
Response to RC1

We thank the anonymous reviewer for their reading and suggestions. We have made some changes in
the manuscript to reflect the concerns, and address them below, with the referee comments in blue.

Comment:
General comments: This paper introduces a noval DA approach for lake hydrodynamic model
predictions. It is well motivated and very innovative piece of work, but I do find some major
issues with the clarity in description of the new method, which make the results a bit hard to
understand.  The  design  of  the  DA approach  is  quite  complicated,  combining  several  non-
traditional methods, and the application scenario is also quite different from the typical initial-
value prediction problems. I suggest the authors to improve the paper with clearer presentation of
each component  (particle  filter,  neural  network,  and sampler)  and discuss  how each of  them
contributes (compares to traditional methods) to improve the accuracy of prediction. This would
help convince the readers that such a novel approach has potential for further applications.

Answer:
We have reworked the description of the methodology with additional details about the sampler and the
particle filter, and enhanced Figure 2 to provide a comprehensive visualization of the data assimilation
framework and the particle filter, and an explanation of the error model where the Bi-LSTM network is
used. The paragraph describing the EMCEE sampler now reads:

In our model, we employ a particle Markov Chain Monte Carlo (MCMC) method which is highly
suitable for non-linear  problems (Andrieu et  al.,  2010; Šukys  and Bacci,  2021).  The MCMC
algorithm  is  used  to  infer  selected  hydrodynamic  model  parameters  (see  Sect.  2.4.2),  with
ensemble affine invariant sampler (EMCEE) for the parameter acceptance/rejection criterion. A
visualization of the process is shown in Fig. 2. The EMCEE sampler is particularly effective for
poorly scaled distributions  that become well-conditioned under affine transformations, and can
be significantly faster than standard MCMC approaches on highly skewed distributions. A more
thorough discussion of the advantages and disadvantages is given in Goodman and Weare (2010).
Here, we only provide a brief overview of the mechanism. The EMCEE algorithm initializes with
an ensemble of Markov chains (walkers), {Xi}, drawn from a prior probability distribution Π(x),
and split into two subsets, S1 and S2, and their marginal likelihood is estimated as explained in the
paragraph below. First, we update all the walkers X j  from S1 using the stretch formula Xj,new = Xj

+ Z[Xj − Xk], where Xk is a randomly chosen walker from S2, and Z is a scaling variable. Each
proposed update Xj,new is confirmed in accordance with a Metropolis acceptance probability. The
next  step  is  to  update  S2 walkers  using  the  updated  S1 elements.  We  continue  alternatively
evolving walkers from S1 and S2 until a suitable convergence criterion is met.

With regards to the particle filter, we now have:

For each EMCEE parameter, a particle filter (PF) is deployed to address the stochasticity of the
weather predictions. The PF, implemented in Šukys and Bacci (2021), works as follows. For each
parameter α(k)

i, we initialize m model states, Mj, and simulate until an observation is reached at
time  t  =  tp (see  Fig.  2).  At  this  point,  model  simulations  are  paused  and  all  particles  are
resampled (bootstrapped) according to their observational likelihoods. Thus, certain model states
will  be deleted and replaced by another  state  from a different  trajectory.  Such a resampling
algorithm significantly increases algorithmic and implementation complexity due to the required
destruction and replication of existing particles. However, it  also provides an efficient way of



sampling “intermediate” posterior model states. To the authors best knowledge, this is the first
application of such a filtering algorithm to a fully three-dimensional model. A particular benefit
of this approach is that the stochasticity from the atmosphere is sufficient to generate trajectories
that manage to track the observational data with proper model parameters. This is in contrast to
the  non-physical  correction  vector  in  many  other  DA schemes  that  are  necessary  to  nudge
trajectories toward the data. Aside from potentially causing instabilities, these latter approaches
decrease the confidence in  the fidelity  of  the underlying model,  as the correction mechanism
potentially also corrects a model deficiency. At the same time, as no model is perfect, the SPUX
PF offers limited capability to handle biases that the sampler does not eliminate. In addition, the
strict nature of our PF (model states cannot be modified!) significantly limits its performance,
and thus it cannot expect to outperform the above-mentioned established alternatives.

