) 

Wildfire Emissions/Plume Rise  GBBEPxv3/ 

Inline Briggs 

https://www.ospo.noaa.gov/Products/land/gbbepx 

Briggs (1965) 

Microphysics GFDL six-category cloud 
microphysics scheme  

Lin et al., 1983; Lord et al., 1984; Krueger et al., 
1995; Chen and Lin, 2011; Chen and Lin, 2013 

PBL Physics Scheme sa-TKE-EDMF Han and Bretherton (2019) 

Shallow/Deep Cumulus 
Parameterization 

SAS Scheme  Han et al. (2011; 2017) 

Shortwave and Longwave 
Radiation  

RRTMg Mlawer et al. (1997); Clough et al. (2005); 

Iacono et al. (2008) 

Land Surface Model Noah Land Surface Model  Chen and Dudhia (2001), Ek et al. (2003), Tewari et 
al. (2004) 

Surface Layer Monin-Obukhov  Monin-Obukhov (1954); Grell et al. (1994); 

Jimenez et al. (2012)  

Gas-phase Chemistry  CB6 Yarwood et al., 2010 

Aqueous-phase Chemistry CMAQ AQCHem Updates Martin and Good (1991); Alexander et al. (2009); 
Sarwar et al. (2011) 

Aerosol Module/Size AERO7 Appel et al. (2021) 

Other Model Attributes                               -In-line Photolysis  

-In-line Bi-Directional NH3 
Exchange 

 

-In-line FENGSHA Wind-Blown 
Dust Emissions  

-In-line Sea-salt Emissions  

Binkowski et al. (2007) 

Nemitz et al., 2000; Cooter et al., 2010; Massad et 
al., 2010; Pleim and Ran, 2011; Bash et al., 2010, 
2013; Pleim et al., 2013; 2019 

                                                                                         
Fu et al., 2014; Huang et al., 2015; Dong et al., 
2016 

https://nws.weather.gov/
http://acmg.seas.harvard.edu/geos/
https://www.ospo.noaa.gov/Products/land/gbbepx
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Kelley et al. (2010) 

 457 

 The simulation design consists of evaluations of one-month, continuous NACC-CMAQ 458 

(72-hr, 3-day forecast) and prior NAQFC (48-hr, 2-day forecast) simulations for September 2020 459 

(late summer/fall period) and January 2021 (winter period) (with previous 1-month spin-up and 460 

training-data period) over CONUS at a horizontal grid spacing of 12 km (Table 1).  September 461 

2020 is used for the warm season because it is the closest month to summer when both the 462 

NACC-CMAQ and prior operational NAQFC systems were simultaneously run.  The prior 463 

operational NAQFC was discontinued on July 20, 2021 due to computational constraints at 464 

NWS/NOAA. 465 

The Surface Weather Observations and Reports for Aviation Routine Weather Reports 466 

(METAR), collected by NCEP's Meteorological Assimilation Data Ingest System (MADIS) 467 

(https://madis.ncep.noaa.gov/madis_metar.shtml), provide observations of TEMP2, 2‐m specific 468 

humidity (Q2), and 10‐m wind speed (WSPD10). The World Radiation Monitoring Center's 469 

(WRMC's) Baseline Solar Radiation Network (BSRN) (https:// 470 

bsrn.awi.de/; Driemel et al., 2018) and U.S. Surface Radiation Network (SURFRAD; 471 

https://gml.noaa.gov/grad/surfrad/) provide shortwave radiation observations at the ground 472 

(SWDOWN).  The PRISM Climate Group, Northwest Alliance for Computational Science and 473 

Engineering, at Oregon State University (https://prism.oregonstate.edu/l; Accessed on 05 May 474 

2021) provide gridded total precipitation observations (PRECIP).  The National Oceanic and 475 

Atmospheric Administration (NOAA), Earth System Research Laboratory's (ESRL's) 476 

Radiosonde Database (RAOB) (https://ruc.noaa.gov/raobs/) provide vertical profile observations 477 

of temperature, relative humidity, and wind speed.  The U.S. EPA Air Quality System (AQS; 478 

https://madis.ncep.noaa.gov/madis_metar.shtml
https://gml.noaa.gov/grad/surfrad/
https://prism.oregonstate.edu/l
https://ruc.noaa.gov/raobs/
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https://www.epa.gov/aqs) and near-real-time AirNow observational networks 479 

(https://www.airnow.gov/) provide near-surface O3 and PM2.5 measurements.   480 

The statistical measures used to evaluate the meteorological-chemical/air quality 481 

predictions include the mean bias (MB), normalized mean bias (NMB), normalized mean error 482 

(NME), Root Mean Square Error (RSME), Anomaly Correlation Coefficient (ACC), Pearson's 483 

correlation coefficient (R), and Index of Agreement (IOA). Statistical measures such as R, NMB, 484 

and NME provide measures of the associativity (i.e., correlation), bias, and accuracy, 485 

respectively, of specific modeled surface and vertical meteorology and surface O3 and PM2.5. 486 

The meteorological and chemical evaluations use the publicly available U.S. EPA Atmospheric 487 

Model Evaluation Tool (AMET; Appel et al., 2011) and NOAA/ARL Model and Observation 488 

Evaluation Toolkit (MONET; Baker et al., 2017).     489 

4.  Results 490 
 491 
4.1 Meteorological Analysis 492 
 493 

Compared to NMMB used in the prior NAQFC, the GFSv16 model has lower actual 494 

TEMP2 in the east-southeast and parts of the northwest (Figures 4a-d), but has higher TEMP2 in 495 

the central, northern plains, and parts of the west-southwest U.S. with higher 10-meter wind 496 

speeds (WSPD10) in these regions (Figures 4i-l).  GFSv16 is drier with widespread lower 2-497 

meter specific humidity (Q2; Figures 4e-h) and lower cloud fractions (CFRAC) (Figures 4m-p), 498 

higher solar radiation absorbed at the ground (GSW; Figures 5a-d), lower longwave radiation 499 

absorbed at the ground (GLW; Figures 5e-h), deeper planetary boundary layer height (PBLH; 500 

Figures 5i-l), and generally more regions of increased precipitation (PRECIP; Figures 5m-p).  501 

Differences in the CFRAC are (in part) impacted by differences in the model definition of cloud 502 

cover; NMMB uses a binary cloud cover definition at each grid point, while GFSv16 uses 503 

https://www.airnow.gov/
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fractional cloud cover to calculate CFRAC.  For stable conditions, the PBLH in the prior 504 

