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Abstract. Ensemble-variational methods form the basis of the state-of-the-art for nonlinear, scalable data assimilation, yet

current designs may not be cost-effective for reducing prediction error in online, short-range forecast systems. We propose

a novel, outer-loop optimization of the ensemble-variational formalism for applications in which forecast error dynamics

are weakly nonlinear, such as synoptic meteorology. In order to rigorously derive our method and demonstrate its novelty,

we review ensemble smoothers that appear throughout the literature in a unified Bayesian maximum-a-posteriori narrative,5

updating and simplifying some results. After mathematically deriving our technique, we systematically develop and inter-

compare all studied schemes in the open-source Julia package DataAssimilationBenchmarks.jl, with pseudo-code provided

for these methods. This high-performance numerical framework, supporting our mathematical results, produces extensive

benchmarks that demonstrate the significant performance advantages of our proposed technique. In particular, our single-

iteration ensemble Kalman smoother is shown both to improve prediction / posterior accuracy and to simultaneously reduce10

the leading order cost of iterative, sequential smoothers in a variety of relevant test cases for operational short-range forecasts.

This long work is thus intended to present our novel single-iteration ensemble Kalman smoother, and to provide a theoretical

and computational framework for the study of sequential, ensemble-variational Kalman filters and smoothers generally.

1 Introduction

1.1 Context15

Ensemble-variational methods form the basis of the state-of-the-art for nonlinear, scalable data assimilation (DA) (Asch et al.,

2016; Bannister, 2017). Estimators following an ensemble Kalman filter (EnKF) style analysis include the seminal maximum

likelihood filter and four-dimensional ensemble var (Zupanski, 2005; Liu et al., 2008), the ensemble randomized maximum

likelihood method (EnRML) (Gu and Oliver, 2007; Chen and Oliver, 2012; Raanes et al., 2019b), the iterative ensemble

Kalman smoother (IEnKS) (Sakov et al., 2012; Bocquet and Sakov, 2013, 2014) and ensemble Kalman inversion (EKI) (Igle-20

sias et al., 2013; Schillings and Stuart, 2018; Kovachki and Stuart, 2019). Unlike traditional 3D-VAR and 4D-VAR, which

make use of the adjoint-based approximation for the gradient of the Bayesian maxiumum a posteriori (MAP) cost function,

the above EnKF-based approaches utilize an ensemble of nonlinear forward model simulations to approximate the tangent-

linear model. The MAP cost function gradient can be approximated by, e.g., finite-differences from the ensemble mean as in
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the bundle variant of the IEnKS (Bocquet and Sakov, 2014). The ensemble-based approximation can thus eliminate the need25

to construct tangent-linear and adjoint code for the underlying nonlinear numerical model, which comes at a major cost in

development time for operational DA systems.

These EnKF-based, ensemble-variational methods combine: the high-accuracy of the iterative solution to the Bayesian

MAP formulation of the nonlinear DA problem (Sakov et al., 2012; Bocquet and Sakov, 2014); the relative simplicity of

numerical model development and maintenance in ensemble-based DA (Kalnay et al., 2007); the ensemble-based analysis30

of time-dependent errors and possibly discontinuous, physical model parameters (Corazza et al., 2003); and a variational

optimization of hyper-parameters for, e.g., inflation (Bocquet et al., 2015), localization (Lorenc, 2003) and surrogate models

(Bocquet et al., 2020) to augment the estimation scheme. However, while the iterative ensemble-based schemes above are

promising for moderately nonlinear and non-Gaussian DA, a barrier to their use in online, short-range forecast systems lies in

the computational bottleneck of simulating the nonlinear, physics-based model in the ensemble sampling procedure. In order35

to produce forecast, filter and re-analyzed smoother statistics, these estimators may require multiple runs of the ensemble

simulation over the data assimilation window (DAW) consisting of lagged past and current times.

When nonlinearity in the DA cycle is not dominated by the forecast error dynamics, as in synoptic meteorology, an iterative

optimization over the dynamical forecast model may not produce a cost-effective reduction of forecast error. Particularly, when

the linear-Gaussian approximation for the forecast error dynamics is adequate, nonlinearity in the DA cycle may instead by40

dominated by nonlinearity in the observation operator, nonlinearity in hyper-parameter optimization, and / or nonlinearity in

temporally interpolating a re-analyzed, smoothed solution over the DAW. In this setting, our novel formulation of iterative,

ensemble-variational smoothing has substantial advantages in balancing the computational cost / prediction accuracy trade off

for these estimators.

1.2 Objectives and outline45

This long paper achieves three connected primary objectives. Firstly, we review and refine a variety of already published

smoother algorithms in a unified narrative of Bayesian MAP estimation. Pursuant to this, we simplify and update a number of

results that appear dispersed throughout the literature. Secondly, we use this unified Bayesian framework to rigorously derive

our novel iterative, sequential smoother, optimized for short-range forecast applications. Thirdly, we systematically develop all

algorithms and our test cases in the open-source Julia package DataAssimilationBenchmarks.jl (Grudzien et al., 2021). This50

high-performance numerical framework, supporting our mathematical results, produces extensive simulation benchmarks, val-

idating the performance advantages of our proposed technique. These simulations likewise establish fundamental performance

metrics for all schemes, and certifies the accuracy and numerical efficiency of the Julia package DataAssimilationBench-

marks.jl. This manuscript is thus intended to introduce our novel iterative, sequential smoothing formalism, and to simultane-

ously provide a theoretical and computational framework for studying EnKF-based ensemble-variational filters and smoothers55

in perfect models.

Our proposed smoother technique is a relatively simple change of perspective with respect to existing Bayesian MAP esti-

mators. We consider a hybridization of the classic ensemble Kalman smoother (EnKS) (Evensen and Van Leeuwen, 2000) with
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the IEnKS to produce an iterative, fixed-lag, sequential smoother. We combine the filter solution and retrospective re-analysis

of the EnKS with a single iteration of the ensemble simulation over the lagged states, initialized with the re-analyzed, smoothed60

prior. The resulting scheme is a “single-iteration”, ensemble Kalman smoother, denoted such as it produces its forecast, filter

and re-analyzed smoother statistics with a single iteration of the ensemble simulation over the DAW. By doing so, we seek

to minimize the leading order cost of ensemble-variational smoothing, i.e., the ensemble simulation in the nonlinear fore-

cast model. However, we are free to iteratively optimize the filter cost function for any single observation without additional

iterations of the ensemble simulation.65

We denote our general framework single-iteration smoothing, while the specific implementation presented here is denoted

the single-iteration ensemble Kalman smoother (SIEnKS). For linear-Gaussian systems, with the perfect model hypothesis,

the SIEnKS is a fully consistent Bayesian estimator, albeit one that uses redundant model simulations. When the forecast

error dynamics are weakly nonlinear, yet other aspects of the DA cycle are moderately to strongly nonlinear, we demonstrate

the SIEnKS has prediction and posterior accuracy that is comparable to, and often better than, some fully iterative methods.70

However, the SIEnKS has a numerical cost that scales in iteratively solving the sequential filter cost functions for the DAW, i.e.,

the cost of the SIEnKS scales in matrix inversions in the ensemble dimension rather than in the cost of ensemble simulations,

making our methodology suitable for operational short-range forecasting.

Over long DAWs, the performance of iterative, fixed-lag smoothers can degrade significantly due to the increasing nonlinear-

ity of temporally interpolating the posterior estimate over the window of lagged states. In a standard, single data assimilation75

(SDA) smoother, each observation is only assimilated once meaning that, in long lag windows, new observations are only

distantly connected to the initial conditions of the ensemble simulation; in particular, this can introduce many local minima

to the cost function, strongly affecting the performance of the optimization (Fillion et al., 2018, and references therein). To

handle the increasing nonlinearity of the DA cycle over long DAWs, we derive a novel version of the method of multiple data

assimilation (MDA) (Emerick and Reynolds, 2013; Bocquet and Sakov, 2014). This new MDA technique takes advantage of80

the formulation of the single-iteration formalism to “partially” assimilate each observation within the DAW with a sequential,

EnKS analysis. In particular, the filter analysis in the EnKS constrains the ensemble simulation to the observations while tem-

porally interpolating the posterior estimate over the DAW – this constraint is shown to improve the filter and forecast accuracy

at the end of long DAWs, as well as the stability of the joint posterior interpolation throughout. This key result is at the core

of how the SIEnKS is able to out-perform the predictive and posterior accuracy of a variety of sequential smoothing schemes85

while, at the same time, maintaining a lower leading-order numerical cost.

This work is organized as follows. Section 2 introduces our basic notations. Section 3 reviews the mathematical formalism

for the ensemble transform Kalman filter (ETKF) based on the LETKF formalism of Hunt et al. (2007); Sakov and Oke

(2008b); and Sakov and Bertino (2011). Subsequently, we discuss the extension of the ETKF to fixed-lag smoothing in terms

of: (i) the right-transform EnKS; (ii) the IEnKS; and (iii) the SIEnKS; each as different approximate solutions to the Bayesian90

MAP problem. Section 4 discusses several applications that distinguish the performance of these estimators. Section 5 provides

an algorithmic cost analysis for these estimators and demonstrates forecast, filter and smoother benchmarks for the EnKS, the

IEnKS and the SIEnKS in a variety of DA configurations. Section 6 summarizes these results and discusses future opportunities
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for the single-iteration smoothing framework. Appendix A contains pseudo-code for the algorithms presented in this work,

which are implemented in the open-source Juila package DataAssimilationBenchmarks.jl (Grudzien et al., 2021). Note that,95

due to the difficulty of devising localization and / or hybridization for the IEnKS (Bocquet, 2016), we neglect a treatment of

these techniques in this initial study of the SIEnKS, though this will be treated in a future work.

2 Notations

Matrices are denoted with upper-case bold and vectors with lower-case bold and italics. The standard Euclidean vector norm is

denoted ‖ v ‖:=
√
v>v. For a symmetric, positive-definite matrix A ∈ RN×N , we denote the vector norm with respect to A100

as

‖ v ‖A:=
√
v>A−1v. (1)

For a generic matrix A ∈ RN×M with full column rank M , we denote the pseudo-inverse

A† :=
(
A>A

)−1
A>. (2)

When A has full column rank as above, we define the vector "norm" with respect to G = AA> as105

‖ v ‖G:=
√

(A†v)> (A†v). (3)

Note that in the case that G does not have full column rank, i.e., N >M , this is not a true norm on RN as it is degenerate in

the null space of A†. This instead represents a lift of a non-degenerate norm in the column span of A to RN . In the case that

v is in the column span of A, we can equivalently write

v = Aw, (4a)110

‖ v ‖G=‖w ‖, (4b)

for a vector of weights w ∈RM .

Let x denote a random vector of physics-based model states. We assume that an initial, prior density on the model state

p(x0) is given, with a hidden Markov model of the form

xk =Mk (xk−1) , (5a)115

yk =Hk (xk) + εk, (5b)

determining the distribution of future states, with the dependence on the time tk denoted by the subscript k. For simplicity,

we assume that ∆t := tk − tk−1 is fixed for all k, though this is not a required restriction in any of the following arguments.

The dimensions of the above system are denoted: (i) Nx the model state dimension xk ∈ RNx ; (ii) Ny the observation vector

dimension yk ∈ RNy ; and (iii) Ne the ensemble-size, where an ensemble matrix is given as Ek ∈ RNx×Ne . Model state and120
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observation variables are related via the (possibly) nonlinear observation operator Hk : RNx 7→ RNy . Observation noise εk is

assumed to be an unbiased, white sequence such that

E
{
εkε
>
l

}
= δk,lRk, (6)

where E is the expectation, Rk ∈ RNy×Ny is the observation error covariance matrix at time tk and δk,l denotes the Kronecker

delta function on the indices k and l. The error covariance matrix Rk can be assumed invertible without losing generality. To125

avoid pathologies, we assume that the observation error covariance matrix is uniformly bounded in time.

The above configuration refers to a perfect model scenario in which the transition probability for dx⊂ RNx is written

P (xk ∈ dx|xk−1) = δMk(xk−1)(dx), (7)

with δv referring to the Dirac measure at v ∈ RNx . Similarly, we say that the transition "density" is proportional as

p(xk|xk−1)∝ δ{xk −Mk (xk−1)} , (8)130

where δ represents the Dirac distribution. The Dirac measure is singular with respect to Lebesgue measure, so this is simply a

convenient abuse of notation that can be made rigorous with the generalized function theory of distributions (Taylor, 1996)[see

section 3.4]. The perfect model assumption is utilized throughout this work to frame the studied assimilation schemes in a

unified manner. Extending the single-iteration formalism to the case of model errors will be studied in a future work.

For a time series of model or observation states, with l > k, we define the notations135

xl:k := {xl,xl−1, · · · ,xk} , (9a)

yl:k := {yl,yl−1, · · · ,yk} . (9b)

To distinguish between the various conditional probabilities under consideration, we make the following definitions. Let l > k,

then the forecast density is denoted

p(xl|xl−1:1,yl−1:1), (10)140

the filter density is denoted

p(xl|yl:1) (11)

and a smoother density for xk given observations yl:1 is denoted

p(xk|yl:1). (12)

In the above, the filter and smoother densities are marginals of the joint posterior density145

p(xl:1|yl:1). (13)
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Figure 1. Three cycles of a shift S = 2, lag L= 5 smoother, cycle number is increasing top to bottom. Time indices on the left-hand margin

indicate the current time for the associated cycle of the algorithm. New observations entering the current DAW are shaded black. The initial

DAW ranges from {tL−6, · · · , tL−2}. In the next cycle, this is shifted to {tL−4, · · · , tL}, and thereafter is shifted to {tL−2, · · · , tL+2}. States

at the “zero” time indices: tL−7 in the first cycle, tL−5 in the second cycle, and tL−3 in the third cycle, are estimated in addition to states in

the DAW to connect the cycles in sequential DAWs.

The Markov hypothesis implies that the forecast density can furthermore be written as,

p(xk|xk−1:1,yk−1:1) = p(xk|xk−1). (14)

For a fixed-lag smoother, we define a shift of length S ≥ 1 analysis times and a lag of length L≥ S analysis times, where

time tL denotes the present time. We use an algorithmically stationary DAW throughout the work, referring to the time indices150

{t1, · · · , tL}. Smoother schemes estimate the joint posterior density p(xL:1|yL:1) or one of its marginals in a DA cycle; after

each estimate is produced, the DAW is subsequently shifted in time by S×∆t, and all states are re-indexed by tk := tk+S

to begin the next DA cycle. For a lag of L and a shift of S, the observation vectors at times {tL−S+1, · · · , tL} correspond to

observations newly entering the DAW at time tL. When S = L, the DAWs are disconnected and adjacent in time, whereas for

S < L there is an overlap between the estimated states in sequential DAWs. Figure 1 provides a schematic of how the DAW is155

shifted for a lag of L= 5 and shift S = 2. Following the convention in DA that there is no observation at time zero, in addition

to the DAW, {t1, · · · , tL}, states at time t0 are estimated or utilized to connect estimates between adjacent / overlapping DAWs.

The ensemble matrix Ei
k ∈ RNx×Ne is given a label i denoting the conditional density from which the ensemble is drawn.

The ensemble Efore
k is assumed to have columns sampled independent and identically distributed (iid) according to the forecast

density, Efilt
k is assumed to have columns iid according to the filter density and Esmth

k|L is assumed to have columns iid according160

to a smoother density for the state at time tk given observations up to time tL. Multiple data assimilation schemes will also

utilize a balancing ensemble Ebal
k and an MDA ensemble Emda

k to be defined in Section 4.3; time indices and labels may be

suppressed when the meaning is still clear in context. The forecast model is given by Ei
k+1 =Mk+1

(
Ej
k

)
, where the type

of ensemble input and output i, j ∈ {fore,filt,smth,bal,mda} (forecast / filter / smoother / balancing / MDA) is specified
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according to the estimation scheme. We define the composition of the forecast model Ei
l =Ml ◦ · · · ◦Mk =Ml:k

(
Ej
k−1

)
.165

Let 1 denote the vector with all entries equal to one, such that the ensemble-based, empirical mean, the ensemble perturbation

matrix and the ensemble-based, empirical covariance are each defined as follows

x̂i
k := Ei

k1/Ne, (15a)

Xi
k := Ei

k − x̂i
k1
>

= Ei
k

(
INe
−11>/Ne

)
, (15b)170

Pi
k := Xi

k

(
Xi
k

)>
/(Ne− 1) . (15c)

We define the background mean and covariance as

xi
k := E

{
xi
k

}
, (16a)

Bi
k := E

{[
xi
k −xi

k

][
xi
k −xi

k

]>}
, (16b)

to distinguish from the ensemble-based mean x̂i
i and covariance Pi

k.175

In the case where: (i)Mk := Mk andHk := Hk are both linear transformations; (ii) the observation likelihood is given as

p(yk|xk) :=N(yk −Hkxk|0,Rk); (17)

and (iii) the first prior is given as

x0 ∼N(x0,B0); (18)

we say that the DA configuration is of a perfect, linear-Gaussian model.180

3 Deriving the SIEnKS

The single-iteration ensemble Kalman smoother is an outer-loop optimization of the filter, forecast and re-analysis steps of

other fixed-lag smoothers designed for prediction cycles with weakly nonlinear forecast error dynamics. This framework is not

restricted to any particular filter analysis; the ETKF analysis (Hunt et al., 2007) is utilized in the following for its operational

stability and efficiency, and in order to emphasize the commonality and differences between other well-known smoothing185

schemes. Other types of filter analysis, such as the deterministic EnKF (DEnKF) of Sakov and Oke (2008a), are, furthermore,

compatible with the single-iteration ensemble Kalman smoother formalism presented in this work and may be considered in

future studies.