For the BiLSTM neural network, we significantly expanded the description of the framework, and also
added Figure 3, which shows a schematic of how the BiLSTM network operates. We also added a
reference to another work by Stadler et al. (2021, https://arxiv.org/abs/2109.13235v1), which provides
an extension the framework to graph neural networks to account for the inherently spatial nature of the
LSWT data.

Comment:
The authors claim that this paper serves as a proof of concept for particle filtering in other higher-
dimensinoal problems (Lines 44-47). This is misleading since the particle filter component only
updates (infers) two parameters from the hydrodynamic model, and the larger-dimensional model
states are updated through the BiLSTM network. You are effectively running the PF in a reduced-
dimension  system,  using  a  nonlinear  operator  to  map between  the  full  model  states  and the
reduced states. So this needs to be clarified.

Answer:
We made some changes in the manuscript to clarify the role of the BiLSTM network. The purpose of
the  BiLSTM  network  is  only  to  generate  an  estimate  of  the  lake  skin  temperature  from  the
hydrodynamic  bulk  temperature  predictions.  The  bulk-to-skin  (or  skin-to-bulk)  conversion  is  a
necessary component of data assimilation, as the hydrodynamic model only produces bulk temperature,
and the difference between bulk and skin temperature can be significant, especially in the summer. The
BiLSTM network, however, is only used in the error model to help estimate the marginal likelihood of
the trajectory (see Fig. 2 in the text) and does not alter the physical state of the model. Rather, it helps
the PF select the best-performing trajectories in the particle replication/deletion stage.

We also  would  like  to  point  out  that  our  data  assimilation  framework  can  be  run  without  the
BiLSTM network  –  either  through the  omission  of  LSWT data,  or  by  using  a  simpler  error  and
uncertainty model from Lieberherr and Wunderle (2018), which is less accurate (see Section 2.3.2).

Comment:
Related to #1, how challenging is the lake model prediction problem compared to for example
mesoscale  weather  prediction?  The  difficulty  in  weather  prediction  is  the  chaotic  nature  of
convections that amplifying initial condition errors rapidly. You mentioned that lake dynamics are
also quite volatile (Line 126) and small errors can impact the model trajectory. However, you
chose to estimate model parameters, which seems to be related to atmospheric boundary forcings,
instead  of  the  initial  condition  errors  in  lake  states.  Does this  mean the  problem is  more  in
boundary forcing rather than initial conditions? Estimating model parameters are quite different
from estimating the states, so this needsto be defined clearly.



Answer:
Initial conditions are quite a difficult problem, as in-situ observations are limited (typically 1-2 array of
sensors at best). In our case, only the measurements at SHL2 provided an entire single-point vertical
temperature profile of the lake, which is necessary to generate an initial condition for the model, under
the assumption of homogeneous lateral temperature and zero velocity. As we intentionally initialize the
model in winter, fluctuations in water temperature are minimal during that period, and thus such initial
conditions are reasonably accurate; the model “spins up” in a reasonably short amount of time (1 month
or so for velocity to spread from surface to the deeper layers).

The most volatile portion of the lake is near the surface, and surface coupling is a highly crucial
component, as energy exchanges and atmospheric conditions provide the dominant source of dynamics
that eventually propagate into the deeper layers of the lake.  Thus,  correct interface parameters are
essential.  At the same time, a large source of stochastic uncertainty comes from the uncertainty in
weather predictions, and this is where particle filtering can help. So the problem of determining the
correct boundary forcing conditions is indeed essential.

While the last statement might be well-suited for atmospheric sciences, in limnology the process is
different. In our view, estimation of model parameters is inherently coupled to state estimation, at least
in limnology. States are a necessary means of determining model error and uncertainty and therefore
provide feedback on the choice of the model parameter. The primary focus is to estimate the model
parameters,  but  at  the  same time we can  also  extract  model  predictions  associated  with  the  best-
performing parameter set.

Comment:
The  introduction  of  BiLSTM  in  section  2.4.3  could  be  improved  if  you  adopt  standard
terminology  in  DA.  For  example,  the  bulk-to-skin  conversion  is  essentially  the  observation
operator, or forward operator, that maps lake model state variables (state space) to the observed
skin  temperature  (observation  space).  A discussion  of  why  using  a  neural  network  for  this
nonlinear function, rather than using some physical model, may help the reader understand better.

