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Abstract.

Developing accurate and efficient modeling techniques for streamflow at tens-kilometer spatial scale and multi-year temporal

scale is critical for evaluating and predicting the impact of climate- and human-induced discharge variations on river hydrody-

namics. However, achieving such a goal is challenging because of limited surveys of streambed hydraulic roughness, uncertain

boundary condition specifications, and high computational costs. We demonstrate that accurate and efficient three-dimensional5

(3D) hydrodynamic modeling of natural rivers at 30-kilometer and 5-year scales is feasible using the following three techniques

within OpenFOAM, an open source computational fluid dynamics platform: 1) generating a distributed hydraulic roughness

field for the streambed by integrating water stage observation data, a rough wall theory, and a local roughness optimization

and adjustment strategy; 2) prescribing the boundary condition for the inflow and outflow by integrating pre-computed results

of a one-dimensional (1D) hydraulic model with the 3D model; and 3) reducing computational time using multiple parallel10

runs constrained by 1D inflow and outflow boundary conditions. Streamflow modeling for a 30-kilometer-long reach in the

Columbia River (CR) over 58 months can be achieved in less than six days using 1.1 million CPU hours. The mean error

between the modeled and the observed water stages for our simulated CR reach ranges from -16 cm to 9 cm (equivalent to ca.

±7% relative to the average water depth) at seven locations during most of the years between 2011 and 2019. We can reproduce

the velocity distribution measured by the acoustic Doppler current profiler (ADCP). The correlation coefficients of the depth-15

averaged velocity between the model and ADCP measurements are in the range between 0.71 and 0.83 at 75% of the survey

cross-sections. With the validated model, we further show that the relative importance of dynamic pressure versus hydrostatic

pressure varies with discharge variations and topography heterogeneity. Given the model’s high accuracy and computational

efficiency, the model framework provides a generic approach to evaluate and predict the impact of climate- and human-induced

discharge variations on river hydrodynamics at tens kilometer and decade scales.20
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1 Introduction

As a major element of the water cycle, streamflow varies with upstream discharge, interacts with ambient physical and biolog-

ical environments, and thus creates a variety of social, economic, and environmental functions (Wampler, 2012; Wohl et al.,

2015; Harvey, 2016; Biddanda, 2017; Hiemstra et al., 2020). For instance, the flood control function is largely determined by

accurate prediction of the water depth and flow speed that are further controlled by upstream discharge variations and the hy-25

draulic roughness generated by flow-streambed interactions (USACE, 1994; Ferguson, 2019). The water quality management

and biodiversity protection functions are strongly affected by the hydrological exchange flows (Harvey, 2016) that are driven

by hydrostatic pressure and flow-sediment induced dynamic pressure (Tonina and Buffington, 2007; Cardenas and Wilson,

2007). As the magnitude, frequency, and peak time of discharge are projected to vary with future climate and anthropogenic

conditions (Potter et al., 2004; Veldkamp et al., 2018; Wei et al., 2020; Xu et al., 2021), it is essential to establish a numerical30

modeling framework that enables evaluating and predicting the impact of climate- or human-induced discharge variations on

streamflow and river functions.

Over the past three decades, computational fluid dynamics (CFD) models at various dimensions have been developed and

applied to model the streamflow (Bates et al., 2005). By solving the one-dimensional (1D) Saint-Venant equations, 1D numer-

ical models have been widely used to predict flood routing (Richards, 1978; Keller and Florsheim, 1993; Carling and Wood,35

1994; Hicks and Peacock, 2005), sediment transport (van Niekerk et al., 1992; Correia et al., 1992; Hoey and Ferguson, 1994;

Ferguson et al., 2001; Talbot and Lapointe, 2002; Cui et al., 2003), water quality (Richmond et al., 2002), and aquatic habitats

(Bovee, 1978; Milhous et al., 1984). A number of software based on the 1D models, e.g., HEC-RAS, MIKE-11, ISIS, and

InfoWorks, have also been developed and commercialized for practical applications. As the 1D models provide only cross-

sectional averaged velocity and water depth, these models are usually problematic if flow manifests large variations in either40

the vertical or the cross-sectional direction (Lane and Ferguson, 2005). Due to these reasons, the two-dimensional (2D) numer-

ical models, which solve the depth averaged Navier-Stokes equations, have been developed to better capture the cross-sectional

variations in flow (Miller, 1994; Bates et al., 1995; Lane and Richards, 1998; Thompson et al., 1998; Cao et al., 2003) and

resulted influences on sediment transport (Alan D. Howard, 1992; Sun et al., 1996; Nagata et al., 2000; Duan et al., 2001;

Darby et al., 2002), water quality (Perkins and Richmond, 2007), and aquatic habitats (Leclerc et al., 1995; Crowder and45

Diplas, 2000). Armed with increasingly powerful personal and high-performance computers, commercial 2D models such as

HEC-RAS and SRH-2D are frequently deployed for flood management in urban and mountain areas. Despite the wide applica-

tions of 2D models, quasi-3D models are also gaining popularity because of increasing computer capacity and the capability to

predict the vertical velocity component. Though quasi-3D models, e.g., Princeton Ocean Mode (Blumberg and Mellor, 1983),

Environmental Fluid Dynamics Code–3D (Hamrick, 1992), Delft3D (Deltares, 2021), and CH3D (Johnson et al., 1993), have50

been commonly used for ocean, coastal, and river applications, they are not adequate to model the dynamic pressure.

As the dynamic pressure is a key driver of the flow, momentum, and nutrient exchange between stream water and ambient

environments, e.g., meander river planform, complex instream structures, and groundwater, non-hydrostatic or fully 3D Navier-

Stokes models are required in order to reliably predict river’s environmental and ecological functions under dynamic discharge
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conditions (Lorke and MacIntyre, 2009; Harvey, 2016; Hester et al., 2017; Chen et al., 2019). The full 3D simulations were55

firstly restricted to rivers with rectangular cross-sections (Leschziner and Rodi, 1979; Demuren and Rodi, 1986), and then

were gradually extended for small-scale natural rivers with meander and roughness (Demuren, 1993; Olsen and Stokseth,

1995; Hodskinson, 1996; Hodskinson and Ferguson, 1998). A more realistic application is given by Sinha et al. (1998) whose

work resolved the effects of large-scale roughness and multiple islands on streamflow in a 4-km stretch of the Columbia River.

Later, more 3D models were applied to study hydrodynamics in natural streams (Nicholas and Sambrook Smith, 1999; Lane60

et al., 1999; Booker et al., 2001; Ma et al., 2002; Rodriguez et al., 2004; Huang et al., 2004; Lane and Ferguson, 2005; Lai,

2016), and its interactions with water quality (Hamrick, 1992; Ji et al., 2007; Sinha et al., 2013), vegetation flow (Wilson et al.,

2006; Marjoribanks et al., 2017), fish habitat (Kolden et al., 2016), and hydrological exchange fluxes (Zhou et al., 2018; Bao

et al., 2018, 2022). All 3D models mentioned above adopted the Reynolds-averaged Navier-Stokes (RANS)a concept. More

advanced models such as large-eddy-simulation (LES)a have also been applied for natural streams by using high-performance65

computers and airborne Light Detection and Ranging (LiDAR) measured high-resolution topography (Khosronejad et al., 2016;

Le et al., 2019; Khosronejad et al., 2020). The differences between RANS and LES in predicting stream velocities, turbulence,

and secondary flows were also carefully examined using a field-scale experimental facility as a test bed (Kang et al., 2011;

Kang and Sotiropoulos, 2011, 2012).a

Though significant progress has been made in modeling streamflow, new challenges emerge as we apply existing CFD tech-70

niques to mitigate the impact of climate change and human activities on streamflow and river functions. Firstly, the modeling

framework necessitates to efficiently model streamflow over large spatiotemporal scales because changes in hydrodynamics

due to discharge variations often take months to decades to alter river bank structure, microbial community growth, fish life

cycles, and eventually reshape river functions at grain to watershed scale (Wohl et al., 2005; Palmer et al., 2014; Wohl et al.,

2015). Secondly, as applying the model at larger spatiotemporal scales usually means larger uncertainty from roughness cal-75

ibration and inflow/outflow boundary condition specifications, it is necessary to develop an effective model data integration

strategy such that the computational model can be better constrained by river bathymetry survey and water stage observa-

tions data. Additionally, applying the model to large spatiotemporal scales also requires a strategy to balance computational

efficiency and model accuracy.

To address the above challenges, this work demonstrates a semi-automated workflow that enables accurate and efficient 3D80

CFD modeling of the streamflow in a 30-kilometer-long reach of the Columbia River spanning 9 years (Section 2). Specifically,

a distributed hydraulic roughness calibration strategy is proposed to reduce the roughness calibration uncertainty by integrating

water stage observations, a rough wall theory, and a local roughness optimization and adjustment procedure. An integrated

1D-3D model approach is also adopted to reduce the uncertainty from inflow/outflow boundary condition specifications and to

provide boundary conditions for the temporal decomposition which targets computational efficiency improvement. The efficacy85

of the proposed workflow in calibrating roughness and predicting water stage and flow velocity during 2011-2019 is extensively

demonstrated by comparing results from the present model and those from field observations in Section 3. Using the validated

model, the relative importance of dynamic pressure to hydrostatic pressure and its dependency on discharge variations and

topography heterogeneity are further investigated. The discussion on distributed roughness estimation, the model’s medium
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and long-term prediction performance, the relative importance of dynamic pressure, and the model’s computational efficiency90

are given in Section 4.

2 Methods

2.1 River bathymetry, stage, and velocity surveys

The 30-kilometer-long reach is near the Hanford Site (www.hanford.gov) as shown (black box) in Figure 1a. The riverbed

bathymetry was measured using a Light Detection and Ranging (LiDAR) technique with less than 1 m resolution in vertical95

and 20 m resolution in horizontal directions. The measured bathymetry is then used as a geometric boundary in the CFD

model. Water stage was measured in three periods at seven locations (red and yellow dots in Figure 1b) every 10 minutes.

