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Abstract. Ensemble-variational methods form the basis of
the state-of-the-art for nonlinear, scalable data assimilation,
yet current designs may not be cost-effective for real-time,
short-range forecast systems. We propose a novel estimator
in this formalism that is designed for applications in which5

forecast error dynamics are weakly nonlinear, such as synop-
tic scale meteorology. Our method combines the 3D sequen-
tial filter analysis and retrospective re-analysis of the classic
ensemble Kalman smoother with an iterative ensemble sim-
ulation of 4D smoothers. To rigorously derive and contextu-10

alize our method, we review related ensemble smoothers in
a Bayesian maximum a posteriori narrative. We then develop
and inter-compare these schemes in the open-source Julia
package DataAssimilationBenchmarks.jl, with pseudo-code
provided for their implementations. This numerical frame-15

work, supporting our mathematical results, produces exten-
sive benchmarks demonstrating significant performance ad-
vantages of our proposed technique. Particularly, our single-
iteration ensemble Kalman smoother (SIEnKS) is shown to
improve prediction / analysis accuracy and to simultane-20

ously reduce the leading-order computational cost of iterative
smoothing in a variety of test cases relevant for short-range
forecasting. This long work presents our novel SIEnKS and
provides a theoretical and computational framework for the
further development of ensemble-variational Kalman filters25

and smoothers.

1 Introduction

1.1 Context

Ensemble-variational methods form the basis of the state-of-
the-art for nonlinear, scalable data assimilation (DA) (Asch 30

et al., 2016; Bannister, 2017). Estimators following an en-
semble Kalman filter (EnKF) analysis include the seminal
maximum likelihood filter and 4DEnVAR (Zupanski, 2005;
Liu et al., 2008), the ensemble randomized maximum like-
lihood method (EnRML) (Gu and Oliver, 2007; Chen and 35

Oliver, 2012; Raanes et al., 2019b), the iterative ensemble
Kalman smoother (IEnKS) (Sakov et al., 2012; Bocquet and
Sakov, 2013, 2014) and ensemble Kalman inversion (EKI)
(Iglesias et al., 2013; Schillings and Stuart, 2018; Kovachki
and Stuart, 2019). Unlike traditional 3D-VAR and 4D-VAR, 40

which use the adjoint-based approximation for the gradient
of the Bayesian maxiumum a posteriori (MAP) cost func-
tion, these EnKF-based approaches utilize an ensemble of
nonlinear forecast model simulations to approximate the tan-
gent linear model. The gradient can then be approximated 45

by, e.g., finite differences from the ensemble mean as in the
bundle variant of the IEnKS (Bocquet and Sakov, 2014). The
ensemble approximation can thus obviate constructing tan-
gent linear and adjoint code for nonlinear forecast and obser-
vation models, which comes at a major cost in development 50

time for operational DA systems.
These EnKF-based, ensemble-variational methods com-

bine: the high-accuracy of the iterative solution to the
Bayesian MAP formulation of the nonlinear DA problem
(Sakov et al., 2012; Bocquet and Sakov, 2014); the rela- 55

tive simplicity of model development and maintenance in
ensemble-based DA (Kalnay et al., 2007); the ensemble anal-
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ysis of time-dependent errors (Corazza et al., 2003); and
a variational optimization of hyper-parameters for, e.g., in-
flation (Bocquet et al., 2015), localization (Lorenc, 2003)
and surrogate models (Bocquet et al., 2020) to augment the
estimation scheme. However, while the above schemes are5

promising for moderately nonlinear and non-Gaussian DA,
an obstacle to their use in real-time, short-range forecast
systems lies in the computational barrier of simulating the
nonlinear forecast model in the ensemble sampling proce-
dure. In order to produce forecast, filter and re-analyzed10

smoother statistics, these estimators may require multiple
runs of the ensemble simulation over the data assimilation
window (DAW), consisting of lagged past and current times.

When nonlinearity in the DA cycle is not dominated by
the forecast error dynamics, as in synoptic scale meteorol-15

ogy, an iterative optimization over the forecast simulation
may not produce a cost-effective reduction of forecast error.
Particularly, when the linear-Gaussian approximation for the
forecast error dynamics is adequate, nonlinearity in the DA
cycle may instead be dominated by the nonlinearity in the20

observation model, the nonlinearity in the hyper-parameter
optimization or the nonlinearity in temporally interpolating a
re-analyzed, smoothed solution over the DAW. In this setting,
our formulation of iterative, ensemble-variational smoothing
has substantial advantages in balancing the computational25

cost / prediction accuracy trade-off.

1.2 Objectives and outline

This long paper achieves three connected objectives. Firstly,
we review and update a variety of already published
smoother algorithms in a narrative of Bayesian MAP estima-30

tion. Secondly, we use this framework to derive and contextu-
alize our estimation technique. Thirdly, we develop all algo-
rithms and our test cases in the open-source, Julia language
(Bezanson et al., 2017) package DataAssimilationBench-
marks.jl (Grudzien et al., 2021). This numerical framework,35

supporting our mathematical results, produces extensive sim-
ulation benchmarks, validating the performance advantages
of our proposed technique. These simulations likewise estab-
lish fundamental performance metrics for all estimators and
the Julia package DataAssimilationBenchmarks.jl.40

Our proposed technique combines the 3D sequential
filter analysis and retrospective re-analysis of the clas-
sic ensemble Kalman smoother (EnKS) (Evensen and
Van Leeuwen, 2000) with an iterative ensemble simulation
of 4D smoothers. Following a 3D filter analysis and retro-45

spective re-analysis of lagged states, we re-initialize each
subsequent smoothing cycle with a re-analyzed, lagged en-
semble state. The resulting scheme is a “single-iteration”
ensemble Kalman smoother, denoted such as it produces
its forecast, filter and re-analyzed smoother statistics with a50

single iteration of the ensemble simulation over the DAW.
By doing so, we seek to minimize the leading-order cost
of ensemble-variational smoothing in real-time, geophysi-

cal forecast models, i.e., the ensemble simulation. However,
the scheme can iteratively optimize the sequential filter cost 55

functions in the DAW without computing additional itera-
tions of the ensemble simulation.

We denote our framework single-iteration smoothing,
while the specific implementation presented here is denoted
the single-iteration ensemble Kalman smoother (SIEnKS). 60

For linear-Gaussian systems, with the perfect model hypoth-
esis, the SIEnKS is a consistent Bayesian estimator, albeit
one that uses redundant model simulations. When the fore-
cast error dynamics are weakly nonlinear, yet other aspects
of the DA cycle are moderately to strongly nonlinear, we 65

demonstrate that the SIEnKS has a prediction and analysis
accuracy that is comparable to, and often better than, some
traditional, 4D iterative smoothers. However, the SIEnKS has
a numerical cost that scales in iteratively optimizing sequen-
tial filter cost functions for the DAW, i.e., the cost of the 70

SIEnKS scales in matrix inversions in the ensemble dimen-
sion rather than in the cost of ensemble simulations, making
our methodology suitable for operational short-range fore-
casting.

Over long DAWs, the performance of iterative smoothers 75

can degrade significantly due to the increasing nonlinearity in
temporally interpolating the posterior estimate over the win-
dow of lagged states. Furthermore, with a standard, single
data assimilation (SDA) smoother, each observation is only
assimilated once meaning that new observations are only dis- 80

tantly connected to the initial conditions of the ensemble sim-
ulation; this can introduce many local minima to a smoother
analysis, strongly affecting an optimization (Fillion et al.,
2018, and references therein). To handle the increasing non-
linearity of the DA cycle in long DAWs, we derive a novel 85

form of the method of multiple data assimilation (MDA),
previously derived in a 4D stationary and sequential DAW
analysis (Emerick and Reynolds, 2013; Bocquet and Sakov,
2014, respectively). Our new MDA technique exploits the
single-iteration formalism to “partially” assimilate each ob- 90

servation within the DAW with a sequential 3D filter analysis
and retrospective re-analysis. Particularly, the sequential fil-
ter analysis constrains the ensemble simulation to the obser-
vations while temporally interpolating the posterior estimate
over the DAW – this constraint is shown to improve the fil- 95

ter and forecast accuracy at the end of long DAWs, as well
as the stability of the joint posterior estimate versus the 4D
approach. This key result is at the core of how the SIEnKS
is able to out-perform the predictive and analysis accuracy of
4D smoothing schemes while, at the same time, maintaining 100

a lower leading-order computational cost.
This work is organized as follows. Section 2 introduces

our notations. Section 3 reviews the mathematical formal-
ism for the ensemble transform Kalman filter (ETKF) based
on the LETKF formalism of Hunt et al. (2007); Sakov and 105

Oke (2008b); and Sakov and Bertino (2011). Subsequently,
we discuss the extension of the ETKF to fixed-lag smooth-
ing in terms of: (i) the right-transform EnKS; (ii) the IEnKS;
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and (iii) the SIEnKS; each as different approximate solu-
tions to the Bayesian MAP problem. Section 4 discusses sev-
eral applications that distinguish the performance of these
estimators. Section 5 provides an algorithmic cost analy-
sis for these estimators and demonstrates forecast, filter and5

smoother benchmarks for the EnKS, the IEnKS and the
SIEnKS in a variety of DA configurations. Section 6 summa-
rizes these results and discusses future opportunities for the
single-iteration smoother framework. Appendix A contains
pseudo-code for the algorithms presented in this work, which10

are implemented in the open-source Julia package DataAs-
similationBenchmarks.jl (Grudzien et al., 2021). Note that,
due to the challenges in formulating localization / hybridiza-
tion for the IEnKS (Bocquet, 2016), we neglect a treatment
of these techniques in this initial study of the SIEnKS, though15

this will be treated in a future work.

2 Notations

Matrices are denoted with upper-case bold and vectors with
lower-case bold and italics. The standard Euclidean vector
norm is denoted ‖ v ‖:=

√
v>v. For a symmetric, positive-20

definite matrix A ∈ RN×N , define the Mahalanobis vector
norm with respect to A (Mahalanobis, 1936) as

‖ v ‖A:=
√
v>A−1v. (1)

For a generic matrix A ∈ RN×M with full column rank M ,
denote the pseudo-inverse25

A† :=
(
A>A

)−1
A>. (2)

When A has full column rank as above, define the Maha-
lanobis vector “norm” with respect to G = AA> as

‖ v ‖G:=

√
(A†v)

>
(A†v). (3)

Note that when G does not have full column rank, i.e., N >30

M , this is not a true norm on RN as it is degenerate in the
null space of A†. Instead this is a lift of a non-degenerate
norm in the column span of A to RN . For v in the column
span of A,

v = Aw, (4a)35

‖ v ‖G =‖w ‖, (4b)

for a vector of weights w ∈RM .
Let x denote a random vector of physics-based model

states. Assume that an initial, prior probability density func-
tion (“density” henceforth) on the model state p(x0) is given,40

with a hidden Markov model of the form

xk =Mk (xk−1) , (5a)
yk =Hk (xk) + εk, (5b)

determining the distribution of future states, with the de-
pendence on the time tk denoted by the subscript k. For 45

simplicity, assume that ∆t := tk − tk−1 is fixed for all k,
though this is not a required restriction in any of the fol-
lowing arguments. The dimensions of the above system are
denoted: (i) Nx the model state dimension xk ∈ RNx ; (ii)
Ny the observation vector dimension yk ∈ RNy ; and (iii) 50

Ne the ensemble-size, where an ensemble matrix is given as
Ek ∈ RNx×Ne . State model and observation variables are re-
lated via the (possibly) nonlinear observation operator Hk :
RNx 7→ RNy . Observation noise εk is assumed to be an un-
biased, white sequence such that 55

E
{
εkε
>
l

}
= δk,lRk, (6)

where E is the expectation, Rk ∈ RNy×Ny is the observation
error covariance matrix at time tk and δk,l denotes the Kro-
necker delta function on the indices k and l. The error covari-
ance matrix Rk is assumed to be invertible without losing 60

generality.
The above configuration refers to a perfect model hypoth-

esis (Grudzien and Bocquet, 2021) in which the transition
probability for dx⊂ RNx is written

P (xk ∈ dx|xk−1) = δMk(xk−1)(dx), (7) 65

with δv referring to the Dirac measure at v ∈ RNx . Similarly,
we say that the transition “density” is proportional as

p(xk|xk−1)∝ δ{xk −Mk (xk−1)} , (8)

where δ represents the Dirac distribution. The Dirac measure
is singular with respect to Lebesgue measure, so this is sim- 70

ply a convenient abuse of notation that can be made rigorous
with the generalized function theory of distributions (Taylor,
1996)[see section 3.4]. The perfect model assumption is uti-
lized throughout this work to frame the studied assimilation
schemes in a unified manner, although this is a highly simpli- 75

fied framework for a realistic geophysical DA problem. Ex-
tending the single-iteration formalism to the case of model
errors will be studied in a future work.

Define the multivariate Gaussian density as

n(z|z,B) := 80

1√
(2π)

Nz det(B)
exp

{
−1

2
(z− z)

>
B−1 (z− z)

}
. (9)

In the case where: (i) Mk := Mk and Hk := Hk are both
linear transformations; (ii) the observation likelihood is given
as

p(yk|xk) := n(yk|Hkxk,Rk); (10) 85

and (iii) the first prior is given as

p(x0) := n(x0,B0); (11)
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the DA configuration is of a perfect, linear-Gaussian model.
This is a further restriction of the perfect model assumption
in which many classical filtering results are derived, though
is only a heuristic for nonlinear and erroneous geophysical
DA.5

For a time series of model or observation states, with l > k,
define the notations

xl:k := {xl,xl−1, · · · ,xk} , (12a)
yl:k := {yl,yl−1, · · · ,yk} . (12b)

To distinguish between the various conditional probabilities10

under consideration, we make the following definitions. Let
l > k, then the forecast density is denoted

p(xl|xl−1:1,yl−1:1), (13)

the filter density is denoted

p(xl|yl:1) (14)15

and a smoother density for xk given observations yl:1 is de-
noted

p(xk|yl:1). (15)

In the above, the filter and smoother densities are marginals
of the joint posterior density20

p(xl:1|yl:1). (16)

The Markov hypothesis implies that the forecast density can
furthermore be written as,

p(xk|xk−1:1,yk−1:1) = p(xk|xk−1). (17)

For a fixed-lag smoother, define a shift of length S ≥ 125

analysis times and a lag of length L≥ S analysis times,
where time tL denotes the present time. We use an algo-
rithmically stationary DAW throughout the work, referring to
the time indices {t1, · · · , tL}. Smoother schemes estimate the
joint posterior density p(xL:1|yL:1) or one of its marginals30

in a DA cycle; after each estimate is produced, the DAW is
subsequently shifted in time by S×∆t, and all states are
re-indexed by tk := tk+S to begin the next DA cycle. For a
lag of L and a shift of S, the observation vectors at times
{tL−S+1, · · · , tL} correspond to observations newly enter-35

ing the DAW at time tL. When S = L, the DAWs are dis-
connected and adjacent in time, whereas for S < L there is
an overlap between the estimated states in sequential DAWs.
Figure 1 provides a schematic of how the DAW is shifted for
a lag of L= 5 and shift S = 2. Following the convention in40

DA that there is no observation at time zero, in addition to the
DAW, {t1, · · · , tL}, states at time t0 are estimated or utilized
to connect estimates between adjacent / overlapping DAWs.

Define the background mean and covariance as

xi
k := E

{
xi
k

}
, (18a)45

Bi
k := E

{[
xi
k −xi

k

][
xi
k −xi

k

]>}
, (18b)

where the label i refers to the density with respect to which
the expectation is taken. The ensemble matrix Ei

k ∈ RNx×Ne

is likewise given a label i denoting the conditional density
from which the ensemble is approximately distributed ac- 50

cording to. The ensemble Efore
k is assumed to have columns

sampled independent and identically distributed (iid) accord-
ing to the forecast density, Efilt

k is assumed to have columns
iid according to the filter density and Esmth

k|L is assumed to
have columns iid according to a smoother density for the 55

state at time tk given observations up to time tL. Multiple
data assimilation schemes will also utilize a balancing en-
semble Ebal

k and an MDA ensemble Emda
k to be defined in

Section 4.3; time indices and labels may be suppressed when
the meaning is still clear in context. Note that, in realistic 60

geophysical DA the iid assumption rarely holds in practice
and, even in the perfect, linear-Gaussian model, the above
identifications are approximations due to the sampling error
in estimating the background mean and covariance.

The forecast model is given by Ei
k+1 =Mk+1

(
Ej
k

)
, 65

referring to the action of the map being applied column-
wise, and where the type of ensemble input and output
i, j ∈ {fore,filt,smth,bal,mda} (forecast / filter / smoother
/ balancing / MDA) is specified according to the estima-
tion scheme. Define the composition of the forecast model 70

Ei
l =Ml◦· · ·◦Mk =Ml:k

(
Ej
k−1

)
. Let 1 denote the vector

with all entries equal to one, such that the ensemble-based,
empirical mean, the ensemble perturbation matrix and the
ensemble-based, empirical covariance are each defined by
linear operations with conformal dimensions as follows 75

x̂i
k := Ei

k1/Ne, (19a)

Xi
k := Ei

k − x̂i
k1
>

= Ei
k

(
INe
−11>/Ne

)
, (19b)

Pi
k := Xi

k

(
Xi
k

)>
/(Ne− 1) , (19c)

distinguished from the background mean xi
i and background 80

covariance Bi
k.