Answer:
We added the suggested terminology (forward operator, observation space) to section 2.4.3. We also
added a discussion of what a bulk-to-skin parametrization would require. The relevant portion now
reads:

As  the  hydrodynamic  model  generates  bulk  temperature  predictions,  a  bulk-to-skin  function
(forward operator) is necessary for the observation space error model. Existing estimates based
on oceanographical  studies -  (e.g.,  Alappattu et  al.,  2017) -  do not  directly  translate to  lake
research due to the differences in typical weather conditions such as frequent low wind conditions
over  lakes  (Bouffard  and  Wüest,  2019).  For  lakes,  an  accurate  bulk-to-skin  parametrization
would incorporate effects due to convectively driven surface turbulence (Wilson et al., 2013), and
more  accurate  implementation  of  the  air-water  gas  exchange,  especially  in  the  presence  of
surfactants (Bouffard and Wüest, 2019). While such a parametrization might be possible, it would
be technically difficult to implement, and therefore we attempt a different approach.

Ultimately,  the  implementation  and testing  of  such a  parametrization  would  require  quite  a  bit  of
additional time and code modification, and there is no guarantee that it would perform well. Therefore,
in the interest of avoiding feature creep, we decided to implement the BiLSTM network.



Comment:
It is still a bit unclear what exactly are being estimated, the two parameters or the whole model
states, in the Bayesian framework described in section 2. Figure 2 only shows the updating of the
two parameters using the particle filter and sampler, but how does this connect to the observation
(skin temperature) and other model states (temperature profiles)? Does the updated parameters
change model states through a nonlinear model run? Maybe extending the schematic diagram to
include all components and clarify their connection would help.

Answer:
The primary focus of the paper is the Bayesian framework to calibrate hydrodynamic model parameters
in terms of distributions. At the same time, however, analysis of posterior model states is essential to
understand  the  effectiveness  of  the  calibration  process  and  the  particle  filter.  Figure  2  has  been
reworked to show a more comprehensive picture of the framework, and now has the error model as
well.

The parameters remain constant  within a  single particle  filter  evaluation.  The conclusion of the
filtering  process,  however,  returns  the  marginal  likelihood of  the  parameter,  which  is  used by the
EMCEE sampler in the next parameter update step.

Comment:
Line 25: the fact that EnKF only assimilated a fraction of LSWT data is surprising, could you
explain  more  what  is  the  limitation?  Is  it  because  the  high  spatial  heterogeneity  that  cause
nonlinearity?

Answer:
There were two primary reasons to limit the frequency of assimilation of LSWT data:
1) LSWT measurements, due to coming from the satellite, can have significant deviations from the
truth due to a number of issues, such as zenith angle, atmospheric conditions and sensor defects (see
Section 2.3.2 for references and additional discussion). Therefore, the author of the MeteoLakes EnKF
model decided to only assimilate at times when there was high confidence in the LSWT measurement
data (so only when the associated quality factors were high, and a sufficiently large number of pixels
over the lake were available).
2) In addition, the potentially large difference between the bulk and skin temperatures had to be taken
into account. As the MeteoLakes EnKF model did not incorporate a bulk-to-skin operator, they could
only use LSWT data under the right conditions, namely when the top layer was sufficiently well mixed,
making the bulk-skin difference sufficiently small.

Comment:
Line 30: particle method: do you mean particle filter method?
Line 145: add reference for EnKF (Evensen 1994), "highly popular blend", do you mean "brand"?
Line 154: add references for particle filter, and filter degeneracy issue and resampling technique

Answer:
Corrected, as suggested. The particle filter and the resampling technique  are described in Šukys and
Bacci (2021), which has been added in the text. We removed the reference to particle degeneracy, but a
good discussion on the problem is the article “A Tutorial on Particle filtering and smoothing: Fifteen
years later” by Doucet and Johansen (2009).



Comment:
Line 159: what does EMCEE stands for? could you add a reference for this sampler?

Answer:
EMCEE is the ensemble affine invariant sampler, first proposed by Goodman and Weare (2010). An
additional reference to the publication has been added in Section 2.4.1, Choice of DA model.