3.1 The ETKF

The filter problem can be expressed recursively in the Bayesian MAP formalism with an algorithmically stationary DAW as190

follows. Suppose that there is a known filter density p(x0|y0) from a previous DA cycle. Using the Markov hypothesis and the
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independence of observation errors, we write the filter density up to proportionality via Bayes’ law

p(x1|y1:0)∝ p(y1|x1,y0)p(x1,y0) (19a)

∝ p(y1|x1)︸ ︷︷ ︸
(i)

∫
p(x1|x0)p(x0|y0)dx0

︸ ︷︷ ︸
(ii)

(19b)

as the product of the (i) likelihood of the observation given the forecast; and (ii) the forecast-prior. The forecast-prior (ii) is195

generated by the model propagation of the last filter density p(x0|y0) with the transition kernel p(x1|x0), marginalizing out

x0. With a first prior density given, the above recursion inductively defines the forecast and filter densities, up to proportionality,

at all times.

In the perfect, linear-Gaussian model, the forecast-prior and filter densities,
∫
p(x1|x0)p(x0|y0)dx0 and p(x1|y1), (20)200

are Gaussian. The Kalman filter equations recursively compute the mean xfore
1 /xfilt

1 and covariance Bfore
1 /Bfilt

1 of the random

model state x1, parameterizing its distribution (Jazwinski, 1970). In this case, the filter problem can also be written in terms of

the Bayesian MAP cost function

J (x1) =
1
2
‖ x1−xfore

1 ‖2Bfore
1

+
1
2
‖ y1−H1x1 ‖2R1

. (21)

To render the above cost function into the right-transform analysis, define the matrix factor205

Bfore
1 := Σfore

1

(
Σfore

1

)>
, (22)

where the choice of Σfore
1 can be arbitrary, but is typically given in terms of a singular value decomposition (SVD) (Sakov

and Oke, 2008b). Instead of optimizing the cost function in Eq. (21) over the state vector x1, the optimization is equivalently

written in terms of weights w where

x1 := xfore
1 + Σfore

1 w; (23)210

thus re-writing Eq. (21) in terms of the weight vector w, we obtain

J (w) =
1
2
‖w ‖2 +

1
2
‖ y1−H1x

fore
1 −H1Σfore

1 w ‖2R1
. (24)

Further, for the sake of compactness, define

y1 := H1x
fore
1 , (25a)

δ1 := R−
1
2

1 (y1−y1) , (25b)215

Γ1 := R−
1
2

1 H1Σfore
1 . (25c)
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The vector δ1 is the innovation vector, weighted inverse proportionally to the observation uncertainty. The matrix Γ1, in one

dimension with H1 := 1, is equal to the standard deviation of the model forecast relative to the standard deviation of the

observation error.

The cost function Eq. (24) is hence further reduced to220

J (w) =
1
2
‖w ‖2 +

1
2
‖ δ1−Γ1w ‖2 . (26)

This cost function is quadratic in w and can be globally minimized where∇wJ = 0. Notice,

∇wJ =w−Γ>1
(
δ1−Γ1w

)
; (27)

setting the gradient equal to zero for w we find

0 =w−Γ>1
(
δ1−Γ1w

)
(28a)225

⇔Γ>1 δ1 =
(
INx + Γ1Γ>1

)
w (28b)

⇔ w =
(
INx

+ Γ1Γ>1
)−1

Γ>1 δ1. (28c)

From Eq. (27) notice that

∇wJ |w=0 =−Γ>1 δ1. (29)

Similarly, taking the gradient of Eq. (27), we find that the Hessian, HJ :=∇2
wJ , is equal to230

HJ =
(
INx

+ Γ1Γ>1
)
. (30)

Therefore, with w = 0 corresponding to xfore
1 as the initialization of the assimilation algorithm, the MAP weights w are

determined by a single iteration of Newton’s descent method (Nocedal and Wright, 2006) – for iterate i this has the general

form of

wi+1 :=wi−H−1
J ∇J |w=wi . (31)235

The MAP weights define the maximum-a-posteriori model state,

xfilt
1 := xfore

1 + Σfore
1 w; (32)

under the perfect, linear-Gaussian model assumption, J can then be re-written in terms of the filter MAP estimate as

J (x1) =
1
2
‖ x1−xfilt

1 ‖2Bfilt
1

(33a)

⇔ J (w) =
1
2
‖ xfore

1 −Σfore
1 w−xfilt

1 ‖2Bfilt
1
. (33b)240
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Defining the matrix decomposition Bfilt
1 = Σfilt

1

(
Σfilt

1

)>
and the change of variables

Ω1 :=
(
Σfilt

1

)−1

Σfore
1 , (34a)

γ1 :=
(
Σfilt

1

)−1 (
xfore

1 −xfilt
1

)
, (34b)

equation (33b) becomes

J (w) =
1
2
‖ γ1−Ω1w ‖2 . (35)245

Compute the Hessian HJ =∇2
wJ from each of Eqs. (26) and (35); by the equivalence we find

(
INx + Γ1Γ>1

)
= Ω>1 Ω1 (36a)

⇔
(
INx + Γ1Γ>1

)
=
(
Σfore

1

)>(
Σfilt

1

)−>(
Σfilt

1

)−1

Σfore
1 (36b)

⇔ Bfilt
1 = Σfore

1

(
INx + Γ1Γ>1

)−1(
Σfore

1

)>
. (36c)

If we define the covariance transform250

T := H−
1
2
J , (37)

this derivation above describes the square root Kalman filter recursion (Tippett et al., 2003), when written for the exact mean

and covariance, recursively computed in the perfect, linear-Gaussian model. The covariance update

Bfilt
1 =

(
Σfore

1 T
)(

Σfore
1 T

)>
(38)

is written entirely in terms of the matrix factor Σi
k and the covariance transform T, such that the background covariance need255

not be explicitly computed in order to produce recursive estimates. Likewise, the Kalman gain update to the mean state is

reduced to Eq. (32), in terms of the weights and the matrix factor. This reduction is at the core of the efficiency of the ETKF,

in which one typically makes a reduced-rank approximation to the background covariances Bi
1.

Using the ensemble-based, empirical estimates for the background, as in Eq. (15), a modification of the above argument

must be used to solve the cost function J in the ensemble span, without direct inversion of Pfore
1 when this is reduced rank.260

We replace the background covariance norm-square with one defined by the ensemble-based covariance,

‖ v ‖2Pi
1

= (Ne− 1)
[(

Xi
1

)†
v
]> [(

Xi
1

)†
v
]
. (39)

Define the ensemble-based estimates

x1 := x̂fore
1 + Xfore

1 w, (40a)

ŷ1 := H1x̂
fore
1 , (40b)265

δ̂1 := R−
1
2

1 (y1− ŷ1) , (40c)

S1 := R−
1
2

1 H1Xfore
1 , (40d)

10

https://doi.org/10.5194/gmd-2021-306
Preprint. Discussion started: 6 October 2021
c© Author(s) 2021. CC BY 4.0 License.



where w is now a weight vector in RNe . The ensemble-based cost function is then written as

J̃ (w) =
1
2
‖ x̂fore

1 −Xfore
1 w− x̂fore

1 ‖2Pfore
1

+
1
2
‖ y1−H1x̂

fore
1 −H1Xfore

1 w ‖2R1
(41a)

=
1
2

(Ne− 1) ‖w ‖2 +
1
2
‖ δ̂1−S1w ‖2 . (41b)270

Define ŵ to be the minimizer of the cost function in Eq. (41). Hunt et al. (2007) demonstrate that, up to a gauge transformation,

ŵ yields the minimizer of the state-space cost function, Eq. (21), when the estimate is restricted to the ensemble span. Equation

(41) is quadratic in w and can be solved similarly to Eq. (26) to render

ŵ := 0− H̃−1

J̃ ∇J̃ |w=0, (42a)

T := H̃−
1
2

J̃ , (42b)275

Pfilt
1 =

(
Xfore

1 T
)(

Xfore
1 T

)>
/(Ne− 1). (42c)

The ensemble transform Kalman filter (ETKF) equations are then given by

Efilt
1 = x̂fore

1 1>+ Xfore
1

(
ŵ1>+

√
Ne− 1TU

)
(43)

where U ∈ RNe×Ne can be any mean-preserving, orthogonal transformation, i.e., U1 = 1. The simple choice of U := INe
is

sufficient, but it has been demonstrated that choosing a random, mean-preserving orthogonal transformation at each analysis280

as above can improve the stability of the ETKF, reducing the collapse of the variances to a few modes in the empirical co-

variance estimate (Sakov and Oke, 2008b). We remark that Eq. (43) can be written equivalently as a single right ensemble

transformation,

Efilt
1 = Efore

1 Ψ1, (44a)

Ψ1 := 11>/Ne +
(
INe
−11>/Ne

)(
ŵ1>+

√
Ne− 1TU

)
. (44b)285

The compact update notation in Eq. (44) is used to simplify analysis.

If the observation operator H1 is actually nonlinear, then the ETKF typically uses the following approximation to the

quadratic cost function,

Y1 :=H1

(
Efore

1

)
, (45a)

ŷ1 := Y11/Ne, (45b)290

S1 := R−
1
2

1 Y1− ŷ11
>. (45c)

Substituting the definitions in Eq. (45) for the definitions in Eq. (40) gives the standard nonlinear analysis in the ETKF. Note that

this framework extends to a fully iterative analysis of nonlinear observation operators, discussed in Section 4.1. Multiplicative

covariance inflation is often used in the ETKF to handle the systematic underestimation of the forecast and filter covariance

due to the sample error implied by a finite-size ensemble and nonlinearity of the forecast modelM1 (Raanes et al., 2019a).295
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The standard ETKF cycle is summarized in Algorithm 5. This algorithm is broken into the sub-routines in Algorithms 1 -

4 which are re-used throughout our analysis, which emphasize the commonality and the differences of the studied smoother

schemes. The filter analysis described above can be extended in several different ways when producing a smoother analysis

on a DAW including lagged, past states, depending in part whether it is formulated as a marginal or a joint smoother (Cosme

et al., 2012). The way in which this analysis is extended, utilizing a retrospective re-analysis or a 4D-MAP cost function,300

differentiates the EnKS from the IEnKS, and highlights the ways in which the SIEnKS differs from these other schemes.

3.2 The fixed-lag EnKS

The (right-transform) fixed-lag EnKS extends the filter analysis in the ETKF over the smoothing DAW by sequentially re-

analyzing past states with future observations. This analysis is performed retrospectively in the sense that the filter cycle of

the ETKF is left unchanged, while an additional inner-loop of the DA cycle performs an update on the estimated lagged state305

ensembles within the DAW, stored in memory. Assume S = 1≤ L, the EnKS estimates the joint posterior density p(xL:1|yL:1)

recursively, given the joint posterior estimate over the last DAW p(xL−1:0|yL−1:0). We begin by considering the filter problem

as in Eq. (19).

Given p(xL−1:0,yL−1:0), we write the filter density up to proportionality

p(xL|yL:0)∝ p(yL|xL,yL−1:0)p(xL,yL−1:0) (46a)310

∝ p(yL|xL)︸ ︷︷ ︸
(i)

∫
p(xL|xL−1)p(xL−1:0|yL−1:0)dxL−1:0

︸ ︷︷ ︸
(ii)

, (46b)

as the product of (i) the likelihood of the observation yL given xL; and (ii) the forecast for xL using the transition kernel

on the last joint posterior estimate, marginalizing out xL−1:0. Recalling that p(xL|yL:1)∝ p(xL|yL:0), this provides a means

to sample the filter marginal of the desired joint posterior. The usual ETKF filter analysis is performed to sample the filter

distribution at time tL, yet, to complete the smoothing cycle, the scheme must sample the joint posterior density p(xL:1,yL:1).315

Consider that the marginal smoother density is proportional to

p(xL−1|yL:0)∝ p(yL|xL−1,yL−1:0)p(xL−1,yL−1:0) (47a)

∝ p(yL|xL−1)︸ ︷︷ ︸
(i)

p(xL−1|yL−1:0)︸ ︷︷ ︸
(ii)

, (47b)

where: (i) is the likelihood of the observation yL given the past state xL−1; (ii) is the marginal density for xL−1 from the last

joint posterior.320

Assume now the perfect, linear-Gaussian model – the corresponding Bayesian MAP cost function is given as

J (xL−1) =
1
2
‖ xL−1−xsmth

L−1|L−1 ‖2Bsmth
L−1|L−1

+
1
2
‖ yL−HLMLxL−1 ‖2RL

(48)
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where xsmth
L−1|L−1 and Bsmth

L−1|L−1 are the mean and covariance of the marginal smoother density p(xL−1|yL−1:0). Take the

matrix decomposition

Bsmth
L−1|L−1 = Σsmth

L−1|L−1

(
Σsmth
L−1|L−1

)>
, (49)325

and write xL−1 = xsmth
L−1|L−1 + Σsmth

L−1|L−1w, rendering the cost function as

J (w) =
1
2
‖w ‖2 +

1
2
‖ yL−HLML(xsmth

L−1|L−1 + Σsmth
L−1|L−1w) ‖2RL

(50a)

=
1
2
‖w ‖2 +

1
2
‖ yL−HLx

fore
L −HLΣfore

L w ‖2RL
(50b)

=
1
2
‖w ‖2 +

1
2
‖ δL−ΓLw ‖2 . (50c)

Let w now denote the minimizer of Eq. (50). It is important to recognize that for330

xL := ML

(
xsmth
L−1|L−1 + Σsmth

L−1|L−1w
)

(51)

= xfore
L + Σfore

L w, (52)

such that the optimal weight vector for the smoothing problem w is also the optimal weight vector for the filter problem.

The ensemble-based approximation,

xL−1 = x̂smth
L−1|L−1 + Xsmth

L−1|L−1w, (53a)335

J̃ (w) =
1
2

(Ne− 1) ‖w ‖2 +
1
2
‖ δ̂L−SLw ‖2, (53b)

to the exact smoother cost function in Eq. (50) yields the retrospective analysis of the EnKS as

ŵ := 0− H̃−1

J̃ ∇J̃ |w=0, (54a)

T := H̃−
1
2

J̃ , (54b)

Esmth
L−1|L = x̂smth

L−1|L−11
>+ Xsmth

L−1|L−1

(
ŵ1>+

√
Ne− 1TU

)
,340

≡Esmth
L−1|LΨL. (54c)

The above equations can be generalized for arbitrary indices k|L over the DAW, providing the complete description of the

inner-loop between each filter cycle of the EnKS. After each new observation is assimilated with the ETKF analysis step, a

smoother inner-loop makes a backward pass over the DAW applying the transform and the weights of the ETKF filter update

to each past ensemble state stored in memory. This analysis is easily generalized to the case where there is a shift of the DAW345

with S > 1, though the EnKS does not process observations asynchronously by default. This means that the ETKF filter steps,

and the subsequent retrospective re-analysis, must be performed in sequence over the observations, ordered in time, rather than

making a global analysis over yL−S+1:L. A standard form of the EnKS is summarized in Algorithm 6, utilizing the sub-routines

in Algorithms 1 - 4.
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A schematic of the EnKS cycle for a lag of L= 4 and a shift of S = 1 is pictured in Fig. 2. Time moves forward from left350

to right in the horizontal axis with a step size of ∆t. At each analysis time, the ensemble forecast from the last filter density

is combined with the observation to produce the ensemble transform update. This transform is then utilized to produce the

posterior estimate for all lagged ensemble states, conditioned on the new observation. The information in the posterior estimate

thus flows in reverse time to the lagged states stored in memory, but the information flow is unidirectional in this scheme. It

is understood then that re-initializing the improved posterior estimate for the lagged states in the dynamical model does not355

improve the filter estimate in the perfect, linear-Gaussian configuration. Indeed, define the product of the ensemble transforms

Ψk:l := Ψk · · ·Ψl. (55)

Then, for arbitrary 1≤ k ≤ l ≤ L,

Ml:kEsmth
k−1|k−1Ψk:l = Ml:kEsmth

k−1|l (56a)

= Efore
l|k−1Ψk:l (56b)360

= Esmth
l|l . (56c)

This demonstrates that conditioning on the information from the observation is covariant with the dynamics. Raanes (2016)

demonstrates the equivalence of the EnKS and the Rauch-Tung-Striebel (RTS) smoother where this property of perfect, linear-

Gaussian models is well understood. In the RTS formulation of the retrospective re-analysis, the conditional estimate reduces

to the map of the current filter estimate under the reverse time model M−1
k (Jazwinski, 1970, see example 7.8, chapter 7). Note,365

however, that both of the EnKS and ensemble RTS smoothers produce their retrospective re-analyses via a recursive ensemble

transform, without the need to make backward model simulations.