3 Deriving the SIEnKS

The ETKF analysis (Hunt et al., 2007) is utilized in the fol-
lowing for its popularity and efficiency, and in order to em-
phasize the commonality and differences between other well- 85

known smoothing schemes. However, the single-iteration
framework is not restricted to any particular filter analysis
and other types of filter analysis, such as the deterministic
EnKF (DEnKF) of Sakov and Oke (2008a), are compatible
with the formalism and may be considered in future studies. 90

3.1 The ETKF

The filter problem is expressed recursively in the Bayesian
MAP formalism with an algorithmically stationary DAW as
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tL−3 tL−2

yL−3 yL−2

tL−1 tL

yL−1 yL

tL+1 tL+2

yL+1 yL+2

tL−2

tL

tL+2

S∆t

S∆t

L∆t

Figure 1. Three cycles of a shift S = 2, lag L= 5 smoother, cycle number is increasing top to bottom. Time indices on the left-hand margin
indicate the current time for the associated cycle of the algorithm. New observations entering the current DAW are shaded black. The initial
DAW ranges from {tL−6, · · · , tL−2}. In the next cycle, this is shifted to {tL−4, · · · , tL}, and thereafter is shifted to {tL−2, · · · , tL+2}. States
at the “zero” time indices: tL−7 in the first cycle, tL−5 in the second cycle, and tL−3 in the third cycle, are estimated in addition to states in
the DAW to connect the cycles in sequential DAWs.

follows. Suppose that there is a known filter density p(x0|y0)
from a previous DA cycle. Using the Markov hypothesis and
the independence of observation errors, we write the filter
density up to proportionality via Bayes’ law

p(x1|y1:0)∝ p(y1|x1,y0)p(x1,y0) (20a)5

∝ p(y1|x1)︸ ︷︷ ︸
(i)

∫
p(x1|x0)p(x0|y0)dx0

︸ ︷︷ ︸
(ii)

(20b)

as the product of the (i) likelihood of the observation given
the forecast; and (ii) the forecast-prior. The forecast-prior (ii)
is generated by the model propagation of the last filter density
p(x0|y0) with the transition density p(x1|x0), marginalizing10

out x0. Given a first prior, the above recursion inductively
defines the forecast and filter densities, up to proportionality,
at all times.

In the perfect, linear-Gaussian model, the forecast-prior
and filter densities,15

∫
p(x1|x0)p(x0|y0)dx0 and p(x1|y1), (21)

are Gaussian. The Kalman filter equations recursively com-
pute the mean xfore

1 /xfilt
1 and covariance Bfore

1 /Bfilt
1 of

the random model state x1, parameterizing its distribution
(Jazwinski, 1970). In this case, the filter problem can also be20

written in terms of the Bayesian MAP cost function

J (x1) =
1

2
‖ x1−xfore

1 ‖2Bfore
1

+
1

2
‖ y1−H1x1 ‖2R1

.

(22)

To render the above cost function into the right-transform
analysis, define the matrix factor

Bfore
1 := Σfore

1

(
Σfore

1

)>
, (23)25

where the choice of Σfore
1 can be arbitrary, but is typically

given in terms of a singular value decomposition (SVD)

(Sakov and Oke, 2008b). Instead of optimizing the cost func-
tion in Eq. (22) over the state vector x1, the optimization is
equivalently written in terms of weights w where 30

x1 := xfore
1 + Σfore

1 w; (24)

thus re-writing Eq. (22) in terms of the weight vector w, we
obtain

J (w) =
1

2
‖w ‖2 +

1

2
‖ y1−H1x

fore
1 −H1Σ

fore
1 w ‖2R1

. (25) 35

Further, for the sake of compactness, define

y1 := H1x
fore
1 , (26a)

δ1 := R
− 1

2
1 (y1−y1) , (26b)

Γ1 := R
− 1

2
1 H1Σ

fore
1 . (26c)

The vector δ1 is the innovation vector, weighted inverse pro- 40

portionally to the observation uncertainty. The matrix Γ1, in
one dimension with H1 := 1, is equal to the standard devia-
tion of the model forecast relative to the standard deviation
of the observation error.

The cost function Eq. (25) is hence further reduced to 45

J (w) =
1

2
‖w ‖2 +

1

2
‖ δ1−Γ1w ‖2 . (27)

This cost function is quadratic inw and can be globally min-
imized where∇wJ = 0. Notice,

∇wJ =w−Γ>1
(
δ1−Γ1w

)
; (28)

setting the gradient equal to zero for w we find 50

0 =w−Γ>1
(
δ1−Γ1w

)
(29a)

⇔Γ>1 δ1 =
(
INx + Γ>1 Γ1

)
w (29b)

⇔ w =
(
INx

+ Γ>1 Γ1

)−1

Γ>1 δ1. (29c)
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From Eq. (28) notice that

∇wJ |w=0 =−Γ>1 δ1. (30)

Similarly, taking the gradient of Eq. (28), we find that the
Hessian, ΞJ :=∇2

wJ , is equal to

ΞJ =
(
INx

+ Γ>1 Γ1

)
. (31)5

Therefore, with w = 0 corresponding to xfore
1 as the initial-

ization of the algorithm, the MAP weightsw are determined
by a single iteration of Newton’s descent method (Nocedal
and Wright, 2006) – for iterate i this has the general form of

wi+1 :=wi−Ξ−1
J ∇J |w=wi . (32)10

The MAP weights define the maximum a posteriori model
state,

xfilt
1 := xfore

1 + Σfore
1 w; (33)

under the perfect, linear-Gaussian model assumption, J can
then be re-written in terms of the filter MAP estimate as15

J (x1) =
1

2
‖ x1−xfilt

1 ‖2Bfilt
1

(34a)

⇔ J (w) =
1

2
‖ xfore

1 −Σfore
1 w−xfilt

1 ‖2Bfilt
1
. (34b)

Defining the matrix decomposition Bfilt
1 = Σfilt

1

(
Σfilt

1

)>

and the change of variables

Ω1 :=
(
Σfilt

1

)−1

Σfore
1 , (35a)20

%1 :=
(
Σfilt

1

)−1 (
xfore

1 −xfilt
1

)
, (35b)

equation (34b) becomes

J (w) =
1

2
‖ %1−Ω1w ‖2 . (36)

Compute the Hessian ΞJ =∇2
wJ from each of Eqs. (27)

and (36); by the equivalence we find25

(
INx

+ Γ>1 Γ1

)
=Ω>1 Ω1 (37a)

⇔
(
INx

+ Γ>1 Γ1

)
=
(
Σfore

1

)>(
Σfilt

1

)−>(
Σfilt

1

)−1

Σfore
1

(37b)

⇔ Bfilt
1 =Σfore

1

(
INx

+ Γ>1 Γ1

)−1(
Σfore

1

)>
.

(37c)

If we define the covariance transform

T := Ξ
− 1

2

J , (38)30

this derivation above describes the square root Kalman filter
recursion (Tippett et al., 2003), when written for the exact

mean and covariance, recursively computed in the perfect,
linear-Gaussian model. The covariance update

Bfilt
1 =

(
Σfore

1 T
)(

Σfore
1 T

)>
(39) 35

is written entirely in terms of the matrix factor Σi
k and the co-

variance transform T, such that the background covariance
need not be explicitly computed in order to produce recur-
sive estimates. Likewise, the Kalman gain update to the mean
state is reduced to Eq. (33), in terms of the weights and the 40

matrix factor. This reduction is at the core of the efficiency
of the ETKF, in which one typically makes a reduced-rank
approximation to the background covariances Bi

1.
Using the ensemble-based, empirical estimates for the

background, as in Eq. (19), a modification of the above ar- 45

gument must be used to solve the cost function J in the en-
semble span, without direct inversion of Pfore

1 when this is
reduced rank. We replace the background covariance norm-
square with one defined by the ensemble-based covariance,

‖ v ‖2Pi
1

= (Ne− 1)
[(

Xi
1

)†
v
]> [(

Xi
1

)†
v
]
. (40) 50

Define the ensemble-based estimates

x1 := x̂fore
1 + Xfore

1 w, (41a)

ŷ1 := H1x̂
fore
1 , (41b)

δ̂1 := R
− 1

2
1 (y1− ŷ1) , (41c)

S1 := R
− 1

2
1 H1X

fore
1 , (41d) 55

wherew is now a weight vector in RNe . The ensemble-based
cost function is then written as

J̃ (w) =
1

2
‖ x̂fore

1 −Xfore
1 w− x̂fore

1 ‖2Pfore
1

+

1

2
‖ y1−H1x̂

fore
1 −H1X

fore
1 w ‖2R1

(42a)

=
1

2
(Ne− 1) ‖w ‖2 +

1

2
‖ δ̂1−S1w ‖2 . (42b) 60

Define ŵ to be the minimizer of the cost function in Eq. (42).
Hunt et al. (2007) demonstrate that, up to a gauge transfor-
mation, ŵ yields the minimizer of the state-space cost func-
tion, Eq. (22), when the estimate is restricted to the ensemble
span. Let Ξ̃J̃ denote the Hessian of the ensemble-based cost 65

function in Eq. (42); this equation is quadratic in w and can
be solved similarly to Eq. (27) to render

ŵ :=0− Ξ̃
−1

J̃ ∇J̃ |w=0, (43a)

T :=Ξ̃
− 1

2

J̃ , (43b)

Pfilt
1 =

(
Xfore

1 T
)(

Xfore
1 T

)>
/(Ne− 1). (43c) 70

The ensemble transform Kalman filter (ETKF) equations are
then given by

Efilt
1 = x̂fore

1 1>+ Xfore
1

(
ŵ1>+

√
Ne− 1TU

)
(44)
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where U ∈ RNe×Ne can be any mean-preserving, orthogonal
transformation, i.e., U1 = 1. The simple choice of U := INe

is sufficient, but it has been demonstrated that choosing a
random, mean-preserving orthogonal transformation at each
analysis as above can improve the stability of the ETKF, pre-5

venting the collapse of the variances to a few modes in the
empirical covariance estimate (Sakov and Oke, 2008b). We
remark that Eq. (44) can be written equivalently as a single
linear transformation,

Efilt
1 =Efore

1 Ψ1, (45a)10

Ψ1 :=11>/Ne+
(
INe
−11>/Ne

)(
ŵ1>+

√
Ne− 1TU

)
. (45b)

The compact update notation in Eq. (45) is used to simplify
analysis.

If the observation operator H1 is actually nonlinear, then15

the ETKF typically uses the following approximation to the
quadratic cost function,

Y1 :=H1

(
Efore

1

)
, (46a)

ŷ1 := Y11/Ne, (46b)

S1 := R
− 1

2
1 Y1− ŷ11

>, (46c)20

where term (46a) refers to the action of the observation oper-
ator being applied column-wise. Substituting the definitions
in Eq. (46) for the definitions in Eq. (41) gives the standard
nonlinear analysis in the ETKF. Note that this framework ex-
tends to a fully iterative analysis of nonlinear observation op-25

erators, discussed in Section 4.1. Multiplicative covariance
inflation is often used in the ETKF to handle the systematic
underestimation of the forecast and filter covariance due to
the sample error implied by a finite-size ensemble and non-
linearity of the forecast modelM1 (Raanes et al., 2019a).30

The standard ETKF cycle is summarized in Algorithm 5.
This algorithm is broken into the sub-routines in Algorithms
1 - 4 which are re-used throughout our analysis to emphasize
the commonality and the differences of the studied smoother
schemes. The filter analysis described above can be extended35

in several different ways when producing a smoother anal-
ysis on a DAW including lagged, past states, depending in
part on whether it is formulated as a marginal or a joint
smoother (Cosme et al., 2012). The way in which this anal-
ysis is extended, utilizing a retrospective re-analysis or a 4D40

cost function, differentiates the EnKS from the IEnKS, and
highlights the ways in which the SIEnKS differs from these
other schemes.

3.2 The fixed-lag EnKS

The (right-transform) fixed-lag EnKS extends the ETKF over45

the smoothing DAW by sequentially re-analyzing past states
with future observations. This analysis is performed retro-
spectively in the sense that the filter cycle of the ETKF is left

unchanged, while an additional smoother loop of the DA cy-
cle performs an update on the lagged state ensembles stored 50

in memory. Assume S = 1≤ L, the EnKS estimates the joint
posterior density p(xL:1|yL:1) recursively, given the joint
posterior estimate over the last DAW p(xL−1:0|yL−1:0). We
begin by considering the filter problem as in Eq. (20).

Given p(xL−1:0,yL−1:0), we write the filter density up to 55

proportionality

p(xL|yL:0)∝p(yL|xL,yL−1:0)p(xL,yL−1:0) (47a)
∝p(yL|xL)︸ ︷︷ ︸

(i)

×

∫
p(xL|xL−1)p(xL−1:0|yL−1:0)dxL−1:0

︸ ︷︷ ︸
(ii)

,

(47b)

as the product of (i) the likelihood of the observation yL 60

given xL; and (ii) the forecast for xL using the transition
kernel on the last joint posterior estimate, marginalizing out
xL−1:0. Recalling that p(xL|yL:1)∝ p(xL|yL:0), this pro-
vides a means to sample the filter marginal of the desired
joint posterior. The usual ETKF filter analysis is performed 65

to sample the filter distribution at time tL, yet, to complete
the smoothing cycle, the scheme must sample the joint pos-
terior density p(xL:1,yL:1).

Consider that the marginal smoother density is propor-
tional to 70

p(xL−1|yL:0)∝p(yL|xL−1,yL−1:0)×
p(xL−1,yL−1:0) (48a)
∝p(yL|xL−1)︸ ︷︷ ︸

(i)

p(xL−1|yL−1:0)︸ ︷︷ ︸
(ii)

, (48b)

where: (i) is the likelihood of the observation yL given the
past state xL−1; (ii) is the marginal density for xL−1 from 75

the last joint posterior.
Assume now the perfect, linear-Gaussian model – the cor-

responding Bayesian MAP cost function is given as

J (xL−1) =
1

2
‖ xL−1−xsmth

L−1|L−1 ‖2Bsmth
L−1|L−1

+

1

2
‖ yL−HLMLxL−1 ‖2RL

(49) 80

where xsmth
L−1|L−1 and Bsmth

L−1|L−1 are the mean and covariance
of the marginal smoother density p(xL−1|yL−1:0). Take the
matrix decomposition

Bsmth
L−1|L−1 = Σsmth

L−1|L−1

(
Σsmth
L−1|L−1

)>
, (50)
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and write xL−1 = xsmth
L−1|L−1 + Σsmth

L−1|L−1w, rendering the
cost function as

J (w) =
1

2
‖w ‖2 +

1

2
‖ yL−HLML(xsmth

L−1|L−1 + Σsmth
L−1|L−1w) ‖2RL

(51a)

=
1

2
‖w ‖2 +

1

2
‖ yL−HLx

fore
L −HLΣfore

L w ‖2RL

(51b)

5

=
1

2
‖w ‖2 +

1

2
‖ δL−ΓLw ‖2 . (51c)

Let w now denote the minimizer of Eq. (51). It is important
to recognize that for

xL := ML

(
xsmth
L−1|L−1 + Σsmth

L−1|L−1w
)

(52)

= xfore
L + Σfore

L w, (53)10

such that the optimal weight vector for the smoothing prob-
lemw is also the optimal weight vector for the filter problem.