NAQFC is re-diagnosed based on the Troen and Mahrt (1986) incremental calculation of the 505 

bulk Richardson number (Rib) from the surface up to a height above the neutral buoyancy level 506 

(i.e. approaching the critical Richardson number, Ricrit) in the Asymmetric Convective Model v2 507 

(ACM2) PBL scheme in CMAQ (Pleim 2007a;2007b).   For unstable conditions, the re-508 

diagnosed ACM2 uses a slightly different PBLH formulation based on first finding the 509 

convectively unstable mixing layer (zmix), and then defining the point where Rib  = Ricrit  for the 510 

entrainment layer above zmix.   For both stable and unstable conditions, however, NACC-CMAQ 511 

directly uses the diagnosed PBLH from the Turbulent Kinetic Energy (TKE)-based PBL scheme 512 

in GFSv16 (Table 1; Han and Bretherton, 2019), which is also based on the Troen and Mahrt 513 

(1986) incremental Rib formulation.  Thus, NACC/GFSv16-CMAQ calculation is similar to the 514 

re-diagnosed ACM2 PBLH for nighttime-stable conditions (with slight differences in Ricrit 515 

values), while there exists some distinct differences in their daytime-unstable PLBH 516 

formulations and Ricrit calculations.  517 



25 
 

Figure 4.  September 2020 and January 2021 spatial average plots for NMMB (prior NAQFC) 520 
and the absolute differences for GFSv16 (NACC) - NMMB for TEMP2, Q2, WSPD10 and 521 
CFRAC. 522 

Figure 5.  Same as in Figure 4 but for GSW, GLW, PBLH, and PRECIP.524 
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Consequently, the GFSv16 (NACC) and re-diagnosed ACM2 (prior NAQFC) diurnal PBLH 525 

patterns are similar at night; however, the GFSv16 PBLH is considerably higher than the prior 526 

NAQFC during the daytime for all regions in September and January (Supporting Figures S4-527 

S5).  528 

The meteorological differences between GFSv16 and NMMB (Figures 4-5) influence 529 

chemical predictions in CMAQ, which include a deeper daytime PBL and more precipitation that 530 

can effectively dilute the gaseous and aerosol concentrations for NACC-CMAQ in some regions 531 

across CONUS.   Areas of lower CFRAC and higher TEMP2 and GSW in GFSv16, however, 532 

will increase photolysis and daytime O3 formation in NACC-CMAQ in certain regions including 533 

the south and upper Great Plains U.S.  We note that although there are differences in the PBLH 534 

calculation methodologies between the prior NAQFC and NACC-CMAQ (particularly for the 535 

unstable daytime PBLH), the differences in near-surface meteorology (i.e., generally 536 

warmer/drier) conditions in the GFSv16 (Table 2 and Table S2) also in part affect the differences 537 

in PBLH (Figures 5i-l).  These differences affect the pollutant mixing and dilution, and in part, 538 

the resulting air quality predictions between the prior NAQFC and NACC-CMAQ (see Section 539 

4.4 below).   540 

4.2 Meteorological Evaluation and Metrics 541 
 542 
 Evaluation of the simulated day 1 (0-24 hr) forecasted meteorology against the METAR 543 

network shows that GFSv16 generally has a higher positive TEMP2 (warmer) bias (Figure 6) in 544 

the west, and has a CONUS-wide higher negative Q2 (dry) bias (Figure 7) compared to prior 545 

NMMB (i.e., prior NAQFC) in both September and January.   546 
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Figure 6.  Average day 1 (0-24 hr) forecasted TEMP2 MB (°C) and RMSE (°C) for NMMB and 548 
GFSv16 during a)-d) September 2020 and e)-h) January 2021 compared to METAR 549 
observations.   550 
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Figure 7.  Same as in Figure 6, but for Q2 (g kg-1).   552 
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There are regions of higher RMSE for T2 and Q2, and lower/degraded ACC (Figures S7-S8) for 553 

GFSv16 compared to NMMB, especially in the southern and western CONUS regions during 554 

September.   The spatial patterns and magnitudes of WSPD10 bias and error are similar between 555 

GFSv16 and NMMB (Figure 8); however, the higher WSPD10 for GFSv16 in the southern and 556 

central CONUS leads to a shift from negative to positive biases from Texas northward to North 557 

Dakota, especially during September.  The WSPD10 RMSE is higher (Figure 8) and the ACC is 558 

also lower/degraded (Figure S9) for GFSv16 in those regions, otherwise, the GFSv16 and 559 

NMMB have similar performance for WSPD10.  The day 1 forecast model performance (MB, 560 

RMSE, and ACC) for 10-m wind direction (WDIR10) is similar between NMMB and GFSv16 in 561 

both September and January (Figs. S6 and S10). 562 
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Figure 8. Same as in Figure 6, but for WSPD10 (m s-1). 564 
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Overall, the GFSv16 results are favorable for driving the advanced NACC-CMAQ 565 

system, with some areas of concern in the degraded TEMP2 and Q2 in the warmer/drier regions, 566 

particularly in the south and west CONUS during September.  This roughly correlates with 567 

warmer/drier top-layer soil conditions in GFSv16 in these regions (Fig. S11), and thus land 568 

surface/soil data assimilation and model improvement in GFSv16 is an active area of focus at 569 

NOAA.  The widespread dry bias in GFSv16 appears to be persistent, as an independent 570 

evaluation of August 2019 demonstrated very similar spatial patterns and magnitude of Q2 571 

underpredictions in the eastern half of CONUS compared to the METAR network (not shown). 572 

 The GFSv16-driven NACC-CMAQ system extends out to a 72-hour forecast.  Hence, 573 

there is a question of how the day 1 and 2 forecasts perform for NMMB vs. GFSv16 in the 574 

eastern (<100° W) and western (>100° W) U.S., and how a day 3 forecast extension also affects 575 

the GFSv16 diurnal and statistical model performance.  The GFSv16/NACC diurnal patterns of 576 

standard deviation, error, and bias for TEMP2, Q2, and WSPD10 are very similar to each other 577 

for days 1-3 (Figures S12-14).  While there is a slight increase in error and decreased correlation 578 

(R), the relevant statistical metrics (e.g., MB, NMB, RMSE, and R) do not change appreciably 579 

from day 1 to 3 for both September and January (Tables S3-S4).  This lends confidence in the 580 

utility of using the updated GFSv16 meteorology to drive a 72-hour air quality forecast in 581 