The covariance of conditioning on observations and the model dynamics does not hold, however, either in the case of non-

linear dynamics or model error. Re-initializing the DA cycle in a perfect, nonlinear model with the conditional ensemble

estimate Esmth
0|L can dramatically improve the accuracy of the subsequent forecast and filter statistics. Particularly, this ex-370

ploits the miss-match in perfect, nonlinear dynamics betweenML:1

(
Esmth

0|L

)
6= Efilt

L . Chaotic dynamics generates additional

information about the initial value problem in the sense that initial conditions nearby to each other are distinguished by their

subsequent evolution and divergence due to dynamical instability. Re-initializing the model forecast with the smoothed prior

estimate brings new information into the forecast for states in the next DAW. This improvement in the accuracy of the ensemble

statistics has been exploited to a great extent by utilizing the 4D-MAP ensemble cost function (Hunt et al., 2004). Particularly,375

the filter MAP cost function can be extended over multiple observations simultaneously, and in terms of lagged states directly.

This alternative approach to extending the filter MAP analysis to the smoother MAP analysis is discussed in the following.

3.3 The Gauss-Newton, fixed-lag IEnKS

The following is an up-to-date reformulation of the Gauss-Newton IEnKS of Bocquet and Sakov (2013, 2014), and its deriva-

tions. Instead of considering the marginal smoother problem, now consider the joint posterior density directly and for a general380
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Figure 2. Lag= 4, shift= 1 EnKS. Observations are assimilated sequentially via the filter cost function and a retrospective re-analysis is

applied to all ensemble states within the lag window stored in memory. Adapted from Asch et al. (2016).

shift S. For a general shift, the last posterior density is written as p(xL−S:1−S |yL−S:1−S). Using the independence of obser-

vation errors and the Markov assumption recursively,

p(xL:1|yL:1−S)∝
∫

dx0

[
L∏

k=L−S+1

p(yk|xk)p(xk|xk−1)

][
L−S∏

k=1

p(xk|xk−1)

]
p(x0|yL−S:1−S) . (57)

Additionally, using the perfect model assumption,

p(xk|xk−1) = δ{xk −Mk (xk−1)} (58)385

for every k. Therefore,

p(xL:1|yL:1−S)∝
∫

dx0 p(x0|yL−S:1−S)︸ ︷︷ ︸
(i)

[
L∏

k=L−S+1

p(yk|xk)

]

︸ ︷︷ ︸
(ii)

[
L∏

k=1

δ{xk −Mk (xk−1)}
]

︸ ︷︷ ︸
(iii)

(59)

where term (i) in Eq. (59) represents the marginal smoother density for x0|L−S over the last DAW; term (ii) represents the

joint likelihood of the observations given the model state; and term (iii) represents the free forecast of the smoother estimate

for x0|L−S . Noting that p(xL:1|yL:1)∝ p(xL:1|yL:1−S), this provides a recursive form to sample the joint posterior density.390
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Under the perfect, linear-Gaussian model assumption, the above derivation leads to the following exact 4D-MAP cost func-

tion

J (x0) :=
1
2
‖ x0−xsmth

0|L−S ‖2Bsmth
0|L−S

+
1
2

L∑

k=L−S+1

‖ yk −HkMk:1x0 ‖2Rk
. (60)

The ensemble-based approximation, using notations as in Eq. (40), yields

x0 := x̂smth
0|L−S + Xsmth

0|L−Sw, (61a)395

J̃ (w) :=
1
2

(Ne− 1) ‖w ‖2 +
1
2

L∑

k=L−S+1

‖ δ̂k −Skw ‖2 . (61b)

Notice that Eq. (61b) is quadratic inw; therefore, for the perfect, linear-Gaussian model, one can perform a global analysis at

once over all new observations in the DAW.

The gradient and the Hessian of the ensemble-based 4D-MAP cost function are given as

∇J̃ := (Ne− 1)w−
L∑

k=L−S+1

S>k
(
δ̂k −Skwww

)
, (62a)400

H̃J̃ := (Ne− 1)INe +
L∑

k=L−S+1

S>k Sk, (62b)

so that evaluating at w = 0, the minimizer ŵ is again given by a single iteration of Newton’s descent

ŵ := 0− H̃J̃∇J̃ |w=0. (63)

Define the covariance transform again as T := H̃−
1
2

J̃ . We denote the right ensemble transform corresponding to the 4D-MAP

analysis Ψ4D
L−S+1:L to distinguish from the product of the sequential filter transforms ΨL−S+1:L. The global analyses are405

defined such that

Ψ4D
L−S+1:L :=

{
11>/Ne +

(
INe
−11>/Ne

)(
ŵ1>+

√
Ne− 1TU

)}
, (64a)

Esmth
0|L = Esmth

0|L−SΨ4D
L−S+1:L, (64b)

where U is any mean-preserving, orthogonal matrix.

In the perfect, linear-Gaussian model, this formulation of the IEnKS is actually equivalent to the 4D-EnKF of Hunt et al.410

(2004); Fertig et al. (2007); and Harlim and Hunt (2007). The above scheme produces a global analysis of all observations

within the DAW, even asynchronously from the standard filter cycle (Sakov et al., 2010). Particularly, one can generate a free

ensemble forecast with initial conditions drawn iid as p(x0|yL−S:1−S); subsequently, all data available within the DAW is

used to estimate the update to the initial ensemble. The perfect model assumption means that the updated initial ensemble

Esmth
0|L can then be used to temporally interpolate the joint posterior estimate over the entire DAW from the marginal sample,415

i.e., for any 0< k ≤ L

Mk:1Esmth
0|L−SΨ4D

L−S+1:L ≡Esmth
k|L . (65)
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WhenMk and Hk are nonlinear, the IEnKS formulation is extended with additional iterations of Newton’s descent as in

Eq. (31) in order to iteratively optimize the update weights. Specifically, the gradient is given by

∇J̃ := (Ne− 1)w−
L∑

k=L−S+1

Ỹ>k R−1
k

[
yk −Hk ◦Mk:1

(
x̂smth

0|L−S + Xsmth
0|L−Sw

)]
, (66)420

where Ỹk represents a directional derivative of the observation and state models with respect to the ensemble perturbations at

the ensemble mean,

Ỹk :=∇|x̂smth
0|L−S

[Hk ◦Mk:1]Xsmth
0|L−S ; (67)

this describes the sensitivities of the cost function with respect to the ensemble perturbations, mapped to the observation space.

When the dynamics are weakly nonlinear, the ensemble perturbations of the EnKS and IEnKS are known to closely align with425

the span of the backward Lyapunov vectors of the nonlinear model along the true state trajectory (Bocquet and Carrassi, 2017);

under these conditions, Eq. (67) can be interpreted as a directional derivative with respect to the forecast error growth along

the dynamical instabilities of the nonlinear model, see Carrassi et al. (2021) and references therein.

In order to avoid an explicit computation of the tangent-linear model and the adjoint as in 4D-VAR, Sakov et al. (2012)

and Bocquet and Sakov (2012) proposed two formulations to approximate the tangent-linear propagation of the ensemble430

perturbations. The “bundle” scheme makes an explicit approximation of finite differences in the observation space where, for

an arbitrary ensemble, they define the approximate linearization

Yk :=
1
ε
Hk ◦Mk:1

(
x01>+ εX0

)(
INe −11>/Ne

)
, (68)

for a small constant ε. Alternatively the “transform” version provides a different approximation of the variational analysis,

using the covariance transform T and its inverse as a pre- / post-conditioning of the perturbations used in the sensitivies435

approximation. The transform variant of the IEnKS is in some cases more numerically efficient than the bundle version,

requiring fewer ensemble simulations, and it is explicitly related to the ETKF / EnKS / 4D-ETKF formalism presented thus

far. For these reasons, the transform approximation is used as a basis of comparison with the other schemes in this work.

For the IEnKS transform variant, the following ensemble-based approximations are re-defined in each Newton iteration

Yk :=Hk (Ek) , (69a)440

ŷk := Yk1/Ne, (69b)

Sk := R−
1
2

k

(
Yk − ŷk1>

)
T−1, (69c)

δ̂ := R−
1
2

k (yk − ŷk) , (69d)

where the first covariance transform is defined as T := INe
, the gradient and Hessian are computed as in Eq. (62) from the

above and where the covariance transform is re-defined in terms of the Hessian, T := H̃−
1
2

J̃ , at the end of each iteration. With445

these definitions, the first iteration of the IEnKS transform variant corresponds to the solution of the nonlinear 4D-ETKF, but
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subsequent iterates are initialized by pre-conditioning the initial ensemble perturbations via the update T and post-conditioning

the sensitivities by the inverse transform T−1.

A revised and simplified form of the Gauss-Newton IEnKS, transform variant is presented for the first time in Algorithm 7.

Note, while Algorithm 7 does not explicitly reference the sub-routine in Algorithm 1, many of the same steps are used in the450

inner-loop of the IEnKS when computing the sensitivities. It is important to notice that, for S > 1, the IEnKS only requires a

single computation of the square root inverse of the Hessian of the 4D-MAP cost function, per iteration of the optimization, to

process all observations in the DAW. On the other hand, the EnKS processes these observations sequentially, requiring S total

square root inverse calculations of the Hessian, corresponding to each of the sequential filter cost functions.

The IEnKS is computationally constrained by the fact that each iteration of the descent requires L total ensemble simulations455

in the dynamical modelMk. One can minimize this expense by using a single iteration of the IEnKS equations, which is what

is denoted the “linearized” IEnKS (Lin-IEnKS) (Bocquet and Sakov, 2014). When the overall DA cycle is nonlinear, but only

weakly nonlinear, this single iteration of the IEnKS algorithm can produce a dramatic improvement in the forecast accuracy

versus the forecast / filter cycle of the EnKS. However, the overall nonlinearity of the DA cycle may be strongly influenced by

other factors than the model forecastMk itself. As as simple example, we may consider the case in whichHk is nonlinear yet460

Mk ≡Mk for all k. In this setting, it may be more numerically efficient to iterate upon the filter cost function rather than the

full 4D-MAP cost function, which uses simulations of the dynamical model. Combining: (i) the filter step and retrospective

re-analysis of the EnKS; and (ii) the single iteration of the ensemble simulation over the DAW as in the 4D-ETKF / Lin-IEnKS;

we obtain an estimation scheme that sequentially solves nonlinear filter cost functions in the current DAW, while making an

improved forecast in the next by transmitting the retrospective analyses through the dynamics via the updated initial ensemble.465

This single-iteration ensemble transform Kalman smoother (SIEnKS) is formalized in the following section.

3.4 The fixed-lag SIEnKS

3.4.1 Algorithm

Recall that, from Eq. (56), conditioning the ensemble with the right transform Ψk is covariant with the dynamcis. In a perfect,

linear-Gaussian model, we can therefore estimate the joint posterior over the DAW via the model propagation of the marginal470

for xsmth
0|L as in the IEnKS, but using the EnKS retrospective re-analysis to generate the initial condition. For arbitrary 1≤ S ≤

L, define each of the right transforms {Ψk}Lk=L−S+1 as in the sequential filter analysis of the ETKF with Eq. (44). Rather

than storing the ensemble matrix in memory for each time tk in the DAW, we instead store Esmth
0|L−S and Esmth

L−S|L−S to begin

a DA cycle. Observations within the DAW are sequentially assimilated via the filter cycle initialized with Esmth
L−S|L−S , and a

marginal smoother analysis is performed on Esmth
0|L−S sequentially with these transforms. The joint posterior is interpolated over475

the DAW for any 1≤ k ≤ L via the model dynamics as

Esmth
0|L = Esmth

0|L−SΨL−S+1:L, (70a)

Esmth
k|L :=Mk:1

(
Esmth

0|L

)
. (70b)
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Figure 3. Lag= 4, shift= 2 SIEnKS diagram. An initial condition from the last smoothing cycle initializes a forecast simulation over the

current DAW of L= 4 states. New observations entering the DAW are assimilated sequentially via the filter cost function. After each filter

analysis, a retrospective re-analysis is applied to the initial ensemble, and this re-analyzed initial condition is evolved via the model S analysis

times forward to begin the next cycle.

Notice that for S = 1,

ΨL−S+1:L ≡Ψ4D
L−S+1:L (71)480

so that in the perfect, linear-Gaussian model with S = 1 the SIEnKS and the Lin-IEnKS coincide. The SIEnKS and the Lin-

IEnKS have very different treatments of nonlinearity in the DA cycle, but even in the perfect, linear-Gaussian model, a shift

S > 1 distinguishes these algorithms. A schematic of the SIEnKS cycle for a lag of L= 4 and a shift of S = 2 is pictured in

Fig. 3. This demonstrates how the sequential analysis of the filter cost function and sequential, retrospective re-analysis for

each incoming observation differs from the global analysis of the (Lin-)IEnKS. A generic form of the SIEnKS is summarized in485

Algorithm 8, utilizing the sub-routines in Algorithms 1 - 4. Note that the version presented in Algorithm 8 is used to emphasize

the commonality with the EnKS filter cycle. However, an equivalent outer-loop can be implemented to initialize each cycle with

Esmth
0|L−S alone, similar to the IEnKS. Such an outer-loop is utilized when we derive the SIEnKS MDA scheme in Algorithm 12

from the IEnKS MDA scheme in Algorithm 13.
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3.4.2 Comparison with other schemes490

Other well-known DA schemes combining a retrospective re-analysis and re-initialization of the ensemble forecast include the

Running In Place (RIP) smoother of Kalnay and Yang (2010) and the One Step Ahead (OSA) smoother of Desbouvries et al.

(2011). The RIP smoother iterates over the ensemble simulation and filter cost function, both, in order to apply a retrospective

re-analysis to the first prior with a lag and shift of L= S = 1. The RIP smoother is similarly proposed as an outer-loop

optimization of the EnKS in order to spin up the LETKF from a “cold start” of a forecast model and DA cycle (Yang et al.,495

2013). The OSA smoother is also proposed as an outer-loop optimization of the DA cycle, and integrates an EnKF framework,

including for a two-stage, iterative optimization of dynamical forecast model parameters within the DA cycle (Gharamti et al.,

2015; Ait-El-Fquih et al., 2016; Raboudi et al., 2018). The OSA smoother uses a single iteration and a lag and shift of L=

S = 1, making a filter analysis of the incoming observation and a retrospective re-analysis of the prior. However, the OSA

smoother differs from the SIEnKS in using an additional filter analysis while interpolating the joint posterior over the DAW,500

accounting for model error in the simulation of M1

(
Esmth

0|1

)
. Without model error, the second filter analysis in the OSA

smoother simulation is eliminated from the estimation scheme. Therefore, with an ETKF style filter analysis, a single iteration

of the ensemble over the DAW, a perfect model assumption and a lag of L= S = 1, the SIEnKS, RIP and OSA smoothers all

coincide.