The ensemble-based approximation,

xL−1 = x̂smth
L−1|L−1 + Xsmth

L−1|L−1w, (54a)

J̃ (w) =
1

2
(Ne− 1) ‖w ‖2 +

1

2
‖ δ̂L−SLw ‖2, (54b)15

to the exact smoother cost function in Eq. (51) yields the
retrospective analysis of the EnKS as

ŵ :=0− Ξ̃
−1

J̃ ∇J̃ |w=0, (55a)

T :=Ξ̃
− 1

2

J̃ , (55b)

Esmth
L−1|L =x̂smth

L−1|L−11
>+

Xsmth
L−1|L−1

(
ŵ1>+

√
Ne− 1TU

)
,

20

≡Esmth
L−1|L−1ΨL. (55c)

The above equations generalize for arbitrary indices k|L,
completely describing the smoother loop between each fil-
ter cycle of the EnKS. After a new observation is assimi-
lated with the ETKF analysis step, a smoother loop makes25

a backwards pass over the DAW applying the transform and
the weights of the ETKF filter update to each past state en-
semble stored in memory. This generalizes to the case where
there is a shift of the DAW with S > 1, though the EnKS
does not process observations asynchronously by default –30

i.e., the ETKF filter steps, and the subsequent retrospective
re-analysis, is performed in sequence over the observations,
ordered in time, rather than making a global analysis over
yL:L−S+1. A standard form of the EnKS is summarized in
Algorithm 6, utilizing the sub-routines in Algorithms 1 - 4.35

A schematic of the EnKS cycle for a lag of L= 4 and a
shift of S = 1 is pictured in Fig. 2. Time moves forwards

from left to right in the horizontal axis with a step size of ∆t.
At each analysis time, the ensemble forecast from the last fil-
ter density is combined with the observation to produce the 40

ensemble update transform ΨL. This transform is then uti-
lized to produce the posterior estimate for all lagged state
ensembles, conditioned on the new observation. The infor-
mation in the posterior estimate thus flows in reverse time to
the lagged states stored in memory, but the information flow 45

is unidirectional in this scheme. It is understood then that
re-initializing the improved posterior estimate for the lagged
states in the dynamical model does not improve the filter es-
timate in the perfect, linear-Gaussian configuration. Indeed,
define the product of the ensemble transforms 50

Ψk:l := Ψk · · ·Ψl. (56)

Then, for arbitrary 1≤ k ≤ l ≤ L,

Ml:kE
smth
k−1|k−1Ψk:l = Ml:kE

smth
k−1|l (57a)

= Efore
l|k−1Ψk:l (57b)

= Esmth
l|l . (57c) 55

This demonstrates that conditioning on the information from
the observation is covariant with the dynamics. Raanes
(2016) demonstrates the equivalence of the EnKS and the
Rauch-Tung-Striebel (RTS) smoother where this property of
perfect, linear-Gaussian models is well understood. In the 60

RTS formulation of the retrospective re-analysis, the condi-
tional estimate reduces to the map of the current filter esti-
mate under the reverse time model M−1

k (Jazwinski, 1970,
see example 7.8, chapter 7). Note, however, that both of the
EnKS and ensemble RTS smoothers produce their retrospec- 65

tive re-analyses via a recursive ensemble transform, without
the need to make backwards model simulations.

The covariance of conditioning on observations and the
model dynamics does not hold, however, either in the case
of nonlinear dynamics or model error. Re-initializing the DA 70

cycle in a perfect, nonlinear model with the conditional en-
semble estimate Esmth

0|L can dramatically improve the accu-
racy of the subsequent forecast and filter statistics. Particu-
larly, this exploits the miss-match in perfect, nonlinear dy-
namics between ML:1

(
Esmth

0|L

)
6= Efilt

L . Chaotic dynamics 75

generates additional information about the initial value prob-
lem in the sense that initial conditions nearby to each other
are distinguished by their subsequent evolution and diver-
gence due to dynamical instability. Re-initializing the model
forecast with the smoothed prior estimate brings new infor- 80

mation into the forecast for states in the next DAW. This im-
provement in the accuracy of the ensemble statistics has been
exploited to a great extent by utilizing the 4D ensemble cost
function (Hunt et al., 2004). Particularly, the filter cost func-
tion can be extended over multiple observations simultane- 85

ously, and in terms of lagged states directly. This alternative
approach to extending the filter analysis to the smoother anal-
ysis is discussed in the following.
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Figure 2. Lag= 4, shift= 1 EnKS. Observations are assimilated sequentially via the filter cost function and a retrospective re-analysis is
applied to all ensemble states within the lag window stored in memory. Adapted from Asch et al. (2016).

3.3 The Gauss-Newton, fixed-lag IEnKS

The following is an up-to-date formulation of the Gauss-
Newton IEnKS of Bocquet and Sakov (2013, 2014), and its
derivations. Instead of considering the marginal smoother
problem, now consider the joint posterior density directly5

and for a general shift S. The last posterior density is writ-
ten as p(xL−S:1−S |yL−S:1−S). Using the independence of
observation errors and the Markov assumption recursively,

p(xL:1|yL:1−S)∝
∫ [ L∏

k=L−S+1

p(yk|xk)p(xk|xk−1)

]
×

[
L−S∏

k=1

p(xk|xk−1)

]
p(x0|yL−S:1−S)dx0.

(58)

Additionally, using the perfect model assumption,10

p(xk|xk−1) = δ{xk −Mk (xk−1)} (59)

for every k. Therefore,

p(xL:1|yL:1−S)∝
∫
p(x0|yL−S:1−S)︸ ︷︷ ︸

(i)

×

[
L∏

k=L−S+1

p(yk|xk)

]

︸ ︷︷ ︸
(ii)

×

[
L∏

k=1

δ{xk −Mk (xk−1)}
]

︸ ︷︷ ︸
(iii)

dx0

(60)

where term (i) in Eq. (60) represents the marginal smoother
density for x0|L−S over the last DAW; term (ii) represents 15

the joint likelihood of the observations given the model
state; and term (iii) represents the free forecast of the
smoother estimate for x0|L−S . Noting that p(xL:1|yL:1)∝
p(xL:1|yL:1−S), this provides a recursive form to sample the
joint posterior density. 20

Under the perfect, linear-Gaussian model assumption, the
above derivation leads to the following exact 4D cost func-
tion

J (x0) :=
1

2
‖ x0−xsmth

0|L−S ‖2Bsmth
0|L−S

+

1

2

L∑

k=L−S+1

‖ yk −HkMk:1x0 ‖2Rk
. (61) 25

The ensemble-based approximation, using notations as in Eq.
(41), yields

x0 :=x̂smth
0|L−S + Xsmth

0|L−Sw, (62a)

J̃ (w) :=
1

2
(Ne− 1) ‖w ‖2 +

1

2

L∑

k=L−S+1

‖ δ̂k −Skw ‖2 . (62b) 30

Notice that Eq. (62b) is quadratic inw; therefore, for the per-
fect, linear-Gaussian model, one can perform a global analy-
sis over all new observations in the DAW at once.
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The gradient and the Hessian of the ensemble-based 4D
cost function are given as

∇J̃ := (Ne− 1)w−
L∑

k=L−S+1

S>k
(
δ̂k −Skw

)
, (63a)

Ξ̃J̃ := (Ne− 1)INe
+

L∑

k=L−S+1

S>k Sk, (63b)

so that evaluating at w = 0, the minimizer ŵ is again given5

by a single iteration of Newton’s descent

ŵ := 0− Ξ̃J̃∇J̃ |w=0. (64)

Define the covariance transform again as T := Ξ̃
− 1

2

J̃ . We de-
note the right ensemble transform corresponding to the 4D
analysis Ψ4D

L−S+1:L to distinguish from the product of the10

sequential filter transforms ΨL−S+1:L. The global analyses
are defined

Ψ4D
L−S+1:L := 11>/Ne+
(
INe −11>/Ne

)(
ŵ1>+

√
Ne− 1TU

)
, (65a)

Esmth
0|L = Esmth

0|L−SΨ4D
L−S+1:L, (65b)15

where U is any mean-preserving, orthogonal matrix.
In the perfect, linear-Gaussian model, this formulation of

the IEnKS is actually equivalent to the 4D-EnKF of Hunt
et al. (2004); Fertig et al. (2007); and Harlim and Hunt
(2007). The above scheme produces a global analysis of all20

observations within the DAW, even asynchronously from the
standard filter cycle (Sakov et al., 2010). One generates a
free ensemble forecast with initial conditions drawn iid as
p(x0|yL−S:1−S) and all data available within the DAW is
used to estimate the update to the initial ensemble. The per-25

fect model assumption means that the updated initial ensem-
ble Esmth

0|L can then be used to temporally interpolate the joint
posterior estimate over the entire DAW from the marginal
sample, i.e., for any 0< k ≤ L
Mk:1E

smth
0|L−SΨ4D

L−S+1:L ≡Esmth
k|L . (66)30

WhenMk andHk are nonlinear, the IEnKS formulation is
extended with additional iterations of Newton’s descent as in
Eq. (32) in order to iteratively optimize the update weights.
Specifically, the gradient is given by

∇J̃ := (Ne− 1)w−
L∑

k=L−S+1

Ỹ>k R−1
k ϕ, (67a)35

ϕ :=
[
yk −Hk ◦Mk:1

(
x̂smth

0|L−S + Xsmth
0|L−Sw

)]
(67b)

where Ỹk represents a directional derivative of the observa-
tion and state models with respect to the ensemble perturba-
tions at the ensemble mean,

Ỹk :=∇|x̂smth
0|L−S

[Hk ◦Mk:1]Xsmth
0|L−S ; (68)40

this describes the sensitivities of the cost function with re-
spect to the ensemble perturbations, mapped to the observa-
tion space. When the dynamics are weakly nonlinear, the en-
semble perturbations of the EnKS and IEnKS are known to
closely align with the span of the backward Lyapunov vectors 45

of the nonlinear model along the true state trajectory (Boc-
quet and Carrassi, 2017); under these conditions, Eq. (68)
can be interpreted as a directional derivative with respect to
the forecast error growth along the dynamical instabilities of
the nonlinear model, see Carrassi et al. (2022) and references 50

therein.
In order to avoid an explicit computation of the tangent lin-

ear model and the adjoint as in 4D-VAR, Sakov et al. (2012)
and Bocquet and Sakov (2012) proposed two formulations
to approximate the tangent linear propagation of the ensem- 55

ble perturbations. The “bundle” scheme makes an explicit
approximation of finite differences in the observation space
where, for an arbitrary ensemble, they define the approximate
linearization

Yk :=
1

ε
Hk ◦Mk:1

(
x01

>+ εX0

)(
INe
−11>/Ne

)
, (69) 60

for a small constant ε. Alternatively the “transform” version
provides a different approximation of the variational anal-
ysis, using the covariance transform T and its inverse as a
pre- / post-conditioning of the perturbations used in the sen-
sitivies approximation. The transform variant of the IEnKS is 65

in some cases more numerically efficient than the bundle ver-
sion, requiring fewer ensemble simulations, and it is explic-
itly related to the ETKF / EnKS / 4D-EnKF formalism pre-
sented thus far. For these reasons, the transform approxima-
tion is used as a basis of comparison with the other schemes 70

in this work.
For the IEnKS transform variant, the following ensemble-

based approximations are re-defined in each Newton itera-
tion

Yk :=Hk (Ek) , (70a) 75

ŷk := Yk1/Ne, (70b)

Sk := R
− 1

2

k

(
Yk − ŷk1>

)
T−1, (70c)

δ̂ := R
− 1

2

k (yk − ŷk) , (70d)

where the first covariance transform is defined as T := INe ,
the gradient and Hessian are computed as in Eq. (63) from 80

the above and where the covariance transform is re-defined
in terms of the Hessian, T := Ξ̃

− 1
2

J̃ , at the end of each iter-
ation. With these definitions, the first iteration of the IEnKS
transform variant corresponds to the solution of the nonlin-
ear 4D-EnKF, but subsequent iterates are initialized by pre- 85

conditioning the initial ensemble perturbations via the update
T and post-conditioning the sensitivities by the inverse trans-
form T−1.

An updated form of the Gauss-Newton IEnKS, transform
variant is presented in Algorithm 7. Note that, while Algo- 90
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rithm 7 does not explicitly reference the sub-routine in Algo-
rithm 1, many of the same steps are used in the IEnKS when
computing the sensitivities. It is important to notice that, for
S > 1, the IEnKS only requires a single computation of the
square root inverse of the Hessian of the 4D cost function,5

per iteration of the optimization, to process all observations
in the DAW. On the other hand, the EnKS processes these
observations sequentially, requiring S total square root in-
verse calculations of the Hessian, corresponding to each of
the sequential filter cost functions.10

The IEnKS is computationally constrained by the fact that
each iteration of the descent requires L total ensemble simu-
lations in the dynamical state modelMk. One can minimize
this expense by using a single iteration of the IEnKS equa-
tions, which is denoted the “linearized” IEnKS (Lin-IEnKS)15

by Bocquet and Sakov (2014). When the overall DA cycle is
nonlinear, but only weakly nonlinear, this single iteration of
the IEnKS algorithm can produce a dramatic improvement
in the forecast accuracy versus the forecast / filter cycle of
the EnKS. However, the overall nonlinearity of the DA cycle20

may be strongly influenced by other factors than the model
forecastMk itself. As as simple example, consider the case
in whichHk is nonlinear yetMk ≡Mk for all k. In this set-
ting, it may be more numerically efficient to iterate upon the
3D filter cost function rather than the full 4D cost function25

which requires simulations of the state model. Combining: (i)
the filter step and retrospective re-analysis of the EnKS; and
(ii) the single iteration of the ensemble simulation over the
DAW as in Lin-IEnKS; we obtain an estimation scheme that
sequentially solves nonlinear filter cost functions in the cur-30

rent DAW, while making an improved forecast in the next by
transmitting the retrospective analyses through the dynamics
via the updated initial ensemble.

3.4 The fixed-lag SIEnKS

3.4.1 Algorithm35

Recall that, from Eq. (57), conditioning the ensemble with
the right transform Ψk is covariant with the dynamics. In
a perfect, linear-Gaussian model, we can therefore estimate
the joint posterior over the DAW via model propagation
of the marginal for xsmth

0|L as in the IEnKS, but using the40

EnKS retrospective re-analysis to generate the initial condi-
tion. For arbitrary 1≤ S ≤ L, define each of the right trans-
forms {Ψk}Lk=L−S+1 as in the sequential filter analysis of
the ETKF with Eq. (45). Rather than storing the ensemble
matrix in memory for each time tk in the DAW, we instead45

store Esmth
0|L−S and Esmth

L−S|L−S to begin a DA cycle. Obser-
vations within the DAW are sequentially assimilated via the
3D filter cycle initialized with Esmth

L−S|L−S , and a marginal,
retrospective smoother analysis is performed sequentially on
Esmth

0|L−S with these filter transforms. The joint posterior es-50

timate is then interpolated over the DAW for any 1≤ k ≤ L

via the model dynamics as

Esmth
0|L = Esmth

0|L−SΨL−S+1:L, (71a)

Esmth
k|L :=Mk:1

(
Esmth

0|L

)
. (71b)

Notice that, for S = 1, the product of the 3D filter ensemble 55

transforms reduces to the 4D transform, i.e.,

ΨL−S+1:L ≡Ψ4D
L−S+1:L ≡ΨL, (72)

so that in the perfect, linear-Gaussian model with S = 1 the
SIEnKS and the Lin-IEnKS coincide. The SIEnKS and the
Lin-IEnKS have different treatments of nonlinearity in the 60

DA cycle, but even in the perfect, linear-Gaussian model, a
shift S > 1 distinguishes the 4D approach of the Lin-IEnKS
and the hybrid 3D / 4D approach of the SIEnKS. For com-
parison, a schematic of the SIEnKS cycle is pictured in Fig.
3 while a schematic of the (Lin-)IEnKS cycle Fig. 4, each 65

configured for a lag of L= 4 and a shift of S = 2. This com-
parison demonstrates how the sequential 3D filter analysis
and retrospective smoother re-analysis for each observation
differs from the global 4D analysis of all observations at once
in the (Lin-)IEnKS. A generic form of the SIEnKS is sum- 70

marized in Algorithm 8, utilizing the sub-routines in Algo-
rithms 1 - 4. Note that the version presented in Algorithm 8
is used to emphasize the commonality with the EnKS. How-
ever, an equivalent implementation initializes each cycle with
Esmth

0|L−S alone, similar to the IEnKS. Such a design is utilized 75

when we derive the SIEnKS MDA scheme in Algorithm 12
from the IEnKS MDA scheme in Algorithm 13.

3.4.2 Comparison with other schemes

Other well-known DA schemes combining a retrospective re-
analysis and re-initialization of the ensemble forecast include 80

the Running In Place (RIP) smoother of Kalnay and Yang
(2010) and the One Step Ahead (OSA) smoother of Desbou-
vries et al. (2011) and Ait-El-Fquih and Hoteit (2022). The
RIP smoother iterates over the ensemble simulation and fil-
ter cost function, both, in order to apply a retrospective re- 85

analysis to the first prior with a lag and shift of L= S = 1.
The RIP smoother is designed to spin up the LETKF from a
“cold start” of a forecast model and DA cycle (Yang et al.,
2013). However, the RIP optimizes a different style cost
function than the S/Lin-/IEnKS family of smoothers. The 90

stopping criterion for RIP is formulated in terms of the mean-
square distance between the ensemble forecast and the obser-
vation, potentially leading to an over-fitting to the observa-
tion. The OSA smoother is also proposed as an optimization
of the DA cycle, and integrates an EnKF framework, includ- 95

ing for a two-stage, iterative optimization of dynamical fore-
cast model parameters within the DA cycle (Gharamti et al.,
2015; Ait-El-Fquih et al., 2016; Raboudi et al., 2018). The
OSA smoother uses a single iteration and a lag and shift of
L= S = 1, making a filter analysis of the incoming obser- 100

vation and a retrospective re-analysis of the prior. However,
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Figure 3. Lag= 4, shift= 2 SIEnKS diagram. An initial condition from the last smoothing cycle initializes a forecast simulation over the
current DAW ofL= 4 states. New observations entering the DAW are assimilated sequentially via the 3D filter cost function. After each filter
analysis, a retrospective re-analysis is applied to the initial ensemble. At the end of the DAW, after sequentially processing all observations,
the re-analyzed initial condition is evolved via the model S analysis times forward to begin the next cycle.
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Figure 4. Lag= 4, shift= 2 (Lin-)IEnKS diagram. An initial condition from the last smoothing cycle initializes a forecast simulation over
the current DAW of L= 4 states. Unlike the SIEnKS, all new observations entering the DAW are assimilated globally at once via the 4D
cost function. The innovations of the free forecast over all of the observation times are used to produce a retrospective re-analysis of the
initial ensemble. Finally, the re-analyzed initial condition is evolved via the model S analysis times forward to begin the next cycle. Unlike
the SIEnKS and the EnKS, which produce their filter analyses on the fly, the filter analysis of the (Lin-)IEnKS is performed by dynamically
interpolating the smoothing estimate over new observation times with a free forecast in the subsequent cycle. The Lin-IEnKS is differentiated
from the IEnKS by using only a single free ensemble forecast to produce the 4D optimization of the initial ensemble in each cycle.
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the OSA smoother differs from the SIEnKS in using an ad-
ditional filter analysis while interpolating the joint posterior
estimate over the DAW, accounting for model error in the
simulation ofM1

(
Esmth

0|1

)
. Without model error, the second

filter analysis in the OSA smoother simulation is eliminated5

from the estimation scheme. Therefore, with an ETKF style
filter analysis, a perfect, linear-Gaussian model and a lag of
L= S = 1, the SIEnKS, RIP and OSA smoothers all coin-
cide.