NACC-CMAQ.    582 

The day 1 diurnal statistics highlight both similar and contrasting TEMP2 and Q2 583 

patterns for NMMB vs. GFSv16 in the eastern and western CONUS (Figures S12-S13).  In 584 

September (Figure S12a), NMMB has higher error and positive TEMP2 (i.e., warm) bias in 585 

eastern CONUS during morning hours, and lower error with a slight cool bias in the 586 

afternoon/evening, while GFSv16 shows slight overpredicted TEMP2 during most hours of the 587 
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day in the east.  Over western CONUS, there are larger diurnal TEMP2 differences that include 588 

small oscillating TEMP2 biases (about zero) for NMMB, along with distinctly large warm biases 589 

during all daytime hours for GFSv16 in the west.  There are larger error and negative Q2 (i.e., 590 

drier) biases for GFVSv16 compared to NMMB in eastern and western CONUS (Figure S13a).   591 

In January, the TEMP2 and Q2 diurnal statistical patterns are similar for NMMB and GFSv16 in 592 

both the eastern and western CONUS; however, the GFSv16 daytime hours have slightly higher 593 

error and warmer and drier biases compared to NMMB (Figures S12b and S13b).   594 

The total PRECIP is generally higher in GFSv16 compared to NMMB out East (Figure 595 

5), which leads to larger overpredictions on average in CONUS compared to PRISM (Figure 9). 596 

GFSv16 has a positive PRECIP bias on average in CONUS, NMMB has a negative bias, and 597 

there is relatively more difference in the spatial patterns between NMMB and GFSv16 for 598 

September compared to January.  The difference is impacted by higher convective activity 599 

during late summer/early fall in September compared to winter in January (not shown).  Further 600 

analysis indicated that generally heavier PRECIP in GFSv16 reduces the predicted PM2.5 601 

concentrations via wet deposition (not shown) in the east-southeast, and in parts of the west-602 

northwest compared to NMMB.  603 

 604 
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Figure 9.  Average day 1 (0-24 hr) forecasted total PRECIP (cm) biases (Predicted-PRISM) for 606 
NMMB (top) and GFSv16 (bottom) during a)-b) September 2020 and c)-d) January 2021.   607 
 608 
 Comparisons of the model vertical profile statistics (i.e., MB, RMSE, and IOA) for 609 

TEMP, RH, and WSPD against an average of select RAOB observations across CONUS indicate 610 

that the GFSv16 (NACC) performs consistently with the operational NMMB (NAQFC) column 611 

(Figure 10; IOA nearly identical at ~ 0.8-0.9).  GFSv16 is warmer and drier than NMMB in the 612 

model layers near the surface (> 850 mb), especially in September; however, GFSv16 has a 613 

moister atmospheric column with higher wind speeds compared to NMMB above the surface and 614 

in the free troposphere (< 850 mb). Figures S15-S17 show the spatial variability across the 615 

different RAOB sites used in the average for Figure 10.   Analysis of the column (1000-250 hPa) 616 

average for all CONUS RAOB sites across CONUS indicate that GFSv16 has a predominantly 617 

cooler and moisture atmospheric column in September, despite being strongly warmer and drier 618 

near the surface (Figures S18-S19).        619 
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Figure 10.  September 2020 (left) and January 2021 (right) vertical (1000 – 250 mb) temperature 621 
(TEMP), relative humidity (RH), and wind speed (WSPD) statistics (MB, RMSE, and IOA) for 622 
NMMB (black) and GFSv16 (red) against an average for select RAOB sites in CONUS.  623 
Supporting Figure S15a shows the specific RAOB site profiles, and Supporting Figures S18-S19 624 
provides their relative locations. 625 
 626 
4.3 Emissions Analysis 627 
 628 
 The updated NEIC2016v1 emissions in NACC-CMAQ are lower compared to the 629 

NEI2014v2 emissions used in the operational NAQFC for all major species, except for NH3 630 
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(Table 2), as the NEIC2016v1 includes updated data sources and model projections that 631 

projected generally decreasing emissions compared to the NEI2014v2 (NEIC, 2019).   632 

Table 2.  September and January emissions totals (Tg) for the NAQFC CONUS domain. 633 
Emission Species NEI2014v2 NEIC2016v1 % Difference 

September Total (Tg) 

CO 4.69 4.27 -8.9 

NOx 0.92 0.75 -18.1 

SO2 0.54 0.37 -31.2 

NH3 0.48 0.59 23.9 

AVOC 215.58 195.60 -9.3 

POC 0.07 0.05 -26.8 

PEC 0.03 0.02 -23.9 

PMC 2.03 0.82 -59.3 

January Total (Tg) 

CO 3.70 3.28 -11.2 

NOx 0.78 0.64 -18.5 

SO2 0.58 0.38 -34.7 

NH3 0.10 0.12 18.4 

AVOC  182.02 174.05 -4.4 

POC 0.08 0.07 -10.8 

PEC 0.02 0.02 -16.7 

PMC 1.27 0.24 -80.8 

 634 
 The spatial emission changes show widespread decreases in the 2D area/mobile 635 

emissions near the major urban cities for CO and NOx and across the major interstates and 636 

railways for NOx (Figures 11a-b).     637 

 638 
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Figure 11. September 2020 average spatial difference plots for NEIC2016v1-NEI2014v2 640 
combined 2D area/mobile emissions.  Figure S20 shows very similar emission changes for 641 
January 2021. 642 
 643 
The spatial variability in NOx emission changes, however, are impacted by changes in a number 644 

of onroad inputs including vehicles miles traveled, age distribution, and speeds, which caused 645 

some emissions to go up or go down depending on the specific counties.  The NOx emissions 646 
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variability is also impacted by national increases in railway levels and fuel use, while at the same 647 

time being impacted by changes to fuel efficiency and cleaner engines for both passenger and 648 

commuter trains.  There are relatively minor area/mobile changes in SO2 (Figure 11c), with some 649 

exceptions in the east-northeast; however, there are widespread increases in NH3 emissions 650 

driven by changes to the livestock counts and updated fertilization methods and inputs found in 651 

the NEIC2016v1 (Figure 11d).   Changes in nonpoint oil and gas production, exploration, and 652 

emission factors generation, as well as changes to updated activity and data sources for 653 

commercial cooking, residential fuel combustion, and industrial/commercial/institutional (ICI) 654 

fuel combustion impact the AVOC area emission changes (Figure 11e). The widespread, and 655 

spatially consistent decreases in POC and PMC are due to decreasing fugitive dust sources 656 