For convenience, observation 1 represents the measurements at 100B, 100N, 100D, Locke Island (LI), 100H, and 100F during

2011. Observation 2 denotes the measurement at 100B during 2013 and 2014. And those measured at 100HD during 2018 and

2019 are named as observation 3. These observations are then used for model calibration and validation. Specifically, water100

stages measured from January 20 to February 16, 2011 are used for model calibration. Measurements during the other dates in

2011 are used for short-term (less than 1 year after the calibration period) validation. Measurements during 2013 and 2014 are

used for medium-term (2 to 3 years after the calibration period) validation. And those measured during 2018 and 2019 are used

for long-term (7 to 8 years after the calibration period) validation. The survey at location 100HD is used to test the long-term

model performance in predicting water surface elevation (WSE) outside the calibration locations. Velocity distributions were105

also measured at 12 cross-sections (Figure 1c) along the river on March 4 (red lines) and April 1 (blue lines), 2011 using boat-

towed acoustic Doppler current profiler (ADCP) for short-term velocity validation (Niehus et al., 2014). Horizontal coordinates

and bed elevation of these locations are listed in Table A1. For convenience, the horizontal coordinate at the lower left corner

of the computational domain (Figure 1b blue box) is converted from (564,303.5598 m, 143,735.6771 m) in the geographic

information system map to (0,0) in the model domain. All vertical coordinates are referenced to the North American Vertical110

Datum of 1988.

2.2 Free surface tracking and turbulence model

Quantifying water surface elevation, velocity, and bed pressure requires accurate solution to the water-air interface and turbu-

lent flow. In this work, OpenFOAM-5.x (CFDDirect, 2017) is used to track the water-air interface using the volume of fluid

method (Hirt and Nichols, 1981; Deshpande et al., 2012) and simulate the turbulent flow using the time-averaged Navier-Stokes115

equations. The volume of fluid method marks a cell filled with liquid as α = 1, filled with air with α = 0, and partially filled

liquid as 0< α < 1. Denoting densities and viscosities of the liquid and gas by ρl, ρg , µl, and µg , then the density and viscosity

of each cell is ρ= αρl + (1−α)ρg and µ= αµl + (1−α)µg . Following these definitions, the time averaged Navier-Stokes

equations can be written as Eq. (1) and Eq. (2). The governing equation for volume fraction α can be written as Eq. (3).

∇ ·u = 0 (1)
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Figure 1. The location of the study site within Washington State and the Columbia River (a), the computational domain with the river

bathymetry and water stage survey locations (b), and the locations of velocity measurements (c). Yellow lines in (b) represent the inlet and

outlet locations of the computational domain. Red and yellow dots in (b) denote water stage survey locations. Red and blues lines in (c)

denote boat paths measured on two dates. (a) is a reused image of Oregon Department of Energy (www.oregon.gov/energy); (b) is modified

from Figure 1 in Niehus et al. (2014) produced by S. Kallio at Pacific Northwest National Laboratory.

120

∂ρu

∂t
+∇ · (ρuu) = σκα∇α− g ·x∇ρ−∇pd +∇ ·

[
(µ+µt)∇u

]
−∇ ·

[
(µ+µt)(∇uT −

2

3
∇ ·uI)

]
(2)

∂α

∂t
+∇ · (uα) +∇ ·

[
α(1−α)ur

]
= 0 (3)

where t is time, ∇= ∂
∂xex + ∂

∂yey + ∂
∂zez represents a spatial operator with ex, ey , and ez denoting unit vectors along x,

y, and z directions. Also denoted are time average flow velocity (u), surface tension coefficient (σ), interface curvature (κα),

gravity acceleration (g), spatial coordinate (x), dynamic pressure (pd), and dynamic turbulent viscosity (µt). Specifically, the

interface curvature is calculated by κα =−∇ · ( ∇α|∇α| ), the dynamic pressure pd is defined as pd = p− ρg ·x with p denoting125

the total pressure, ur is an artificial velocity whose definition can be found in Deshpande et al. (2012). The dynamic turbulent

viscosity is determined by the k−ω shear stress transport (SST) model (Menter et al., 2003; Wilcox, 2006; CFDDirect, 2017).

2.3 Mesh generation and quality control

A good mesh quality is a crucial factor controlling computational stability and efficiency, especially for free surface tracking

in large-scale river modeling over a long period (Deshpande et al., 2012). In this work, the mesh is generated using a two-130

step generation strategy, which first generates a structured background mesh and then removes all cells totally outside a given

geometry (a river bathymetry in our case). Specifically, the background mesh is generated with a horizontal mesh resolution
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as 20 m along x and y. Such a resolution is identical to the horizontal resolution of the LiDAR-measured digital elevation

model (DEM). The vertical mesh resolution is set as ∆z = 1 m by balancing modeling accuracy and computational costs. One

extra mesh resolution, 20 m× 20 m× 0.5 m, is also created to investigate the sensitivity of modeled riverbed pressure to mesh135

resolution (see uncertainty analyses in Appendix A1 and Figure A1). Figure 2 shows the horizontal and vertical mesh in the

computational domain. It is observed that the aspect ratio for horizontal (x and y) grid sizes is 1, but in the vertical direction it

is 20. Figure 2c also shows that the zig-zag grid does not overlap with the riverbed, whose effect on flow is further discussed

in the roughness calibration (see Section 2.4).

Figure 2. Horizontal and vertical computational meshes. (a) Top view showing the horizontal mesh over the whole domain. (b) Top view

showing the details of horizontal mesh near LI. (c) 3D view showing details of the vertical mesh structure.

Though different from the traditional body-fitted mesh, such a zig-zag mesh strategy is both physically reasonable and140

technically necessary. Physically, the LiDAR-measured bathymetry cannot capture most geometric features that are smaller

than 1 m, which means computational cells with size less than 1 m are not necessary. In addition, the effect of geometric

features on flow dynamics, either from missing features less than 1 m or the differences attributed to mesh generation, has

to be calibrated using observed water stage through a distributed rough wall model (see Section 2.4). The efficacy of such a

meshing and calibration approach in predicting water stage and velocity is demonstrated by comparing modeled water stage145

and velocity with field observations (see Sections 3.2-3.5). Technically, using grids with high aspect ratio is usually necessary

for river modeling. This is because the ratio of horizontal scales to depth of rivers (around 1000 ∼ 20000 in this work) is

usually large and a zig-zag mesh can maintain a good mesh orthogonality at large aspect ratio. By contrast, a body-fitted mesh

with large aspect ratio usually has a bad mesh orthogonality, which causes code instability for free surface tracking and longer

computational time.150
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2.4 Riverbed turbulence eddy viscosity and roughness parameterization

Rough elements are ubiquitous in natural rivers and have long been recognized as the major source of uncertainty in predicting

river discharge, flow speed, water surface profile, and sediment transport (USACE, 1994; Smith, 2014; Powell, 2014). In this

work, the effect of rough elements on turbulent flow is quantified by linking riverbed turbulence eddy viscosity to bed roughness

and flow conditions through a rough wall model (Versteeg and Malalasekera, 2007).155

νt = ν[
κy+

w

ln(Ey+
w )
− 1] (4)

Symbols in Eq. (4) denote turbulent kinematic viscosity νt = µt/ρ, kinematic viscosity ν = µ/ρ, von Karman’s constant κ=

0.41, a non-dimensional wall distance y+
w = ywuτ

ν , and an integration constant E. Here yw and uτ denote a wall distance and

riverbed shear velocity. The specific value of E depends on the flow regime and the roughness parameter at the wall.

For natural rivers, the flow is usually in the fully rough regime. The integration value thus can be estimated by E = E0/(1+

Csk
+
s ) with E0, Cs, and k+

s denoting a constant (with a value 9.8), a roughness distribution parameter, and a non-dimensional160

roughness height (Schlichting, 1979; Versteeg and Malalasekera, 2007; Blocken et al., 2007; CFDDirect, 2017). As classic

theories on roughness are usually based on experiments of grain size roughness (Nikuradse, 1933), we choose Cs = 0.5 with

the assumption that natural roughness distribution is similar to uniformly roughed channels as in Nikuradse’s experiments

(Blocken et al., 2007). Therefore, the integration value mainly depends on k+
s which is defined as k+

s = ksuτ/ν. Here ks is the

roughness height need to be calibrated with water stage observations.165

As the bed shear velocity uτ appears in both the non-dimensional wall distance y+
w and the non-dimensional roughness height

k+
s , estimation of the bed eddy viscosity shown in Eq. (4) is equivalent to estimating bed shear velocity and roughness height.

In this work, the bed shear velocity is estimated using the turbulent boundary layer theory that links a non-dimensional velocity

(u+ = u/uτ ) to the non-dimensional wall distance (y+
w ) through a wall functionG, i.e., u+ =G(y+

w ). In the fully rough regime,

the wall function follows a log-law which has the form as u+ = 1
κ lny+

w +B−∆B with B = 5.2 and ∆B =B−8.5+ 1
κ lnk+

s170

(Schlichting, 1979). Substituting the velocity (u0) and wall distance (y0
w) at the cell center closest to the wall, the wall function

is converted to a non-linear function depending on shear velocity, roughness parameter, near-bed velocity, and wall distance,

as shown in Eq. (5). By solving such an equation under a given roughness ks, we can obtain the value for bed shear velocity

uτ and wall turbulent eddy viscosity νt.

G(u0,y0
w,uτ ,ks) = 0 (5)

The above procedure means solving for shear velocity requires an estimation of bed roughness height ks. For straight175

or short rivers, a uniform roughness height may be sufficient. However, for rivers with large curvature and complex cross-

sectional shapes, e.g., islands, a distributed roughness height is necessary to capture the heterogeneous distribution of bed

shear velocity. This work proposes a generic approach to estimate a distributed roughness field using an error diagram and

local roughness adjustment approach. The error diagram provides a rough estimation of the roughness parameters and the

local adjustment further improves calibration accuracy per the error diagram. The error diagram is based on the fact that the180
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water surface elevation increases with increasing roughness height and thus an optimal roughness height should fall in a range

0< ks < kmaxs in order for the model to match the observed water stage (Figure 3a and Figure A2).