The rationale for the SIEnKS is to focus computational re-10

sources on optimizing the sequence of 3D filter cost func-
tions for the DAW when the forecast error dynamics are
weakly nonlinear, rather than computing the iterative ensem-
ble simulations needed to optimize a 4D cost function. The
SIEnKS generalizes some of the ideas used in these other DA15

schemes, particularly for perfect models with weakly nonlin-
ear forecast error dynamics, including for: (i) arbitrary lags
and shifts 1≤ S ≤ L; (ii) an iterative optimization of hyper-
parameters for the filter cost function; (iii) multiple data as-
similation; and (iv) asynchronous observations in the DA cy-20

cle. In order to illustrate the novelty of the SIEnKS, and to
motivate its computational cost / prediction accuracy trade-
off advantages, we discuss each of these topics in the follow-
ing.

4 Applications of single-iteration smoothing25

4.1 Nonlinear observation operators

Just as the IEnKS extends the linear 4D cost function, the
filter cost function Eq. (42) can be extended with Newton
iterates in the presence of a nonlinear observation operator.
The maximum likelihood ensemble filter (MLEF) of Zupan-30

ski (2005) and Zupanski et al. (2008) is an estimator designed
to process nonlinear observation operators and can be derived
in the common ETKF formalism. Particularly, the algorithm
can be granted a bundle and transform variant like the IEnKS
(Asch et al., 2016, see section 6.7.2.1) designed to approxi-35

mate the directional derivative of the nonlinear observation
operator with respect to the forecast ensemble perturbations
at the forecast mean,

Ỹk :=∇|x̂fore
k

[Hk]Xfore
k , (73)

used in the nonlinear filter cost function gradient40

∇J̃ :=(Ne− 1)w−
Ỹ>k R−1

k

[
yk −Hk

(
x̂fore
k + Xfore

k w
)]
. (74)

When the forecast error dynamics are weakly nonlinear,
the MLEF-style nonlinear filter cost function optimization
provides a direct extension to the SIEnKS. The transform45

as defined in the sub-routine in Algorithm 9 is interchange-
able with the usual ensemble transform in Algorithm 1. In

this way, the EnKS and the SIEnKS can each process non-
linear observation operators with an iterative optimization in
the filter cost function alone and subsequently apply their ret- 50

rospective analyses as usual. We refer to the EnKS analysis
with MELF transform as the maximum likelihood ensemble
smoother (MLES), though we refer to the SIEnKS as usual
whether it uses a single iteration or multiple iterations of the
solution to the filter cost function. Note that only the trans- 55

form step needs to be interchanged in Algorithms 6 and 8, so
that we do not provide additional pseudo-code.

Consider that for the MLES and the SIEnKS, the num-
ber of Hessian square root inverse calculations expands in
the number of iterations used in Algorithm 9 to compute the 60

transform for each of the S observations in the DAW. For
each iteration of the IEnKS, this again requires only a single
square root inverse calculation of the 4D cost function Hes-
sian. However, even if the forecast error dynamics are weakly
nonlinear, optimizing versus the nonlinear observation oper- 65

ator requires L ensemble simulations per each iteration used
to optimize the cost function.

4.2 Adaptive inflation and the finite-size formalism

Due to the bias of Kalman-like estimators in nonlinear dy-
namics, covariance inflation, as in Algorithm 4, is widely 70

used to regularize these schemes. In particular, this can ame-
liorate the systematic under-estimation of the prediction /
posterior uncertainty due to sample error and bias. Empir-
ically tuning the multiplicative inflation coefficient λ≥ 1
can be effective in stationary dynamics. However, empiri- 75

cally tuning this parameter can be costly, potentially requir-
ing many model simulations, and the tuned value may not
be optimal across time scales in which the dynamical sys-
tem becomes non-stationary. A variety techniques are used in
practice for adaptive covariance estimation, inflation or aug- 80

mentation, accounting for these deficiencies of Kalman-like
estimators (Tandeo et al., 2020, and references therein).

One alternative to empirically tuning λ is to derive an
adaptive multiplicative covariance inflation factor via a hi-
erarchical Bayesian model by including a prior on the 85

background mean and covariance p
(
xfore

1 ,Bfore
1

)
, as in the

finite-size formalism of Bocquet (2011), Bocquet and Sakov
(2012) and Bocquet et al. (2015). This formalism seeks to
marginalize out over the first two moments of the back-
ground, yielding a Gaussian mixture model for the forecast- 90

prior as

p
(
x1|Efore

1

)
=

∫
p
(
x1|Efore

1 ,xfore
1 ,Bfore

1

)
×

p
(
xfore

1 ,Bfore
1 |Efore

1

)
dxfore

1 dBfore
1 .

(75)

Using Jeffreys’ hyperprior for xfore
1 and Bfore

1 , the ensemble-
based filter MAP cost function can be derived as proportional
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to

J̃ (w) :=
1

2
‖ y−H

(
x̂fore

1 + Xfore
1 w

)
‖2R1

+

Ne
2

log
(
εNe+ ‖w ‖2

)
(76)

where εNe
:= 1+ 1

Ne
. Notice that Eq. (76) is non-quadratic in

w regardless of whether H1 is linear or nonlinear, such that5

one can iteratively optimize the solution to the nonlinear filter
cost function with a Gauss-Newton approximation of the de-
scent. When accounting for the nonlinlearity in the ensemble
evolution and the sample error due to small ensemble sizes in
perfect models, optimizing the extended cost function in Eq.10

(76) can be an effective means to regularize the EnKF. In the
presence of significant model error, one may need to extend
the finite-size formalism to the variant developed by Raanes
et al. (2019a).

Algorithm 10 presents an updated version of the EnKF-15

N transform calculation of Bocquet et al. (2015), explicitly
based on the IEnKS transform approximation of the gradi-
ent of the observation operator. The hyper-prior for the back-
ground mean and covariance is similarly introduced to the
IEnKS and optimized over an extended 4D cost function.20

Note that, in the case whenHk ≡Hk is linear, a dual, scalar
optimization can be performed for the filter cost function
with less numerical expense. However, there is no similar
reduction to the extended 4D cost function and, in order to
emphasize the structural difference between the 4D approach25

and the sequential approach, we focus on the transform vari-
ant analogous to the IEnKS optimization.

Extending the adaptive covariance inflation in the finite-
size formalism to either the EnKS or the SIEnKS is simple,
requiring that the ensemble transform calculation is inter-30

changed with Algorithm 10 and that the tuned multiplica-
tive inflation step is eliminated. The IEnKS-N transform
variant, including adaptive inflation as above, is described
in Algorithm 11. Notice that iteratively optimizing the in-
flation hyper-parameter comes at the additional expense of35

square root inverse Hessian calculations for the EnKS and
the SIEnKS, while the IEnKS also requires L additional en-
semble simulations for each iteration.

4.3 Multiple data assimilation

When the lag L > 1 is long, temporally interpolating the pos-40

terior estimate in the DAW via the nonlinear model solution
as in Eq. (71) becomes increasingly nonlinear. In chaotic dy-
namics, the small simulation errors introduced this way even-
tually degrade the posterior estimate, and this interpolation
becomes unstable for L sufficiently large. Furthermore, for45

the 4D cost function, observations only distantly connected
with the initial condition at the beginning of the DAW render
the cost function with more local minima that may strongly
affect the performance of the optimization. Multiple data as-
similation is a commonly used technique, based on statisti-50

cal tempering (Neal, 1996), designed to relax the nonlinear-
ity of performing the MAP estimate by artificially inflating
the variances of the observation errors with weights and as-
similating these observations multiple times. Multiple data
assimilation is made consistent with the Bayesian posterior 55

in perfect, linear-Gaussian models by appropriately choosing
weights so that, over all times an observation vector is assim-
ilated, all of its associated weights sum to one (Emerick and
Reynolds, 2013). Given Gaussian likelihood functions, this
implies that the sum of the precision matrices over the multi- 60

ple assimilation steps equals R−1, as with the usual Kalman
filter update.

Multiple data assimilation is integrated into the EnRML
for static DAWs in reservoir modelling (Evensen, 2018, and
references therein). With the fixed-lag, sequential EnKS, 65

there is no reason to perform MDA as the assimilation oc-
curs in a single pass over each observation with the filter
step as in the ETKF. Sequential MDA, with DAWs shifting
in time, was first derived with the IEnKS by Bocquet and
Sakov (2014); in order to sample the appropriate density, the 70

IEnKS MDA estimation is broken over two stages. Firstly,
in the “balancing” stage, the IEnKS “fully assimilates” all
“partially assimilated observations”, targeting the joint pos-
terior statistics. Secondly, the window of the partially assim-
ilated observations is shifted in time with the MDA stage. 75

The SIEnKS is similarly broken over these two stages, using
the same weights as the IEnKS above. However, there is an
important difference in the way MDA is formulated for the
SIEnKS versus the IEnKS. For the SIEnKS, each observa-
tion in the DAW is assimilated with the sequential 3D filter 80

cost function instead of the global 4D analysis in the IEnKS.
The sequential filter analysis constrains the posterior’s inter-
polation estimate to the observations in the balancing stage
as observations are assimilated on the fly in the SIEnKS,
whereas the posterior estimate is performed by interpolating 85

with a free forecast from the marginal posterior estimate in
the IEnKS. Our novel SIEnKS MDA scheme is derived as
follows.

Recall our algorithmically stationary DAW, {t1, · · · , tL},
and suppose at the moment that there is a shift of S = 1 and 90

an arbitrary lag L. We take the notation that the covariance
matrices for the likelihood functions are inflated as

p
(
yβ |x

)
:= n

(
y|H (x) ,β−1R

)
(77)

where the observation weights are assumed 0< β ≤ 1. We
index the weight for observation yk at the present-time tL 95

as βk|L. For consistency with the perfect, linear-Gaussian
model, we require that

L∑

i=1

βi|L = 1. (78)

This implies that as we assimilate an observation vector L-
total times, shifting the algorithmically stationary DAW, the 100
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sum of the weights used to assimilate the observation equals
one.

We denote

αk|L :=

L∑

i=k

βi|L (79)

as the fraction of the observation yk that has been assimi-5

lated after the analysis step at the time tL. Note that, under
the Gaussian likelihood assumption, and assuming the inde-
pendence of the fractional observations, this implies

L∏

i=k

p
(
yβi|L |x

)
= p(yαk|L |x) . (80)

Let βl:k|L and αl:k|L denote the length-(l−k+1) vectors10

βl:k|L =
(
βl|L · · · βk|L

)
, (81a)

αl:k|L =
(
αl|L · · · αk|L

)
. (81b)

We then define the sequences

y
βl:k|L
l:k :=

{
y
βl|L
l ,y

βl−1|L
l−1 , · · · ,yβk|L

k

}
, (82a)15

y
αl:k|L
l:k :=

{
yαl:L

l ,y
αl−1|L
l−1 , · · · ,yαk|l

k

}
, (82b)

as the observations yl:k in the current DAW {t1, · · · , tL},
with: Eq. (82a), the corresponding MDA weights for this
DAW; and, Eq. (82b), the total portion of each observation
assimilated in the MDA conditional density for this DAW20

after the analysis step. Similar definitions apply with the in-
dices l : k|L− 1, but relative to the previous DAW.

For the current DAW the balancing stage is designed to
sample the joint posterior density

p(xL:1|yL:1) (83)25

where the current cycle is initialized with a sample of the
MDA conditional density

p
(
x0|yαL−1:0|L−1

L−1:0

)
. (84)

That is, from the previous cycle we have a marginal estimate
for x0 given the sequence of observations yL−1:0, where the30

portion of observation yk that has been assimilated already
is given by αk|L−1. Notice that α0|L−1 = 1 so that y0 has al-
ready been fully assimilated. To fully assimilate y1, we note
that 1−α1|L−1 = β1|L, and therefore

p
(
x1:0|yαL−1:2|L−1

L−1:2 ,y1:0

)
∝p
(
y
β1|L
1 |x1

)
p(x1|x0)×35

p
(
x0|yαL−1:0|L−1

L−1:0

)
. (85)

The above corresponds to a single simulation / analysis step
in an EnKS cycle where the observation y

β1|L
1 is assimilated

and a retrospective re-analysis is applied to the ensemble at
t0. 40

More generally, to fully assimilate observation yk, we as-
similate the remaining portion left un-assimilated from the
last DAW, given as 1−αk|L−1. We define an inductive step
describing the density for xk:0 which has fully assimilated
yk:0, though is yet to assimilate the remaining portions of 45

observations yL−1:k+1, as

p(xk:0|yαL−1:k+1|L−1

L−1:k+1 ,yk:0)∝ p
(
y

1−αk|L−1

k |xk
)
×

p(xk|xk−1)p
(
xk−1:0|yαL−1:k|L−1

L−1:k ,yk−1:0

)
. (86)

For k = 2, · · · ,L− 2, this describes a subsequent simulation
/ analysis step of an EnKS cycle but where the observation 50

y
1−αk|L−1

k is assimilated and a retrospective analysis is ap-
plied to the ensemble at times t0, · · · , tk−1. A subsequent
EnKS analysis gives

p(xL−1:0|yL−1:0)∝ p
(
y

1−αL−1|L−1

L−1 |xL−1

)
×

p(xL−1|xL−2)p
(
xL−2:0|yαL−1|L−1

L−1 ,yL−2:0

)
,

(87)
55

i.e., this samples the joint posterior for the last DAW. A final
EnKS analysis is used to assimilate yL, for which no portion
was already assimilated in the previous DAW,

p(xL:1|yL:1)∝p(yL|xL)×
p(xL|xL−1)p(xL−1:0|yL−1:0). (88) 60

We thus define an initial ensemble, distributed approxi-
mately as

Ebal
0 ∼ p

(
x0|yαL−1:0|L−1

L−1:0

)
. (89)

In the balancing stage, the observation error covariance
weights are defined by 65

ηk|L := 1−αk|L−1, (90)

where ηL|L = 1. When βk|L = 1
L for all k, we obtain the bal-

ancing weights as ηk|L = k
L for all k = 1, · · · ,L. An EnKS

cycle initialized as in Eq. (89), using the balancing weights
in Eq. (90), will approximately, sequentially and recursively 70

sample

Ebal
k:0 ∼ p

(
xk:0|yαL−1:k+1|L−1

L−1:k+1 ,yk:0

)
(91)

from the inductive relationship in Eq. (86), where the final
analysis gives Ebal

L:0 ≡Esmth
L:0|L from Eq. (88).

To subsequently shift the DAW and initialize the 75

next cycle, we target the density p
(
x1|yαL:1|L

L:1

)
. Given

p
(
x0|yαL−1:0|L−1

L−1:0

)
, the target density is sampled by assim-

ilating each observation y
βk|L
k so that the portion of each
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observation assimilated becomes y
αL:1|L
L:1 . Notice that for

k = 1, · · · ,L− 2,

p(xk:0|yαL−1:k+1|L−1

L−1:k+1 ,y
αk:0|L
k:0 )∝ p

(
y
βk|L
k |xk

)
×

p(xk|xk−1)p
(
xk−1:0|yαL−1:k|L−1

L−1:k ,y
αk−1:0|L
k−1:0

)
. (92)

The above recursion corresponds to an EnKS step in which5

the observation y
βk|L
k is assimilated and a retrospective anal-

ysis is applied to ensembles at times t0, · · · , tk−1. Subsequent
EnKS analyses using the MDA weights then give

p(xL−1:0|yαL−1:0|L
L−1:0 )∝ p

(
y
βL−1|L
k |xL−1

)
×

p(xL−1|xL−2)p
(
xL−2:0|yαL−1|L−1

L−1 ,y
αL−2:0|L
L−2:0

)
,

(93)
10

p(xL:0|yαL:0|L
L:0 )∝ p

(
y
βL|L
L |xL

)
×

p(xL|xL−1)p
(
xL−1:0|yαL−1:0|L

L−1:0

)
. (94)

We therefore perform a second EnKS cycle using the MDA
observation error covariance weights βk|L to sample the tar-
get density. Given that η1|L = β1|L, the first analysis of the15

balancing stage in Eq. (85) is identical to the first analysis in
the MDA stage, corresponding to k = 1 in Eq. (92). There-
fore, this first EnKS analysis step can be re-used between the
two stages.