Comment:
Line 174: 10 particles per filter, ... 89 parallel workers. Figure 2 states n sets of parameters, so
n=10 here? Please clarify.

Answer:
SPUX implementation of the EMCEE sampler that we use requires additional parallel workers just to
manage the chains (for speed and stability reasons). For the 16 chains that we use, only 8 can be run in
parallel as per EMCEE rules. For each chain, we assign 10 particles, which requires 80 total workers.
In addition, each chain manager runs on a dedicated process (+8 workers) and the global inference
manager also requires its own process (+1 worker). Thus, we have 80 + 8 + 1 = 89 workers. The 2n in
Figure 2 refers to the number of chains present in the sampler. We have added a clarification in Figure
2 that connects the 2n value to the number of chains in the SPUX sampler. We have clarified this point
in the manuscript as well (line 196).

Comment:
Line 179: how is the uniform distribution and the upper/lower bounds chosen? Based on physical
intuition or some prior studies?

For the Dalton number, the boundaries were chosen on the basis of a few preliminary deterministic
runs,  which  indicated  that  the  values  outside  the  priors  would  provide  poor  performance.  For
Smagorinsky viscosity, the boundaries were chosen based on physical intuition, and also confirmed by
a few more preliminary runs.

In general, you could choose wider boundaries for the prior distributions, and you would still obtain
convergence with a slightly longer run.



Response to RC2

We thank the anonymous reviewer for their reading and suggestions. We have made some changes in
the manuscript to reflect the concerns, and address them below, with the referee comments in blue.

Comment:
This  paper  presented  the  SPUX-MITgcm  framework,  an  approach  to  the  calibration  of  a
hydrodynamic  model  for  a  highly  spatiotemporally  heterogeneous  observational  dataset.  The
current form of the paper contains a lot of information and model exercises but was not presented
in  the  most  suitable  way (missing  key  information  or  details  )  to  guide  the  readers  to  well
understand the value of the work. As such there are some difficulties in evaluating the work.

Answer:
We have reworked the description of the methodology with additional details about the sampler and the
particle filter, and enhanced Figure 2 to provide a comprehensive visualization of the data assimilation
framework and the particle filter, and an explanation of the error model where the Bi-LSTM network is
used. The paragraph describing the EMCEE sampler now reads:

In our model, we employ a particle Markov Chain Monte Carlo (MCMC) method which is highly
suitable for non-linear  problems (Andrieu et  al.,  2010; Šukys  and Bacci,  2021).  The MCMC
algorithm  is  used  to  infer  selected  hydrodynamic  model  parameters  (see  Sect.  2.4.2),  with
ensemble affine invariant sampler (EMCEE) for the parameter acceptance/rejection criterion. A
visualization of the process is shown in Fig. 2. The EMCEE sampler is particularly effective for
poorly scaled distributions  that become well-conditioned under affine transformations, and can
be significantly faster than standard MCMC approaches on highly skewed distributions. A more
thorough discussion of the advantages and disadvantages is given in Goodman and Weare (2010).
Here, we only provide a brief overview of the mechanism. The EMCEE algorithm initializes with
an ensemble of Markov chains (walkers), {Xi}, drawn from a prior probability distribution Π(x),
and split into two subsets, S1 and S2, and their marginal likelihood is estimated as explained in the
paragraph below. First, we update all the walkers from S1 using the stretch formula Xj,new = Xj +
Z[Xj − Xk], where Xk is a randomly chosen walker from S2, and Z is a scaling variable. Each
proposed update Xj,new is confirmed in accordance with a Metropolis acceptance probability. The
next  step  is  to  update  S2 walkers  using  the  updated  S1 elements.  We  continue  alternatively
evolving walkers from S1 and S2 until a suitable convergence criterion is met.