(Figures 11f and 11h); with the exception of the St. Lawrence River Valley, that has both 657 

increases in POC and AVOC (e.g., formaldehyde; not shown) emissions in the NEIC2016v1.  658 

Updated appliance counts and residential wood combustion estimates affect the PEC area 659 

emission decreases (Figure 11g).   660 

 There are also biogenic emissions differences due to the updated inline BEISv3.6.1 and 661 

BELD5 in NACC-CMAQ (Table 2), and due to the impacts of NMMB (prior NAQFC) vs. 662 

GFSv16 (NACC) meteorology on BEIS calculations (Figure 12).    663 
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Figure 12.  September 2020 average isoprene (ISOP) and terpene (TERP) emissions (top) in the 665 
prior NAQFC with BEISv3.1.4, and the absolute differences (bottom) for NACC-CMAQ (with 666 
BEISv3.6.1)  - NAQFC.   667 
 668 
The lower GFSv16 temperatures near many of the highly vegetated regions of the CONUS in 669 

September (Figure 4b) decrease the isoprene (ISOP) and terpene (TERP) emissions, with some 670 

notable, localized ISOP emission increases due to larger relative increases in downward solar 671 

radiation at the surface (GSW; Figure 5b) and resulting Photosynthetic Active Radiation (PAR; 672 

not shown).   The differences are also impacted by the derivations of leaf temperatures in the 673 

updated BEISv3.6.1 and BELD5 in NACC-CMAQ compared to the BEISv3.14 and BELD3 in 674 

the prior NAQFC (see discussion in Section 2.2).  Hence, the differences in spatial variability 675 

between ISOP and TERP emission changes stem from both differences in the locations of their 676 

relative maxima, and from the different algorithms for temperature and light dependencies in 677 

BEIS. The GFSv16 (NACC) performs very similarly to NMMB (prior NAQFC) for GSW at the 678 

surface compared against BSRN-SURFRAD observations in CONUS, with a slightly larger 679 
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overprediction in the late afternoon at some sites (Figures S21 and S22).  The relatively lower 680 

ISOP and TERP emissions in NACC-CMAQ will effectively lower the ground-level O3 and 681 

contribution of secondary organic aerosol (SOA) formation to PM2.5 compared to the prior 682 

NAQFC, particularly in the southeast and parts of the western CONUS in the late summer/early 683 

fall.  This is somewhat mitigated by enhanced GSW in NACC-CMAQ.  684 

4.4 Air Quality Analysis 685 
 686 

Here we focus on analysis of NACC-CMAQ predictions of gaseous O3 for the late 687 

summer/early fall (September 2020) and PM2.5 concentrations during the winter (January 2021) 688 

as concentrations are relatively higher for the pollutant’s respective seasons.   During the late 689 

U.S. ozone season in September 2020, a large majority of the local NOx concentration increases 690 

in NACC-CMAQ (Figures 13a-b) correlate with areas of NOx emissions increases in the 691 

NEIC2016v1 compared to the NEI2014v2 (Figure 11b).  An exception is the large NOx increases 692 

in the far west (e.g., California and Oregon) that stem from gaseous NOx emissions from strong 693 

wildfires that are captured by the GBBEPx in NACC-CMAQ (Table 1) but are excluded from 694 

the prior NAQFC wildfire emissions system (Table S2).     695 

 696 
 697 
 698 
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 699 

 703 
The increases in NOx concentrations and enhanced nighttime O3 titration, widespread decreases 704 

in total VOC concentrations due to both anthropogenic and biogenic VOC emission decreases in 705 

NACC-CMAQ, GFSv16-meteorology impacts (e.g., higher PBLH), and updated CMAQv5.3.1 706 

chemistry/transport lead to widespread decreases in hourly O3 when averaged over all hours 707 

(Figures 13e-f).  Regions of higher NOx emissions, overall drier (i.e., widespread lower Q2) 708 

conditions, and stronger mid- to late-afternoon solar radiation at the surface (i.e., widespread 709 

higher GSW) (see Figures 4-5 and Figures S21-22) lead to enhanced daytime O3 formation, 710 

which is shown in the widespread increases in the maximum daily 8-hr average (MDA8) O3 for 711 

NACC-CMAQ (Figures 13g-h).  This is particularly true for the strongly NOx-limited conditions 712 

across much of the western CONUS, where the MDA8 O3 increases are impacted by large 713 

increases in wildfire NOx emissions in GBBEPx and VOC decreases (anthropogenic+biogenic, 714 
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but no wildfire VOC emission impacts) in NACC-CMAQ.  These effects subsequently impact 715 

the ozone NOx-VOC sensitivity/regime that enhances the NOx-saturated (i.e., VOC-limited) 716 

conditions in this case (Figure S24).  There are exceptions with MDA8 O3 decreases in the west, 717 

including western Oregon, the San Joaquin Valley in California, and regions of the southwest 718 

CONUS, all of which are strongly VOC-limited (Figure S24).  These regions are further 719 

impacted by the VOC decreases and further NOx saturation from wildfire emissions in some 720 

locations of the west.  Although outside the scope of this work, we also found that the 721 

NACC/GFSv16-CMAQ system yields reasonable results when comparing fire-enhanced O3 and 722 

PM2.5 concentrations to aircraft measurements during the 2019 Fire Influence on Regional to 723 

Global Environments and Air Quality (FIREX-AQ) field campaign 724 

(https://csl.noaa.gov/projects/firex-aq/) (not shown).   The widespread decreases in both the 725 

hourly and MDA8 O3 over all oceanic regions in the domain are driven by the updated halogen 726 

(e.g., bromine and iodine chemistry) mediated O3 loss in NACC-CMAQ, which can reduce 727 

annual mean surface ozone over seawater by 25% (Sarwar et al., 2019).   728 

 There are both relatively large increases (north, northeast and west) and decreases (south-729 

southeast and parts of the west) for winter (January 2021) total PM2.5  (PM25_TOT) in CONUS 730 

for NACC-CMAQ compared to NAQFC (Figures 13i-j).  The decreases in inorganic 731 

PM25_TOT in the east-southeast are dominated by decreases in particulate sulfate (PM25_SO4) 732 

and ammonium (PM25_NH4), while the increases in the north-central eastern CONUS are 733 

driven by increases in particulate nitrate (PM25_NO3) and PM25_NH4.  Further analysis 734 

indicates that the widespread decreases in PM25_SO4, most prolifically in the east, are driven 735 

strongly by widespread lower CFRAC in GFSv16 (Figure 4o-p) and lower aqueous-phase 736 

oxidation in CMAQ (not shown). There are also contributions from decreased SO2 emissions 737 

https://csl.noaa.gov/projects/firex-aq/
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found in some CONUS regions for NACC-CMAQ (e.g., northeast; Figure 11c).  Additional 738 

consumption of inorganic sulfate as secondary isoprene epoxydiol (IEPOX) organosulfates are 739 

formed in the updated AERO7 aerosol mechanism in NACC-CMAQ (Table 1; Pye et al. 2013, 740 