Define an initial ensemble for the MDA stage, re-using the20

first analysis in the balancing stage, as

Emda
1 ≡Ebal

1 ∼ p
(
x1|yαL−1:2|L−1

L−1:2 ,y1:0

)
. (95)

An EnKS cycle initialized as in Eq. (95), using the MDA
weights βk, approximately, sequentially and recursively sam-
ples25

Emda
k:1 ∼ p

(
xk:1|yαL−1:k+1|L−1

L−1:k+1 ,y
αk:0|L
k:0

)
(96)

from the relationship in Eq. (92). The final analysis sam-
ples the density p

(
xL:1|yαL:0|L

L:0

)
∝ p

(
xL:1|yαL:1|L

L:1

)
, as in

Eq. (94), which is used to initialize the next cycle. To make
the scheme more efficient, we note that we need only sample30

the marginal p
(
x1|yαL:1|L

L:1

)
to re-initialze the next cycle of

the algorithm; this means that the smoother loop of the EnKS
in the second stage needs only store and sequentially condi-
tion the ensemble Emda

1 with the retrospective filter analyses
in this stage. Combining the two stages together into a sin-35

gle cycle that produces forecast, filter and smoother statistics
over the DAW {t1, · · · , tL}, as well as the ensemble initial-
ization for the next cycle, requires 2L ensemble simulations.
Due to the convoluted nature of the indexing over multiple
DAWs above, a schematic of the two stages of the SIEnKS40

MDA cycle is presented in Fig. 5.
The MDA algorithm is generalized to shift windows of

S > 1 with the number of ensemble forecasts remaining in-
variant at 2L when using “blocks” of uniform MDA weights

in the DAW. Assume that L= SQ for some positive inte- 45

ger Q, so that we partition yL:1 into Q total blocks of ob-
servations each of length S. In this case, the perfect, linear-
Gaussian model consistency constraint is revised as

βk|L = β̃i|L for i :=

[
k

S

]
, with

Q∑

j=1

β̃j|L = 1, (97)

where the above brackets represent rounding up to the nearest 50

integer. This ensures, again, that the weights corresponding
to the Q total times that yk is assimilated sum to one. With
this weighting scheme, the equivalence between the balanc-
ing and MDA stages’ first EnKS filter analysis extends to the
first S-total EnKS filter analyses, and therefore Emda

S ≡Ebal
S 55

initializes the MDA stage. Memory usage is further reduced
by only performing the retrospective conditioning in the bal-
ancing stage on the states Ebal

S:0. This samples the density
p(xS:0|yL:0) in the final cycle before the estimates for these
states are discarded from all subsequent DAWs. MDA vari- 60

ants of the SIEnKS and the (Lin-)IEnKS are presented in Al-
gorithms 12 and 13.

The primary difference between the SIEnKS and IEnKS
MDA schemes lies in the 3D filter balancing analysis ver-
sus the global 4D balancing analysis. The IEnKS MDA 65

scheme is not always robust in its 4D balancing estimation
because the MDA conditional prior estimate that initializes
the scheme may lie far away from the solution for the bal-
anced, joint posterior. As a consequence, the optimization
may require many iterations of the balancing stage. On the 70

other hand, the sequential SIEnKS MDA approach uses the
partially un-assimilated observations in the DAW directly as
a boundary condition to the interpolation of the joint poste-
rior estimate over the DAW with the sequential EnKS filter
cycle. For long DAWs, this means that the SIEnKS controls 75

error growth in the ensemble simulation that accumulates
over the long free forecast in the 4D analysis of the IEnKS.

Note how the cost of assimilation scales differently be-
tween the SIEnKS and the IEnKS when performing MDA.
Both the IEnKS and the SIEnKS use the same weights ηk|L 80

and βk|L for their balancing and MDA stages. However, each
stage of the IEnKS separately performs an iterative optimiza-
tion of the 4D cost function. While each iteration therein
requires only a single square root inverse calculation of the
cost function Hessian, the iterative solution requires at least 85

2L total ensemble simulations in order to optimize and in-
terpolate the estimates over the DAW. An efficient version
of the scheme can be performed as such by using the same
free ensemble simulation initialized as in Eq. (89) in order
to assimilate each of the observation sequences y

ηL:1|L
L:1 and 90

y
βL:1|L
L:1 . However, the IEnKS additionally requires S total

ensemble simulations in order to shift the DAW thereafter.
This differs from the SIEnKS which requires a fixed 2L en-
semble simulations over the DAW. However, the computa-
tional barrier to the SIEnKS MDA scheme lies in the fact 95

that it requires 2L−S square root inverse calculations, cor-
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p
(
x−1|yαL−2:−1|L−2

L−2:−1
)

p
(
xk:−1|yαL−2:k+1|L−2
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p
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Figure 5. A schematic of the two stages of the SIEnKS MDA cycle. The DAW of the SIEnKS moves forward in time from top to bottom,
where the EnKS stage using MDA weights pushes the MDA conditional density, left-most, forward in time. The middle layer represents
the indexing of the stationary DAW, while the top layer represents a DAW one cycle back in time, and the bottom layer represents a DAW
one cycle forward in time. The balancing density is sampled sequentially and recursively with an EnKS stage using the balancing weights,
moving from left to right in each cycle. For the current DAW, the middle balancing density has fully assimilated observations yk:0 and has
partially assimilated observations y

αL−1:k+1|L−1

L:k+1 . The EnKS stage with balancing weights completes when sampling the joint posterior, and
the EnKS stage with MDA weights begins again.

responding to each unique filter cost function solution over
the two stages; in the case that MDA is combined with, e.g.,
the ensemble transform in the MLEF this further grows to
the sum of the number of iterations

∑2L−S
j=1 ij where ij iter-

ations are used in the j-th optimization of a filter cost func-5

tion. However, when the cost of an ensemble simulation is
sufficiently greater than the cost of the square root inverse in
the ensemble dimension, the SIEnKS MDA scheme can sub-
stantially reduce the leading-order the computational cost of
ensemble-variational smoothing with MDA, and especially10

when S > 1.

4.4 Asynchronous data assimilation

In real-time prediction, fixed-lag smoothers with shifts of
S > 1 are computationally more efficient in terms of reduc-
ing the number of smoother cycles necessary to traverse a15

time series of observations with sequential DAWs – versus a
shift of one, the number of cycles necessary is reduced by the
factor of S. A barrier to using the SIEnKS with S > 1 lies in
the fact that the sequential filter analysis of the EnKS does
not in and of itself provide a means to asynchronously as-20

similate observations. However, the SIEnKS differs from the
EnKS in numerically simulating lagged states in the DAW.
When one interpolates the posterior estimate with the dy-
namical model over lagged states, one can easily revise the
algorithm to assimilate any newly available data correspond-25

ing to a time within the past simulation window, though the
weights in MDA need to be adjusted accordingly. There are
many ways in which one may even design methods of ex-
cluding observations and re-introducing them in a later DAW

with a shift S > 1. In the current work, the SIEnKS assimi- 30

lates all observations synchronously, even with S > 1. A sys-
tematic investigation of algorithms that would optimize this
asynchronous assimilation in single-iteration smoothers goes
beyond the scope of the current work. However, this key dif-
ference between the EnKS and the SIEnKS will be consid- 35

ered later.

5 Numerical benchmarks

5.1 Algorithm cost analysis

Fix the ensemble size Ne in the following and let us sup-
pose that the cost of the nonlinear ensemble simulation is 40

fixed in ∆t, equal to CM floating-point operations (flops). In
order to compute the ensemble transform in any of the meth-
ods, we assume that the inversion of the approximate Hessian
Ξ̃J̃ , and its square root, is performed with an SVD-based ap-
proach with cost of order O

(
N3
e

)
flops. This assures stabil- 45

ity and efficiency in the sense that the computation of all of

T = Ξ̃
− 1

2

J̃ , T−1 = Ξ̃
1
2

J̃ and Ξ̃
−1

J̃ combined is dominated by
the cost of the SVD of the symmetric,Ne×Ne matrix Ξ̃J̃ . If
a method is iterative, we denote the number of iterations used
in the scheme with ij , where the sub-index j distinguishes 50

distinct iterative optimizations.
A summary of how each of the S/I/EnKS scale in their

numerical cost is presented in Tables 1 and 2. This analy-
sis is easily derived based on the pseudo-code in Appendix
A and with the discussions in Section 4. Table 1 presents 55
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schemes that are used in the SDA configuration, while Table
2 presents schemes that are used in the MDA configurations.
Note that, while adaptive inflation in the finite-size formal-
ism can be used heuristically to estimate a power of the joint
posterior, this has not been found to be fully compatible with5

MDA (Bocquet and Sakov, 2014), and this combination of
techniques is not considered here.

For realistic geophysical models, note that the maximal
ensemble size Ne is typically of order O

(
102
)

while the
state dimension Nx can be of order O

(
109
)

(Carrassi et al.,10

2018); therefore, the cost of all algorithms reduce to terms of
CM�N3

e at leading-order in target applications. It is easy
to see then that the EnKS / MLES has a cost that is of order of
the regular ETKF / MLEF filter cycle, representing the least
expensive of the estimation schemes. Consider now in row15

one of Table 1, the i1 in the IEnKS represents the number
of iterations utilized to minimize the 4D cost function. If we
set i1 = 1, this represents the cost of the Lin-IEnKS. Partic-
ularly, we see that for S = 1 and a linear filter cost function,
the Lin-IEnKS has the same cost as the SIEnKS. However,20

even in the case of a linear filter cost function, when S > 1
the SIEnKS is more expensive than the Lin-IEnKS. Setting
i1 in Table 1 to terminate with a maximum possible value
the cost of the IEnKS is bounded at leading-order, yet, we
demonstrate shortly how the number of iterations tends to be25

small in stable filter regimes.
Consider the case when the filter cost function is nonlin-

ear, as when adaptive inflation is used (as defined in Sec. 4.2)
or when there is a nonlinear observation operator. Row two
of Table 1 shows how the cost of these estimators are differ-30

entiated when nonlinearity is introduced – particularly, the
cost of the the MLES and the SIEnKS requires one SVD cal-
culation for each iteration used to process each new observa-
tion. This renders the SIEnKS notably more expensive than
the Lin-IEnKS, which uses a single Hessian SVD calculation35

to process all observations globally. However, for target ap-
plications, such as synoptic scale meteorology, the additional
expense of iteratively optimizing filter cost functions with the
SIEnKS versus the single iteration of the Lin-IEnKS in the
4D cost function is insignificant.40

Table 2 describes the cost of the SIEnKS and the IEnKS
using MDA when there is a linear observation operator and
when there is a nonlinear observation operator. Recall that,
at leading-order CM, the cost of the SIEnKS is invariant in
S. This again comes with the caveat that observations are as-45

sumed to be assimilated synchronously in this work, while
the IEnKS assimilates observations asynchronously by de-
fault. Nonetheless, the equivalence between the first S fil-
ter cycles in the balancing stage and the MDA stage in the
SIEnKS allows the scheme to fix the leading-order cost at50

the expense of two passes over the DAW with the ensemble
simulation.

5.2 Data assimilation benchmark configurations

To demonstrate the performance, advantages and limitations
of the SIEnKS, we produce statistics of its forecast / filter / 55

smoother root mean square error (RMSE) versus the EnKS /
Lin-IEnKS / IEnKS in a variety of DA benchmark configu-
rations. Synthetic data is generated in a twin experiment set-
ting, with a simulated “truth twin” generating the observation
process. Define the truth twin realization at time tk as xt

k; we 60

define the ensemble RMSE as

RMSE
(
Ei
k

)
:=

√√√√√
Nx∑

j=1

(
x̂i
j,k −xt

j,k

)2

Nx
. (98)

where i refers to an ensemble label i ∈
{fore,filt,smth,bal,mda}, j refers to the state dimen-
sion index j ∈ {1, · · · ,Nx} and k refers to time tk as 65

usual.
A common diagnostic for the accuracy of the linear-

Gaussian approximation in the DA cycle is verifying that
the ensemble RMSE has approximately the same order as
the ensemble spread (Whitaker and Loughe, 1998), which is 70

known as the spread-skill relationship; over-dispersion and
under-dispersion of the ensemble both indicate inadequacy
of the approximation. Define the ensemble spread as

spread
(
Ei
k

)
:=

√√√√√ 1

Ne− 1

Ne∑

j=1

(
Xi,j
k

)>(
Xi,j
k

)

Nx
, (99)

where i again refers to an ensemble matrix label, j in this 75

case refers to the ensemble matrix column index and k again
refers to time. The spread is then given by the square root
of the mean-square-deviation of the ensemble from its mean.
Performance of these estimators will be assessed in terms of
having low RMSE scores with spread close to the value of 80

the RMSE. Estimators are said to be divergent when either
the filter or smoother RMSE is greater than the standard de-
viation of the observation errors, indicating that initializing a
forecast with noisy observations is preferable to the posterior
estimate. 85

The perfect, hidden Markov model in this study is de-
fined by the single layer form of the Lorenz-96 equations
(Lorenz, 1996). The state dimension is fixed at Nx = 40,
with the components of the vector x given by the variables
xj with periodic boundary conditions, x0 = x40, x−1 = x39 90

and x41 = x1. The time derivatives dx
dt := f(x), also known

as the model tendencies, are given for each state component
j ∈ {1, · · · ,40} by

fj(x) =−xj−2xj−1 +xj−1xj+1−xj +F. (100)

Each state variable heuristically represents the atmospheric 95

temperature at one of the 40 longitudinal sectors discretizing
a lattitudinal circle of the Earth. The Lorenz-96 equations
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Table 1. Order of SDA cycle flops for lag=L, shift=S, tuned inflation (TI) or adaptive inflation (AI) / nonlinear observation operator (NO)

EnKS / MLES SIEnKS IEnKS
TI SCM+SN3

e (L+S)CM+SN3
e (i1L+S)CM+ i1N

3
e

AI / NO SCM+
∑L

j=L−S+1 ilN
3
e (L+S)CM+

∑L
j=L−S+1 ijN

3
e (i1L+S)CM+ i1N

3
e

Table 2. Order of MDA cycle flops for lag=L=Q×S, shift=S, tuned inflation, linear observation operator (LO) or nonlinear observation
operator (NO)

SIEnKS IEnKS
LO 2LCM+ (2L−S)N3

e [L(i1 + i2) +S]CM+ (i1 + i2)N3
e

NO 2LCM+
∑2L−S

j=1 ijN
3
e [L(i1 + i2) +S]CM+ (i1 + i2)N3

e

are not a physics-based model, but it mimics fundamental
features of geophysical fluid dynamics, including conserva-
tive convection, external forcing and linear dissipation of en-
ergy (Lorenz and Emanuel, 1998). The term F is the forcing
parameter that injects energy into the model, the quadratic5

terms correspond to energy preserving convection, while the
linear term −xj corresponds to dissipation. With F ≥ 8, the
system exhibits chaotic, dissipative dynamics; we fix F = 8
in the following simulations, with the corresponding number
of unstable and neutral Lypunov exponents being equal to10

N0 = 14.
For a fixed ∆t, the dynamical modelMk is defined by the

flow map generated by the dynamical system in Eq. (100).
Both the truth twin simulation, generating the observation
process, and ensemble simulation, used to sample the ap-15

propriate conditional density, are performed with a standard
four-stage Runge-Kutta scheme with step size h= 0.01. This
high-precision simulation is used for generating a ground-
truth for these methods, validating the Julia package DataAs-
similationBenchmarks.jl (Grudzien et al., 2021) and testing20

its scalability; however, in general h= 0.05 should be suf-
ficient accuracy and is recommended for future use. The
nonlinearity of the forecast error evolution is controlled by
the length of the forecast window, ∆t. A forecast length
∆t= 0.05 corresponds to a six-hour atmospheric forecast,25

while for ∆t > 0.05, the level of nonlinearity in the ensem-
ble simulation can be considered to be greater than that is
typical for synoptic scale meteorology.

Localization, hybridization and other standard forms of
ensemble-based gain augmentation are not considered in this30

work for the sake of simplicity. Therefore, in order to control
the growth of forecast errors under weakly nonlinear evolu-
tion, the rank of the ensemble-based gain must be equal to
or greater than the number of unstable and neutral Lyapunov
exponentsN0 = 14, corresponding toNe ≥ 15, see Grudzien35

et al. (2018) and references therein. In the following exper-
iments, we range the ensemble size as Ne ∈ {15 + 2i}13

i=0,
from the minimal rank needed without gain augmentation to
a full-rank ensemble-based gain. When the number of ex-
perimental parameters expands, we restrict to the case where40

Ne = 21 for an ensemble-based gain of actual rank 20, mak-

ing a reduced-rank approximation of the covariance in anal-
ogy to DA in geophysical models.