Figure 3. The effect of roughness height on WSE at a single location (a), ME between modeled and observed WSE at six locations (b), the

procedure of generating eight roughness regions (c), and the 3D view of each region represented in mesh (d).

In this work, the effect of rough elements larger than 1 m is directly resolved by mesh and thus an upper limit of roughness

can be set as kmaxs = 1 m. With such an upper limit, we run our models at eight roughness values (0 m, 0.025 m, 0.05 m, 0.1 m,

0.2 m, 0.3 m, 0.4 m, 0.5 m) and then calculate the mean error (ME) and mean absolute error (MAE) between modeled water185

stage and observed ones at six locations (Figure 1b red dots) from January 20 to February 16, 2011. With the error diagram as

shown in Figure 3b and Figure A3, we calculate an optimal roughness height ks for each observation location by making ME

= 0 and MAE to be the minimum.

The optimal ks obtained in this way is then uniformly distributed in eight regions shown in Figure 3c. Here ks in R1

and R8 are identical to those in R2 and R7, respectively (Figure 3d). Due to the interactions of flow under different roughness190

parameters, the locally optimized roughness field does not guarantee low modeling errors at all locations (see case OF0 in Table

1). As higher deviations occur at 100B, 100N, and 100D, their roughness parameters are systematically adjusted to achieve
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better accuracy for all six locations (cases OF1-OF5 in Table 1). The final calibrated roughness values at the six calibration

locations are listed in case OF in Table 1. These calibrated roughness parameters are then used to simulate the flow from May

to December 2011, 2013-2015, and 2018-2019 to evaluate the modeling capability for short-term, medium-term, and long-term195

streamflow. A more comprehensive discussion of roughness estimation and local adjustment is included in Section 4.1.

2.5 Boundary conditions

Temporal variations in discharge at the inlet control the dynamic changes in streamflow and riverbed conditions. Figure 4

shows the temporal variations of discharge at the inlet during years 2011 to 2019. A two-step approach is adopted to consider

the discharge effects. Firstly, MASS1, a one-dimensional hydraulic model (Richmond and Perkins, 2009), is used to obtain200

the cross-sectional averaged velocity (u1) and water stage (z1) at 360 cross-sections along a 81 km long river section (Figure

1b green region) during 2011-2019. Then the velocity and stage are interpolated at the inlet and outlet locations (Figure 1b

yellow lines) as u1
in, z1

in and u1
out, z

1
out, respectively. With these data, the inlet velocity and volume fraction are calculated

as u = (ux,0,0) with ux = u1
in

erf[2(z1in−z)/∆z]+1
2 and α=

erf[2(z1in−z)/∆z)]+1
2 . Here erf is an error function used to generate

a sharp air-water interface. Other boundary conditions at the inlet are set as follows: uniform turbulence kinetic energy k =205

0.1 m2s−2, uniform specific dissipation rate ω = 0.003 s−1; zero-gradient for dynamic pressure and turbulence eddy viscosity.

It is worth mentioning that the given values of turbulent kinetic energy and specific dissipation rate have little effect on the

results. At the outlet, velocity boundary condition is set as u = (0,−u1
out,0) and all other boundaries are zero-gradient. At

the top boundary (maximum elevation of the domain), pressure is set as 0 and the other variables are set as zero-gradient. At

the riverbed, the turbulence eddy viscosity is determined through a rough wall model as discussed in Section 2.4. A no-slip210

boundary condition is set for velocity and zero-gradient boundary conditions are set for dynamic pressure, volume-fraction,

and turbulence kinetic energy. The specific dissipation rate is calculated through ωw = (ω2
V is +ω2

Log)
1/2 with ωV is = 6.0ν

β1y2w

and ωLog = k1/2

C
1/4
µ κyw

(see values of β1 and Cµ in Table A2).

Figure 4. The time series of inlet flow rate during the years 2011-2019. S, M, and L denote short, medium, and long term. SM, SH, and SL

denote the medium, high, and low flow in the short-term period; MM and LM denote mixed flow in the medium-term and long-term periods.
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2.6 Spatiotemporal decomposition and initial conditions

Two spatiotemporal decomposition techniques are used in this work to improve the computational efficiency. The first one215

is domain decomposition which decomposes the domain into 512 sub-domains and runs on 512 processors (see discussion

on speedup in Section 4.4). Another one is time decomposition, which first divides the total simulation time, i.e., January

2013 to December 2015 and January 2018 to October 2019, into 58 months and then carries out parallel simulations for all

58 months simultaneously. The initial and boundary conditions for each month are setup at the time 4 days prior to the target

simulation month. For example, to simulate the flow between February 1 and February 28, the simulation is extended to a period220

between January 28 and February 28, and initial and boundary conditions are setup at the the start time on January 28. With

such an approach, initial conditions for velocity, dynamic pressure, and eddy viscosity are set as zero, while for turbulence

kinetic energy and specific dissipation rate are 1e-20 m2s−2 and 0.003 s−1 for all simulation months. The water stage and

cross-sectional averaged velocity at the inlet and outlet boundaries at any time during the extended period are obtained from

a one-dimensional hydraulic model as described in Section 2.5. It is important to note that such an spin-up approach works225

because (a) the flow reaches a quasi-steady state in 2 ∼ 3 flow-through times (about T = L/U0 = 30000/0.8 s = 0.43 days);

and (b) the time-varying boundary conditions at any time are available from existing data. Further discussion on the effect of

temporal decomposition on computational efficiency is included in Section 4.4.

2.7 Numerical schemes and solutions

The governing equations for flow (u, pd), volume fraction (α), and turbulence (k, ω) were solved with an open-source CFD230

platform, OpenFOAM (Version 5.x), using a finite volume method (CFDDirect, 2017). The unsteady terms are discretized

with a first-order Euler scheme, the advection term of flow is discretized with a second-order Gauss linear upwind scheme,

and the advection terms of turbulent kinetic energy and specific dissipation rate are discretized with a second-order Gauss

linear scheme. The advection term and the compression term of volume fraction are discretized with Gauss vanLeer and Gauss

linear schemes, respectively. All diffusion terms are discretized with a corrected central differencing scheme and all gradient235

terms are discretized with a second-order central differencing method. With these discretization schemes, initial, and boundary

conditions, OpenFOAM first updates the volume fraction at the interface using a Multidimensional Universal Limiter with

Explicit Solution (MULES) algorithm (Zalesak, 1979; Kuzmin et al., 2003; Liu et al., 2016), and then solves the velocity-

pressure coupling using a Pressure Implicit with Splitting of Operators (PISO) algorithm (Issa, 1985), followed by solving

ω and k equations. At each iteration, the discretized linear equation group for pressure is solved using a Diagonal-based240

Incomplete Cholesky Preconditioned conjugate gradient (DIC-PCG) method with a relative convergence tolerance of 10−10,

and the discretized linear equation groups for velocity, volume fraction, turbulent kinetic energy, and specific dissipation rate

are solved with a symmetric Gauss-Seidel smooth solver at a relative tolerance 10−10. The initial time step is set as 10−10 s

but allowed to adjust during runtime to not exceed 3 s. The maximum and average Courant number for all cases are less than

1.1 and 0.019, respectively. Here the Courant number is calculated as Co = ∆t

∑
f |φi|/V with ∆t,

∑
f |φi|, and V denoting245

the variable time step, the total fluxes of all faces, and cell volume, respectively. With the solution of volume fraction, the
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water surface elevation is calculated by setting α = 0.5 (Hirt and Nichols, 1981). It is necessary to note that the modeled water

surface elevation changes little at time steps 0.1 s, 0.5 s, 0.95 s, 2 s, and 3 s (see Figure A4); therefore, the maximum time step

is chosen as 3 s to reduce computational costs.

3 Results250

3.1 Short-term roughness calibration

The error diagram approach gives a rough estimation of the hydraulic roughness at each location. The modeling accuracy using

these roughness parameters are -16.5 cm ∼ 6.4 cm and 7.6 cm ∼ 19.6 cm at six locations (Case OF0 in Table 1) in terms

of ME and MAE, respectively. By systematically adjusting the roughness parameters at 100B, 100N, and 100D, the overall

modeling accuracy is improved. Figure 5 compares the water surface elevation using the locally adjusted roughness field (Case255

OF in Table 1) and those from observation 1. The comparison of the hourly recorded water stage data shows the modeled WSE

accurately predicts the magnitude and frequency in the WSE. The 1:1 plot shows there is no systematic bias in the model,

which can be further demonstrated by an R-squared (R2) and linear-regression slope very close to 1 (Table 2 SM cases). Here

R2 = 1−
∑

(WSEm−WSEo)2∑
(WSEm−WSEo)2

, WSEo =
∑
WSEo
Nt

with WSEm, WSEo, and Nt denoting modeled WSE, observed WSE, and

the number of time series, respectively. Quantitatively, the ME at the six locations falls in the range -7.5 cm∼ 6.4 cm, which is260

equivalent to -2.7%∼ 2.1% relative to the average water depth at each location. The MAE at all locations is 7.5 cm∼ 12.7 cm,

which is equivalent to 2.1% ∼ 5.3% relative to water depth. The root mean square, defined as RMS =
√∑

(WSEm−WSEo)2

Nt
,

for all locations is 9.2 cm ∼ 16.4 cm, which is equivalent to 2.8% ∼ 6.3% relative to the average water depth at each location.

Figure 5. The comparison of water surface elevation between the model and observations using the calibrated roughness field (case OF in

Table 1) during a medium flow in 2011. (a) An hourly recorded WSE and (b) a 1:1 plot.