2017), and further contribute to the PM25_SO4 decreases.  The higher total PRECIP for NACC-741 

CMAQ (Figure 5) also leads to lower PM25_TOT in the east-southeast regions. 742 

 The largest PM25_TOT increases in the north-central CONUS are primarily driven by 743 

enhanced ammonium nitrate formation, PM25_NO3 and PM25_NH4, which are influenced by 744 

increases in NH3 emissions (Figure 11) and the inclusion of BIDI-NH3 fluxes in NACC-CMAQ 745 

(Table 1).  BIDI-NH3 in NACC-CMAQ allows for inline calculation of the diurnal pattern of 746 

both NH3 evasion/emission and deposition, while the prior NAQFC only includes deposition.  747 

Consequently, BIDI-NH3 in NACC-CMAQ generally increases ambient NH4+ and NO3- aerosol 748 

concentrations (Bash et al., 2013; Pleim et al., 2019) compared to the prior NAQFC.     749 

There are also contributions to the increased PM25_TOT from organic carbon sources 750 

(Figure S25; PM25_OC), especially in the northeastern portion of the domain that include the St. 751 

Lawrence River Valley region.  This is in part due to enhanced anthropogenic VOC emissions in 752 

NEIC2016v1 (Figure 11e, e.g., formaldehyde; not shown) and enhanced AERO7 secondary 753 

organic aerosol formation in this region for NACC-CMAQ (not shown).  There are also small 754 

PM25_EC contributions to the PM25_TOT decreases in the east and increases in the west for 755 

NACC-CMAQ (Figure S25), which are mainly due to decreases in anthropogenic PEC emissions 756 

in the east (Figure 11g), but also from contributions of relatively small GBBEPx PM emissions 757 

in the west (not shown).  The prior NAQFC does not include biomass burning smoke emissions 758 

during the month of January.      759 

 760 
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4.5 Air Quality Evaluations and Metrics 761 
 762 

Evaluation of NACC-CMAQ shows overall improvement in the spatial MB of hourly O3 763 

(September) and PM2.5 (January) against the AirNow network across CONUS (Figure 14).  764 

There are clear reductions in the NAQFC overpreditions of O3 and PM2.5 in the east, and overall 765 

reduction in NME, and overall improved correlation (R) and IOA for NACC-CMAQ.  There are 766 

also reduced overpredictions in the west for O3 in September.  The shifts to lower concentrations 767 

result in larger domain-wide average PM2.5 underpredictions for NACC-CMAQ compared to the 768 

prior NAQFC (cf.  Figure 13 above); however, the improvements in R and IOA for NACC-769 

CMAQ are substantial.  The MDA8 O3 spatial MB evaluation against AirNow behaves similarly 770 

to NAQFC, with slight degradation in the model performance statistics because of areas of 771 

higher overpredictions in the eastern U.S due to reasons discussed above for enhanced daytime 772 

O3 formation in NACC-CMAQ (Figure S26).   773 

 774 
 775 
 776 
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 777 

The Day 2 forecasts have similar spatial model performance and statistics, with improved 782 

hourly O3 and PM2.5 model performance (Figure S27) and slightly higher MDA8 O3 783 

overpredictions in the east for NACC-CMAQ (Figure S28).  The consistent model performance 784 

for Day 3 also shows utility in extending to 72-hr air quality forecasts in the advanced NACC-785 

CMAQ system (Figures S29-30).  There is, however, a more notable degradation in skill for the 786 

Day 3 forecast of PM2.5 compared to O3 in NACC-CMAQ (compare Figures 14 and S29).   787 

 There is significant improvement in the average O3 and PM2.5 diurnal patterns for each 788 

CONUS region, other than higher daytime O3 peaks for NACC-CMAQ compared to prior 789 

NAQFC (Figure 15a-i).  This is reflected in the improved R and IOA over CONUS on average 790 

for NACC-CMAQ (Figure 14a-b). There is improved day-to-night O3 transition, i.e., a sharper 791 
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slope or cutoff of daytime O3 formation, which leads to lower nighttime O3 mixing ratios in 792 

NACC-CMAQ that agree better with AirNow observations for all CONUS regions.     793 

 The NACC-CMAQ PM2.5 diurnal pattern also is more consistent with AirNow for most 794 

CONUS regions (Figure 15j-s), which is supported by improved R and IOA (Figures 14c-d).  795 

There are, however, some regions (e.g., northeast, south, and northwest) that the prior NAQFC 796 

shows better diurnal performance in this case.   797 

 798 

https://www.epa.gov/aboutepa/regional-and-geographic-801 
offices.   802 

Overall performance evaluations of hourly O3 in each CONUS region show 803 

predominantly improved statistics for NACC-CMAQ, with increased R and IOA for all regions 804 

(Table 3).  Comparisons of the NMB, NME, and R against statistical benchmark values for 805 

photochemical models based on Emery et al. (2017) indicate that both the prior NAQFC and 806 

NACC-CMAQ are within specified criteria for hourly O3 in most regions, except for relatively 807 

https://www.epa.gov/aboutepa/regional-and-geographic-offices
https://www.epa.gov/aboutepa/regional-and-geographic-offices
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large NMB values in the west and northwest regions.  The increased hourly O3 underpredictions 808 

in NACC-CMAQ degrades the NMB to fail to meet the benchmark in the west, but improves the 809 