Observations are full dimensional, such that Ny =Nx =
40, and observation errors are distributed according to the 45

Gaussian density n
(
z|0,INy

)
, i.e., with mean zero, uncor-

related across state indices and with homogeneous variances
equal to one. When the observation map is linear, it is de-
fined as Hk := INx ; when the observation map is taken to be
nonlinear, define 50

H(x) :=
x

2
◦
{

1 +
( x

10

)γ−1
}
, (101)

where ◦ above refers to the Schur product. This observation
operator is drawn from section 6.7.2.2 of Asch et al. (2016),
where the parameter γ controls the nonlinearity of the map.
In particular, for γ = 1 this corresponds to the linear observa- 55

tion operator Hk, while γ > 1 increases the nonlinearity of
the map. When we vary the nonlinearity of the observation
operator, we take γ ∈ {i}11

i=1 corresponding to ten different
nonlinear settings and the linear setting for reference.

When tuned inflation is used to regularize the smoothers, 60

as in Algorithm 4, we take a discretization range of λ ∈
{1.0 + 0.01i}10

i=0, corresponding to the usual Kalman update
with λ= 1.0 and to up to 10% inflation of the empirical vari-
ances with λ= 1.1. Using tuned inflation, estimator perfor-
mance is selected for the minimum average forecast RMSE 65

over the experiment for all choices of λ, unless this is ex-
plicitly stated otherwise. When adaptive inflation is used, no
additional tuned inflation is utilized. Simulations using the
finite-size formalism will be denoted with a -N, following the
convention of the EnKF-N. Multiple data assimilation will 70

always be performed with uniform weights as βk|L := 1
L for

all estimators.
For the IEnKS, we limit the maximum number of itera-

tions per stage at ij = 10 for j = 1,2. Therefore the IEnKS
can take a maximum of i1 + i2 = 20 iterations in the MDA 75

configuration to complete a cycle. Iteratively optimizing the
filter cost function in the MLES(-N) / SIEnKS(-N), the max
number of iterations is capped at ij = 40 per analysis. The
tolerance for the stopping condition in the filter cost func-
tions is set to 10−4, while the tolerance for the 4D estimates 80
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is set to 10−3. However, the scores of the algorithms are to a
large extent insensitive to these particular hyper-parameters.

In order to capture the asymptotically stationary statistics
of the filter / forecast / smoother processes, we take a long
time-average of the RMSE and spread over the time indices5

k. The long experiment average ensures that, for an ergodic
dynamical system, we average over the spatial variation on
the attractor and that we account for variations in the obser-
vation noise realizations that may affect the estimator per-
formance. So that the truth twin simulates observations on10

the attractor, it is simulated for an initial spin up of 5× 103

analysis times before observations are given. Let the time be
given as t0 after this initial spin up. Observations are gener-
ated identically for all estimators using the same Gaussian er-
ror realizations at a given time to perturb the observation map15

of the truth twin. At time t0, the ensemble is initialized iden-
tically for all estimators (depending on the ensemble size)
with the same iid draw from the multivariate Gaussian with
mean at the truth twin xt

0 and covariance equal to the identity
INx

. All estimation schemes are subsequently run over obser-20

vation times indexed as {tk}2.5×104

k=1 . As the initial warm-up
of the estimators’ statistics from this cold start tend to differ
from the asymptotically stationary statistics, we discard the
forecast / filter / smoother RMSE and spread corresponding
to the observations times {tk}5×103

k=1 , taking the time-average25

of these statistics for the remaining 2× 104 analysis time in-
dices. Particularly, this configuration is sufficient to represent
estimator divergence which may have a delayed onset.

Forecast statistics are computed for each estimator when-
ever the ensemble simulates a time index tk for the first time,30

before yk has been assimilated into the estimate. Filter statis-
tics are computed in the first analysis at which the obser-
vation yk is assimilated into the simulation. For the (Lin-
)IEnKS, with S > 1, this filter estimate includes the infor-
mation from all observations yL:L−S+2 when making a filter35

estimate for the state at tL−S+1. Smoother statistics are com-
puted for the time indices t0, t1, · · · , tS−1 in each cycle, cor-
responding to the final analysis for these states before they
are discarded from subsequent DAWs. Empty white blocks
in heat plots correspond to “Inf” values in the simulation40

data. Missing data occurs due to numerical overflow when
attempting to invert a close-to-singular cost function Hessian
Ξ̃J̃ , as a consequence of the collapse of the ensemble spread.
When an estimator suffers this catastrophic filter divergence,
the experiment output is replaced with Inf values to indicate45

the failure. Other benchmarks for the EnKS / Lin-IEnKS /
IEnKS in the Lorenz-96 model above can be found in, e.g.,
Bocquet and Sakov (2014), Asch et al. (2016) and Raanes
et al. (2018), which are corroborated here with similar but
slightly different configurations.50

5.3 Weakly nonlinear forecast error dynamics – linear
observations

We fix ∆t= 0.05 in this section, set S = 1 and use the linear
observation operator in order to demonstrate base-line per-
formance of the estimators in a simple setting. On the other 55

hand, we vary the lag length, the ensemble size and the use
of tuned / adaptive inflation or MDA. The lag in this sec-
tion is varied on a discretization of L ∈ {1 + 3i}30

i=0. As a
first reference simulation, consider the simple case where all
schemes use tuned covariance inflation, so that the SIEnKS 60

and the Lin-IEnKS here are formally equivalent. Likewise,
with S = 1, there is no distinction between asynchronous or
synchronous DA. Figure 6 makes a heat plot of the forecast
/ filter / smoother RMSE and spread as the lag length L is
varied along with the ensemble size Ne. 65

It is easy to see the difference in the performance between
the EnKS and the iterative S/Lin-/IEnKS schemes. Particu-
larly, the forecast and fiter RMSE does not change with re-
spect to the lag length in the EnKS, as these statistics are
generated independently of the lag with a standard ETKF fil- 70

ter cycle. However, the smoother performance of the EnKS
does improve with longer lags without sacrificing stability
over long lag as in the iterative schemes. In particular, all of
the iterative schemes use the dynamical model to interpolate
the posterior estimate over the DAW. For sufficiently large L, 75

this becomes unstable due to the small simulation errors that
are amplified by the chaotic dynamics. The scale of the color
map is capped at 0.30, as a more accurate forecast / filter per-
formance can be attained in this setting with the ETKF alone,
as demonstrated by the EnKS. 80

On the other hand, the iterative estimate of the posterior as
in the S/Lin-/IEnKS in this weakly nonlinear setting shows
a dramatic improvement in the predictive and analysis accu-
racy for a tuned lag length. Unlike the standard ETKF obser-
vation / analysis / forecast cycle, these iterative smoothers are 85

able to control the error growth in the neutral Lyapunov sus-
bspace corresponding to theN0 = 14-th Lyapunov exponent.
With the ensemble size Ne = 15 corresponding to a rank 14
ensemble-based gain, the iterative smoothers maintain sta-
ble prediction and posterior estimates over a wide range of 90

lags while the EnKS diverges for all lag settings. We no-
tice that the stability regions of the S/Lin-/IEnKS are oth-
erwise largely the same in this simple benchmark configu-
ration, though the IEnKS has a slightly longer stability over
long lags with low sample sizes. 95

In order to illustrate the difference in accuracy between
the iterative schemes and the non-iterative EnKS, Fig. 7
plots a cross section of Fig. 6 for Ne = 21. The iterative
schemes have almost identical performance until approxi-
mately a lag of L≈ 37, at which point all schemes become 100

increasingly unstable. The differences shown between the it-
erative schemes here are insignificant, and may vary between
different implementations of these algorithms or pseudo-
random seeds. We note that all estimators are also slightly
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Figure 6. Lag length L vertical axis, ensemble size Ne horizontal axis. SDA, tuned inflation, shift S = 1, linear observations, ∆t= 0.05.
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Figure 7. Cross section of Fig. 6 at ensemble size Ne = 21.

over-dispersive due to selecting a tuned inflation value based
on the minimum forecast RMSE, rather than balancing the
RMSE and spread simultaneously. Nonetheless, we clearly
demonstrate how all iterative estimators reduce the predic-
tion and analysis error over the non-iterative EnKS approach.5

Tuning the lag L, the forecast error for the iterative schemes
is actually lower than the filter error of the EnKS.

Consider the case where the filter cost function is nonlin-
ear due to the adaptive inflation scheme. Figure 8 makes the

same heat plot as in Fig. 6 but where the finite-size formal- 10

ism is used instead of tuned inflation. All schemes tend to
have slightly weaker performance in this setting, except for
the IEnKS-N in the low ensemble size regime. The design of
the adaptive inflation scheme is to account for sample error
due to the low ensemble size and nonlinearity in the forecast 15

error dynamics, typical of mid-range forecasts. The efficacy
of the design is illustrated as the scheme is most effective
when the low ensemble size and nonlinear forecast error dy-
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Figure 8. Lag length L vertical axis, ensemble size Ne horizontal axis. SDA, adaptive inflation, shift S = 1, linear observations, ∆t= 0.05.
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Figure 9. Cross section of Fig. 8 at ensemble size Ne = 21.

namics conditions are present. Note that the Lin-IEnKS-N
uses a single iteration of the extended 4D cost function, op-
timizing both the weights for the initial condition and the
hyper-parameter simultaneously. On the other hand, while
the SIEnKS-N makes a single iteration of the ensemble sim-5

ulation over the DAW, it iteratively optimizes the adaptive
inflation hyper-parameter in the filter cost function – this al-
lows the SIEnKS-N to make substantial improvements over

the Lin-IEnKS-N in terms of the stability region while re-
maining at the same leading-order cost. 10

Figure 9 plots a cross section of Fig. 8 at Ne = 21 in
order to further demonstrate the improved accuracy of the
forecast / filter / smoother statistics of the SIEnKS-N ver-
sus the Lin-IEnKS-N. For a tuned lag L, the Lin-IEnKS-N
fails to achieve distinctly better forecast and filter accuracy 15

than the EnKS-N. While the smoother RMSE for the Lin-
IEnKS-N does make an improvement over the EnKS-N, this
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improvement is not comparable to the smoother accuracy of
the SIEnKS-N, which has the same leading-order cost. The
performance of the SIEnKS-N is almost indistinguishable
from the 4D IEnKS-N up to a lag of L≈ 25. At this point,
the stability of the SIEnKS-N begins to suffer, while on the5

other hand the IEnKS-N is able to improve smoother RMSE
for slightly longer lags. Nonetheless, both the SIEnKS-N and
the IEnKS-N become increasingly under-dispersive for lags
L≥ 25, demonstrating systematic underestimation of the es-
timator’s uncertainty that leads to divergence for sufficiently10

large L.
We now demonstrate how MDA relaxes the nonlinearity

of the MAP estimation and the interpolation of the poste-
rior estimate over the DAW. Recall that MDA is handled dif-
ferently in the SIEnKS from the 4D schemes: the 4D ap-15

proach interpolates the DAW with the balancing estimate
from a free forecast, while the SIEnKS interpolates the pos-
terior estimate via a sequence of filter analyses steps using
the balancing weights. Recall that, for target applications,
the SIEnKS is the least expensive MDA estimator, requiring20

only 2L ensemble simulations in this configuration, while the
(Lin-)IEnKS uses at least 2L+1. Figure 10 presents the same
experiment configuration as in Figs. 6 and 8, but where MDA
is used with tuned inflation. The EnKS does not use MDA,
but the results from Fig. 6 are presented here for reference.25

It is easy to see that MDA improves all of the iterative
smoothing schemes in Fig. 10, with greatly expanded stabil-
ity regions from Fig. 6. Moreover, a key new pattern emerges
that differentiates the traditional, 4D MDA approach and the
new MDA scheme in the SIEnKS. In particular, while the30

stability regions for the SIEnKS / (Lin-)IEnKS are similar
for their smoother statistics in this configuration, the forecast
/ filter statistics are strongly differentiated. Unlike the free
forecast solution used to interpolate the posterior estimate
over the DAW in the 4D approach, the filter step within the35

SIEnKS MDA controls the simulation errors that accumulate
when L is large.

In order to examine the effect more precisely, consider the
cross section of Fig. 10 for Ne = 21 presented in Fig. 11.
Notice that all iterative MDA estimators have almost indis-40

tinguishable performance until lag L≈ 31. From this point,
although the smoother accuracy increases with longer lags
for the (Lin-)IEnKS, this comes at a sacrifice in the forecast
/ filter accuracy. Particularly, for lags L≥ 31 the forecast /
filter accuracy of the (Lin-)IEnKS begins to degrade; at a lag45

of L≈ 61, the IEnKS performs worse than the EnKS, while
the Lin-IEnKS has diverged. This is in stark contrast to the
SIEnKS — not only does the forecast / filter accuracy re-
main stable for lags L≥ 40, but each of these improve along
with the smoother accuracy until a lag L≈ 61. Furthermore,50

the spread of the SIEnKS indicates that the SIEnKS MDA,
perfect, linear-Gaussian approximation is well-satisfied, with
the ensemble dispersion very close to the RMSE within the
stability region.

The SIEnKS thus highlights a performance trade-off of the 55

4D MDA schemes that it does not itself suffer from. In par-
ticular, suppose that the lag L in Fig. 10 is selected in order
to optimize each estimator’s accuracy in terms of RMSE, for
each fixed ensemble size Ne. One can optimize the lag L
using the forecast RMSE or the smoother RMSE as the crite- 60

rion. However, Fig. 11 indicates that Lmay be quite different
for the forecast accuracy versus the smoother accuracy in the
4D schemes. Figures 12 and 13 demonstrate this trade-off
precisely, where the former plots the RMSE and spread with
lag and inflation simultaneously optimized for forecast accu- 65

racy and the later is optimized for smoother accuracy.
Tuning for optimum forecast RMSE, as in Fig. 12, the per-

formance of the SIEnKS / (Lin-)IEnKS for any fixed Ne are
indistinguishable with respect to this metric. On the other
hand, the SIEnKS strongly outperforms the Lin-IEnKS and 70

even exhibits a slightly better overall stability and accuracy
than the IEnKS across the range of ensemble sizes. The dif-
ference in performance is more pronounced when tuning for
the minimal smoother RMSE in Fig. 13. Again, the three esti-
mators are indistinguishable in their smoother estimates, but 75

the SIEnKS forms high-precision smoother estimates with-
out sacrificing its predictive accuracy while interpolating the
solution over long lags.

Using MDA or adaptive inflation in DA cycles with
weakly nonlinear forecast error dynamics, we demonstrate 80

how the SIEnKS greatly outperforms the Lin-IEnKS with
the same, or lower, leading-order cost. The SIEnKS MDA
scheme also outperforms the IEnKS MDA scheme with less
cost, but the 4D IEnKS-N is able to extract additional accu-
racy over the SIEnKS-N at the cost of L additional ensemble 85

simulations per iteration. Therefore, it is worth considering
the statistics on the number of iterations that the IEnKS uses
in each of the above studied configurations. Figure 14 shows
a heat plot for the mean and the standard deviation of the
number of iterations used per cycle for each of the IEnKS 90

with SDA, IEnKS-N and IEnKS with MDA to optimize the
4D cost function. Notice that in the MDA configuration, the
mean and the standard deviation is computed over the two
stages of the IEnKS, accounting for both the balancing and
MDA 4D cost functions. 95

Although the number of possible iterations is bounded be-
low by one in the case of SDA, and two in the case of MDA,
the frequency distribution for the total iterations is not espe-
cially skewed within the stability region of the IEnKS. This is
evidenced by the small standard deviation, less than or equal 100

to one, that defines the stability region for the scheme. Par-
ticularly, the IEnKS typically stabilizes around: (i) three it-
erations in the SDA, tuned inflation configuration; (ii) three
to four iterations in the SDA, adaptive inflation configura-
tion; and (iii) six to eight iterations in the MDA, tuned infla- 105

tion configuration. Therefore, the SIEnKS is shown to make
a reduction ranging between: (i) 2L; (ii) 2L to 3L; or (iii)
4L to 6L ensemble simulations of the estimator’s cycle, on
average, versus the IEnKS. While this is unremarkable for
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Figure 10. Lag length L vertical axis, ensemble size Ne horizontal axis. MDA, tuned inflation, shift S = 1, linear observations, ∆t= 0.05.
EnKS SDA results presented here for reference.
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Figure 11. Cross section of Fig. 10 at ensemble size Ne = 21.

the SDA, tuned inflation configuration where the Lin-IEnkS
performs similarly, this demonstrates a strong performance
advantage of the SIEnKS in its target application, i.e., in
settings with weakly nonlinear forecast error dynamics and
other sources of nonlinearity dominating the DA cycle. This5

an especially profound reduction for the MDA configuration,
where the SIEnKS MDA scheme proves to be both the least
expensive and the most stable / accurate estimator by far.