3.2 Short-term water stage validation

Though this work calibrates the distributed roughness field using the observed WSE at a medium flow (discharge 4227 m3/s)265

scenario, we show that calibrated roughness works well for predicting the WSE at high flow (6335 m3/s) and low flow (2613

m3/s) scenarios. Figure 6 compares the hourly recorded WSE with observations during high flow (Figure 6a) and low flow

(Figure 6c). Figure 6b,d shows the 1:1 comparison between these data. The results show a good match in terms of the magnitude
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Table 1. Roughness adjustment approach and associated ME and MAE.

Case Calibrated ks (cm) ME during 1/20-2/16, 2011 (cm) MAE during 1/20-2/16, 2011 (cm)

name 100B 100N 100D LI 100H 100F 100B 100N 100D LI 100H 100F Range 100B 100N 100D LI 100H 100F Range

OF0 25.56 10.3 5.98 2.83 3.74 7.42 -16.5 -19.5 -6.8 6.4 4.8 0.3 -16.5∼6.4 16.5 19.6 12.7 7.6 8.9 9.3 7.6∼19.6

OF1 30 10.3 5.98 2.83 3.74 7.42 -11.1 -19.5 -7.4 6.4 3.3 0.3 -19.5∼6.4 11.2 19.6 13.4 7.6 10.1 9.3 7.6∼19.6

OF2 40 10.3 5.98 2.83 3.74 7.42 -0.6 -19.5 -7.4 6.4 3.3 0.3 -19.5∼6.4 5.8 19.6 13.4 7.6 10.1 9.3 7.6∼19.6

OF3 40 18.6 5.98 2.83 3.74 7.42 1.6 -16.8 -7.2 6.4 3.4 0.4 -16.8∼6.4 6.5 17.0 13.3 7.6 10.1 9.3 7.6∼17.0

OF4 30 18.6 5.98 2.83 3.74 7.42 -8.7 -16.9 -7.4 6.4 3.3 0.3 -16.9∼6.4 9.1 17.0 13.3 7.5 10.1 9.2 7.5∼17.0

OF5 30 18.6 9.0 2.83 3.74 7.42 -7.5 -11.7 -3.6 6.4 3.3 0.3 -11.7∼6.4 8.2 12.2 12.6 7.5 10.0 9.2 7.5∼12.6

OF 30 18.6 12.0 2.83 3.74 7.42 -6.6 -7.5 -0.6 6.4 3.3 0.3 -7.5∼6.4 7.7 8.9 12.7 7.5 10.0 9.2 7.5∼12.7

OFK1 12.2 12.2 12.2 12.2 12.2 12.2 -29.1 6.6 17.7 32.1 31 13.1 -29.1∼32.1 29.1 7.5 19.5 32.6 31.5 14.6 7.5∼29.1

OFK2 25.56 6.25 6.25 6.25 6.25 6.25 -16.7 -15.0 1.3 14.8 12.2 13.1 -16.7∼14.8 16.7 15.2 12.2 15.1 13.4 9.2 9.2∼15.2

OFK50 see Figure A8 -19.4 -18.8 -6.1 8.5 8 1.4 -19.4∼8.5 19.4 18.8 12.5 9.3 10.5 9.7 9.3∼19.4

MS 30.5 18.6 15.6 3.9 3.9 7.42 -4.7 -1.2 4.9 7.7 3.9 0.3 -4.7∼7.7 6.7 6.4 13.9 8.6 10.3 9.2 6.4∼13.9

MS2 30.5 18.6 12.0 3.9 3.9 7.42 -5.6 -5.6 1.9 7.7 3.8 0.2 -5.6∼7.7 7.1 7.8 12.9 8.5 10.2 9.2 7.1∼12.9

MS3 30.5 18.6 9.0 3.9 3.9 7.42 -6.6 -9.8 -1.0 7.7 3.8 0.2 -9.8∼7.7 7.6 10.6 12.5 8.6 10.2 9.2 7.6∼12.5

and frequency of the WSE at the six locations. The 1:1 plot shows there is no obvious bias in modeled WSE. In statistics, the

ME during high flow is -2.5 cm ∼ 9.1 cm, which is equivalent to -0.6% ∼ 1.9% relative to mean water depth at each location.270

Similarly, these values at low flow is -15.6 cm ∼ 5.5 cm and -7.1% ∼ 6.6%, respectively. In terms of the MAE, it is 7.2 cm ∼
13.5 cm (1.5% ∼ 3.1% relative to average water depth) at high flow and 13.1 cm ∼ 26.6 cm (5.1% ∼ 15.8% relative to water

depth) at low flow. The RMS is 9.7 cm ∼ 15.9 cm (2.0% ∼ 3.8% relative to water depth) at high flow and 17.7 cm ∼ 40.3 cm

(6.9% ∼ 22.2% relative to water depth) at low flow. The calculated R2 between the modeled and observed WSE is larger than

0.98 for six locations at high flow and is in the range 0.88 - 0.93 at low flow, except for at 100D where the value is 0.603. The275

slope of the linear regression has a similar trend as R2 that it falls in the range 1.05 - 1.1 during high and low flow at most

locations, however has a value of 0.859 at 100D during low flow. These results suggest that the modeled WSE agrees with

observation very well at all locations during the high flow event. The model WSE is less accurate at low flow and has obvious

deviation at locations where the water depth is less than 1 m (case SL at 100H) or not available due to being too close to the

wet/dry boundary (100D).280

3.3 Short-term velocity validation

To further examine the model’s predictive capability for flow velocity, Figure 7 shows a qualitative comparison of the velocity

magnitude (U ) distribution at 12 cross-sections between ADCP measurements and CFD model. For instance, at the cross-

section E1, ADCP data is placed at the left hand (a) and the corresponding CFD data is placed at the right hand (b). The

distributions of velocity magnitude at other locations are arranged similarly. By comparing each pair of figures, it is found285

that the pattern of the distribution, e.g., locations of maximum and minimum velocity, is very similar. This means the CFD
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Table 2. A summary of flow scenario, discharge, water depth, roughness height, and modeling accuracy

for calibration, validation, and prediction.

Survey Time Month Flow Mean Mean WSE: OF-Observed

Station Period Year Day Scenario Discharge depth ks ME RME MAE RMAE RMS RRMS R2 β

(m3/s) (m) cm cm % cm % cm %

100B

SM 2011 1/20-2/16 Medium 4227 3.57

30

-6.6 -1.8 7.7 2.1 10.1 2.8 0.963 1.072

SH 2011 5/11-9/6 High 6335 4.88 -2.1 -0.4 7.2 1.5 9.7 2.0 0.994 1.062

SL 2011 9/20-12/31 Low 2613 2.19 -15.6 -7.1 19.7 9.0 25.4 11.6 0.914 1.102

MH2 2013 3/11-6/19 High 4449 3.65 -10.1 -2.8 11.9 3.3 15.1 4.1 0.982 1.083

ML2 2013-14 9/27-1/5 Low 2517 2.10 -20.7 -9.9 22.4 10.7 26.4 12.6 0.879 1.108

MH2 2014 4/15-7/24 High 5217 4.27 -9.2 -2.2 10.5 2.5 13.3 3.1 0.945 1.053

MM2 2013-14 1/1-8/1 Mixed 3755 3.12 -14.4 -4.6 16.1 5.2 22.1 7.1 0.965 1.065

100N

SM 2011 1/20-2/16 Medium 4227 2.78

18.6

-7.5 -2.7 8.9 3.2 10.9 3.9 0.943 1.031

SH 2011 5/11-/9/6 High 6335 3.96 -2.5 -0.6 8.9 2.2 11.0 2.8 0.991 1.058

SL 2011 9/20-12/31 Low 2613 1.58 -10.3 -6.5 19.9 12.6 26.1 16.4 0.881 1.061

MM 2013-15 1/1-12/31 Mixed 3424 2.17 NA NA NA NA NA NA NA NA

100D

SM 2011 1/20-2/16 Medium 4227 NA

12

-0.6 NA 12.7 NA 16.4 NA 0.874 1.149

SH 2011 5/11-/9/6 High 6335 NA 3.1 NA 10.6 NA 13.7 NA 0.983 1.071

SL 2011 9/20-12/31 Low 2613 NA -1.8 NA 26.6 NA 40.3 NA 0.603 0.859

MM 2013-15 1/1-12/31 Mixed 3424 NA NA NA NA NA NA NA NA NA

LI

SM 2011 1/20-2/16 Medium 4227 2.99

2.83

6.4 2.1 7.5 2.5 9.2 3.1 0.948 1.023

SH 2011 5/11-/9/6 High 6335 4.02 NA NA NA NA NA NA NA NA

SL 2011 9/20-12/31 Low 2613 1.91 NA NA NA NA NA NA NA NA

MM 2013-15 1/1-12/31 Mixed 3424 2.44 NA NA NA NA NA NA NA NA

100H

SM 2011 1/20-2/16 Medium 4227 1.90

3.74

3.3 1.7 10.0 5.3 12.0 6.3 0.923 1.073

SH 2011 5/11-/9/6 High 6335 3.00 5.7 1.9 9.2 3.1 11.3 3.8 0.989 1.053

SL 2011 9/20-12/31 Low 2613 0.83 5.5 6.6 13.1 15.8 18.4 22.2 0.922 1.062

MM 2013-15 1/1-12/31 Mixed 3424 1.36 NA NA NA NA NA NA NA NA

100F

SM 2011 1/20-2/16 Medium 4227 3.66

7.42

0.3 0.08 9.2 2.5 11.5 3.1 0.928 1.106

SH 2011 5/11-/9/6 High 6335 4.77 9.1 1.9 13.5 2.8 15.9 3.3 0.978 1.103

SL 2011 9/20-12/31 Low 2613 2.59 2.6 1.0 13.3 5.1 17.7 6.9 0.926 1.071

MM 2013-15 1/1-12/31 Mixed 3424 3.12 NA NA NA NA NA NA NA NA

100HD
LL3 2018-19 8/16-10/31 Low 2580 1.33

NA
7.2 5.4 14.9 11.3 22.5 17.0 0.89 0.980

LM3 2018-19 1/1-10/31 Mixed 3310 1.78 7.2 4.0 14.9 8.4 22.5 12.6 NA NA

Observation stations are illustrated in Figure 1b, the first character in "Time Period" represents short-term (S), medium-term (M),

and long-term (L), and the second character in "Time period" represents medium (M), high (H), low (L), or mixed (M) type flow

scenarios. Superscripts 2 and 3 denote observation data used for comparison are from observation 2 and observation 3. R2 and β is

a coefficient quantifying the degree of correlation between modeled and observed WSE and the slope of the linear regression of 1:1

plots. NA is used when observed data is not available.
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Figure 6. The comparison of water surface elevation from model and observations during high flow and low flow in 2011. (a-b) Hourly

recorded time series of WSE and 1:1 plot during high flow. (c-d) Hourly recorded time series of WSE and 1:1 plot during low flow.