NMB to fall within criteria in the northwest region.   810 

Table 3.  Average September 2020 hourly O3 evaluation of the operational NAQFC and NACC-CMAQ 811 
Day 1 forecasts against the AirNow network in different CONUS regions (based on 812 
https://www.epa.gov/aboutepa/regional-and-geographic-offices).   Statistical benchmark values based on 813 
Emery et al. (2017) are also shown for comparison. Following Emery et al., a >40 ppb (i.e., daytime) 814 
cutoff for hourly O3 is applied for the mean observations, mean models, mean bias, and the calculated 815 
values of NMB and NME, but not for the correlation value (r) or index of agreement (IOA). Total # of 816 
obs-model pairs are based on all values (i.e., no cutoff).  Bold font indicates statistical values outside of 817 
the Emery et al. criteria.  Italic font indicates improved NACC-CMAQ performance. Supporting Tables 818 
S5-S10 provide Day 2 and Day 3 (NACC-CMAQ only) forecast evaluations.   819 
Day 1 

Forecasts 

Total   
# of  

Pairs 

Mean 
Obs 
(ppb) 

Mean 
Mod 

(ppb) 

Mean 

Bias 

(ppb) 

NMB 

(%) 

NME 

(%) 

Corr (r) IOA 

Benchmark 

Emery et al. 
(2017) 

- - - - Goal:  

<±5% 

Criteria:  

<±15% 

Goal: 

<15% 

Criteria: 
<25% 

Goal:  

>0.75 

Criteria:  

>0.50 

- 

Region 1 (Northeast) 

NAQFC 35983 46.85 43.55 -3.31 -7.06 15.04 0.61 0.71 

NACC-CMAQ 43.44 -3.42 -7.29 15.14 0.70 0.81 

Region 2 (NY-NJ) 

NAQFC 22944 46.68 42.90 -3.77 -8.09 17.88 0.59 0.72 

NACC-CMAQ 45.18 -1.50 -3.21 14.27 0.72 0.81 

Region 3 (Mid-Atlantic) 

NAQFC 89069 46.66 44.29 -2.37 -5.09 12.84 0.65 0.73 

NACC-CMAQ 45.81 -0.85 -1.83 13.48 0.74 0.82 

Region 4 (Southeast) 

NAQFC 105858 44.62 45.93 1.31 2.93 13.37 0.61 0.65 

NACC-CMAQ 47.99 3.37 7.55 14.91 0.74 0.75 
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Region 5 (Upper Midwest) 

NAQFC 109744 46.61 43.84 -2.77 -5.94 13.28 0.69 0.77 

NACC-CMAQ 46.59 -0.03 -0.05 10.69 0.77 0.83 

Region 6 (South) 

NAQFC 84005 48.17 47.18 -0.99 -2.06 13.17 0.68 0.75 

NACC-CMAQ 47.81 -0.36 -0.75 12.80 0.75 0.81 

Region 7 (Central Plains) 

NAQFC 27139 44.98 44.84 -0.14 -0.31 10.45 0.76 0.81 

NACC-CMAQ 47.18 2.20 4.90 9.54 0.82 0.86 

Region 8 (Northern Plains) 

NAQFC 51759 48.97 44.64 -4.32 -8.83 13.89 0.71 0.82 

NACC-CMAQ 45.08 -3.89 -7.95 14.00 0.72 0.85 

Region 9 (West) 

NAQFC 124051 55.44 50.29 -5.15 -9.29 18.37 0.69 0.79 

NACC-CMAQ 46.37 -9.07 -16.37 21.78 0.71 0.83 

Region 10 (Northwest) 

NAQFC 14139 48.41 39.37 -9.03 -18.66 21.59 0.61 0.72 

NACC-CMAQ 41.70 -6.71 -13.86 19.91 0.66 0.81 

  820 

The higher MDA8 O3 in NACC-CMAQ degrades its regional NMB, NME, and R 821 

performance slightly compared to the prior NAQFC (Table 4), but R and IOA illustrate 822 

improvements for most regions, in some cases substantially for R (e.g., northeast, southeast, 823 

upper Midwest, and the Central Plains).  The higher daytime O3 overpredictions by NACC-824 

CMAQ in much of CONUS result in higher NMB and NME values that fall outside of the Emery 825 

et al. (2017) benchmark criteria.  These remain a concern for both the prior NAQFC and NACC-826 
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CMAQ, and efforts are underway to address the persistent daytime O3 overprediction in the 827 

summer, particularly in the eastern U.S. (see Figures 14a-b and further discussion in Section 5).   828 

Table 4.  Same as in Table 3, but for MDA8 O3.  Note:   As discussed in Emery et al. (2017), 829 
cutoff values are not applied for MDA8 O3.   830 
Day 1 

Forecasts 

Total   
# of  

Pairs 

Mean 
Obs 
(ppb) 

Mean 
Mod 

(ppb) 

Mean 

Bias 

(ppb) 

NMB 

(%) 

NME 

(%) 

Corr (r) IOA 

Benchmark 

Emery et al. 
(2017) 

- - - - Goal:  

<±5% 

Criteria:  

<±15% 

Goal: 

<15% 

Criteria: 
<25% 

Goal:  

>0.75 

Criteria:  

>0.50 

- 

Region 1 (Northeast) 

NAQFC 1680 33.05 38.45 5.40 16.35 22.60 0.66 0.73 

NACC-CMAQ 38.60 5.55 16.81 21.57 0.73 0.75 

Region 2 (NY-NJ) 

NAQFC 1158 32.79 37.07 4.29 13.08 21.38 0.66 0.76 

NACC-CMAQ 39.22 6.44 19.63 23.65 0.74 0.75 

Region 3 (Mid-Atlantic) 

NAQFC 4243 33.85 39.35 5.50 16.24 20.75 0.74 0.77 

NACC-CMAQ 41.31 7.46 22.05 24.54 0.76 0.75 

Region 4 (Southeast) 

NAQFC 5076 31.01 40.30 9.29 29.95 31.83 0.64 0.64 

NACC-CMAQ 41.06 10.05 32.41 33.40 0.74 0.67 

Region 5 (Upper Midwest) 

NAQFC 5210 34.08 37.88 3.80 11.16 18.51 0.75 0.82 

NACC-CMAQ 39.89 5.81 17.06 19.94 0.82 0.82 

Region 6 (South) 

NAQFC 3901 35.65 42.37 6.72 18.84 23.91 0.74 0.77 
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NACC-CMAQ 43.01 7.35 20.63 24.35 0.78 0.78 

Region 7 (Central Plains) 

NAQFC 1256 33.37 37.83 4.46 13.36 17.99 0.78 0.82 

NACC-CMAQ 39.36 6.00 17.97 19.86 0.85 0.84 

Region 8 (Northern Plains) 