5.4 Weakly nonlinear forecast error dynamics –
nonlinear observations 10

A primary motivating application for the SIEnKS is the sce-
nario where the forecast error dynamics are weakly nonlinear
but where the observation operator is weakly to strongly non-
linear. There are infinitely many possible ways how nonlin-
earity in the observation operator can be expressed, and the 15
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Figure 12. MDA, RMSE and spread versus ensemble size Ne, lag and inflation optimized for minimum forecast RMSE in Fig. 10.
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Figure 13. MDA, RMSE and spread versus ensemble size Ne, lag and inflation optimized for minimum smoother RMSE in Fig. 10.

results are expected to strongly depend on the particular op-
erator. In the following, we consider the operator in Eq. (101)
for the ability to tune the strength of this effect with the pa-
rameter γ. In order to avoid conflating the effect of the non-
linearity in the hyper-parameter optimization and the nonlin-5

earity in the observation operator, we suppress adaptive in-
flation in this section. In this case, SDA and MDA schemes
are considered to compare how MDA can be used to temper
the effects of local minima in the MAP estimation versus a

nonlinear observation operator. We again choose ∆t= 0.05 10

to maintain weakly nonlinear forecast error dynamics. We re-
strict to Ne = 21 as we expand the experimental parameters
to include γ. The lag is varied as L ∈ {1 + 3i}27

i=0.
Figure 15 demonstrates the effect of varying the nonlin-

earity in the observation operator, where strong differences 15

once again emerge between the retrospective analysis of the
MLES and the iterative schemes. The scale of the color
map is raised to a max of 0.5, as a better performance can
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Figure 14. Iterations per cycle versus lag L in the vertical axis and ensemble size Ne in the horizontal axis. Mean (top panel) and standard
deviation (bottom panel) of iterations used per cycle from simulations generating Figs. 6, 8 and 10 are presented.

be achieved with the MLEF alone, as demonstrated by the
MLES. In the MLES, the forecast and analysis error in-
creases almost uniformly in γ, but a very different picture
emerges for the iterative smoothers. While the stability re-
gions of the iterative schemes tend to shrink for larger γ,5

the accuracy of the estimators changes non-monotonically.
Moreover, iteratively optimizing the filter cost function in the
SIEnKS or the 4D cost function in the IEnKS does not in and
of itself guarantee a better performance than the Lin-IEnKS,
due to the increasing presence of local minima. Particularly10

for the SIEnKS and the IEnKS with highly nonlinear ob-
servations, this optimization can also become deleterious to
the estimator performance, with evidence of instability and
catastrophic divergence in these regimes.

In Fig. 16, we repeat the experimental configuration of Fig.15

15 with the exception of using the MDA configuration. As
seen in Fig. 10, MDA greatly extends the forecast / filter ac-
curacy of the SIEnKS over the 4D schemes. Multiple data
assimilation in this context additionally weakens the effect
of the assimilation update step, smoothing the cost function20

contours and expanding the stability regions of all estimators.
Figure 17 presents tuned results from Fig. 16 where the lag

and inflation are simultaneously optimized for the minimal
forecast RMSE. In this context, we clearly see how the effect
of varying γ is non-monotonic on the estimator accuracy for25

the iterative schemes. However, important differences also
emerge in this configuration between the SIEnKS and the
(Lin-)IEnKS. While the forecast and filter accuracy of these
schemes remains indistinguishable for γ ≤ 7, the smoother
RMSE of the SIEnKS is almost uniformly lower than these30

other schemes for all γ. Interestingly, the degradation of the
performance of the IEnKS for highly nonlinear observations,
γ ≥ 8, does not extend to either of the Lin-IEnkS or the
SIEnKS in the MDA configuration. Whereas the iterative op-
timization of the 4D cost function becomes susceptible to 35

the effects of the local minima with large γ, the Lin-IEnKS
remains stable for the full window of the γ presented here.
Moreover, the SIEnKS demonstrates significantly improved
smoother accuracy over the Lin-IEnKS while remaining at
a lower leading-order cost. This suggests that the sequential 40

MDA scheme of the SIEnKS is better equipped to handle
highly nonlinear observation operators than the 4D formal-
ism, which appears to suffer from a greater number of local
minima.

5.5 Weakly nonlinear forecast error dynamics – lag 45

versus shift

Even for a linear observation operator and tuned inflation,
a shift S > 1 distinguishes the performance of each of the
studied estimators. In this section, we fix ∆t= 0.05 corre-
sponding to weakly nonlinear forecast error dynamics and 50

we vary L,S ∈ {2,4,8,16,32,48,64,80,96} to demonstrate
these differences. For the iterative schemes, we only consider
combinations of L divisible by S for compatibility with the
MDA schemes. The EnKS is defined for arbitrary S < L, and
all such configurations are presented for reference. 55

Recall the qualification that the EnKS and SIEnKS are
designed to assimilate observations sequentially and syn-
chronously in this work whereas the (Lin-)IEnKS assimilates
observations asynchronously by default. When S = 1 there
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Figure 15. Lag length L vertical axis, nonlinearity parameter γ horizontal axis. SDA, tuned inflation, shift S = 1, Ne = 21 and ∆t= 0.05.
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Figure 16. Lag length L vertical axis, nonlinearity parameter γ horizontal axis. MDA, tuned inflation, shift S = 1, Ne = 21 and ∆t= 0.05.
MLES SDA results presented here for reference.

is no distinction between asynchronous and synchronous as-
similation, but in this section this distinction is borne in mind.
Likewise, it is recalled that for the (Lin-)IEnKS with a shift
S > 1, filter statistics are computed including the informa-
tion from all observations yL:L−S+1 when making a filter5

estimate for states at times tS+1, · · · , tL. This arises from the
asynchronous design of the IEnKS, whereas filter statistics

are computed sequentially without future information in the
SIEnKS.

Figure 18 presents the heat plot of RMSE and spread for 10

each estimator in the SDA configuration. We note that the
EnKS for a fixed L has performance that is largely invari-
ant with respect to changes in S, except for the special case
where S = L. In this case, the non-overlapping DAWs im-
pose that posterior estimates are constructed with fewer ob- 15
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Figure 17. MDA, RMSE and spread versus γ, lag and inflation optimized for minimum forecast RMSE.
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Figure 18. Lag length L vertical axis, shift S horizontal axis. SDA, tuned inflation, linear observations, ensemble size Ne = 21, ∆t= 0.05.

servations conditioning the final estimate than in overlap-
ping DAWs. Otherwise, the stability regions of the iterative
schemes are largely the same, with the SIEnKS only achiev-
ing a slight improvement over the Lin-IEnKS, and the IEnKS
only slightly improving on the SIEnKS.5

The SDA configuration is contrasted with Fig. 19 where
we again see the apparent strengths of the SIEnKS MDA
scheme. When MDA is introduced, all iterative schemes in-
crease their respective stability regions to include longer lags

and larger shifts of the DAW simultaneously. However, the 10

SIEnKS has the largest stability region of all iterative estima-
tors, extending to at least as large shifts as the other schemes
for every lag setting. Likewise, the earlier distinction be-
tween the forecast and filter statistics of the SIEnKS and the
4D schemes is readily apparent. Not only does the stability 15

region of the SIEnKS improve over the other schemes, it is is
also generally more accurate in its predictive statistics at the
end of long lag windows.
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Figure 19. Lag length L vertical axis, shift S horizontal axis. MDA, tuned inflation, linear observations, ensemble sizeNe = 21, ∆t= 0.05.
EnKS SDA results presented here for reference.
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Figure 20. MDA, RMSE and spread versus shift S, lag L optimized for minimum forecast RMSE in Fig. 19.

In order to get a finer picture of the effect of varying the
shift S, we tune the lag and inflation simultaneously for each
estimator for their minimal forecast RMSE given a fixed
shift; we plot the results of this tuning in Fig. 20. Given that
all iterative estimators uniformly diverge for a shift S ≥ 32,5

we only plot results for shifts in the range {2i}4i=0. Several
important features stand out in this plot. Firstly, note that
while optimizing the lag, the performance of the SIEnKS

is almost invariant in the shift, similar to the performance
of the EnKS – this is because the sequential filter analysis 10

of the SIEnKS constrains the growth of the filter and fore-
cast errors as the DAW shifts. Indeed, prediction of states at
times tL−S+1, · · · , tL arise from a filter ensemble at the pre-
vious time point. In the MDA scheme, the balancing weights
for the observations of these newly introduced states in the 15
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DAW are, furthermore, all equal to one, equivalent to a stan-
dard ETKF filter analysis.

Secondly, note that the filter estimates of the (Lin-)IEnKS
actually improve with larger shifts – however, this is an
artifact of computing the filter statistics over all times5

tL−S+1, · · · , tL using the observations yL:L−S+1 simultane-
ously. This means that the filter estimates for all times ex-
cept tL actually contain future information. This is contrasted
with the sequential analyses of the EnKS and the SIEnKS
which only produce filter statistics with observations from10

past and current times.
Thirdly, note that the Lin-IEnKS, while maintaining a sim-

ilar prediction and filtering error to the IEnKS, is less stable
and performs almost uniformly less accurate than the IEnKS
in its smoothing estimates. The SIEnKS, moreover, tends to15

exhibit a slight improvement in stability and accuracy over
the IEnKS therein.

Finally, it is immediately apparent how S > 1 strongly in-
creases the prediction error for the 4D estimators. The longer
free forecasts for S > 1, used to shift the DAW, accumulate20

errors such that, for S ≥ 16, the Lin-IEnKS actually experi-
ences filter divergence. The difference in the estimators’ per-
formances is once again a consequence of how observations
are assimilated synchronously as in the EnKS / SIEnKS or
asynchronously by default in the (Lin-)IEnKS.25

Bearing all the above qualifications in mind, we analyze
the performance of the estimators while varying the shift S.
Firstly, for all experimental settings the leading-order cost
of the SIEnKS MDA scheme is fixed at 2L ensemble sim-
ulations, whereas for the other schemes the minimal cost is30

at 2L+S ensemble simulations. For configurations where
S > 1, the SIEnKS thus makes a dramatic cost reduction ver-
sus the other schemes in this aspect alone, requiring fewer en-
semble simulations per cycle. We consider that the leading-
order cost for the Lin-IEnKS is similar to the SIEnKS for35

S = 1, requiring only one more ensemble simulation per cy-
cle. However, the SIEnKS with a shift S = 16 maintains a
prediction and smoother error that is comparable to the Lin-
/IEnKS for a shift of S = 1. This implies that the SIEnKS
can maintain performance similar to the S = 1 IEnKS MDA40

scheme, while using one sixteenth of the total cycles needed
by the IEnKS to pass over the same observations in real-time.
If we assume that the observations can be assimilated syn-
chronously, the above SIEnKS MDA scheme is thus able to
run in its EnKS cycle over a long time series of observations45

while needing infrequent re-initalization with its smoothed
estimates. For a real-time forecast cycle, where the compu-
tational cost / prediction accuracy trade-off is the most im-
portant consideration, this once again demonstrates how the
SIEnKS can balance this trade-off, performing as well and50

often better than 4D estimators with a substantially lower
leading-order cost. Not only is each cycle less expensive in
the SIEnKS than in the (Lin-)IEnKS, but the SIEnKS reduces
the number of required cycles by an order of magnitude.

5.6 Strongly nonlinear forecast error dynamics – lag 55

versus ∆t

In all other numerical benchmarks we focus on the scenario
that the SIEnKS is designed for, i.e., DA cycles in which
the forecast error evolution is weakly nonlinear. In this sec-
tion, we demonstrate the limits of the SIEnKS when the fore- 60

cast error dynamics dominate the nonlinearity of the DA cy-
cle. We vary ∆t ∈ {0.05× i}10

i=1 while the ensemble size
Ne = 21 and the shift S = 1 are fixed. The lag is varied as
L ∈ {1+3i}17

i=0. We neglect nonlinear observation operators
in this section, though we include the finite-size adaptive in- 65

flation formalism which is itself designed to ameliorate the
increasing nonlinearity in the forecast error dynamics. Single
data assimilation and MDA configurations are considered for
the iterative schemes as usual.

Figure 21 demonstrates the effect of the increasing non- 70

linearity of the forecast error evolution with tuned inflation.
Due to the extreme nonlinearity for large ∆t, we raise the
heat map scale for the RMSE and spread to 1.0. Several fea-
tures become apparent with the increasing forecast nonlin-
earity. Firstly, the EnKS, which has performance dependent 75

on the standard ETKF cycle, is fully divergent for ∆t≥ 0.2.
This is contrasted with all iterative schemes which maintain
adequate performance for ∆t≤ 0.25. We note that the per-
formance of the SIEnKS and the Lin-IEnKS, in this first sce-
nario, are nearly identical; this corresponds to the fact that 80

they are formally equivalent in this setting. However, appro-
priately, it is the 4D IEnKS that maintains the most stable
and accurate performance over the range of forecast lengths.
Indeed, this demonstrates the benefit precisely of the itera-
tive solution to 4D cost function for moderately nonlinear, 85

non-Gaussian DA.
In Fig. 22, we repeat the same experiments as in Fig.

21 but using the finite-size adaptive inflation, rather than
tuned inflation, for each estimator. Once again, the efficacy
of the finite-size formalism in ameliorating the nonlinearity 90

of the forecast error dynamics is demonstrated. In particu-
lar, all schemes except the SIEnKS see an overall improve-
ment in their stability region and often in their overall accu-
racy. The EnKS-N actually strongly outperforms the tuned
inflation EnKS, extending an adequate filter performance 95

as far as ∆t≤ 0.35. Likewise, the IEnKS-N has a strongly
enhanced stability region, though increasingly suffers from
catastrophic filter divergence outside of this zone. Notably,
whereas the SIEnKS-N outperformed the Lin-IEnKS-N for
∆t= 0.05, the Lin-IEnKS-N generally yields better per- 100

formance for moderately to strongly nonlinear forecast er-
ror dynamics. Indeed, the finite-size formalism appears to
become incompatible with the design of the SIEnKS for
strongly nonlinear forecast error dynamics, as suggested by
the widespread ensemble collapse and catastrophic diver- 105

gence.
As a final experimental configuration, we consider how

MDA affects the increasing nonlinearity of the forecast er-
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Figure 21. Lag length L vertical axis, ∆t horizontal axis. SDA, tuned inflation, ensemble size Ne = 21.
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Figure 22. Lag length L vertical axis, ∆t horizontal axis. SDA, adaptive inflation, ensemble size Ne = 21.

ror dynamics. Figure 23 demonstrates the performance of
these estimators in the MDA configuration with tuned in-
flation, where the SDA results of the EnKS are pictured for
reference. In particular, we see the usual increase in the es-
timators’ stability regions over the SDA configuration. How-5

ever, the improvement of the SIEnKS over the Lin-IEnKS is
marginal to non-existent for moderately to strongly nonlin-
ear forecast error dynamics. The 4D IEnKS, furthermore, is

again the estimator with the largest stability region and great-
est accuracy over a wide range of ∆t. 10

The results in this section indicate that, while the SIEnKS
is very successful in weakly nonlinear forecast error dynam-
ics, the approximations used in this estimator strongly de-
pend on the source of nonlinearity in the DA cycle. Partic-
ularly, when the nonlinearity of the forecast error dynamics 15

dominates the DA cycle, the approximations of the SIEnKS
break down. It is favorable thus to consider the Lin-IEnKS,
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Figure 23. Lag length L vertical axis, ∆t horizontal axis. MDA, tuned inflation, ensemble size Ne = 21.

or setting a low threshold for the iterations in the IEnKS, in-
stead of applying the SIEnKS in this regime. Notably, as the
finite-size inflation formalism is designed for a scenario dif-
ferent than the SIEnKS, one may consider instead designing
adaptive covariance inflation in such a way that it exploits the5

design principles of the SIEnKS. Such a study goes beyond
the scope of this work and will be considered later.

6 Conclusion

In this work we achieve three primary objectives. Firstly, we
provide a review of sequential, ensemble-variational Kalman10

filters and smoothers with perfect model assumptions within
the Bayesian MAP formalism of the IEnKS. Secondly, we
rigorously derive our single-iteration formalism as a novel
approximation of the Bayesian MAP estimation, explain-
ing how this relates to other well-known smoothing schemes15

and how its design is differentiated in a variety of contexts.
Thirdly, using the numerical framework of DataAssimila-
tionBenchmarks.jl (Grudzien et al., 2021), we extensively
demonstrate how the SIEnKS has a unique advantage in bal-
ancing the computational cost / prediction accuracy trade-off20

in short-range forecast applications. Pursuant to this, we pro-
vide a cost analysis and pseudo-code for all of the schemes
studied in this work, in addition to the open-source imple-
mentations available in the supporting Julia package. To-
gether, this work provides a practical reference for a vari-25

ety of topics at the state-of-the-art in ensemble-variational
Kalman smoothing.