model can qualitatively reproduce the velocity distribution at each cross-section. In addition, it is observed that the distribution

is "cleaner" in CFD data (e.g., x), but shows more noise in ADCP measurements (e.g., w). Such a noise feature is likely

induced by small scale turbulence, measurement uncertainty from boat movement (Khosronejad et al., 2016; Le et al., 2019),

and other factors such as wind shear, riparian vegetation, and inaccuracy of topography survey (Lane et al., 1999). The ADCP290

measurement uncertainty can also be manifested by the white space on each figure where data are lost.

Due to these problems, a more commonly used way is to compare the depth average flow velocity from ADCP and CFD

models as shown in Figure 8. The result shows that the agreement between ADCP and the simulation is very good at locations

in the upstream (E1 - E3) and the relatively straight downstream main channel (E9 - E10), but not good at the side channel

with large curvature (E4 and E11). The agreement is reasonably good at main channels with big curvature (E5 - E8) and the295

outlet (E12). The corresponding correlation coefficients (R2) between the CFD modeled and ADCP measured ones are 0.77 -

0.79, 0.75, 0.44-0.61, and 0.71-0.83, and 0.61 for E1-E3, E9-E10, E4/E11, E5-E8, and E12, respectively. As R2 of around 0.8

is usually recognized as an "acceptable" or "good" result in previous work (Nicholas and Sambrook Smith, 1999; Lane et al.,

1999; Horritt, 2005; Lane et al., 2005), this means that the flow velocity predicted by the CFD model at most of the locations (9

out of 12) is reliable for practical applications. It is worth mentioning that the modeling accuracy for flow velocity may not be300

further improved by using more advanced CFD modeling or more refined mesh without improving the accuracy of ADCP and

topography survey. For instance, Le et al. (2019) conducted a large-eddy-simulation for a 3.2 km long reach of the Mississippi

River with a given discharge, the prediction accuracy of velocity was not improved when compared to ADCP measurements

even though using 109 million grid and 38,400 CPU hours to reach a steady state. Furthermore, as the two dates chosen for

velocity validation are randomly selected, it may be reasonable to expect that flow velocity modeling at other dates likely has305
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similar accuracy, at least for short-term scenarios. This claim may be indirectly backed by the fact that WSE calibrated during

2011 still has a similar accuracy as that in 2018 and 2019 (see Section 3.5).

Figure 7. The velocity magnitude distributions on cross-section E1 - E12 from ADCP surveys (Columns 1 and 3) and CFD modeling

(Column 2 and 4). Cross-section names (E1 - E12) with red and blue color denote survey dates on March-4 and April-1, 2011, respectively.

Symbols d and s denote depth away from the water surface and distance from the right bank (see Figure 1c), respectively.

3.4 Medium-term water stage validation

The short-term water stage validation shows the roughness calibrated using the WSE observed at a medium flow can well

predict WSE at medium, high, and low flow scenarios. To further test if the calibrated roughness can be applied for medium-310

term (2 to 3 years after the calibration period) surface flow simulations, Figure 9 compares the modeled WSE with the observed

WSE at 100B during 2013-2014. Figure 9a shows a comparison of the hourly recorded WSE from the model with those from

two different observations. Such a comparison shows that the modeled WSE agrees well with the observations from January

1, 2013 to August 1, 2014. In addition, it shows that observed WSE has uncertainties. A further comparison between the two

observations shows that WSE from observation 2 is about 3.2 cm higher than that from observation 1 and that a small shift in315

time results in a large error in standard deviation between the two observations (see uncertainty analyses in Appendix A2 and
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Figure 8. The comparison of depth-averaged velocity magnitude determined from ADCP surveys and CFD modeling. Black circles denote

measured velocity outliers visually determined through velocity components (Figure A5 or A6).

Figure A7). However, as observation 1 lacks the record during 2013-2014, observation 2 is used for validation during this time

period.

As WSE observation is missing at some dates, three time periods with continual observations (see MH2 and ML2 in Table

2) were chosen to illustrate the modeling performance in predicting WSE as shown in Figure 9b,c,d. The comparison shows320

that the modeled WSE agrees very well with observations at the high flow scenarios during March-June 2013 (Figure 9b) and

April-July 2014 (Figure 9d). The ME, MAE, and RMS during these periods are -10.1 cm ∼ -9.2 cm, 10.5 cm ∼ 11.9 cm, and

13.3 cm ∼ 15.1 cm, respectively. The corresponding relative error to average water depth is -2.8% ∼ -2.2%, 2.5% ∼ 3.3%,

3.1% ∼ 4.1%, respectively. At the low flow during September 2013-January 2014 (Figure 9c), the model shows a larger error

especially when the WSE is low (close to 119 m). However, the relative errors to water depth, with values of -9.9%, 10.7%,325
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and 12.6% for ME, MAE, and RMS (see ML2 in Table 2), are still low. Figure 9e,f,g further shows a 1:1 comparison between

modeled and observed WSE. The R2 and the linear regression slope are 0.88∼ 0.98 and 1.06∼ 1.1, respectively. These results

suggest the predicted WSE has no obvious bias and the prediction has good accuracy for a medium-term prediction.

Figure 9. Medium-term model validation for water surface elevation. A comparison of hourly recorded WSE from model and observations

during 2011-2014 (a), medium flow (b), low flow (c), and high flow (d). (e-g) denote the 1:1 plot during medium, low, and high flow scenarios.
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3.5 Long-term water stage validation

The long-term (7 to 8 years after the calibration period) performance of WSE prediction is important for predicting river330

corridor function under a long-term climate change scenario. To test the modeling performance for long-term WSE prediction,

Figure 10 compares the WSE from the model and the observation at one location (yellow dot in Figure 1b), different from the

locations used for calibration. Figure 10a shows that the model well captures the trend of the fluctuation in WSE at 100HD

during August 2018-November 2019. The ME and MAE are 7.2 cm and 14.9 cm, respectively. This is equivalent to 5.4% and

11.3% relative to the mean water depth. The RMS is 22.5 cm and about 17.0% relative the average water depth at 100HD during335

August 2018-November 2019. Figure 10b further shows the 1:1 plot between the modeled and observed WSE at 100HD. The

R2 and linear regression slope are 0.89 and 0.980, respectively. These statistics show there is no obvious bias in our model as

the slope is very close to 1. As the flow during August 2018-November 2019 is always low (2580 m3/s), the R2 during this

time period is similar to those calculated at low flow scenario (see SL at 100B-100F in Table 2) in 2011-2015. Similarly, a

lower R2 is also related to a small time shift in the observation as shown in Figure A7. Considering that a small time shift in340

the observation results in a significant error in MAE and RMS, the ME is a more reliable index for evaluating the modeling

accuracy. Therefore, it is reasonable to claim that our model is able to predict WSE in 2018 and 2019 with an accuracy of 5.4%

relative to mean water depth using the roughness calibrated in 2011. This suggests that in the next 9 years the WSE may be

reliably predicted using the calibrated roughness at the present time.

Figure 10. Long-term model validation for water surface elevation. A comparison of the hourly recorded WSE from model and observations

at 100HD during 2018-2019 (a), and their 1:1 plot (b).

3.6 Ratio of dynamic pressure to static pressure345

The dynamic pressure is an important streamflow quantify, especially for environmental and ecological functions. However,

modeling results of dynamic pressure in large-scale natural rivers are rarely reported and the relative importance of dynamic

pressure to hydrostatic pressure is also not clear. To quantitatively understand the relative importance of dynamic pressure to

the hydrostatic pressure, we define their ratio as r = pd/[ρg(WSE−zb)] with WSE and zb denoting the water surface elevation

and riverbed elevation. As such a ratio varies with location and discharge, we categorize the ratio into 5 ranges, including -0.4350

∼ -0.3, -0.3 ∼ -0.2, -0.2 ∼ -0.1, -0.1 ∼ 0, and 0 ∼ 0.1. We then calculate the area (Ar) of which the pressure ratio falls in

each range and its relative ratio to the total wetted area (AT ). Figure 11 shows the variations of the relative pressure ratio area

(Ar/AT ) with time (a) and discharge (b), as well as the spatial distribution of each pressure ratio range at low (c), medium (d),
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and high (e) flow conditions. The results (Figure 11a) show that 60% ∼ 80% of the riverbed is covered with dynamic pressure

whose value is -10% to 0 of the hydrostatic pressure, while 10%∼ 30% of the total area is covered with dynamic pressure is of355

-20% to -10% of the hydrostatic pressure. The region with dynamic pressure ratio higher than 0 or less than -20% is small. In

addition, it was observed from Figure 11b that the relative pressure ratio area (Ar/AT ) behaves differently when the discharge

is less than 2000 m3/s (low flow), between 2000 m3/s and 4000 m3/s (medium flow), and large than 4000 m3/s (high flow),

respectively. Specifically, blue color is observed at both the dry-wet boundary and main channel at a low flow (Figure 11c),

while it is mainly observed at the dry-wet boundary at a high flow (Figure 11e). A a media flow, the blue area can be observed360

in both the main channel and the dry-wet boundary, though its area is obviously smaller than that observed in the low flow

scenario. According to Figure 11a,b, the blue area could increases from around 10% at a high flow to around 30% at a low flow.