The rationale of the SIEnKS is to focus computation on an iterative, ensemble-variational optimization of the nonlinear filter505

cost function in DA cycles for which the forecast error dynamics are weakly nonlinear. The SIEnKS, in particular, generalizes

some of the ideas in these other DA schemes for weakly nonlinear forecast error dynamics, including for the application of:

(i) arbitrary lags L≥ 1 and shifts S ≤ L; (ii) the iterative optimization of the nonlinear filter cost function, due to hyper-

parameters of the estimation scheme; (iii) multiple data assimilation; and (iv) asynchronous observations in the DA cycle. In

order to illustrate the novelty of the SIEnKS, and to motivate its computational cost / prediction accuracy trade off advantages,510

we discuss each of these proposed applications in the following.

4 Applications of single-iteration smoothing

4.1 Nonlinear observation operators

Just as the IEnKS extends the linear 4D-MAP cost function, the filter cost function Eq. (41) can be extended with Newton

iterates in the presence of a nonlinear observation operator. The maximum likelihood ensemble filter (MLEF) of Zupanski515

(2005) and Zupanski et al. (2008) is an estimator designed to process nonlinear observation operators and can be derived in

the common ETKF formalism. Particularly, the algorithm can be granted a bundle and transform variant like the IEnKS (Asch

et al., 2016, see section 6.7.2.1) designed to approximate the directional derivative of the nonlinear observation operator with

respect to the forecast ensemble perturbations at the forecast mean,

Ỹk :=∇|x̂fore
k

[Hk]Xfore
k , (72)520
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used in the nonlinear filter cost function gradient

∇J̃ := (Ne− 1)w− Ỹ>k R−1
k

[
yk −Hk

(
x̂fore
k + Xfore

k w
)]
. (73)

When the forecast error dynamics are weakly nonlinear, the MLEF-style nonlinear filter cost function optimization provides

a direct extension of the SIEnKS framework. Consider the transform as defined in the sub-routine in Algorithm 9; this type of

filter analysis is interchangeable with the usual ensemble transform in Algorithm 1. In this way, the EnKS and the SIEnKS can525

each process nonlinear observation operators with an iterative optimization in the filter cost function alone and subsequently

apply their retrospective analyses as usual. We refer to the EnKS analysis with MELF transform as the maximum likelihood

ensemble smoother (MLES), though we refer to the SIEnKS as usual whether it uses a single iteration or multiple iterations of

the solution to the filter cost function. Note that only the transform step needs to be interchanged in Algorithms 6 and 8, so that

we do not provide additional pseudo-code.530

Consider that for the MLES and the SIEnKS, the number of Hessian square root inverse calculations expands in the number

of iterations used in Algorithm 9 to compute the transform for each of the S observations in the DAW. For each iteration of the

IEnKS, this again requires only a single square root inverse calculation of the 4D-MAP cost function Hessian. However, even

if the forecast error dynamics are weakly nonlinear, optimizing versus the nonlinear observation operator requires L ensemble

simulations per each iteration used to optimize the cost function.535

4.2 Adaptive inflation and the finite-size formalism

Due to the bias of Kalman-like estimators in nonlinear dynamics, covariance inflation, as in Algorithm 4, is widely used

to regularize these schemes. In particular, this can ameliorate the systematic under-estimation of the prediction / posterior

uncertainty due to sample error and bias. Empirically tuning the multiplicative inflation coefficient λ≥ 1 can be effective in

stationary dynamics. However, empirically tuning this parameter can be costly, potentially requiring many model simulations,540

and the tuned value may not be optimal across time scales in which the dynamical system becomes non-stationary. A variety

techniques are used in practice for adaptive covariance estimation, inflation or augmentation, accounting for these deficiencies

of Kalman-like estimators (Tandeo et al., 2020, and references therein).

One alternative to empirically tuning λ is to derive an adaptive multiplicative covariance inflation factor via a hierarchical

Bayesian model by including a prior on the background mean and covariance p
(
xfore

1 ,Bfore
1

)
, as in the finite-size formalism545

of Bocquet (2011), Bocquet and Sakov (2012) and Bocquet et al. (2015). This formalism seeks to marginalize out over the first

two moments of the background, yielding a Gaussian mixture model for the forecast-prior as

p
(
x1|Efore

1

)
=
∫

dxfore
1 dBfore

1 p
(
x1|Efore

1 ,xfore
1 ,Bfore

1

)
p
(
xfore

1 ,Bfore
1 |Efore

1

)
. (74)

Using Jeffreys’ hyperprior for xfore
1 and Bfore

1 , the ensemble-based filter MAP cost function can be derived as proportional to

J̃ (w) :=
1
2
‖ y−H

(
x̂fore

1 + Xfore
1 w

)
‖2R1

+
Ne
2

log
(
εNe

+ ‖w ‖2
)

(75)550

where εNe := 1 + 1
Ne

. Notice that Eq. (75) is non-quadratic inw regardless of whetherH1 is linear or nonlinear, such that one

can iteratively optimize the solution to the nonlinear filter cost function with a Gauss-Newton approximation of the descent.
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When accounting for the nonlinlearity in the ensemble evolution and the sample error due to small ensemble sizes in perfect

models, optimizing the extended cost function in Eq. (75) can be an effective means to regularize the bias of the EnKF. In the

presence of significant model error, one may need to extend the finite-size formalism to the variant developed by Raanes et al.555

(2019a).

Algorithm 10 presents a revised version of the EnKF-N transform calculation of Bocquet et al. (2015); the version presented

here is explicitly based on the IEnKS transform approximation of the gradient of the observation operator. The hyper-prior

for the background mean and covariance is similarly introduced to the IEnKS and optimized over an extended 4D-MAP cost

function. Note that, in the case whenHk ≡Hk is linear, a dual, scalar optimization can be performed for the filter cost function560

with less numerical expense. However, there is no similar reduction to the extended 4D-MAP cost function and, in order to

emphasize the outer-loop differences while iteratively optimizing the inflation hyper-parameter, we focus on the transform

variant analogous to the IEnKS optimization.

Extending the adaptive covariance inflation in the finite-size formalism to either the EnKS or the SIEnKS is simple, requiring

that the ensemble transform calculation is interchanged with Algorithm 10 and that the tuned multiplicative inflation step is565

eliminated. The IEnKS-N transform variant, including adaptive inflation as above, is described in Algorithm 11. Notice that

iteratively optimizing the inflation hyper-parameter comes at the additional expense of square root inverse Hessian calculations

for the EnKS and the SIEnKS, while the IEnKS also requires L additional ensemble simulations for each iteration.

4.3 Multiple data assimilation

When the lag L > 1 is long, temporally interpolating the posterior estimate in the DAW via the nonlinear model solution as570

in Eq. (70) becomes increasingly nonlinear. In chaotic dynamics, the small simulation errors introduced this way eventually

degrade the posterior estimate, and this interpolation becomes unstable for L sufficiently large. Furthermore, for the 4D-

MAP cost function, observations only distantly connected with the initial condition at the beginning of the DAW render the

cost function increasingly nonlinear, with more local minima that may strongly affect the performance of the optimization.

Multiple data assimilation is a commonly used technique based on statistical tempering (Neal, 1996), designed to relax the575

nonlinearity of performing the MAP estimate, by artificially inflating the variances of the observation errors with weights and

assimilating these observations multiple times. Multiple data assimilation is made consistent with the Bayesian posterior in

perfect, linear-Gaussian models by appropriately choosing weights so that, over all times an observation vector is assimilated,

all of its associated weights sum to one (Emerick and Reynolds, 2013). Given Gaussian likelihood functions, this implies that

the sum of the precision matrices over the multiple assimilation steps equals R−1, as with the usual Kalman filter update.580

Multiple data assimilation is integrated into the EnRML for static DAWs in reservoir modelling (Evensen, 2018, and refer-

ences therein). With the fixed-lag, sequential EnKS, there is no reason to perform MDA as the assimilation occurs in a single

pass over each observation with the filter step as in the ETKF. Sequential MDA, with DAWs shifting in time, was first derived

with the IEnKS by Bocquet and Sakov (2014); in order to sample the appropriate density, the IEnKS MDA estimation is broken

over two stages. Firstly, in the “balancing” stage, the IEnKS “fully assimilates” all “partially assimilated observations”, target-585

ing the joint posterior statistics. Secondly, the window of the partially assimilated observations is shifted in time with the MDA
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stage. The SIEnKS is similarly broken over these two stages, using the same weights as the IEnKS above. However, there is

an important difference in the way MDA is formulated for the SIEnKS versus the IEnKS. For the SIEnKS, each observation

in the DAW is sequentially assimilated with the EnKS filter cost function instead of the global analysis in the IEnKS. The

sequential filter analysis, in particular, constrains the posterior interpolation to the observations in the balancing stage, whereas590

the posterior interpolation is performed with a free forecast from the marginal posterior in the IEnKS. Our novel SIEnKS MDA

scheme is derived as follows.

Recall our algorithmically stationary DAW, {t1, · · · , tL}, and suppose at the moment that there is a shift of S = 1 and an

arbitrary lag L. We take the notation that the covariance matrices for the likelihood functions are inflated as

p
(
yβ |x

)
:=N

(
y−H (x) |0,β−1R

)
(76)595

where the observation weights are assumed 0< β ≤ 1. We index the weight for observation yk at the present-time tL as βk|L.

For consistency with the perfect, linear-Gaussian model, we require that

L∑

i=1

βi|L = 1. (77)

This implies that as we assimilate an observation vector L-total times, shifting the algorithmically stationary DAW, the sum of

the weights used to assimilate the observation equals one.600

We denote

αk|L :=
L∑

i=k

βi|L (78)

as the fraction of the observation yk that has been assimilated after the analysis step at the time tL. Note that, under the

Gaussian likelihood assumption, and assuming the independence of the fractional observations, this implies

L∏

i=k

p
(
yβi|L |x

)
= p(yαk|L |x) . (79)605

Let βl:k|L and αl:k|L denote the length-(l− k+ 1) vectors

βl:k|L =
(
βl|L · · · βk|L

)
, (80a)

αl:k|L =
(
αl|L · · · αk|L

)
. (80b)

We then define the sequences

y
βl:k|L
l:k :=

{
y
βl|L
l ,y

βl−1|L
l−1 , · · · ,yβk|L

k

}
, (81a)610

y
αl:k|L
l:k :=

{
yαl:L
l ,y

αl−1|L
l−1 , · · · ,yαk|l

k

}
, (81b)

as the observations yl:k in the current DAW {t1, · · · , tL}, with: Eq. (81a), the corresponding MDA weights for this DAW; and,

Eq. (81b), the total portion of each observation assimilated in the MDA conditional density for this DAW after the analysis

step. Similar definitions apply with the indices l : k|L− 1, but relative to the previous DAW.
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For the current DAW the balancing stage is designed to sample the joint posterior density615

p(xL:1|yL:1) (82)

where the current cycle is initialized with a sample of the MDA conditional density

p
(
x0|yαL−1:0|L−1

L−1:0

)
. (83)

That is, from the previous cycle we have a marginal estimate for x0 given the sequence of observations yL−1:0, where the

portion of observation yk that has been assimilated already is given by αk|L−1. Notice that α0|L−1 = 1 so that y0 has already620

been fully assimilated. To fully assimilate y1, we note that 1−α1|L−1 = β1|L, and therefore

p
(
x1:0|yαL−1:2|L−1

L−1:2 ,y1:0

)
∝ p

(
y
β1|L
1 |x1

)
p(x1|x0)p

(
x0|yαL−1:0|L−1

L−1:0

)
. (84)

The above corresponds to a single simulation / analysis step in an EnKS cycle where the observation y
β1|L
1 is assimilated and

a retrospective re-analysis is applied to the ensemble at t0.

More generally, to fully assimilate observation yk, we assimilate the remaining portion left un-assimilated from the last625

DAW, given as 1−αk|L−1. We define an inductive step describing the density for xk:0 which has fully assimilated yk:0,

though is yet to assimilate the remaining portions of observations yL−1:k+1, as

p
(
xk:0|yαL−1:k+1|L−1

L−1:k+1 ,yk:0

)
∝ p

(
y

1−αk|L−1

k |xk
)
p(xk|xk−1)p

(
xk−1:0|yαL−1:k|L−1

L−1:k ,yk−1:0

)
. (85)

For k = 2, · · · ,L− 2, this describes a subsequent simulation / analysis step of an EnKS cycle but where the observation

y
1−αk|L−1

k is assimilated and a retrospective analysis is applied to the ensemble at times t0, · · · , tk−1. A subsequent EnKS630

analysis gives

p(xL−1:0|yL−1:0)∝ p
(
y

1−αL−1|L−1

L−1 |xL−1

)
p(xL−1|xL−2)p

(
xL−2:0|yαL−1|L−1

L−1 ,yL−2:0

)
, (86)

i.e., this samples the joint posterior for the last DAW. A final EnKS analysis is used to assimilate yL, for which no portion was

already assimilated in the previous DAW,

p(xL:1|yL:1)∝ p(yL|xL)p(xL|xL−1)p(xL−1:0|yL−1:0). (87)635

We thus define an initial ensemble

Ebal
0 ∼ p

(
x0|yαL−1:0|L−1

L−1:0

)
. (88)

In the balancing stage, the observation error covariance weights are defined by

ηk|L := 1−αk|L−1, (89)
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where ηL|L = 1. In the case where βk|L = 1
L for all k, we obtain the balancing weights as ηk|L = k

L for all k = 1, · · · ,L. An640

EnKS cycle initialized as in Eq. (88), using the balancing weights in Eq. (89), sequentially and recursively samples

Ebal
k:0 ∼ p

(
xk:0|yαL−1:k+1|L−1

L−1:k+1 ,yk:0

)
(90)

from the inductive relationship in Eq. (85), where the final analysis gives Ebal
L:0 ≡Esmth

L:0|L from Eq. (87).

To subsequently shift the DAW and initialize the next cycle, we target the density p
(
x1|yαL:1|L

L:1

)
. Given p

(
x0|yαL−1:0|L−1

L−1:0

)
,

the target density is sampled by assimilating each observation y
βk|L
k so that the portion of each observation assimilated becomes645

y
αL:1|L
L:1 . Notice that for k = 1, · · · ,L− 2,

p
(
xk:0|yαL−1:k+1|L−1

L−1:k+1 ,y
αk:0|L
k:0

)
∝ p

(
y
βk|L
k |xk

)
p(xk|xk−1)p

(
xk−1:0|yαL−1:k|L−1

L−1:k ,y
αk−1:0|L
k−1:0

)
. (91)

The above recursion corresponds to an EnKS step in which the observation y
βk|L
k is assimilated and a retrospective analysis is

applied to ensembles at times t0, · · · , tk−1. Subsequent EnKS analyses using the MDA weights then give

p
(
xL−1:0|yαL−1:0|L

L−1:0

)
∝ p

(
y
βL−1|L
k |xL−1

)
p(xL−1|xL−2)p

(
xL−2:0|yαL−1|L−1

L−1 ,y
αL−2:0|L
L−2:0

)
, (92)650

p
(
xL:0|yαL:0|L

L:0

)
∝ p

(
y
βL|L
L |xL

)
p(xL|xL−1)p

(
xL−1:0|yαL−1:0|L

L−1:0

)
. (93)

We therefore perform a second EnKS cycle using the MDA observation error covariance weights βk|L to sample the target

density. Given that η1|L = β1|L, the first analysis of the balancing stage in Eq. (84) is identical to the first analysis in the MDA

stage, corresponding to k = 1 in Eq. (91). Therefore, this first EnKS analysis step can be re-used between the two stages.