The rationale of the SIEnKS is, once again, to efficiently
perform a Bayesian MAP estimation in real-time, short-

range forecast applications where the forecast error dynamics 30

are weakly nonlinear. Our central result is the novel SIEnKS
MDA scheme, which not only improves the forecast accu-
racy and analysis stability in this regime, but also simultane-
ously reduces the leading-order cost versus the traditional 4D
MDA approach. This MDA scheme is demonstrated to pro- 35

duce significant performance advantages in the simple set-
ting where there is a linear observation operator, and espe-
cially when the shift S can be taken greater than one. Not
only is each cycle of the SIEnKS MDA scheme significantly
less expensive than the other estimators for S > 1, estima- 40

tor performance while varying S tends to be invariant; this
crucial aspect means that one can, in principle, reduce the
number of cycles actually needed by the estimator to pro-
duce forecasts in real-time. Our scheme also appears better
equipped than the 4D MDA estimation to handle highly non- 45

linear observation operators, where it maintains greater accu-
racy and is more robust to the effects of local minima. Sep-
arately we find that, in our target regime, the single-iteration
formalism is cost-effective for optimizing hyper-parameters
of the estimation scheme, as with the SIEnKS-N. 50

The above successes of the SIEnKS come with three im-
portant qualifications: (i) we have focused on synchronous
DA, assuming that we can sequentially assimilate observa-
tions before producing a prediction step; (ii) we have not
studied localization or hybridization, which are widely used 55

in ensemble-based estimators to overcome the curse of di-
mensionality for realistic geophysical models; and (iii) we
have relied upon the perfect model assumption, whereas re-
alistic forecast settings include significant modelling errors.
These restrictions come by necessity, to limit the scope of 60
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an already lengthy study. However, we note that the SIEnKS
is capable of asynchronous DA, as already discussed in Sec.
4.4. Likewise, it is possible that some of the issues faced by
the IEnKS in integrating localization / hybridization (Boc-
quet, 2016) may actually be ameliorated by the design prin-5

ciples of the SIEnKS. Domain localization, as in the LETKF
(Hunt et al., 2007; Sakov and Bertino, 2011), is likely to
have a satisfactory extension to the SIEnKS, where this
may be applied directly in the filter step as usual. Assum-
ing that the ensemble forecast dynamics are not highly non-10

linear, the spatial correlations defining the observation do-
main truncation for the initial ensemble at t0 may, further, be
well-approximated by the domains from the filter step but
mapped by a linear, reverse-time-evolution over the DAW
via an explicit or implicit adjoint model. Experiments sug-15

gest that a tuned radius for a smoother domain localiza-
tion can be implemented successfully in an EnKS analysis
(Nerger et al., 2014). However, there are also rich opportu-
nities to iteratively optimize a localization hyper-parameter
as with, e.g., the α-trick (Lorenc, 2003) within the SIEnKS20

framework. Similarly, it is possible that an extension of
the single-iteration formalism could provide a novel alter-
native to other iterative ensemble smoothers designed for
model error, such as the IEnKS-Q (Sakov et al., 2018; Fil-
lion et al., 2020), EnKS expectation maximization schemes25

(Pulido et al., 2018) or the family of OSA smoothers (Ait-El-
Fquih and Hoteit, 2022).

For the reasons above, this initial study provides a number
of directions in which our single-iteration formalism can be
extended. Localization and hybridization are both prime tar-30

gets to translate the benefits of the SIEnKS to an operational
short-range forecasting setting. Likewise, asynchronous DA
design is an important operational topic for this estimator.
Noting that the finite-size adaptive inflation formalism is de-
signed to perform in a different regime than the SIEnKS and35

is not fully compatible with MDA schemes, developing an
adaptive inflation and / or model error estimation based on
the design principles of the SIEnKS is an important direc-
tion of future study. Having currently demonstrated the ini-
tial success of this single-iteration formalism, each of these40

above directions can be considered in a devoted work. We
hope that the framework provided in this manuscript will
guide these future studies, and will provide a robust basis of
comparison for further development of ensemble-variational
Kalman filters and smoothers.45
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Appendix A: Algorithm pseudo-code

Algorithm 1 Ensemble transform (ET)

Require: Ensemble matrix E ∈ RNx×Ne , observation mapH, ob-
servation error covariance R ∈ RNy×Ny and observation vec-
tor y

1: Y =H (E)
2: ŷ = Y1/Ne

3: S = R−
1
2
(
Y− ŷ1>

)
4: δ̂ = R−

1
2 (y− ŷ)

5: ∇J̃ =−S>δ̂
6: Ξ̃J̃ = (Ne− 1)INe + S>S

7: w =−Ξ̃
−1

J̃ ∇J̃
8: T = Ξ̃

− 1
2

J̃
9: return T,w

Algorithm 2 Random mean-preserving orthogonal matrix
(RO)

Require: Ensemble size Ne, let QR represents the QR algorithm.
1: Let Q ∈ R(Ne−1)×(Ne−1) with entries drawn iid fromN (0,1)

2: Q,R = QR(Q)

3: U =

(
1 0
0 Q

)
4: Let {ai}Ne

i=1 be an arbitrary orthogonal basis of RNe up to the
requirement that a1 = 1/

√
Ne; let A = [ai]

Ne
i=1

5: return U = AUA>

Algorithm 3 Ensemble update (EU)

Require: Ensemble matrix E ∈ RNx×Ne , transform T, weightsw
and mean-preserving orthogonal matrix U.

1: x̂= E1/Ne

2: X = E− x̂1>

3: return E = x̂1>+ X
(
w1>+

√
Ne− 1TU

)

Algorithm 4 Covariance inflation (CI)

Require: Ensemble matrix E ∈ RNx×Ne , inflation λ.
1: x̂= E1/Ne

2: X = E− x̂1>

3: return E = x̂1>+λX

Algorithm 5 ETKF

Require: Observation y1, filter ensemble Efilt
0 ∈ RNx×Ne , infla-

tion λ.
Require: Let ET, RO, EU and CI represent Algorithms 1, 2, 3

and 4, respectively.
1: Efore

1 =M1

(
Efilt

0

)
2: T,w = ET

(
Efore

1 ,H1,R1,y1

)
3: U = RO(Ne)
4: Efilt

1 = EU
(
Efore

1 ,T,w,U
)

5: Efilt
1 = CI

(
Efilt

1 ,λ
)

Require: Store Efilt
0 := Efilt

1 for the next cycle

Algorithm 6 Lag L, shift S, EnKS

Require: Lag= L, shift= S, observations yL:L−S+1, smoother
ensemble states Esmth

L−S:0, ensemble size Ne, inflation λ.
Require: Let ET, RO, EU and CI represent Algorithms 1, 2, 3

and 4 respectively.
1: Efilt

L−S := Esmth
L−S

2: for k ∈ {L−S+ 1, · · · ,L} do
3: Efore

k =Mk(Efilt
k−1)

4: T,w = ET
(
Efore

k ,Hk,Rk,yk

)
5: U = RO(Ne)
6: Efilt

k = EU
(
Efore

k ,T,w,U
)

7: for j ∈ {0, · · · ,k− 1} do
8: Esmth

j = EU
(
Esmth

j ,T,w,U
)

9: end for
10: Efilt

k = CI
(
Efilt

k ,λ
)

11: Esmth
k := Efilt

k

12: end for
Require: Store Esmth

L−S:0 := Esmth
L:S for the next cycle
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Algorithm 7 Gauss-Newton, lag L shift S IEnKS, SDA transform version

Require: Lag= L, shift=S, observations yL:L−S+1.
Require: Esmth

0 ∈ RNe×Ne

Require: Let RO, EU and CI represent algorithms 2, 3 and 4 re-
spectively.

Require: Parameters tol, jmax, inflation λ.
1: T := INe

2: E0 := Esmth
0

3: j := 0,w := 0
4: loop
5: for k ∈ {1, · · · ,L} do
6: Ek =Mk(Ek−1)
7: if k ∈ {L−S+ 1, · · · ,L} then
8: Yk =Hk(Ek)
9: ŷk = Yk1/Ne

10: Sk = R
− 1

2
k

(
Yk − ŷk1>

)
T−1

11: δ̂k = R
− 1

2
k (yk − ŷk)

12: end if
13: end for
14: ∇J̃ = (Ne− 1)w−

∑L
k=L−S+1 S>k δ̂k

15: Ξ̃J̃ = (Ne− 1)INe +
∑L

k=L−S+1 S>k Sk

16: ∆w = Ξ̃
−1

J̃ ∇J̃
17: w :=w−∆w
18: j := j+ 1
19: if ‖∆w ‖< tol or j = jmax then
20: break loop
21: else
22: T = Ξ̃

− 1
2

J̃
23: E0 = EU

(
Esmth

0 ,T,w,INe

)
24: end if
25: end loop

26: T = Ξ̃
− 1

2

J̃
27: U = RO(N)
28: E0 := EU

(
Esmth

0 ,T,w,U
)

29: for k = 1, · · · ,L+S do
30: Ek =Mk(Ek−1)
31: end for
32: Esmth

L−S:0 := EL−S:0

33: Efilt
L:L−S+1 := EL:L−S+1

34: Efore
L+S:L+1 := EL+S:L+1

35: Esmth
S = CI

(
Esmth

S ,λ
)

Require: Esmth
0 := Esmth

S for the next cycle.

Algorithm 8 Lag L shift S SIEnKS, SDA version

Require: Lag= L, shift= S, observations yL:L−S+1, ensemble
states Esmth

0 and Esmth
L−S , inflation λ.

Require: Let ET, RO, EU and CI represent Algorithms 1, 2, 3
and 4, respectively.

1: Efilt
L−S := Esmth

L−S

2: for k ∈ {L−S+ 1, · · · ,L} do
3: Efore

k =Mk(Efilt
k−1)

4: T,w = ET
(
Efore

k ,Hk,Rk,yk

)
5: Uk = RO(N)
6: Efilt

k = EU
(
Efore

k ,T,w,Uk

)
7: Esmth

0 = EU
(
Esmth

0 ,T,w,Uk

)
8: end for
9: Esmth

0 := CI
(
Esmth

0 ,λ
)

10: for k = 1, · · · ,L do
11: Esmth

k =Msmth
k (Ek−1)

12: end for
Require: Esmth

0 := Esmth
S , Esmth

L−S := Esmth
L for the next cycle.

Algorithm 9 Maximum Likelihood Ensemble Transform
(MLET)

Require: Ensemble matrix E ∈ RNx×Ne , observation mapH, ob-
servation error covariance R ∈ RNy×Ny and observation vec-
tor y.

Require: Parameters tol, jmax

1: T := INe

2: j := 0,w := 0
3: E0 := E
4: loop
5: Y =H (E)
6: ŷ = Y1/Ne

7: S = R−
1
2
(
Y− ŷ1>

)
T−1

8: δ̂ = R−
1
2 (y− ŷ)

9: ∇J̃ = (Ne− 1)w−S>δ̂

10: Ξ̃J̃ = (Ne− 1)INe + S>S

11: ∆w = Ξ̃
−1

J̃ ∇J̃
12: w :=w−∆w
13: if ‖∆w ‖< tol or j = jmax then
14: break loop
15: else
16: T = Ξ̃

− 1
2

J̃
17: E = EU(E0,T,w,INe)
18: end if
19: end loop

20: T = Ξ̃
− 1

2

J̃
21: return T,w
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Algorithm 10 Finite-size ensemble transform, Gauss-
Newton approximation (FSET)

Require: Ensemble matrix E ∈ RNx×Ne , observation mapH, ob-
servation error covariance R ∈ RNy×Ny and observation vec-
tor y.

Require: Parameters tol, jmax

1: T := INe

2: j := 0,w := 0
3: E0 := E
4: εNe := 1 + 1/Ne, Neff :=Ne + 1
5: loop
6: Y =H (E)
7: ŷ = Y1/Ne

8: S = R−
1
2
(
Y− ŷ1>

)
T−1

9: δ̂ = R−
1
2 (y− ŷ)

10: ζ = 1/
(
εNe +w>w

)
11: ∇J̃ = ζ (Neff)w−S>δ̂

12: Ξ̃J̃ = (Ne− 1)INe + S>S

13: ∆w = Ξ̃
−1

J̃ ∇J̃
14: w :=w−∆w
15: j := j+ 1
16: if ‖∆w ‖< tol or j = jmax then
17: break loop
18: else
19: T = Ξ̃

− 1
2

J̃
20: E = EU(E0,T,w,INe)
21: end if
22: end loop
23: ζ = 1/

(
εN +w>w

)
24: Ξ̃J̃ =Neff

(
ζIN − 2ζ2ww>

)
+ S>S

25: T = Ξ̃
− 1

2

J̃
26: return T,w

Algorithm 11 Gauss-Newton, lag L shift S IEnKS-N, SDA
transform version

Require: All lines are identical to Algorithm 7 with the exception
of the following lines:

0: εNe = 1 + 1
Ne

, Neff =Ne + 1

14: ζ = 1/
(
εNe +w>w

)
,

∇J̃ = ζ (Neff)w−
∑L

k=L−S+1 S>k δ̂k

15: Ξ̃J̃ = (Neff − 1)IN +
∑L

k=L−S+1 S>k Sk

26: ζ = 1/
(
εNe +w>w

)
,

Ξ̃J̃ =Neff

(
ζINe − 2ζ2ww>

)
+
∑L

k=L−S+1 S>k Sk,

T = Ξ̃
− 1

2

J̃
35:
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Algorithm 12 Lag L, shift S SIEnKS, MDA version

Require: Lag= L, shift= S, observations yL:1, MDA conditional
ensemble Emda

0 , ensemble size Ne, inflation λ.
Require: Let ET, RO, EU and CI represent Algorithms 1, 2, 3

and 4, respectively.
Require: Let {βk}Lk=1 and {ηk}Lk=1 be the multiple data assimila-

tion and balancing weights, respectively.
1: Ebal

0 := Emda
0

2: for k = 1, · · · ,L do
3: U = RO(Ne)
4: Ebal

k =Mk(Ebal
k−1)

5: if k ∈ {L−S+ 1, · · · ,L} then
6: Efore

k := Ebal
k

7: end if
8: T,w = ET

(
Ebal

k ,Hk,Rk/ηk,yk

)
9: Ebal

k = EU
(
Ebal

k ,T,w,U
)

10: if k ∈ {L−S+ 1, · · ·L} then
11: Efilt

k := Ebal
k

12: end if
13: for k = 0, · · · ,k− 1 do
14: Ebal

k = EU
(
Ebal

k ,T,w,U
)

15: end for
16: if k=S then
17: Emda

0 = Ebal
0

18: Emda
S = Ebal

k

19: end if
20: end for
21: Esmth

0:L−S := Ebal
0:L−S

22: for k = S+ 1, · · · ,L do
23: U = RO(Ne)
24: Emda

k =Mk(Emda
k−1)

25: T,w = ET
(
Emda

k ,Hk,Rk/βk,yk

)
26: Emda

k = EU
(
Emda

k ,T,w,U
)

27: Emda
0 = EU

(
Emda

0 ,T,w,U
)

28: end for
29: Emda

0 = CI
(
Emda

0 ,λ
)

30: for k = 1, · · · ,S do
31: Emda

k =Mk(Emda
k−1)

32: end for
Require: Store Emda

0 = Emda
S for the next cycle

Algorithm 13 Gauss-Newton, lag L shift S IEnKS, MDA transform version

Require: Lag= L, shift=S, observations yL:1, conditional MDA
ensemble Emda

0 , ensemble size Ne.
Require: Let RO, EU and CI represent algorithms 2, 3 and 4, re-

spectively.
Require: Let {βk}Lk=1 and {ηk}Lk=1 be the multiple data assimila-

tion and balancing weights, respectively.
Require: Parameters tol, jmax, inflation λ.
1: T = INe

2: j = 0,w = 0
3: for stage = 1,2 do
4: E0 = Emda

0

5: if stage = 1 then
6: θk = ηk
7: else
8: θk = βk
9: end if

10: loop
11: for k ∈ {1, · · · ,L} do
12: Ek =Mk(Ek−1)
13: ŷk =Hk(Ek)1/Ne

14: Yk =Hk(Ek)

15: Sk =
√
θkR

− 1
2

k

(
Yk − ŷk1>

)
T−1

16: δ̂k =
√
θkR

− 1
2

k (yk − ŷk)
17: end for
18: ∇J̃ = (Ne− 1)w−

∑L
k=L−S+1 S>k δ̂k

19: Ξ̃J̃ = (Ne− 1)INe +
∑L

k=L−S+1 S>k Sk

20: ∆w = Ξ̃
−1

J̃ ∇J̃
21: w :=w−∆w
22: j := j+ 1
23: if ‖∆w ‖< tol or j = jmax then
24: break loop
25: else
26: T = Ξ̃

− 1
2

J̃
27: E0 = EU

(
Emda

0 ,T,w,INe

)
28: end if
29: end loop

30: T = Ξ̃
− 1

2

J̃
31: U = RO(Ne)
32: E0 := EU

(
Emda

0 ,T,w,U
)

33: if stage = 1 then
34: for k = 1, · · · ,L+S do
35: Ek =Mk(Ek−1)
36: end for
37: Esmth

L−S:0 := EL−S:0

38: Efilt
L:L−S+1 := EL:L−S+1

39: Efore
L+1:L+S := EL+S:L+1

40: end if
41: end for
42: for k = 1, · · · ,S do
43: Ek =Mk(Ek−1)
44: end for
45: Esmth

S = CI
(
Esmth

S ,λ
)

Require: Esmth
0 := Esmth

S for the next cycle.
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