This means that dynamic pressure may be important at both the dry-wet boundary and main channel at low flow conditions.

4 Discussion

4.1 Distributed hydraulic roughness estimation for large-scale rivers365

Hydraulic roughness is a metric used to estimate the resistance applied to flow from complex sediment structures. Such a value

controls the flow speed and water surface elevation, and has been long recognized as the primary control of the accuracy of

numerical modeling of natural rivers (USACE, 1994). For small-scale rivers, assuming a uniformly distributed roughness is

usually acceptable. For large-scale rivers, however, it is necessary to use a distributed roughness height because the interactions

between flow and local topographic features vary with locations. To guide roughness estimation in practical applications, we370

give an in-depth discussion on the roughness estimation approach used in the present work (Sections 4.1.1-4.1.2) and its

connections to other approaches such as Manning’s coefficient (Section 4.1.3) and streambed microtopography (Section 4.1.4).

4.1.1 Calibration with observations: local optimal roughness height

Roughness calibration with observed water stage is an efficient approach for roughness estimation in 3D free-surface models.

The physical basis of this approach is that the bulk flow velocity in streams is monotonically related to bed roughness and375

therefore an optimal roughness can be obtained by monotonically adjusting a roughness parameter to match modeled WSE

with observed ones. Usually, a very small roughness height, e.g., 0, results in an underestimation of WSE. While a high

roughness height, e.g., the size of the biggest sediment, results in an overestimation of WSE. With this in mind, a series of

numerical experiments can be designed by systemically adjusting the roughness parameter from 0 to the biggest value. And the

relative error between modeled WSE and observed ones can be directly calculated as shown in Figure 3b. An optimal roughness380

parameter for each observation location can then be obtained, which is here referred to as a locally optimal roughness height.

Using such an approach, it is generally observed that the modeled WSE is very sensitive to the given roughness height when

its value is much smaller than the optimal one (see Figure 3a,b, and Figures S2 and S3). For example, the ME increases about

0.5 m ∼ 0.7 m when the roughness height increases from 0 to 0.025 m (Figure 3b). However, further increasing the roughness
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Figure 11. The variations of the relative pressure ratio area (Ar/AT ) with time (a) and discharge (b), as well as the spatial distribution of

each pressure ratio range at low (c), medium (d), and high (e) flow conditions.

height from 0.025 m to 0.05 m results in much smaller changes (0.1 m ∼ 0.18 m) in WSE compared to that of changing from385

0 to 0.025 m. These changes are even smaller when the roughness height approaches the optimal value. These behaviors can

be explained as follows.

Firstly, setting a zero roughness height is equivalent to using a smooth wall function (Versteeg and Malalasekera, 2007;

CFDDirect, 2017). Such treatment is only valid when the shape, size, and distribution of individual sediments on riverbed

are explicitly represented by the riverbed topography. For almost all CFD modeling of natural rivers, however, the details of390

individual sediments cannot be measured as the commonly used survey technology, i.e., LiDAR, cannot capture geometric

details smaller than a half meter (Podhorányi et al., 2013; Tonina et al., 2019). Therefore, setting a zero roughness height on

20



top of a LiDAR-measured topography results in large errors in predicting WSE when compared to observed ones. By contrast,

using a non-zero roughness value considers the effects of the missing geometric details on flow, which makes the model more

approaching to the real situation. This can be demonstrated by similar values of the optimal roughness heights, i.e., 2.83 cm395

∼ 25.56 cm (Table 1 Case OF0), to typical sizes of gravel and cobbles (2 mm ∼ 0.256 m) (Berenbrock and Tranmer, 2008).

Hence, it can be concluded that the roughness wall model and non-zero roughness heights reduce the sensitivity of WSE to

roughness height; and they provide a reliable mechanism for roughness calibration. It is worth mentioning that the sensitivity of

WSE to roughness height can be further reduced if details (mm-scale) of individual sediments on riverbed can be measured and

explicitly represented by sufficiently small (mm-scale) mesh in CFD model (Lane et al., 2004; Hardy et al., 2005). However,400

measuring a river topography and generating a mesh with mm resolution is currently impractical for large-scale natural streams.

Our approach discussed here therefore is still of great practical importance.

4.1.2 Calibration with observations: local roughness adjustment

As the roughness parameter calibrated in Section 4.1.1 usually works well for a single location, this means that applying such

a parameter to other locations cannot guarantee overall modeling accuracy for all locations. Different strategies can be applied405

to solve this problem. The simplest strategy is to choose one roughness parameter and apply it uniformly to the whole domain.

Such a parameter can be directly identified from error diagrams (Figure 3b or Figure A3), which has a value of k1
s = 12.2 cm.

Using this strategy, the overall modeling accuracy is about -30 cm ∼ 30 cm and 7.5 cm ∼ 30 cm in terms of ME and MAE

(see OFK1 in Table 1). The second strategy is to decompose the riverbed into two regions with different roughness parameters

assigned to each region. This strategy is based on the fact that the error diagrams (Figure 3b or Figure A3) show two different410

behaviors at the region 100B and other five locations. Following this concept, k2b
s = 25.56 cm is assigned for the region at 100B

and k2a
s = 6.25 cm is assigned for all other regions. The overall modeling accuracy for WSE using such a strategy is around -17

cm ∼ 15 cm and 9 cm ∼ 15 cm in terms of ME and MAE (see OFK2 in Table 1). Overall, we see that the modeling accuracy

of using one or two roughness values is ± 0.3 m and ± 0.15 m in terms of ME, and 0.3 m and 0.15 m in terms of MAE. It

is important to mention that such a modeling accuracy can be roughly predicted using error diagrams without running actual415

simulations (cases OFK1 and OFK2 in Table 1). This means that the error diagram is a good tool for designing calibration

strategy. We also tested the strategy of interpolating the locally optimal roughness height to 50 uniformly distributed regions

(see ks and regions in Figure A8). The overall accuracy for WSE is -19.4 cm ∼ 8.5 cm and 9.3 cm ∼ 19.4 cm in terms of ME

and MAE (case OFK50 in Table 1), respectively. This result suggests that interpolating the locally optimal roughness height

to more regions does not improve modeling accuracy because roughness interpolating itself may introduce extra uncertainty420

to the roughness field. From the above discussion, we found that the best strategy is to decompose the riverbed into N regions

with N equal to the number of survey locations. Without further adjustment of the local optimal roughness parameters, such

a strategy gives an overall modeling accuracy of WSE as -16.5 cm ∼ 6.4 cm and 7.6 cm ∼ 19.6 cm in terms ME and MAE,

respectively.

To further improve the modeling accuracy, local adjustment of the local optimal roughness parameters is necessary. This is425

because the locally optimal roughness parameters neglect the flow interactions due to locally variable flow resistance, backwater
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effects from downstream to upstream, and the effects of sinuosity. The local adjustment is used to incorporate these effects into

the calibration and achieve a globally optimal roughness calibration. As higher uncertainty (case OF0 in Table 1) occurs at the

upstream locations (100B, 100N, and 100D) using the locally optimal roughness height, we systematically adjust the roughness

parameters at these locations. The final modeling accuracy for WSE is -7.5 cm ∼ 6.4 cm and 7.5 cm ∼ 12.7 cm in terms of430

ME and MAE, respectively. Further improvement of the accuracy is possible but not necessary as the relative errors to water

depth have been reduced to -2.7% ∼ 2.1% and 2.1% ∼ 5.3% in terms of ME and MAE.

Nevertheless, it is worth summarizing how local adjustment improves modeling accuracy. Firstly, increasing roughness

height at the most upstream location (100B) improves the accuracy of WSE only at that location (see OF0, OF1, and OF2 in

Table 1). Secondly, changing roughness height at 100N has little effects on WSE at 100N and neighbouring upstream locations435

(see OF2 and OF3 in Table 1). And thirdly, increasing roughness height at 100D significantly affects WSE at all upstream

locations and has a larger influence on the locations closer to that location. These results suggest that roughness heights at

some critical locations (most upstream and close to pool) have a larger impact on the overall modeling accuracy.

4.1.3 Converted from Manning’s coefficient

Though the above roughness calibration approach can be applied for any rivers where WSE observation is available, such a440

process is usually time-consuming. 1D and 2D models have been widely used to predict WSE and Manning’s coefficients have

been available in these models. For example, for the river section studied in this work, the calibrated Manning’s coefficients

from a 2D CFD model, MASS2, are 0.038, 0.035, 0.034, 0.027, 0.027, and 0.03 (with unit s/m1/3) at 100B, 100N, 100D, LI,

100H, and 100F (Niehus et al., 2014). In these situations, the roughness parameter required in 3D CFD models can be directly

converted from the well-calibrated Manning’s coefficients based on a force balance at the riverbed. Specifically, the force445

balance can be described as τb = ρgSR= 1/8fρU2 with τb, S, R, f , and U denoting average bed shear stress, channel slope,

hydraulic radius, Darcy-Weisbach friction factor, and average streamwise velocity. For gravel bed rivers, it was shown that√
8
f = a( Rks )b with b = 1/6 and a has a value of 6.7, 7.3, 8.2, 8.4, 9.39, etc. whenR/ks > 10 (Chaudhry, 2008; Rickenmann and

Recking, 2011; Ferguson, 2019). Meanwhile, the Manning’s equation shows U = 1
nR

2/3S1/2 with n denoting the Manning’s

coefficient. Using these formulas, the relationship between n and ks can be quantified as n= 1
a
√
gk