Define an initial ensemble for the MDA stage, re-using the first analysis in the balancing stage, as655

Emda
1 ≡Ebal

1 ∼ p
(
x1|yαL−1:2|L−1

L−1:2 ,y1:0

)
. (94)

An EnKS cycle initialized as in Eq. (94), using the MDA weights βk, sequentially and recursively samples

Emda
k:1 ∼ p

(
xk:1|yαL−1:k+1|L−1

L−1:k+1 ,y
αk:0|L
k:0

)
(95)

from the relationship in Eq. (91). The final analysis samples the density p
(
xL:1|yαL:0|L

L:0

)
∝ p

(
xL:1|yαL:1|L

L:1

)
, as in Eq. (93),

which is used to initialize the next cycle. To make the scheme more efficient, we note that we need only sample the marginal660

p
(
x1|yαL:1|L

L:1

)
to re-initialze the next cycle of the algorithm; this means that the inner loop of the EnKS in the second stage

needs only store and sequentially condition the ensemble Emda
1 with the retrospective filter analyses in this stage. Combining

the two stages together into a single cycle that produces forecast, filter and smoother statistics over the DAW {t1, · · · , tL}, as

well as the ensemble initialization for the next cycle, requires 2L ensemble simulations. Due to the convoluted nature of the

indexing over multiple DAWs above, a schematic of the two stages of the SIEnKS MDA cycle is presented in Fig. 4.665

The MDA algorithm is generalized to shift windows of S > 1 with the number of ensemble forecasts remaining invariant at

2L when using “blocks” of uniform MDA weights in the DAW. Assume that L= SQ for some positive integer Q, so that we

partition yL:1 into Q total blocks of observations each of length S. In this case, the perfect, linear-Gaussian model consistency
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p
(
x−1|yαL−2:−1|L−2

L−2:−1

)
p

(
xk:−1|yαL−2:k+1|L−2

L−2:k+1 ,yk:−1

)
p (xL−1:−1|yL−1:−1)

p
(
x0|yαL−1:0|L−1

L−1:0

)
p

(
xk:0|yαL−1:k+1|L−1

L−1:k+1 ,yk:0

)
p (xL:0|yL:0)

p
(
x1|yαL:1|L

L:1

)
p

(
xk:1|yαL:k+1|L

L:k+1 ,yk:1

)
p (xL+1:1|yL+1:1)

EnKS with balancing weights ηk|L

EnK
S

with
M

DA
weights

β
k|L

Figure 4. A schematic of the two stages of the SIEnKS MDA cycle. The DAW of the SIEnKS moves forward in time from top to bottom,

where the EnKS stage using MDA weights pushes the MDA conditional density, left-most, forward in time. The middle layer represents

the indexing of the stationary DAW, while the top layer represents a DAW one cycle back in time, and the bottom layer represents a DAW

one cycle forward in time. The balancing density is sampled sequentially and recursively with an EnKS stage using the balancing weights,

moving from left to right in each cycle. For the current DAW, the middle balancing density has fully assimilated observations yk:0 and has

partially assimilated observations y
αL−1:k+1|L−1
L:k+1 . The EnKS stage with balancing weights completes when sampling the joint posterior, and

the EnKS stage with MDA weights begins again.

constraint is revised as

βk|L = β̃i|L for i :=
[
k

S

]
, with

Q∑

j=1

β̃j|L = 1, (96)670

where the above brackets represent rounding up to the nearest integer. This ensures again that the weights corresponding to

the Q total times that yk is assimilated sum to one. With this weighting scheme, the equivalence between the balancing and

MDA stages’ first EnKS filter analysis extends to the first S-total EnKS filter analyses, and therefore Emda
S ≡Ebal

S initializes

the MDA stage. One can further reduce the memory usage by only performing the retrospective conditioning in the balancing

stage on the states Ebal
S:0 stored in memory. This samples the density p(xS:0|yL:0) in the final cycle before the estimates for675

these states are discarded from the DAW. MDA variants of the SIEnKS and the (Lin-)IEnKS are presented in Algorithms 12

and 13.

The primary difference between the SIEnKS and IEnKS MDA schemes lies in the sequential balancing analysis versus the

global balancing analysis performed in the 4D-MAP optimization. The IEnKS MDA scheme is not always robust in this 4D-

MAP balancing estimation because the MDA conditional prior that initializes the scheme may actually lie far away from the680
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MAP solution for the balanced, joint posterior. As a consequence, this may require many iterations of the balancing stage to

perform the nonlinear optimization. On the other hand, the sequential SIEnKS MDA approach uses the partially unassimilated

observations in the DAW directly as a boundary condition to the interpolation of the joint posterior over the DAW with the

sequential EnKS filter cycle. In particular, for long DAWs, this means that the SIEnKS furthermore controls error growth in

the ensemble simulation that accumulates over the long free forecast in the 4D-MAP approach. Every step of the interpolation685

of the SIEnKS MDA scheme actually arises as a prediction from a kind of filtering density as in Eq. (90).

Note how the cost of assimilation scales differently between the SIEnKS and the IEnKS when performing MDA. Both the

IEnKS and the SIEnKS use the same weights ηk|L and βk|L for their balancing and MDA stages. However, each stage of

the IEnKS separately performs an iterative optimization of the 4D-MAP cost function. While each iteration therein requires

only a single square root inverse calculation of the cost function Hessian, the iterative solution requires at least 2L total690

ensemble simulations in order to optimize and interpolate the estimates over the DAW. An efficient version of the scheme can

be performed as such by using the same free ensemble simulation initialized as in Eq. (88) in order to assimilate each of the

observation sequences y
ηL:1|L
L:1 and y

βL:1|L
L:1 . However, the IEnKS additionally requires S total ensemble simulations in order to

shift the DAW thereafter.

This differs from the SIEnKS which, as discussed above, requires a fixed 2L ensemble simulations over the DAW. However,695

the computational barrier to the SIEnKS MDA scheme lies in the fact that it requires 2L−S square root inverse calculations,

corresponding to each unique filter cost function solution over the two stages; in the case that MDA is combined with, e.g.,

the ensemble transform in the MLEF this further grows to the sum of the number of iterations
∑2L−S
j=1 ij where ij iterations

are used in the j-th optimization of a filter cost function. However, when the cost of an ensemble simulation is sufficiently

greater than the cost of the square root inverse in the ensemble dimension, the SIEnKS MDA scheme can substantially reduce700

the leading order the computational cost of ensemble-variational smoothing with MDA, and especially when S > 1.

4.4 Asynchronous data assimilation

In online settings, fixed-lag smoothers with shifts of S > 1 are computationally more efficient in terms of how rapidly an

observation / analysis / forecast cycle can be computed in real-time. Specifically, when S > 1, the number of smoother cycles

necessary to traverse a time series of observations with the sequential DAWs is decreased; versus a shift of one, the number705

of cycles necessary is reduced by the factor of S. A barrier to using the SIEnKS with S > 1 lies in the fact that the sequential

filter analysis of the EnKS does not in and of itself provide a means to asynchronously assimilate observations. However,

the SIEnKS differs from the EnKS in numerically simulating lagged states in the DAW. When one interpolates the posterior

estimate with the dynamical model over lagged states, one can easily revise the algorithm to assimilate any newly available

data corresponding to a time within the past simulation window. The filter step and retrospective re-analysis of a variety of710

filter schemes can be used this way, though the weights in MDA need to be adjusted accordingly. There are many ways in

which one may actually design methods of excluding observations and re-introducing them in a later DAW with a shift S > 1.

In the current work, the SIEnKS assimilates all observations synchronously, even with S > 1. A systematic investigation of

algorithms that would optimize this asynchronous assimilation in single-iteration smoothers goes beyond the scope of the
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current work. However, this key difference between the EnKS and the SIEnKS is important to note and will be considered715

later.

5 Numerical benchmarks

5.1 Algorithm cost analysis

Let us fix the ensemble size Ne for the following considerations and let us suppose that the cost of the nonlinear ensemble

simulation is fixed for every ∆k, equal to CM floating-point operations (flops). In order to compute the ensemble transform in720

any of the methods, we assume that the inversion of the approximate Hessian H̃J̃ , and its square root, is performed with an

SVD-based approach with cost of orderO
(
N3
e

)
flops. This assures stability and efficiency in the sense that the computation of

all of T = H̃−
1
2

J̃ , T−1 = H̃
1
2

J̃ and H̃−1

J̃ combined is dominated by the cost of the SVD of the symmetric, Ne×Ne matrix H̃J̃ .

If a method is iterative, we denote the number of iterations used in the scheme with ij , where the sub-index j distinguishes

distinct iterative optimizations.725

A summary of how each of the EnKS, SIEnKS and IEnKS scale in their numerical cost is presented in Tables 1 and 2. This

analysis is easily derived based on the pseudo-code in Appendix A and with the discussions in Section 4. Table 1 presents

schemes that are used in the SDA configuration, while Table 2 presents schemes that are used in the MDA configurations. Note

that, while adaptive inflation in the finite-size formalism can be used heuristically to estimate a power of the joint posterior,

this has not been found to be fully compatible with MDA (Bocquet and Sakov, 2014), and this combination of techniques is730

not considered here.

Table 1. Order of SDA cycle flops for lag=L, shift=S, tuned inflation (TI) or adaptive inflation (AI) / nonlinear observation operator (NO)

EnKS / MLES SIEnKS IEnKS

TI SCM+SN3
e (L+S)CM+SN3

e (i1L+S)CM+ i1N
3
e

AI / NO SCM+
∑L

j=L−S+1 ilN
3
e (L+S)CM+

∑L
j=L−S+1 ijN

3
e (i1L+S)CM+ i1N

3
e

For realistic geophysical models, note that the maximal ensemble size Ne is typically of order O
(
102
)

while the state

dimensionNx can be of orderO
(
109
)

(Carrassi et al., 2018); therefore, the cost of all algorithms reduce to terms ofCM�N3
e

at leading order in target applications. It is easy to see then that the EnKS / MLES has a cost that is of order of the regular ETKF

/ MLEF filter cycle, representing the least expensive of the estimation schemes. Consider now in row one of Table 1, the i1 in735

the IEnKS represents the number of iterations utilized to minimize the 4D-MAP cost function. If we set i1 = 1, this represents

the cost of the Lin-IEnKS. Particularly, we see that for S = 1 and a linear filter cost function, the Lin-IEnKS has the same cost

as the SIEnKS. However, even in the case of a linear filter cost function, when S > 1 the SIEnKS is more expensive than the

Lin-IEnKS. When we let i1 in Table 1 terminate with a maximum possible value, the cost of the IEnKS is bounded at leading

order; however, we demonstrate shortly how, statistically, the number of iterations tends to be bounded without reaching a large740

maximum in stable filter regimes.
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Consider the case when the filter cost function is nonlinear, as when adaptive inflation is used (as defined in Sec. 4.2) or

when there is a nonlinear observation operator. Row two of Table 1 shows how the cost of these estimators are differentiated

when nonlinearity is introduced; in particular, the cost of the the MLES and the SIEnKS requires one SVD calculation for each

iteration used to process each new observation. This renders the SIEnKS notably more expensive than the Lin-IEnKS, which745

uses a single Hessian SVD calculation to process all observations globally. However, for target applications, such as synoptic

meteorology, the additional expense of iteratively optimizing filter cost functions with the SIEnKS versus the single iteration

of the Lin-IEnKS in the 4D-MAP cost function is insignificant.

Table 2 describes the cost of the SIEnKS and the IEnKS using MDA when there is a linear observation operator and when

there is a nonlinear observation operator. Recall that, at leading order CM, the cost of the SIEnKS is invariant in S. This again750

comes with the caveat that observations are assumed to be assimilated synchronously in this work, while the IEnKS assimilates

observations asynchronously by default. Nonetheless, the equivalence between the first S filter cycles in the balancing stage

and the MDA stage in the SIEnKS allows the scheme to fix the leading order cost at the expense of two passes over the DAW

with the ensemble simulation.

Table 2. Order of MDA cycle flops for lag=L=Q×S, shift=S, tuned inflation, linear observation operator (LO) or nonlinear observation

operator (NO)

SIEnKS IEnKS

LO 2LCM+ (2L−S)N3
e [L(i1 + i2) +S]CM+ (i1 + i2)N3

e

NO 2LCM+
∑2L−S

j=1 ijN
3
e [L(i1 + i2) +S]CM+ (i1 + i2)N3

e

5.2 Data assimilation benchmark configurations755

To demonstrate the performance, advantages and limitations of the SIEnKS, we produce statistics of its forecast / filter /

smoother root mean square error (RMSE) versus the EnKS / Lin-IEnKS / IEnKS in a variety of DA benchmark configurations.

Synthetic data is generated in a twin experiment setting, with a simulated “truth twin” generating the observation process.

Define the truth twin realization at time tk as xt
k; we define the ensemble RMSE as

RMSE
(
Ei
k

)
:=

√√√√√
Nx∑

j=1

(
x̂i
j,k −xt

j,k

)2

Nx
. (97)760

where i refers to an ensemble label i ∈ {fore,filt,smth,bal,mda}, j refers to the state dimension index j ∈ {1, · · · ,Nx} and k

refers to time tk as usual.

A common diagnostic for the accuracy of the linear-Gaussian approximation in the DA cycle is verifying that the ensemble

RMSE has approximately the same order as the ensemble spread (Whitaker and Loughe, 1998), which is known as the spread-

skill relationship; over-dispersion and under-dispersion of the ensemble both indicate inadequacy of the approximation. Define765
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the ensemble spread as

spread
(
Ei
k

)
:=

√√√√√ 1
Ne− 1

Ne∑

j=1

(
Xi,j
k

)>(
Xi,j
k

)

Nx
, (98)

where i again refers to an ensemble matrix label, j in this case refers to the ensemble matrix column index and k again refers to

time. The spread is then given by the square root of the mean-square-deviation of the ensemble from its mean. Performance of

these estimators will be assessed in terms of having low RMSE scores with spread close to the value of the RMSE. Estimators770

are said to be divergent when either the filter or smoother RMSE is greater than the standard deviation of the observation errors,

indicating that initializing a forecast with noisy observations is preferable to the posterior estimate.

The perfect, hidden Markov model in this study is defined by the single layer form of the Lorenz-96 equations (Lorenz, 1996).

The state dimension is fixed at Nx = 40, with the components of the vector x given by the variables xj with periodic boundary

conditions, x0 = x40, x−1 = x39 and x41 = x1. The time derivatives dx
dt := f(x), also known as the model tendencies, are775

given for each state component j ∈ {1, · · · ,40} by

fj(x) =−xj−2xj−1 +xj−1xj+1−xj +F. (99)

Each state variable heuristically represents the atmospheric temperature at one of the 40 longitudinal sectors discretizing a

lattitudinal circle of the Earth. The Lorenz-96 equations are not a physics-based model, but it mimics fundamental features of

geophysical fluid dynamics, including conservative convection, external forcing and linear dissipation of energy (Lorenz and780

Emanuel, 1998). The term F is the forcing parameter that injects energy into the model, the quadratic terms correspond to

energy preserving convection, while the linear term −xj corresponds to dissipation. With F ≥ 8, the system exhibits chaotic,

dissipative dynamics; we fix F = 8 in the following simulations, with the corresponding number of unstable and neutral

Lypunov exponents being equal to N0 = 14.

For a fixed ∆t, the dynamical modelMk is defined by the flow map generated by the dynamical system in Eq. (99). Both the785

truth twin simulation, generating the observation process, and ensemble simulation, used to sample the appropriate conditional

density, are performed with a standard four-stage Runge-Kutta scheme with step size h= 0.01. This high-precision simulation

is used for generating a ground-truth for these methods, validating the Julia package DataAssimilationBenchmarks.jl (Grudzien

et al., 2021) and testing its scalability; however, in general h= 0.05 should be sufficient accuracy and is recommended for

future use. The nonlinearity of the forecast error evolution is controlled by the length of the forecast window, ∆t. A forecast790

length ∆t= 0.05 corresponds to a six-hour atmospheric forecast, while for ∆t > 0.05, the level of nonlinearity in the ensemble

simulation can be considered to be greater than that is typical for synoptic meteorology.

Localization, hybridization and other standard forms of ensemble-based gain augmentation are not considered in this work

for the sake of simplicity. Therefore, in order to control the growth of forecast errors under weakly nonlinear evolution, the rank

of the ensemble-based gain must be equal to or greater than the number of unstable and neutral Lyapunov exponents N0 = 14,795

corresponding to Ne ≥ 15, see Grudzien et al. (2018) and references therein. In the following experiments, we range the

ensemble size as Ne ∈ {15 + 2i}13
i=0, from the minimal rank needed without gain augmentation to a full-rank ensemble-based
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gain. When the number of experimental parameters expands, we restrict to the case whereNe = 21 for an ensemble-based gain

of actual rank 20, making a reduced-rank approximation of the covariance in analogy to DA in geophysical models.

Observations are full dimensional, such thatNy =Nx = 40, and observation errors are distributed according to the Gaussian800

distributionN
(
0,INy

)
, uncorrelated across state indices with homogeneous variances equal to one. When the observation map

is linear, it is defined as Hk := INx
; when the observation map is taken to be nonlinear, define

H(x) :=
x

2
◦
{

1 +
( x

10

)γ−1
}
, (100)

where ◦ above refers to the Schur product. This observation operator is drawn from section 6.7.2.2 of Asch et al. (2016), where

the parameter γ controls the nonlinearity of the map. In particular, for γ = 1 this corresponds to the linear observation operator805

Hk, while γ > 1 increases the nonlinearity of the map. When we vary the nonlinearity of the observation operator, we take

γ ∈ {i}11
i=1 corresponding to ten different nonlinear settings and the linear setting for reference.