NAQFC 2379 44.18 43.51 -0.47 -1.07 12.84 0.74 0.85 

NACC-CMAQ 44.95 0.78 1.76 11.78 0.79 0.88 

Region 9 (West) 

NAQFC 5757 51.03 51.26 0.23 0.44 17.84 0.70 0.82 

NACC-CMAQ 48.03 -3.00 -5.88 18.73 0.68 0.79 

Region 10 (Northwest) 

NAQFC 698 33.13 35.46 2.33 7.03 25.11 0.63 0.72 

NACC-CMAQ 36.66 3.53 10.67 25.58 0.59 0.74 

 831 
 832 
 There are substantial improvements in the overall statistical PM2.5 performance for 833 

NACC-CMAQ, especially for R and IOA in most CONUS regions.   In many regions where the 834 

prior NAQFC falls outside of photochemical criteria values (Emery et al., 2017), NACC-CMAQ 835 

shows significant improvement to fall within the criteria.  This demonstrates a substantial 836 

improvement in the accuracy of the NACC-CMAQ system for PM2.5 predictions (outside of 837 

major wildfires), attributed to the scientific advancements described above.  838 

 839 

 840 

 841 

 842 

 843 



50 
 

Table 5.  Same as in Table 3, but for 24-hr average PM2.5.  Note:   As discussed in Emery et al. 844 
(2017), cutoff values are not applied for 24-hr average PM2.5.   845 
Day 1 

Forecasts 

Total   
# of  

Pairs 

Mean 
Obs 
(ppb) 

Mean 
Mod 

(ppb) 

Mean 

Bias 

(ppb) 

NMB 

(%) 

NME 

(%) 

Corr (r) IOA 

Benchmark 

Emery et al. 
(2017) 

- - - - Goal:  

<±10% 

Criteria:  

<±30% 

Goal: 

<35% 

Criteria: 
<50% 

Goal:  

>0.70 

Criteria:  

>0.40 

- 

Region 1 (Northeast) 

NAQFC 1261 7.43 8.47 1.04 13.98 42.57 0.77 0.85 

NACC-CMAQ 9.39 1.95 26.30 46.17 0.75 0.83 

Region 2 (NY-NJ) 

NAQFC 598 8.54 15.39 6.85 80.25 89.21 0.72 0.55 

NACC-CMAQ 10.84 2.30 26.90 47.60 0.77 0.74 

Region 3 (Mid-Atlantic) 

NAQFC 1897 9.16 11.95 2.79 30.43 42.57 0.81 0.84 

NACC-CMAQ 10.16 1.00 10.96 33.24 0.83 0.89 

Region 4 (Southeast) 

NAQFC 3621 8.45 9.67 1.23 14.53 40.44 0.41 0.62 

NACC-CMAQ 7.86 -0.59 -6.98 37.19 0.48 0.67 

Region 5 (Upper Midwest) 

NAQFC 3270 9.61 9.79 0.19 1.93 38.09 0.58 0.75 

NACC-CMAQ 9.65 0.04 0.46 31.42 0.72 0.84 

Region 6 (South) 

NAQFC 2101 8.39 7.95 -0.44 -5.19 46.68 0.28 0.57 

NACC-CMAQ 6.39 -2.00 -23.82 43.30 0.36 0.59 

Region 7 (Central Plains) 
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NAQFC 926 8.67 9.83 1.16 13.41 49.67 0.32 0.58 

NACC-CMAQ 8.79 0.12 1.40 32.13 0.68 0.82 

Region 8 (Northern Plains) 

NAQFC 1790 7.66 4.36 -3.30 -43.13 60.51 0.33 0.55 

NACC-CMAQ 4.89 -2.77 -36.20 52.68 0.49 0.67 

Region 9 (West) 

NAQFC 4118 10.09 7.04 -3.05 -30.27 46.97 0.61 0.74 

NACC-CMAQ 7.98 -2.11 -20.89 50.69 0.56 0.73 

Region 10 (Northwest) 

NAQFC 3922 7.93 6.86 -1.07 -13.54 78.99 0.20 0.46 

NACC-CMAQ 6.33 -1.60 -20.19 71.73 0.23 0.49 

 846 
 847 

The Day 2 forecast comparisons of the prior NAQFC and NACC-CMAQ regional 848 

statistics are similar to Day 1, and that the Day 3 forecast extension for NACC-CMAQ has utility 849 

with O3 and PM2.5 statistics predominantly falling within the benchmark criteria in most regions 850 

(Tables S5-S10).    851 

5.  Conclusions and Path Forward  852 

An advanced National Air Quality Forecasting Capability (NAQFC) was developed and 853 

evaluated, using NOAA’s FV3-based Global Forecast System (GFS) as the driving meteorology 854 

for a state-of-the-science Community Multiscale Air Quality (CMAQ) model, version 5.3.1.  A 855 

key component of this new system is the development of the NOAA-EPA Atmosphere 856 

Chemistry Coupler (NACC), which forms the bridge between the GFSv16 meteorological fields 857 

and the CMAQ inputs for improved chemical predictions (i.e., NACC-CMAQ).   Such 858 

advancements of the NACC-CMAQ system include high-resolution satellite vegetation inputs, 859 

with a rapid-refresh VIIRS greenness vegetation fraction and VIIRS climatological leaf area 860 
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index, as well as additional soil data inputs to an improved windblown dust (FENGSHA) 861 

algorithm in CMAQ.  The anthropogenic, biogenic, and wildfire emissions in NACC-CMAQ are 862 

also updated compared to the prior NAQFC, and for the first time, the forecasting model 863 

calculates inline bidirectional NH3 fluxes.   NACC-CMAQ also ingests novel smoke and dust 864 

aerosols at its lateral boundaries dynamically from the NOAA operational GEFS-Aerosols 865 

model.    Finally, the NACC-CMAQ system extends the air quality forecast from 48 to 72-hours, 866 

and provides scientific advances in atmospheric chemistry modeling to state and local forecasters 867 

out to 3 days. The additional day of forecast guidance could aid decision makers to prepare 868 

citizens for localized air quality conditions that could adversely affect public health.  869 

Results of the NACC-CMAQ system during recent late summer (September 2020) and 870 

winter (January 2021) months show significant changes in both meteorological and chemical 871 

predictions compared to the prior NAQFC.  The GFSv16 for NACC-CMAQ has a persistently 872 

large dry bias (lower Q2) and larger RMSE across much of CONUS in late summer compared to 873 

NMMB (i.e., prior NAQFC), which likely stems from excessively dry soil conditions in GFS.  874 