1/6
s if ks has a unit of450

foot or n= 1.219
a
√
g k

1/6
s if ks is in SI unit. The coefficient a characterizes the type of sediment that requires further calibration,

however could use an average value of 8.0 for a rough estimation of ks. In this work, as the locally optimal roughness height

can be deterministically calculated and the modeled WSE at 100F gives a very good accuracy (see 100F in OF0 Table 1),

we back-calculated the value of a = 8.4 using ks = 7.42 cm = 0.2434 ft and n = 0.03 s/m1/3. With the calibrated value for

a, hydraulic roughness ks can be converted as shown in case MS in Table 1. The modeling accuracy of WSE using these455

roughness parameters is -4.7 cm ∼ 7.7 cm and 6.4 cm ∼ 13.9 cm in terms of ME and MAE, respectively. This result suggests

that the roughness height converted from the well-calibrated Manning’s coefficients of 2D models can give similar modeling

accuracy compared to using the globally optimal roughness height. Further local adjustment of these roughness parameters

does not significantly improve modeling accuracy (see MS2 and MS3 in Table 1).
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4.1.4 Estimated from microtopography460

Both roughness calibration and conversion from the Manning’s coefficients require observation of water stage and these cal-

ibrations may not guarantee the accuracy of other flow quantities such as bed shear stress and velocity. A more accurate and

physics-based method for evaluating the effects of bed roughness is to directly resolve the influence of microtopography on

flow dynamics. However, the success of such a method depends on high-resolution measurements of riverbed microtopography,

computational techniques capable of resolving complex geometry in CFD codes, and available high-performance computing465

resources. Owing to the rapid development of structure-from-motion (SfM) photogrammetry and unnamed aerial vehicles,

remote sensing of riverbed sediment structure with 1 cm ∼ 5 cm resolution over a 40-kilometer river reach has been possible

for shallow streams (Carr et al., 2019). SfM survey of a patch-scale (5 m2) natural streambed 0.5 m beneath water surface has

also been recently realized with 1 mm resolution (Danhoff and Huckins, 2020). These data can be used either for quantifying

locally distributed grain size distribution or used as a geometric boundary for 3D CFD models where the effects of sediment470

structure on flow dynamics can be directly resolved. At the patch scale (a few meters to tens meters), SfM photogrammetry-

scanned high-resolution (mm - cm scale) natural riverbeds have been used to directly resolve the effects of sediment structure

on the flow resistance (Chen et al., 2019). A quantitative relationship has been identified between hydraulic roughness height,

turbulence vortex structure, and characteristic sediment size. Therefore, with available high-resolution riverbed structure from

SfM and existing theories on hydraulic roughness, the distributed hydraulic roughness height in large rivers can be directly475

estimated and integrated with the CFD code.

4.2 OpenFOAM medium and long-term water stage prediction performance compared to 1/2D models

Though Section 4.1 discusses the roughness estimation procedure for a short time, we want to emphasize that the procedure

and the usage of roughness wall model are key to maintaining the model’s accuracy over long time period and large spatial

extent. Their importance can be illustrated by comparing the WSE from MASS1 (Richmond and Perkins, 2009), MASS2480

(Niehus et al., 2014), OpenFOAM, and observations as shown in Figure 12 and Table A3. Here, the three models are calibrated

with WSE during similar time periods (October 2010 ∼ March 2011) using the same river topography, discharge, and stage

data. The calibration accuracy of these three models are -0.2 cm ∼ 0.2 cm, -3.8 cm ∼ -0.8 cm (Table A3), and -7.5 cm ∼ 6.4

cm (Table 1 Case OF) in terms of ME; and 4.8 cm ∼ 17.6 cm, 3.9 cm ∼ 12.8 cm, and 7.5 cm ∼ 12.7 cm in terms of MAE.

These data demonstrate that the 1D (MASS1) and 2D (MASS2) models were calibrated to a better accuracy than the 3D model485

during the calibration period. Using these calibrated roughness, Figure 12a compares the WSE from the three models and the

observation at location 100B during April to June in 2013 (in medium-term). The result suggests that the 1D and 2D models

overestimate the WSE of about 0.4 m, while the 3D is still very accurate at most dates, even though the 1D/2D models have

a better calibration accuracy. Further, to examine these model’s long-term predictive capability at locations outside calibration

locations, Figure 12b compares the WSE from these models and another observation at location 100HD during 2018 and490

2019 (long-term). The result shows that the WSE predicted by the 1D model deviates from that from the 2D/3D models and

observations. Such a deviation can be more clearly observed through the 1:1 plot between modeled and observed WSE (Figure
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12c). Figure 12c also shows that the WSE from the MASS2 and OpenFOAM has no obvious bias relative to the observation

data. Figure 12d further shows the 1:1 plot between modeled WSE from MASS1/MASS2 and OpenFOAM, which clearly

suggests that WSE from MASS2 has a similar accuracy as OpenFOAM, but MASS1 deviates from it, especially at the lower495

WSE (low flow conditions). From these results, it is reasonable to conclude that the 3D CFD model framework proposed in this

work can reliably predict WSE over short-, medium-, and long-term periods at both calibration and non-calibration locations.

The 1D and 2D models, though with accurate calibration, may not maintain its predictive capability for medium and long-term

streamflow at some locations. The lower accuracy of 1D/2D models may be attributed to their intrinsic physical simplifications,

e.g., cross-sectional or depth average and resulting nonphysical meaning of roughness parameter (Lane et al., 2005; Lane and500

Ferguson, 2005), which necessitate re-calibrating bed roughness to account for the dynamic changes in discharge.

Figure 12. A comparison of water surface elevation (WSE) from MASS1, MASS2, OpenFOAM, and observations at 100B during 2013 (a)

and at 100HD during 2018 - 2019 (b). (c) denotes the 1:1 plot of WSE between models and observation for 100HD; and (d) denotes that

between OpenFOAM and MASS1/2. Details of the WSE from MASS1 and MASS2 can be found in (Niehus et al., 2014).

4.3 Effects of discharge variations and topography heterogeneity on riverbed dynamic pressure

Riverbed dynamic pressure controls the water exchange between the stream water and groundwater. However, existing surface-

subsurface models usually neglect the effects of dynamic pressure based on an assumption that the dynamic pressure is negli-

gible compared to the hydrostatic pressure. With the CFD modeling results reported in Section 3.6, it is found that the relative505

importance of dynamic pressure to the hydrostatic pressure varies with discharge and riverbed topography. In general, the dy-

namic pressure is less than 10% of the hydrostatic pressure in 60% to 80% of the total wetted area and is between 10% and

20% of the hydrostatic pressure in 10% to 30% of the region. With variations in discharge, 20% more area could be covered by

higher dynamic pressure (10% and 20% of the hydrostatic pressure) at low flow (< 2000 m3/s) compared to that at a high flow

(> 4000 m3/s). Spatially, both the main channel and dry-wet boundaries (shorelines and island boundaries) are likely covered510

with the above higher dynamic pressure at a low flow. While only the dry-wet boundaries are covered with the higher dynamic
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pressure at a high flow. As 30% of the wetted area could be covered with dynamic pressure whose value is 10% to 20% of the

hydrostatic pressure, weather it is acceptable to neglect the dynamic pressure in existing surface-subsurface models is ques-

tionable. In addition, the frequent discharge fluctuations cause variations in the magnitude and coverage area of the dynamic

pressure. These dynamic variations likely further affect the water exchange rate between stream and groundwater. Therefore,515

it is necessary to directly evaluate the effects of riverbed dynamic pressure on the surface-subsurface exchange.

4.4 Computational efficiency

Despite the rapid growth in computational capacity in the past three decades, it is still a bottleneck for CFD modeling of natural

rivers with tens of kilometer scale over multiple years. However, we show that such a limitation may be relieved using highly

efficient CFD code, spatiotemporal decomposition approach, and a few hundred CPUs commonly available in university-scale520

or national-scale cyberinfrastructure. The discussion here is based on modeling results during 2011 (1 month), 2013-2015

(36 months), and 2018-2019 (22 months) by using Cascade, a high-performance computer managed by the Environmental

Molecular Sciences Laboratory (EMSL) at PNNL (www.emsl.pnnl.gov). For convenience, we define wall-clock time, CPU

time, and solution time as the real-world time experienced by human, the time consumed by the computer, and the time of

water flow in the CFD model, respectively. With these definitions, the computational efficiency can be quantified by the ratio525

of solution time to wall-clock time.

Figure 13. The advancement of solution time with respect to wall-clock time. Np and ∆T denote the number of processors and time step.

Linear solver used for solid an dashed lines are DIC-PCG and GAMG, respectively. The line slope or the computational efficiency is denoted

by the values adjacent to each line.

Figure 13 shows the advancement of solution time with respect to wall-clock time for the short-term medium flow case. It

is observed that the computational efficiency, i.e., the slope of each line, increases linearly with increasing time step ∆T (solid

lines with processor number Np = 256). In addition, increasing the number of processors from 256 to 512 only increases the

computational efficiency by 1.5 times (see magenta and cyan lines). Further increasing the number of processors decreases530

the computational efficiency, which means that an optimal number of processors, i.e., Np = 512, exists for our model. The
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computational efficiency is also affected by the selection of linear solver. In our case, the PCG solver with DIC conditioner

increases the computational efficiency by 3.6 times compared to using a generalised geometric-algebraic multigrid (GAMG)

solver (see blue and dashed black lines). Despite the changes of time step and number of processors, the modeled WSE does

not change (see Figure A4). Following theses analyses, we show that the computational efficiency is around 36 by using 512535

processors, 3 s as the time step, and DIC-PCG as the linear solver. This means we can simulate 1 month solution time in

less than one day of wall-clock time or one day solution time in 40 minutes (1/36 days) of wall-clock time. With the same

parallel computation setups, we divide simulations during medium-term and long-term into 36 and 22 cases and run all cases

simultaneously. This approach does not reduce the total CPU time, but significantly reduces the maximum wall-clock time

required to complete all simulations. The OpenFOAM log files (see Data sets)a show that all simulations were completed in less540

than 6 days of wall-clock time. Considering the number of processors, the total CPU hours spent is about 1.1 million, which

is equivalent to 19,000 CPU hours for each month. Note that the time considered here does not include the computational

time used for calibration which is around 28% of the total CPU hoursa. However, our work shows that calibration is only

required once. Therefore, for rapid predictions of the streamflow with well-calibrated roughness parameters, the computational

efficiency is likely feasible in terms of how much time and how many CPU hours are required.545

5 Conclusions

This work proposed a semi-automated workflow that combines topographic and water stage surveys, 3D computational fluid

dynamics modeling, a distributed rough wall resistance model, and spatiotemporal decomposition to simulate the streamflow

in a 30-kilometer-long river reach in the Columbia River spanning 5 years. Specifically, a LiDAR measured river topography

is represented by a zig-zag grid in the 3D model. The effect of geometric differences between an actual riverbed and the550

computational mesh on streamflow is modeled with a distributed rough wall resistance model with the roughness parameters

calibrated with measured WSE at six locations during 2011. The time decomposition approach enables decomposing the

simulation period 2013-2015 into 36 months and 2018-2019 into 22 months with each month simulated simultaneously using

parallel computation. Further computational efficiency analyses show that the time step, number of processors, and selection of

linear solver affect the final computational efficiency. Using the spatiotemporal decomposition approach, the 3D CFD modeling555

of the streamflow in 58 months can be achieved in less than six days with a cost of 1.1 million CPU hours.