When tuned inflation is used to regularize the filters and smoothers, as in Algorithm 4, we take a discretization range of

λ ∈ {1.0 + 0.01i}10
i=0, corresponding to the usual Kalman update with λ= 1.0 and to up to 10% inflation of the empirical

variances with λ= 1.1. Using tuned inflation, estimator performance is selected for the minimum average forecast RMSE over810

the experiment for all choices of λ, unless this is explicitly stated otherwise. When adaptive inflation is used, no additional

tuned inflation is utilized. Simulations using the finite-size formalism will be denoted with a -N, following the convention of

the EnKF-N. Multiple data assimilation will always be performed with uniform weights as βk|L := 1
L for all estimators.

For the fully iterative IEnKS, we limit the maximum number of iterations per stage at ij = 10 for j = 1,2. This implies that

the IEnKS can take a maximum of i1 + i2 = 20 iterations in the MDA configuration to complete a cycle. Iteratively optimizing815

the filter cost function for the nonlinear observation operator or the adaptive inflation in the MLES(-N) / SIEnKS(-N), the max

number of iterations is capped at ij = 40 per analysis. The tolerance for the stopping condition in the filter cost functions is

set a 10−4, while the tolerance for the 4D-MAP estimates is set to 10−3. However, the scores of the algorithms are to a large

extent insensitive to these particular hyper-parameters.

In order to capture the asymptotically stationary statistics of the filter / forecast / smoother processes, we take a long time-820

average of the RMSE and spread over the time indices k. The long experiment average ensures that, for an ergodic dynamical

system, we average over the spatial variation on the attractor and that we account for variations in the observation noise

realizations that may affect the estimator performance. So that the truth twin simulates observations on the attractor, it is

simulated for an initial spin up of 5×103 analysis times before observations are given. Let the time be given as t0 after this initial

spin up. Observations are generated identically for all estimators using the same Gaussian error realizations at a given time to825

perturb the observation map of the truth twin. At time t0, the ensemble is initialized identically for all estimators (depending on

the ensemble size) with the same iid draw from the multivariate Gaussian with mean at the truth twin xt
0 and covariance equal

to the identity INx
. All estimation schemes are subsequently run over observation times indexed as {tk}2.5×104

k=1 . As the initial

warm-up of the estimators’ statistics from this cold start tend to differ from the asymptotically stationary statistics, we discard

the forecast / filter / posterior RMSE and spread corresponding to the observations times {tk}5×103

k=1 , taking the time-average830

of these statistics for the remaining 2× 104 analysis time indices. Particularly, this configuration is sufficient to represent
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estimator divergence which may have a delayed onset and may not be seen for shorter experimental windows. Empirically, we

find that one may miss such a delayed divergence for the EnKS when, e.g., neglecting random, mean-preserving, orthogonal

transformations Uk, as in Algorithm 2, and the total experiment length is on O
(
103
)

analysis times.

Forecast statistics are computed for each estimator whenever the ensemble simulates a time index tk for the first time, before835

yk has been assimilated into the estimate. Filter statistics are computed for the first analysis at which the observation yk has

been assimilated into the simulation. For the (Lin-)IEnKS, with S > 1, this filter estimate thus includes the information from

all observations yL:L−S+2 when making a filter estimate for the state at tL−S+1. Smoother statistics are computed for the time

indices t0, t1, · · · , tS−1 in each cycle, as this corresponds to the final analysis for these states before they are passed over by the

shifting DAWs. Whenever a heat plot is shown with missing configurations filled with empty white blocks, this corresponds to840

“Inf” values in the simulation data. Missing data occurs due to numerical overflow when attempting to invert a close-to-singular

cost function Hessian H̃J̃ , which occurs as a consequence of the collapse of the ensemble spread. When an estimator suffers

this catastrophic filter divergence, the experiment output is replaced with Inf values to indicate the failure, and these values are

suppressed in the heat plot. Other benchmarks for the EnKS / Lin-IEnKS / IEnKS in the Lorenz-96 model above can be found

in, e.g., Bocquet and Sakov (2014), Asch et al. (2016) and Raanes et al. (2018), which are corroborated here with similar, but845

slightly different configurations.

5.3 Weakly nonlinear forecast error dynamics – linear observations

We fix ∆t= 0.05 in this section, set S = 1 and use the linear observation operator in order to demonstrate base-line perfor-

mance of the estimators in a simple setting. On the other hand, we vary the lag length, the ensemble size and the use of tuned /

adaptive inflation or MDA. The lag in this section is varied on a discretization of L ∈ {1 + 3i}30
i=0. As a first reference simula-850

tion, consider the simple case where all schemes use tuned covariance inflation, so that the SIEnKS and the Lin-IEnKS here are

formally equivalent. Likewise, with S = 1, there is no distinction between asynchronous or synchronous DA. Figure 5 makes

a heat plot of the forecast / filter / smoother RMSE and spread as the lag length L is varied along with the ensemble size Ne.

It is easy to see the difference in the performance between the EnKS and the iterative SIEnKS / (Lin-)IEnKS schemes.

Particularly, the forecast and fiter RMSE does not change with respect to the lag length in the EnKS, as these statistics are855

generated independently of the lag with a standard ETKF filter cycle. However, the smoother performance of the EnKS does

improve with longer lags, without sacrificing stability over extremely long lag lengths as in the iterative schemes. In particular,

all of the iterative schemes use the dynamical model to interpolate the posterior estimate over the DAW. For sufficiently large

L, this becomes unstable due to the small simulation errors that are amplified by the chaotic dynamics. The scale of the color

map is capped at 0.30, as a more accurate forecast / filter performance can be attained in this setting with the ETKF alone, as860

demonstrated by the EnKS.

On the other hand, the iterative estimate of the posterior as in the SIEnKS / (Lin-)IEnKS in this weakly nonlinear setting

shows a dramatic improvement in the predictive and posterior accuracy for a tuned lag length. Unlike the standard ETKF

observation / analysis / forecast cycle, these iterative smoothers are able to control the error growth in the neutral Lyapunov

susbspace corresponding to the N0 = 14-th Lyapunov exponent. With the ensemble size Ne = 15 corresponding to a rank 14865
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Figure 5. Lag length L vertical axis, ensemble size Ne horizontal axis. SDA, tuned inflation, shift S = 1, linear observations, ∆t= 0.05.

ensemble-based gain, the iterative smoothers maintain a stable prediction and posterior analysis over a wide range of lags while

the EnKS diverges for all lag settings. We notice that the stability regions of the SIEnKS / Lin-IEnKS / IEnKS are otherwise

largely the same in this simple benchmark configuration, though the IEnKS has a slightly longer stability over long lags with

low sample sizes.

In order to illustrate the difference in accuracy between the iterative schemes and the non-iterative EnKS, Fig. 6 plots a870

cross section of Fig. 5 for Ne = 21. The iterative schemes have almost identical performance until approximately a lag of

L≈ 37, at which point all schemes become increasingly unstable. The differences shown between the iterative schemes here

are insignificant, and may vary between different implementations of these algorithms or pseudo-random seeds. We note that

all estimators are also slightly over-dispersive due to selecting the tuned inflation value based on the minimum forecast RMSE,

rather than balancing the RMSE and spread simultaneously. Nonetheless, we clearly demonstrate how all iterative estimators875

reduce the prediction and posterior error over the non-iterative EnKS approach. Tuning the lag L, the forecast error for the

iterative schemes is actually lower than the posterior filter error of the EnKS.

Consider now the case where the filter cost function is nonlinear due to the adaptive inflation scheme. Figure 7 makes

the same heat plot as in Fig. 5 but where the finite-size formalism is used instead of tuned inflation. All schemes tend to

have slightly weaker performance in this setting, except for the IEnKS-N in the low ensemble size regime. The design of the880

adaptive inflation scheme is to account for sample error due to the low ensemble size and nonlinearity in the forecast error
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Figure 6. Cross section of Fig. 5 at ensemble size Ne = 21.

dynamics, typical of mid-range forecasts. The efficacy of the design is illustrated as the scheme is most effective when the

low ensemble size and nonlinear forecast error dynamics conditions are present. Note that the Lin-IEnKS-N uses a single

iteration of the extended 4D-MAP cost function, optimizing both the weights for the initial condition and the hyper-parameter

simultaneously. On the other hand, while the SIEnKS-N makes a single iteration of the ensemble simulation over the DAW,885

it is free to iteratively optimize the adaptive inflation hyper-parameter in the filter cost function. This iterative optimization of

the filter cost function allows the SIEnKS-N to make substantial improvements over the Lin-IEnKS-N in terms of the stability

region for the prediction accuracy, while remaining at the same leading order cost. Unlike the SIEnKS-N and the IEnKS-N,

the Lin-IEnKS-N is unable to reach even the prediction accuracy of the EnKS-N for low sample sizes.

Figure 8 plots a cross section of Fig. 7 at Ne = 21 in order to further demonstrate the improved accuracy of the forecast890

/ filter / smoother statistics of the SIEnKS-N versus the Lin-IEnKS-N. For a tuned lag L, the Lin-IEnKS-N fails to achieve

distinctly better forecast and filter accuracy than the EnKS-N. While the smoother RMSE for the Lin-IEnKS-N does make an

improvement over the EnKS-N, this improvement is not comparable to the smoother accuracy of the SIEnKS-N, which has

the same leading order cost. The performance of the SIEnKS-N is almost indistinguishable from the fully iterative IEnKS-N

up to a lag of L≈ 25. At this point, the stability of the SIEnKS-N begins to suffer, while on the other hand the IEnKS-895

N is able to improve smoother RMSE for slightly longer lags. Nonetheless, both the SIEnKS-N and the IEnKS-N become
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Figure 7. Lag length L vertical axis, ensemble size Ne horizontal axis. SDA, adaptive inflation, shift S = 1, linear observations, ∆t= 0.05.

increasingly under-dispersive for lags L≥ 25, demonstrating systematic underestimation of the estimator’s uncertainty that

leads to divergence for sufficiently large L.

We now use MDA to relax the nonlinearity of the MAP estimation and the interpolation of the posterior over the DAW.

Recall that MDA is handled differently in the SIEnKS from the 4D-MAP schemes: the 4D-MAP approach interpolates the900

DAW with the balancing estimate from a free forecast, while the SIEnKS interpolates the posterior estimate via a sequence of

EnKS filter steps using the balancing weights. Likewise, recall that the SIEnKS is the least expensive MDA estimator, requiring

only 2L ensemble simulations in this configuration, while the (Lin-)IEnKS uses at least 2L+ 1. Figure 9 presents the same

experiment configuration as in Figs. 5 and 7, but where MDA is used with tuned inflation. The EnKS does not use MDA, but

the results from Fig. 5 are presented here for reference.905

It is easy to see that MDA improves all of the iterative smoothing schemes in Fig. 9, with greatly expanded stability regions

from Fig. 5. Moreover, a key new pattern emerges that differentiates MDA using a retrospective analysis as in the SIEnKS. In

particular, while the stability regions for the SIEnKS / (Lin-)IEnKS are similar for their smoother statistics in this configuration,

the forecast / filter statistics are strongly differentiated. Unlike the free forecast solution used to interpolate the posterior over

the DAW in the 4D-MAP approach, the filter step within the SIEnKS controls the simulation errors that accumulate when L is910

large.
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Figure 8. Cross section of Fig. 7 at ensemble size Ne = 21.

In order to examine the effect more precisely, consider the cross section of Fig. 9 for Ne = 21 presented in Fig. 10. Notice

that all iterative MDA estimators have almost indistinguishable performance until lag L≈ 31. From this point, although the

smoother accuracy increases with longer lags for the (Lin-)IEnKS, this comes at a sacrifice in the forecast / filter accuracy.

Particularly, for lags L≥ 31 the forecast / filter accuracy of the (Lin-)IEnKS begins to degrade; at a lag of L≈ 61, the IEnKS915

performs worse than the EnKS, while the Lin-IEnKS has diverged. This is in stark contrast to the SIEnKS — not only does

the forecast / filter accuracy remain stable for lags L≥ 40, but each of these improve along with the smoother accuracy until

a lag L≈ 61. Furthermore, the spread of the SIEnKS indicates that the SIEnKS MDA, perfect, linear-Gaussian approximation

is well-satisfied, with the ensemble dispersion very close to the RMSE within the stability region.

The SIEnKS then highlights a performance trade off of the 4D-MAP MDA schemes that the SIEnKS does not itself suffer920

from. In particular, suppose that the lag L in Fig. 9 is selected in order to optimize each estimator’s accuracy in terms of RMSE,

for each fixed ensemble size Ne. One can optimize the lag L using the forecast RMSE or the smoother RMSE as the criterion.

However, Fig. 10 indicates that Lmay be quite different for the forecast accuracy versus the smoother accuracy in the 4D-MAP

schemes. Figures 11 and 12 demonstrate this trade off precisely, where the former plots the RMSE and spread with lag and

inflation simultaneously optimized for forecast accuracy and the later is optimized for smoother accuracy.925

Tuning for optimum forecast RMSE, as in Fig. 11, the performance of the SIEnKS / (Lin-)IEnKS for any fixed Ne are

indistinguishable with respect to this metric. On the other hand, the SIEnKS strongly outperforms the Lin-IEnKS and even
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Figure 9. Lag length L vertical axis, ensemble size Ne horizontal axis. MDA, tuned inflation, shift S = 1, linear observations, ∆t= 0.05.

EnKS SDA results presented here for reference.

exhibits a slightly better overall stability and accuracy than the IEnKS across the range of ensemble sizes. The difference in

performance is more pronounced when tuning for the minimal smoother RMSE in Fig. 12. Again, the three estimators are

indistinguishable in their smoother estimates, but the SIEnKS forms high-precision smoother estimates without sacrificing its930

predictive accuracy while interpolating the solution over long lags.

Using MDA or adaptive inflation in DA cycles with weakly nonlinear forecast error dynamics, we demonstrate how the

SIEnKS greatly outperforms the Lin-IEnKS with the same, or lower, leading order cost. The SIEnKS MDA scheme also

outperforms the IEnKS MDA scheme with less cost, but the fully iterative IEnKS-N is able to extract additional accuracy over

the SIEnKS-N at the cost of L additional ensemble simulations per iteration. Therefore, it is worth considering the statistics935

on the number of iterations that the IEnKS uses in each of the above studied configurations. Figure 13 shows a heat plot for

the mean and the standard deviation of the number of iterations used per cycle for each of the IEnKS with SDA, IEnKS-N and

IEnKS with MDA to optimize the 4D-MAP cost function. Notice that in the MDA configuration, the mean and the standard

deviation is computed over the two stages of the IEnKS, accounting for both the balancing and MDA 4D-MAP cost functions.

Although the number of possible iterations used is bounded below by one in the case of SDA, and two in the case of MDA,940

the frequency distribution for the total iterations is not especially skewed within the stability region of the IEnKS. This is

evidenced by the small standard deviation, less than or equal to one, that defines the stability region for the scheme. Particularly,

the IEnKS typically stabilizes around: (i) three iterations in the SDA, tuned inflation configuration; (ii) three to four iterations in
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Figure 10. Cross section of Fig. 9 at ensemble size Ne = 21.

the SDA, adaptive inflation configuration; and (iii) six to eight iterations in the MDA, tuned inflation configuration. Therefore,

the SIEnKS is shown to make a reduction ranging between: (i) 2L; (ii) 2L to 3L; or 4L to 6L ensemble simulations of the945

estimator’s cycle, on average, versus the IEnKS. While this is unremarkable for the SDA, tuned inflation configuration where

the Lin-IEnkS performs similarly, this demonstrates a strong performance advantage of the SIEnKS in its target application,

i.e., in settings with weakly nonlinear forecast error dynamics and other sources of nonlinearity dominating the DA cycle. This

an especially profound reduction for the MDA configuration, where the SIEnKS MDA scheme proves to be both the least

expensive and the most stable / accurate estimator by far.950

5.4 Weakly nonlinear forecast error dynamics – nonlinear observations

A primary motivating application for the SIEnKS is the scenario where the forecast error dynamics are weakly nonlinear but

where the observation operator is weakly to strongly nonlinear. There are infinitely many possible ways how nonlinearity in

the observation operator can be expressed, and the results are expected to strongly depend on the particular operator. In the

following, we consider the operator in Eq. (100) for the ability to tune the strength of this effect with the parameter γ. In order955

to avoid conflating the effect of the nonlinearity in the hyper-parameter optimization and the nonlinearity in the observation

operator, we suppress adaptive inflation in this section. In this case, SDA and MDA schemes are considered to compare how

MDA can be used to temper the effects of local minima in the MAP estimation versus a nonlinear observation operator.
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Figure 11. MDA, RMSE and spread versus ensemble size Ne, lag and inflation optimized for minimum forecast RMSE in Fig. 9.