GFS is generally cooler in the east and warmer in the west for surface temperature (TEMP2) 875 

compared to NMMB, but the overall MB and RMSE are more similar between the models 876 

compared to that for Q2.  The GFS has a relatively similar planetary boundary layer height 877 

(PBLH) at night, but the PBLH in GFSv16 (NACC-CMAQ) is consistently deeper during the 878 

daytime peak hours compared to the prior NAQFC. 879 

 The differences in surface characteristics, meteorology, and both anthropogenic and natural 880 

emissions are driving factors for distinct atmospheric composition differences, where NACC-881 

CMAQ generally outperforms the prior NAQFC for both hourly O3 and PM2.5, especially with 882 

improved correlation (R) and IOA.  This agrees well with significant improvements in the 883 
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diurnal O3 and PM2.5 patterns for NACC-CMAQ, with distinct improvements in the day-to-night 884 

O3 slope/cutoff.  While overall similar, the maximum daily 8-hr average (MDA8) O3 is 885 

predominantly higher for NACC-CMAQ compared to prior NAQFC, which leads to some 886 

forecast degradation due to larger overpredictions of the daytime max O3.        887 

 The NACC-CMAQ model became the next operational version of the NAQFC at 888 

NWS/NOAA on July 20, 2021, and is available on GitHub for continuous integration, future 889 

code updates, and potential community research applications.  An ongoing comparison and 890 

evaluation of the GFSv16/NACC-CMAQ output with a GFSv16-downscaled Weather Research 891 

and Forecasting (WRF) Version 4 (Skamarock et al., 2019) and CMAQ application will 892 

highlight the potential of NACC-CMAQ to serve as an additional community research tool for 893 

air quality applications.   894 

 While there are substantial advancements in NACC-CMAQ compared to the prior 895 

NAQFC, challenges and limitations remain.  One need is to bridge the gap from using a VIIRS 896 

LAI climatology to a rapid-refresh, i.e., dynamic methodology (similar to the GVF method here) 897 

in NACC-CMAQ.  There is also a need to consider shifting the paradigm from using “big-leaf” 898 

(i.e., homogeneous single layer of phytomass) assumptions that strongly affect the biosphere-899 

atmosphere exchange processes pivotal to both meteorological and chemical model predictions 900 

(refer to Bonan et al., 2021).  Simple multilayer canopies have shown to reduce overpredictions 901 

of ground-level surface O3 in the summer due to photolysis attenuation and modified vertical 902 

turbulence (Makar et al., 2017), which have significant implications for the daytime O3 903 

overpredictions in the current and future versions of NAQFC (Figures 14a-b and S26).  We are 904 

currently working on similar canopy effects in NACC-CMAQ to reduce the summer O3 905 

overpredictions in the east-southeast and parts of western CONUS, where there are relatively 906 
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continuous vegetation/canopies (Figures 14a-b).   Other advancements that are important to 907 

improving the future versions of the NAQFC include dynamically updated (and weather-908 

dependent) anthropogenic emissions sources, and improved treatments of mobile sources (e.g., 909 

Vehicle Induced Turbulence; Makar et al., 2021).  Further refinements to the inline windblown 910 

dust emissions, wildfire smoke emissions, and other process-based natural emissions sources 911 

(e.g. lightning NO) are also needed.    912 

 Other future directions including migrating the advanced science in the offline 12 km 913 

resolution NACC-CMAQ model, to a next-generation inline, high-resolution (e.g., 3 km) 914 

modeling framework that fits within NOAA’s strategy for the Unified Forecast System (UFS; 915 

https://ufscommunity.org/).  This model system aims to improve integration of atmospheric 916 

composition changes with weather predictions, better resolve finer scale processes, and advance 917 

the rapid-refresh techniques for emissions and surface-atmosphere exchange processes. At this 918 

time, NACC-CMAQ also does not use dynamic lateral boundary conditions for trace gases, but 919 

only has dynamically ingested smoke and dust aerosols at its lateral boundaries from the NOAA 920 

operational GEFS-Aerosols model.   Current work is underway to use next-generation UFS-921 

based global model systems as updated lateral boundary conditions for trace gases in the future 922 

of the NAQFC.   Development and implementation of the NACC-CMAQ model is an important 923 

step to 1) advance the NAQFC closer to the state-of-the-science for regional air quality 924 

forecasting, 2) improve community applications of NOAA’s FV3GFS-driven atmospheric 925 

composition models, and 3) facilitate the future development of inline, regional high-resolution 926 

air quality forecasting systems within the UFS framework at NOAA. 927 

 928 

 929 
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  Code and Data Availability  930 

The NACC code is publicly available at https://doi.org/10.5281/zenodo.5507489 and via 931 

GitHub at https://github.com/noaa-oar-arl/NACC.git.  The modified version of CMAQv5.3.1 932 

used in the advanced NACC-CMAQ model for the next operational NAQFC is available at 933 

https://doi.org/10.5281/zenodo.5507511 and via GitHub at https://github.com/noaa-oar-934 

arl/NAQFC. 935 

The 0.25 degree FV3-driven Global Forecast System Version 16 data (cycled 4x/day) is 936 

available in GRIB2 format at https://www.nco.ncep.noaa.gov/pmb/products/gfs/.    The hourly 937 

GFSv16 data in gridded NetCDF (~13x13 km globally) format and Gaussian projection that is 938 

directly used to drive NACC-CMAQ is also currently being migrated to Amazon Web Services 939 

(AWS) Cloud for improved NOAA community air quality research applications.  The advanced 940 

NACC-CMAQ data, i.e., the current operational NAQFC version as of July 20, 2021, is available 941 

for operational (https://airquality.weather.gov/) and interactive 942 

(https://digital.mdl.nws.noaa.gov/airquality/#) displays from NWS/NOAA.  The official 943 

NOAA/EMC verification and diagnostics for the NAQFC system are found at 944 

https://www.emc.ncep.noaa.gov/mmb/aq/verification_diagnostics/cmaq_verf/.  945 

Disclaimer 946 

The scientific results and conclusions, as well as any views or opinions expressed herein, 947 

are those of the author(s) and do not necessarily reflect the views of NOAA or the Department of 948 

Commerce. The research presented was not funded by EPA and was not subject to EPA’s quality 949 

system requirements. The views expressed in this article are those of the author(s) and do not 950 

necessarily represent the views or the policies of the U.S. Environmental Protection Agency.  951 
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