Systematical roughness calibration shows that the distributed roughness field enables an average WSE difference between

modeled and observed ones as -7.5 cm ∼ 6.4 cm, which is equivalent to -2.7% ∼ 2.1% relative to average water depth. With

this calibrated roughness field, the modeling accuracy for WSE is reported as -15.6 cm ∼ 9.1 cm, -14.4 cm, and 7.2 cm for

short-term, medium-term, and long-term predictions, which is equivalent to -7.1% ∼ 6.6%, -4.6%, and 5.4% relative to the560

average water depth. The model also demonstrates its predictive capability in reproducing the flow distribution and depth-

averaged flow velocity at 9 out of 12 cross-sections with correlation coefficients 0.71 ∼ 0.83. Using the validated modeling

results, the relative importance of dynamic pressure to the hydrostatic pressure and its dependencies on discharge variations

and topography heterogeneity are further studied. It is found that the dynamic pressure is less than 10% of the hydrostatic
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pressure in 60% to 80% of the total wetted area while it is 10% to 20% of the hydrostatic pressure in 10% to 30% of the wetted565

region. The relative importance and the coverage area is found to change with discharge and locations.

Given the high modeling accuracy and computational efficiency of our model, this work provides a generic framework to

evaluate and predict the impact of climate- and human-induced discharge variations on river flow velocity, stage, and dynamic

pressure at decade temporal scales and tens kilometer spatial scales that are relevant to the hyper-resolution (0.1 ∼ 1 km)

global- and continental-scale land surface (Wood et al., 2011; Bierkens et al., 2015) and groundwater modeling (Condon et al.,570

2021). With the discharge from global hydrological models at relevant scales, e.g., 5 to 10 km in space and hourly to daily

in time (Lin et al., 2019; Alfieri et al., 2020; Harrigan et al., 2020; Yang et al., 2021), the streamflow model can be better

constrained by climate and human induced discharge disturbances and can also serve as a test bed for the characterization of

the processes at the scales (less than 0.1 km) not represented in global hydrologic modelsa.

Appendix A: Uncertainty analyses575

A1 Mesh resolution and time step uncertainty

The mesh resolution and time step are common sources of uncertainty of CFD models. As one goal of this paper is to predict

the total pressure at the streambed, a summation of the hydrostatic pressure and the dynamic pressure, Figure A1 shows the

difference and the 1:1 plot of the total pressure head between a fine mesh (20 m × 20 m × 0.5 m) and a coarse mesh (20 m ×
20 m × 1 m) at the time 16PM Jan-16-2013. The result shows that the difference is in the range -0.1 m ∼ 0.1 m at most of the580

locations and the spatial average difference is -0.03 m (Figure A1a). The 1:1 plot also shows that the total pressure head from

the two meshes almost overlaps with a mean difference, a root mean square, and a R2 value as -0.03 m, 0.1 m, and 0.9987,

respectively (Figure A1b). Recalling that the WSE (related to the hydrostatic pressure head) observation itself could have an

uncertainty of 0.032 m (see Appendix A2), the uncertainty attributed to mesh resolution is of the similar order of uncertainty in

water stage observation. This suggests that the mesh resolution does not contribute significant error to the total pressure head.585

To further evaluate the effect of time step, Figure A4 shows a comparison of the modeled WSE using five different time steps at

the six observation locations. The results reveal that the time step tested here does not affect the accuracy of WSE. Therefore,

we choose the time step 3 s as the final time step in order to reduce computational costs (see Section 2.7).

A2 Water stage observation uncertainty

To illustrate the uncertainty in WSE observations, Figure A7 shows a comparison of the WSE at 100B observed at two nearby590

locations. The results show that the ME between observation 2 and observation 1 is 3.219 cm, however, the standard deviation

between the two observations is 11.555 cm (Figure A7b). We argue that the large standard deviation is attributed to a small

time uncertainty during the observation. This can be proved by Figure A7c which shows that the standard deviation reduces

to 4.763 cm if the time history in observation 2 is shifted by 39.3 minutes. However, Figure A7c also means the time shift

does not contribute to a large uncertainty in its mean value as the ME is always in the range 3.08 cm ∼ 3.22 cm for any time595
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shift between -120 minutes and 120 minutes. As the mean value of WSE is used to calibrate roughness, the above results

thus demonstrate that the current WSE survey technique does not bring significant uncertainty for roughness quantification

but could result in a large difference in standard deviation, mean absolute error, and root mean square when comparing the

modeled WSE to observed ones. Actually, if we do an alignment of observation 2, i.e., shifting observation 2 by 39.3 minutes

in time and adding 3.219 cm to its value, we see that the difference between observation 1 and such an aligned WSE is clearly600

reduced ( Figure A7b).

Figure A1. Distribution of the difference between total pressure modeled with a fine mesh and a coarse mesh (a), and the 1:1 plot of the total

pressure from the fine mesh and the coarse mesh (b).

Figure A2. A comparison between observed WSE at 100B and modeled ones using different roughness height.
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Table A1. Horizontal coordinates and bed elevation of survey locations.

Station x (m) y (m) zb (m)

100B 555.63 1619.60 117.69

100N 6759.03 5882.76 116.26

100D 8516.19 8082.07 119.05

LI 12580.24 10298.23 113.74

100H 13260.85 9756.13 114.45

100F 16676.44 4429.60 110.77

100HD 15451.55 7581.22 112.61

Table A2. Coefficients of k−ω turbulence model

β∗ αω1 αω2 αk1 αk2 β1 β2 γ1 γ1 a1 b1 c1 Cµ

0.09 0.5 0.856 0.85 1 0.075 0.0828 0.555556 0.44 0.31 1 10 0.09

Table A3. Roughness parameters used in MASS1/2 and associated model accuracy.

Survey MASS1 Calibration MASS1 Validation MASS2 Calibration MASS2 Validation

Station n ks ME MAE ME MAE n ks ME MAE ME MAE

100B 0.033 13.1 -0.2 17.6 24.0 26.0 0.038 30.5 -3.8 11.7 7.8 12.5

100N 0.0313 9.5 0.0 15.6 27.0 30.0 0.035 18.6 -2.8 12.8 4.5 8.4

100D 0.034 15.6 0.2 16.1 19.0 22.0 0.034 15.6 -2.7 10.2 3.3 4.7

LI 0.0346 17.3 0.1 4.8 NA NA 0.027 3.9 -2.2 11.8 2.5 4.1

100H 0.0265 3.5 0.2 6.4 -1.0 4.9 0.027 3.9 -2.7 6.6 0.2 0.6

100F 0.0296 6.8 0.2 7.9 19.0 22.0 0.03 7.4 -0.8 3.9 1.9 3.9

Range - - -0.2∼0.2 4.8∼17.6 -1.0∼27.0 4.9∼30.0 - - -3.8∼-0.8 3.9∼12.8 0.2∼7.8 0.6∼12.5

Units for n, ks, ME, and MAE are s/m1/3, cm, cm, and cm, respectively. The time periods for MASS1

calibration and validation are 10/3/2010 ∼ 3/7/2011 and 7/1/2011 ∼ 9/1/2011; and those for MASS2

are 10/4/2010 ∼ 10/10/2010 and 1/4/2011 ∼ 1/7/2011. Values of n, ME, and MAE can be found in

Ref. Niehus et al. (2014). Values of ks are used as a reference and calculated by n= 1.219
a
√
g
k
1/6
s with a

= 8.4 as discussed in Section 4.1.3.
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Figure A3. The variation of mean absolute error (MAE) between modeled and observed WSE at six locations using different roughness

parameters. Black and red vertical lines represent the optimal roughness height using one-ks and two-ks strategy.

Figure A4. A comparison of WSE at different time step at 100B, 100N, 100D, LI, 100H, and 100F.
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Figure A5. A comparison of depth-averaged velocity component along x from ADCP surveys and CFD modeling at E1 - E12. Black circles

denote measured outliers visually determined from Figure A5 or A6.
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Figure A6. A comparison of depth-averaged velocity component along y from ADCP surveys and CFD modeling at E1 - E12. Black circles

denote measured outliers visually determined from Figure A5 or A6.

Figure A7. A comparison of WSE at 100B from observation 1, observation 2, and observation 2 after alignment (a), the differences in WSE

between observation 1 and observation 2 and that between observation 1 and observation 2 after alignment (b), and the mean and standard

deviation between observation 1 and observation 2 with a time shift ts (c).
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Figure A8. The roughness height on 50 pieces of stream interpolated from the 6 globally optimal roughness parameter (blue circle) (a) and

the decomposition of the streambed into 50 pieces (b).
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