We again choose ∆t= 0.05 to maintain weakly nonlinear forecast error dynamics. We restrict to Ne = 21 as we expand the

experimental parameters to include γ. The lag is varied as L ∈ {1 + 3i}27
i=0.960

Figure 14 demonstrates the effect of varying the nonlinearity in the observation operator, where strong differences once

again emerge between the retrospective analysis of the MLES and the iterative schemes. The scale of the color map is raised to

a max of 0.5, as a better performance can be achieved with the MLEF alone, as demonstrated by the MLES. In the MLES, the

predictive and posterior error increases almost uniformly in γ, but a very different picture emerges for the iterative smoothers.

While the stability regions of the iterative schemes tend to shrink for larger γ, the accuracy of the estimators changes non-965

monotonically. Moreover, iteratively optimizing the filter cost function in the SIEnKS or the 4D-MAP cost function in the

IEnKS does not in and of itself guarantee a better performance than the Lin-IEnKS, due to the increasing presence of local

minima. Particularly for the SIEnKS and the IEnKS with highly nonlinear observations, this optimization can also become

deleterious to the estimator performance, with evidence of instability and catastrophic divergence in these regimes.

In Fig. 15, we repeat the experimental configuration of Fig. 14 with the exception of using the MDA configuration. As970

seen in Fig. 9, MDA greatly extends the forecast / filter accuracy of the SIEnKS over the 4D-MAP schemes. Multiple data

assimilation in this context additionally weakens the effect of the assimilation step on the model simulation, smoothing the

cost function contours and expanding the stability regions of all estimators.
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Figure 12. MDA, RMSE and spread versus ensemble size Ne, lag and inflation optimized for minimum smoother RMSE in Fig. 9.

Figure 16 presents tuned results from Fig. 15 where the lag and inflation are simultaneously optimized for the minimal

forecast RMSE. In this context, we clearly see how the effect of varying γ is non-monotonic on the estimator accuracy for the975

iterative schemes. However, important differences also emerge in this configuration between the SIEnKS and the (Lin-)IEnKS.

While the forecast and filter accuracy of these schemes remains indistinguishable for γ ≤ 7, the smoother RMSE of the SIEnKS

is almost uniformly lower than these other schemes for all γ. Interestingly, the degradation of the performance of the IEnKS

for highly nonlinear observations, γ ≥ 8, does not extend to either of the Lin-IEnkS or the SIEnKS in the MDA configuration.

Whereas the iterative optimization of the 4D-MAP cost function becomes susceptible to the effects of the local minima with980

large γ, the Lin-IEnKS remains stable for the full window of the γ presented here. Moreover, the SIEnKS demonstrates

significantly improved smoother accuracy over the Lin-IEnKS while remaining at a lower leading order cost. This suggests

that the sequential MDA scheme of the SIEnKS is better equipped to handle highly nonlinear observation operators than the

4D-MAP formalism, which appears to suffer from a greater number of local minima.

5.5 Weakly nonlinear forecast error dynamics – lag versus shift985

Even for a linear observation operator and tuned inflation, a shift S > 1 distinguishes the performance of each of the studied

estimators. In this section, we fix ∆t= 0.05 corresponding to weakly nonlinear forecast error dynamics and we vary L,S ∈
{2,4,8,16,32,48,64,80,96} to demonstrate these differences. For the iterative schemes, we only consider combinations of L
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Figure 13. Iterations per cycle versus lag L in the vertical axis and ensemble size Ne in the horizontal axis. Mean (top panel) and standard

deviation (bottom panel) of iterations used per cycle from simulations generating Figs. 5, 7 and 9 are presented.

divisible by S for compatibility with the MDA schemes. The EnKS is defined for arbitrary S < L, and all such configurations

are presented for reference.990

Recall the qualification that the EnKS and SIEnKS are designed to assimilate observations sequentially and synchronously

in this work whereas the (Lin-)IEnKS assimilates observations asynchronously by default. When S = 1 there is no distinction

between asynchronous and synchronous assimilation, but in this section this distinction is borne in mind. Likewise, it is recalled

that for the (Lin-)IEnKS with a shift S > 1, filter statistics are computed including the information from all observations

yL:L−S+1 when making a filter estimate for states at times tS+1, · · · , tL. This arises from the asynchronous design of the995

IEnKS, whereas filter statistics are computed sequentially without future information in the SIEnKS.

Figure 17 presents the heat plot of RMSE and spread for each estimator in the SDA configuration. We note that the EnKS

for a fixed L has performance that is largely invariant with respect to changes in S, except for the special case where S = L. In

this case, the non-overlapping DAWs impose that posterior estimates are constructed with fewer observations conditioning the

final estimate than in overlapping DAWs. Otherwise, the stability regions of the iterative schemes are largely the same, with1000

the SIEnKS only achieving a slight improvement over the Lin-IEnKS, and the IEnKS only slightly improving on the SIEnKS.

The SDA configuration is contrasted with Fig. 18 where we again see the apparent strengths of the SIEnKS MDA scheme.

When MDA is introduced, all iterative schemes increase their respective stability regions to include longer lags and larger

shifts of the DAW simultaneously. However, the SIEnKS has the largest stability region of all iterative estimators, extending
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Figure 14. Lag length L vertical axis, nonlinearity parameter γ horizontal axis. SDA, tuned inflation, shift S = 1, Ne = 21 and ∆t= 0.05.

to at least as large shifts as the other schemes for every lag setting. Likewise, the earlier distinction between the forecast and1005

filter statistics of the SIEnKS and the 4D-MAP schemes is readily apparent. Not only does the stability region of the SIEnKS

improve over the other schemes, it is is also generally more accurate in its predictive statistics at the end of long lag windows.

In order to get a finer picture of the effect of varying the shift S, we tune the lag and inflation simultaneously for each

estimator for their minimal forecast RMSE given a fixed shift; we plot the results of this tuning in Fig. 19. Given that all

iterative estimators uniformly diverge for a shift S ≥ 32, we only plot results for shifts in the range {2i}4i=0. Several important1010

features stand out in this plot. Firstly, we note that optimizing the lag, the performance of the SIEnKS is almost invariant in

the shift, similar to the performance of the EnKS. Particularly, this is because the sequential filter analysis of the SIEnKS

constrains the growth of the filter and forecast errors as the DAW shifts. Indeed, prediction of states at times tL−S+1, · · · , tL
arise from a filter ensemble at the previous time point; in the MDA scheme, the balancing weights for the observations of these

newly introduced states in the DAW are, furthermore, all equal to one, equivalent to a standard ETKF filter analysis.1015

Secondly, we notice that the filter estimates of the (Lin-)IEnKS actually improve with larger shifts – it should be noted,

however, that this is partially an artifact of computing the filter statistics over all times tL−S+1, · · · , tL using the observations

yL:L−S+1 simultaneously. This means that the filter estimates for all times except tL actually contain future information. This

is contrasted with the sequential analyses of the EnKS and the SIEnKS which only produce filter statistics with observations

from past and current times.1020
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Figure 15. Lag length L vertical axis, nonlinearity parameter γ horizontal axis. MDA, tuned inflation, shift S = 1, Ne = 21 and ∆t= 0.05.

MLES SDA results presented here for reference.

Thirdly, we notice that the Lin-IEnKS, while maintaining a similar prediction and filtering error to the IEnKS, is less stable

and performs almost uniformly less accurate than the IEnKS in its smoothing estimates. The SIEnKS, moreover, tends to

exhibit a slight improvement in stability and accuracy over the IEnKS therein.

Finally, it is immediately apparent how S > 1 strongly increases the prediction error for the 4D-MAP estimators. The longer

free forecasts for S > 1, used to shift the DAW, accumulate errors such that, for S ≥ 16, the Lin-IEnKS actually experiences fil-1025

ter divergence. The difference in the estimators’ performances is once again a consequence of how observations are assimilated

synchronously as in the EnKS / SIEnKS or asynchronously by default in the (Lin-)IEnKS.

Bearing all the above qualifications in mind, we analyze the performance of the estimators while varying the shift S. Firstly,

for all experimental settings the leading order cost of the SIEnKS MDA scheme is fixed at 2L ensemble simulations, whereas

for the other schemes the minimal cost is at 2L+S ensemble simulations. For configurations where S > 1, the SIEnKS thus1030

makes a dramatic cost reduction versus the other schemes in this aspect alone, requiring fewer ensemble simulations per cycle.

We consider that the leading order cost for the Lin-IEnKS is similar to the SIEnKS for S = 1, requiring only one more ensemble

simulation per cycle. However, the SIEnKS with a shift S = 16 maintains a prediction and posterior error that is comparable to

the Lin-/IEnKS for a shift of S = 1. This implies that the SIEnKS can maintain performance similar to the S = 1 IEnKS MDA

scheme, while using one sixteenth of the total cycles needed by the IEnKS to pass over the same observations in real-time.1035

If we assume that the observations can be assimilated synchronously, the above SIEnKS MDA scheme is thus able to run in
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Figure 16. MDA, RMSE and spread versus γ, lag and inflation optimized for minimum forecast RMSE.

its EnKS cycle over a long time series of observations while needing infrequent re-initalization with its smoothed estimates.

For an online forecast cycle, where the computational cost / prediction accuracy trade off is the most important consideration,

this once again demonstrates how the SIEnKS can balance this trade off, performing as well and often better than other fully

iterative estimators with a substantially lower leading order cost. Not only is each cycle less expensive in the SIEnKS than in1040

the (Lin-)IEnKS, but the SIEnKS reduces the number of required cycles by an order of magnitude.

5.6 Strongly nonlinear forecast error dynamics – lag versus ∆t

In all other numerical benchmarks, we focus on the scenario that the SIEnKS is designed for – namely, DA cycles in which the

forecast error evolution is weakly nonlinear. In this section, we instead demonstrate the limits of our single-iteration formalism

when the forecast error dynamics dominate the nonlinearity of the DA cycle. Specifically, we vary ∆t ∈ {0.05× i}10
i=1 while1045

the ensemble sizeNe = 21 and the shift S = 1 are fixed. The lag is varied as L ∈ {1+3i}17
i=0. We neglect nonlinear observation

operators in this section, though we include the finite-size adaptive inflation formalism, which is itself designed to ameliorate

the increasing nonlinearity in the forecast error dynamics. Single data assimilation and MDA configurations are considered for

the iterative schemes as usual.

Figure 20 demonstrates the effect of the increasing nonlinearity of the forecast error evolution with tuned inflation. Due to the1050

extreme nonlinearity for large ∆t, we raise the heat map scale for the RMSE and spread to 1.0, as an absolute cut-off between
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Figure 17. Lag length L vertical axis, shift S horizontal axis. SDA, tuned inflation, linear observations, ensemble size Ne = 21, ∆t= 0.05.

acceptable filter performance and filter divergence. Several features become apparent with the increasing forecast nonlinearity.

Firstly, the EnKS, which has performance dependent on the standard ETKF cycle, is fully divergent for ∆t≥ 0.2. This is

contrasted with all iterative schemes which maintain adequate performance for ∆t≤ 0.25. We note that the performance of

the SIEnKS and the Lin-IEnKS, in this first scenario, are nearly identical; this corresponds to the fact that they are formally1055

equivalent in this setting. However, appropriately, it is the fully iterative IEnKS that maintains the most stable and accurate

performance over the range of forecast lengths. Indeed, this demonstrates the benefit precisely of the iterative solution to

4D-MAP cost function for moderately nonlinear, non-Gaussian DA.

In Fig. 21, we repeat the same experiments as in Fig. 20 but using the finite-size adaptive inflation, rather than tuned

inflation, for each estimator. Once again, the efficacy of the finite-size formalism in ameliorating the nonlinearity of the forecast1060

error dynamics is demonstrated. In particular, all schemes except the SIEnKS see an overall improvement in their stability

region and often in their overall accuracy. The EnKS-N actually strongly outperforms the tuned inflation EnKS, extending

an adequate filter performance as far as ∆t≤ 0.35. Likewise, the IEnKS-N has a strongly enhanced stability region, though

increasingly suffers from catastrophic filter divergence outside of this zone. Notably, whereas the SIEnKS-N outperformed

the Lin-IEnKS-N for ∆t= 0.05, the Lin-IEnKS-N generally yields better performance for moderately to strongly nonlinear1065

forecast error dynamics. Indeed, the finite-size formalism appears to become incompatible with the design of the SIEnKS for

strongly nonlinear forecast error dynamics, as suggested by the widespread ensemble collapse and catastrophic divergence.
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Figure 18. Lag length L vertical axis, shift S horizontal axis. MDA, tuned inflation, linear observations, ensemble sizeNe = 21, ∆t= 0.05.

EnKS SDA results presented here for reference.

As a final experimental configuration, we consider how MDA affects the increasing nonlinearity of the forecast error dy-

namics. Figure 22 demonstrates the performance of these estimators in the MDA configuration with tuned inflation, where the

SDA results of the EnKS are pictured for reference. In particular, we see the usual increase in the estimators’ stability regions1070

over the SDA configuration. However, the improvement of the SIEnKS over the Lin-IEnKS is marginal to non-existent for

moderately to strongly nonlinear forecast error dynamics. The fully iterative IEnKS, furthermore, is again the estimator with

the largest stability region and greatest accuracy over a wide range of ∆t.

The results in this section indicate that, while the SIEnKS is very successful in weakly nonlinear forecast error dynamics,

the approximations used in this estimator strongly depend on the source of nonlinearity in the DA cycle. Particularly, when1075

the nonlinearity of the forecast error dynamics dominates the DA cycle, the approximations of the SIEnKS break down. It is

favorable thus to consider the Lin-IEnKS, or setting a low threshold for the iterations in the IEnKS, instead of applying the

SIEnKS in this regime. Notably, as the finite-size inflation formalism is designed for a scenario different than the SIEnKS, one

may consider instead designing adaptive covariance inflation in such a way that it exploits the design principles of the SIEnKS.

Such a study goes beyond the scope of this work and will be considered later.1080
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Figure 19. MDA, RMSE and spread versus shift S, lag L optimized for minimum forecast RMSE in Fig. 18.

6 Conclusion

In this long work, we achieve our three primary objectives. Firstly, we provide a detailed review of the state-of-the-art for

sequential, ensemble-variational Kalman filters and smoothers in perfect models within the Bayesian MAP formalism of the

IEnKS. Secondly, using this framework, we rigorously derive our single-iteration formalism as a novel approximation of the

Bayesian MAP estimation, explaining how this relates to other well-known smoothing schemes and how its design is differ-1085

entiated in a variety of contexts. Thirdly, using the high-performance numerical framework of DataAssimilationBenchmarks.jl

(Grudzien et al., 2021), we extensively demonstrate how the SIEnKS has a unique advantage in balancing the computational

cost / prediction accuracy trade off in short-range forecast applications. Pursuant to this, we provide a cost analysis and pseudo-

code for all of the schemes studied in this work, in addition to the open-source implementations available in the supporting Julia

package. Together, this work provides a practical reference for a variety of topics at the state-of-the-art in ensemble-variational1090

smoothing, which now includes our fully validated SIEnKS scheme.

The rationale of the SIEnKS is, once again, to optimize an iterative Bayesian MAP estimation in a cost-effective design

for online, short-range forecast applications, where the forecast error dynamics are weakly nonlinear. The central result in

this study is the novel SIEnKS MDA scheme, which not only improves the forecast accuracy and posterior stability in this

regime, but also simultaneously reduces the leading order cost versus the 4D-MAP MDA schemes under consideration. This1095

novel MDA scheme is demonstrated to produce significant performance advantages in the simple setting where there is a linear
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Figure 20. Lag length L vertical axis, ∆t horizontal axis. SDA, tuned inflation, ensemble size Ne = 21.

observation operator, and especially when the shift S can be taken greater than one. Not only is each cycle of the SIEnKS MDA

scheme significantly less expensive than the other estimators for S > 1, the performance while varying S tends to be invariant;

this crucial aspect means that one can, in principle, reduce the number of cycles actually needed by the estimator to produce

forecasts in real-time. Our scheme also appears better equipped than the 4D-MAP MDA estimation to handle highly nonlinear1100

observation operators, where it maintains greater accuracy and is more robust to the effects of local minima. Separately we

find that, in our target regime, the single-iteration formalism is cost-effective for optimizing hyper-parameters of the estimation

scheme, as with the SIEnKS-N.

The above successes of the SIEnKS come with three important qualifications, notably that: (i) we have focused on syn-

chronous DA in this study, assuming that we can sequentially assimilate observations before producing a prediction step; (ii)1105

we have not studied localization or hybridization, which are widely used in ensemble-based estimators to overcome the curse of

dimensionality for realistic geophysical models; and (iii) we have relied upon the perfect model assumption, whereas realistic

forecast settings include significant modelling errors. These restrictions come by necessity, to limit the scope of an already

lengthy study. However, we note that the SIEnKS is capable of asynchronous DA, as already discussed in Sec. 4.4. Likewise, it

is possible that some of the issues faced by the IEnKS in integrating localization / hybridization (Bocquet, 2016) may actually1110

be ameliorated by the design principles of the SIEnKS. Similarly, it is possible that an extension of the single-iteration for-

malism could provide a novel alternative to other iterative ensemble smoothers designed for model error, such as the IEnKS-Q
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Figure 21. Lag length L vertical axis, ∆t horizontal axis. SDA, adaptive inflation, ensemble size Ne = 21.

(Sakov et al., 2018; Fillion et al., 2020), EnKS expectation maximization schemes (Pulido et al., 2018) or the family of OSA

smoothers (Gharamti et al., 2015; Ait-El-Fquih et al., 2016; Raboudi et al., 2018).

For the reasons mentioned above, this initial study provides a number of novel directions in which our single-iteration1115

formalism can be extended. Localization and hybridization are both prime targets to translate the benefits of the SIEnKS to

an operational short-range forecasting setting. Likewise, asynchronous DA design is an important operational topic for this

estimator, with a variety of possible ways that one might design such a system. In addition, noting that the finite-size adaptive

inflation formalism is designed to perform in a different regime than the SIEnKS and is not fully compatible with MDA

schemes, developing an adaptive inflation and / or model error estimation based on the design principles of the SIEnKS is an1120

important direction of future study. Having currently demonstrated the initial success of this single-iteration formalism, each

of these above directions can be considered in a devoted work. We intend that the framework provided in this manuscript will

guide these future studies, and will provide a robust basis of comparison for the SIEnKS with other schemes at the state-of-

the-art.
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Figure 22. Lag length L vertical axis, ∆t horizontal axis. MDA, tuned inflation, ensemble size Ne = 21.
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Appendix A: Algorithm pseudo-code1125

Algorithm 1 Ensemble transform (ET)

Require: Ensemble matrix E ∈ RNx×Ne , observation mapH, observation error covariance R ∈ RNy×Ny and observation vector y

1: Y =H (E)

2: ŷ = Y1/Ne

3: S = R−
1
2
(
Y− ŷ1>

)
4: δ̂ = R−

1
2 (y− ŷ)

5: ∇J̃ =−S>δ̂

6: H̃J̃ = (Ne− 1)INe + S>S

7: w =−H̃−1

J̃ ∇J̃
8: T = H̃

− 1
2
J̃

9: return T,w

Algorithm 2 Random mean-preserving orthogonal matrix (RO)

Require: Ensemble size Ne, let QR represents the QR algorithm.

1: Let Q ∈ R(Ne−1)×(Ne−1) with entries drawn iid fromN (0,1)

2: Q,R = QR(Q)

3: U =

1 0

0 Q


4: Let {ai}Ne

i=1 be an arbitrary orthogonal basis of RNe up to the requirement that a1 = 1/
√
Ne; let A = [ai]

Ne
i=1

5: return U = AUA>

Algorithm 3 Ensemble update (EU)

Require: Ensemble matrix E ∈ RNx×Ne , transform T, weightsw and mean-preserving orthogonal matrix U.

1: x̂= E1/Ne

2: X = E− x̂1>

3: return E = x̂1>+ X
(
w1>+

√
Ne− 1TU

)
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Algorithm 4 Covariance inflation (CI)

Require: Ensemble matrix E ∈ RNx×Ne , inflation λ.

1: x̂= E1/Ne

2: X = E− x̂1>

3: return E = x̂1>+λX

Algorithm 5 ETKF

Require: Observation y1, filter ensemble Efilt
0 ∈ RNx×Ne , inflation λ.

Require: Let ET, RO, EU and CI represent Algorithms 1, 2, 3 and 4, respectively.

1: Efore
1 =M1

(
Efilt

0

)
2: T,w = ET

(
Efore

1 ,H1,R1,y1

)
3: U = RO(Ne)

4: Efilt
1 = EU

(
Efore

1 ,T,w,U
)

5: Efilt
1 = CI

(
Efilt

1 ,λ
)

Require: Store Efilt
0 := Efilt

1 for the next cycle

Algorithm 6 Lag L, shift S, EnKS

Require: Lag= L, shift= S, observations yL:L−S+1, smoother ensemble states Esmth
L−S:0, ensemble size Ne, inflation λ.

Require: Let ET, RO, EU and CI represent Algorithms 1, 2, 3 and 4 respectively.

1: Efilt
L−S := Esmth

L−S

2: for k ∈ {L−S+ 1, · · · ,L} do

3: Efore
k =Mk(Efilt

k−1)

4: T,w = ET
(
Efore

k ,Hk,Rk,yk

)
5: U = RO(Ne)

6: Efilt
k = EU

(
Efore

k ,T,w,U
)

7: for j ∈ {0, · · · ,k− 1} do

8: Esmth
j = EU

(
Esmth

j ,T,w,U
)

9: end for

10: Efilt
k = CI

(
Efilt

k ,λ
)

11: Esmth
k := Efilt

k

12: end for

Require: Store Esmth
L−S:0 := Esmth

L:S for the next cycle
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Algorithm 7 Gauss-Newton, lag L shift S IEnKS, SDA transform version

Require: Lag= L, shift=S, observations yL:L−S+1.

Require: Esmth
0 ∈ RNe×Ne

Require: Let RO, EU and CI represent algorithms 2, 3 and 4 re-

spectively.

Require: Parameters tol, jmax, inflation λ.

1: T := INe

2: E0 := Esmth
0

3: j = 0,w = 0

4: loop

5: for k ∈ {1, · · · ,L} do

6: Ek =Mk(Ek−1)

7: if k ∈ {L−S+ 1, · · · ,L} then

8: Yk =Hk(Ek)

9: ŷk = Yk1/Ne

10: Sk = R
− 1

2
k

(
Yk − ŷk1

>)T−1

11: δ̂k = R
− 1

2
k (yk − ŷk)

12: end if

13: end for

14: ∇J̃ = (Ne− 1)w−∑L
k=L−S+1 S>k δ̂k

15: H̃J̃ = (Ne− 1)INe +
∑L

k=L−S+1 S>k Sk

16: ∆w = H̃−1

J̃ ∇J̃

17: w :=w−∆w

18: j := j+ 1

19: if ‖∆w ‖< tol or j = jmax then

20: break loop

21: else

22: T = H̃
− 1

2
J̃

23: E0 = EU
(
Esmth

0 ,T,w,INe

)
24: end if

25: end loop

26: T = H̃
− 1

2
J̃

27: U = RO(N)

28: E0 := EU
(
Esmth

0 ,T,w,U
)

29: for k = 1, · · · ,L+S do

30: Ek =Mk(Ek−1)

31: end for

32: Esmth
L−S:0 := EL−S:0

33: Efilt
L:L−S+1 := EL:L−S+1

34: Efore
L+S:L+1 := EL+S:L+1

35: Esmth
S = CI

(
Esmth

S ,λ
)

Require: Esmth
0 := Esmth

S for the next cycle.
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Algorithm 8 Lag L shift S SIEnKS, SDA version

Require: Lag= L, shift= S, observations yL:L−S+1, ensemble posterior states Esmth
0 and Esmth

L−S , inflation λ.

Require: Let ET, RO, EU and CI represent Algorithms 1, 2, 3 and 4, respectively.

1: Efilt
L−S := Esmth

L−S

2: for k ∈ {L−S+ 1, · · · ,L} do

3: Efore
k =Mk(Efilt

k−1)

4: T,w = ET
(
Efore

k ,Hk,Rk,yk

)
5: Uk = RO(N)

6: Efilt
k = EU

(
Efore

k ,T,w,Uk

)
7: Esmth

0 = EU
(
Esmth

0 ,T,w,Uk

)
8: end for

9: Esmth
0 := CI

(
Esmth

0 ,λ
)

10: for k = 1, · · · ,L do

11: Esmth
k =Msmth

k (Ek−1)

12: end for

Require: Esmth
0 := Esmth

S , Esmth
L−S := Esmth

L for the next cycle.
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Algorithm 9 Maximum Likelihood Ensemble Transform (MLET)

Require: Ensemble matrix E ∈ RNx×Ne , observation mapH, observation error covariance R ∈ RNy×Ny and observation vector y.

Require: Parameters tol, jmax

1: Require:

2: T = INe

3: j = 0,w = 0

4: E0 = E

5: loop

6: Y =H (E)

7: ŷ = Y1/Ne

8: S = R−
1
2
(
Y− ŷ1>

)
T−1

9: δ̂ = R−
1
2 (y− ŷ)

10: ∇J̃ = (Ne− 1)w−S>δ̂

11: H̃J̃ = (Ne− 1)INe + S>S

12: ∆w = H̃−1

J̃ ∇J̃
13: w :=w−∆w

14: if ‖∆w ‖< tol or j = jmax then

15: break loop

16: else

17: T = H̃
− 1

2
J̃

18: E = EU(E0,T,w,INe)

19: end if

20: end loop

21: T = H̃
− 1

2
J̃

22: return T,w
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Algorithm 10 Finite-size ensemble transform, Gauss-Newton approximation (FSET)

Require: Ensemble matrix E ∈ RNx×Ne , observation mapH, observation error covariance R ∈ RNy×Ny and observation vector y.

Require: Parameters tol, jmax

1: T = INe

2: j = 0,w = 0

3: E0 = E

4: εNe = 1 + 1/Ne, Neff =Ne + 1

5: loop

6: Y =H (E)

7: ŷ = Y1/Ne

8: S = R−
1
2
(
Y− ŷ1>

)
T−1

9: δ̂ = R−
1
2 (y− ŷ)

10: ζ = 1/
(
εNe +w>w

)
11: ∇J̃ = ζ (Neff)w−S>δ̂

12: H̃J̃ = (Ne− 1)INe + S>S

13: ∆w = H̃−1

J̃ ∇J̃
14: w :=w−∆w

15: j := j+ 1

16: if ‖∆w ‖< tol or j = jmax then

17: break loop

18: else

19: T = H̃
− 1

2
J̃

20: E = EU(E0,T,w,INe)

21: end if

22: end loop

23: ζ = 1/
(
εN +w>w

)
24: H̃J̃ =Neff

(
ζIN − 2ζ2ww>

)
+ S>S

25: T = H̃
− 1

2
J̃

26: return T,w
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Algorithm 11 Gauss-Newton, lag L shift S IEnKS-N, SDA transform version

Require: All lines are identical to Algorithm 7 with the exception of the following lines:

0: εNe = 1 + 1
Ne

, Neff =Ne + 1

14: ζ = 1/
(
εNe +w>w

)
,

∇J̃ = ζ (Neff)w−∑L
k=L−S+1 S>k δ̂k

15: H̃J̃ = (Neff − 1)IN +
∑L

k=L−S+1 S>k Sk

26: ζ = 1/
(
εNe +w>w

)
,

H̃J̃ =Neff

(
ζINe − 2ζ2ww>

)
+
∑L

k=L−S+1 S>k Sk,

T = H̃
− 1

2
J̃

35:

Algorithm 12 Lag L, shift S SIEnKS, MDA version

Require: Lag= L, shift= S, observations yL:1, MDA conditional

ensemble Emda
0 , ensemble size Ne, inflation λ.

Require: Let ET, RO, EU and CI represent Algorithms 1, 2, 3 and

4, respectively.

Require: Let {βk}Lk=1 and {ηk}Lk=1 be the multiple data assimila-

tion and balancing weights, respectively.

1: Ebal
0 := Emda

0

2: for k = 1, · · · ,L do

3: U = RO(Ne)

4: Ebal
k =Mk(Ebal

k−1)

5: if k ∈ {L−S+ 1, · · · ,L} then

6: Efore
k := Ebal

k

7: end if

8: T,w = ET
(
Ebal

k ,Hk,Rk/ηk,yk

)
9: Ebal

k = EU
(
Ebal

k ,T,w,U
)

10: if k ∈ {L−S+ 1, · · ·L} then

11: Efilt
k := Ebal

k

12: end if

13: for k = 0, · · · ,k− 1 do

14: Ebal
k = EU

(
Ebal

k ,T,w,U
)

15: end for

16: if k=S then

17: Emda
0 = Ebal

0

18: Emda
S = Ebal

k

19: end if

20: end for

21: Esmth
0:L−S := Ebal

0:L−S

22: for k = S+ 1, · · · ,L do

23: U = RO(Ne)

24: Emda
k =Mk(Emda

k−1)

25: T,w = ET
(
Emda

k ,Hk,Rk/βk,yk

)
26: Emda

k = EU
(
Emda

k ,T,w,U
)

27: Emda
0 = EU

(
Emda

0 ,T,w,U
)

28: end for

29: Emda
0 = CI

(
Emda

0 ,λ
)

30: for k = 1, · · · ,S do

31: Emda
k =Mk(Emda

k−1)

32: end for

Require: Store Emda
0 = Emda

S for the next cycle

57

https://doi.org/10.5194/gmd-2021-306
Preprint. Discussion started: 6 October 2021
c© Author(s) 2021. CC BY 4.0 License.



Algorithm 13 Gauss-Newton, lag L shift S IEnKS, MDA transform version

Require: Lag= L, shift=S, observations yL:1, conditional MDA

ensemble Emda
0 , ensemble size Ne.

Require: Let RO, EU and CI represent algorithms 2, 3 and 4, re-

spectively.

Require: Let {βk}Lk=1 and {ηk}Lk=1 be the multiple data assimila-

tion and balancing weights, respectively.

Require: Parameters tol, jmax, inflation λ.

1: T = INe

2: j = 0,w = 0

3: for stage = 1,2 do

4: E0 = Emda
0

5: if stage = 1 then

6: θk = ηk

7: else

8: θk = βk

9: end if

10: loop

11: for k ∈ {1, · · · ,L} do

12: Ek =Mk(Ek−1)

13: ŷk =Hk(Ek)1/Ne

14: Yk =Hk(Ek)

15: Sk =
√
θkR

− 1
2

k

(
Yk − ŷk1

>)T−1

16: δ̂k =
√
θkR

− 1
2

k (yk − ŷk)

17: end for

18: ∇J̃ = (Ne− 1)w−∑L
k=L−S+1 S>k δ̂k

19: H̃J̃ = (Ne− 1)INe +
∑L

k=L−S+1 S>k Sk

20: ∆w = H̃−1

J̃ ∇J̃

21: w :=w−∆w

22: j := j+ 1

23: if ‖∆w ‖< tol or j = jmax then

24: break loop

25: else

26: T = H̃
− 1

2
J̃

27: E0 = EU
(
Emda

0 ,T,w,INe

)
28: end if

29: end loop

30: T = H̃
− 1

2
J̃

31: U = RO(Ne)

32: E0 := EU
(
Emda

0 ,T,w,U
)

33: if stage = 1 then

34: for k = 1, · · · ,L+S do

35: Ek =Mk(Ek−1)

36: end for

37: Esmth
L−S:0 := EL−S:0

38: Efilt
L:L−S+1 := EL:L−S+1

39: Efore
L+1:L+S := EL+S:L+1

40: end if

41: end for

42: for k = 1, · · · ,S do

43: Ek =Mk(Ek−1)

44: end for

45: Esmth
S = CI

(
Esmth

S ,λ
)

Require: Esmth
0 := Esmth

S for the next cycle.

58

https://doi.org/10.5194/gmd-2021-306
Preprint. Discussion started: 6 October 2021
c© Author(s) 2021. CC BY 4.0 License.



Code availability. The current version of DataAssimilationBenchmarks.jl is available on the project Github:

https://github.com/cgrudz/DataAssimilationBenchmarks.jl

and in the Julia General Registries under the Apache-2.0 License. The exact version of the package used to produce the results used in this

paper is archived on Zenodo (Grudzien et al., 2021), as are scripts to process data and produce the plots for all the simulations presented in

this paper.1130
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