With regards to the particle filter, we now have:

For each EMCEE parameter, a particle filter (PF) is deployed to address the stochasticity of the
weather predictions. The PF, implemented in Šukys and Bacci (2021), works as follows. For each
parameter α(k)

i, we initialize m model states, Mj, and simulate until an observation is reached at
time  t  =  tp (see  Fig.  2).  At  this  point,  model  simulations  are  paused  and  all  particles  are
resampled (bootstrapped) according to their observational likelihoods. Thus, certain model states
will  be deleted and replaced by another  state  from a different  trajectory.  Such a resampling
algorithm significantly increases algorithmic and implementation complexity due to the required
destruction and replication of existing particles. However, it  also provides an efficient way of
sampling “intermediate” posterior model states. To the authors best knowledge, this is the first
application of such a filtering algorithm to a fully three-dimensional model. A particular benefit
of this approach is that the stochasticity from the atmosphere is sufficient to generate trajectories
that manage to track the observational data with proper model parameters. This is in contrast to



the  non-physical  correction  vector  in  many  other  DA schemes  that  are  necessary  to  nudge
trajectories toward the data. Aside from potentially causing instabilities, these latter approaches
decrease the confidence in  the fidelity  of  the underlying model,  as the correction mechanism
potentially also corrects a model deficiency. At the same time, as no model is perfect, the SPUX
PF offers limited capability to handle biases that the sampler does not eliminate. In addition, the
strict nature of our PF (model states cannot be modified!) significantly limits its performance,
and thus it cannot expect to outperform the above-mentioned established alternatives.

Thus, the difference is largely in the different design goals of the particle filtering methods. The SPUX
PF seeks a realistic trajectory (at least within the confines of the hydrodynamic model), while EnKF
and 4-Var seek to minimize model prediction errors.

Comment:
Details how the PF is configured and why, sensitivity analysis, convergence rate, etc.

We added a reference to the source material (Šukys and Bacci, 2021)  where the PF is described in
detail. In this paper, we provided all the main points of the filtering algorithm, and provide the relevant
configuration details in Section 2.4.2. The number of particles/chains was largely determined by the
size of the computational allocation at the CSCS cluster, and the amount of time the inference would
require. We do not find these considerations particularly relevant, and thus do not include them in the
text.

Comment:
The same for LSTM, LSTM framework should be introduced, how does it work, describe
training and validation process and evaluation.

We modified the text to provide a more thorough description of the BiLSTM network we use in the
model, together with a description of the data that we used to train it in Section 2.4.3. We also added
Fig. 3, which provides a visualization of the operational BiLSTM module that we use. We also added a
reference to a paper that provides an extension of the framework to accoutn for spatial features (Stalder
et al., 2021). The relevant portion of Section 2.4.3 now reads:

[…] We implement a neural network using Bi-directional Long Short-Term Memory (BiLSTM)
blocks that use the 27-hour history of 18 feature inputs to make a skin temperature prediction. 16
of the features come from the means and their respective spreads of the MeteoSwiss weather
predictions (air temperature, cloud cover fraction, wind velocity, relative humidity, precipitation,
short-wave  and  long-wave  radiation).  The  last  two  features  are  the  hydrodynamic  model
temperature predictions and hour of the day. The model was trained using data from 2018 and
2020,  with  the  bulk  water  temperature  predictions  extracted  from  the  Meteolakes  model
(Baracchini et al., 2020b). Data from 2019 was separated from the training for benchmarking
purposes. A schematic of a BiLSTM block and the neural network is shown in Fig. 3. Input to the
neural network is provided as a (27 time-step, 18 channel) tensor. An initial fully connected layer
maps these 18 channels to 32 channels. The output is then sequentially passed through three
separate BiLSTM cell blocks. Finally, the output of the last BiLSTM block is linearly mapped to a
two-channel output, which corresponds to temporal predictions of the skin temperature and their
predictive  log-variances.  In  our  experiments,  using  LSTMs  were  crucial  in  order  to  exploit
historical patterns in the input features when predicting the skin temperature. In a recent work, an
extension of the LSTMs to a spatially-dependent model is presented by Stalder et al. (2021).



For  the  particle  filter,  uncertainty  quantification  of  the  predicted  skin  temperature  is  also
necessary. Accordingly, the BiLSTM blocks in our neural network randomly disables 30% of the
LSTM units to induce stochasticity. This allows our model to also implement additional methods
to quantify epistemic and aleatoric uncertainty (Kendall and Gal, 2017). Monte Carlo dropout
approximates predictions from an ensemble that can be used to quantify epistemic uncertainty. On
the other hand, using the negative log-likelihood of a normal distribution as the objective function
in  training  allows  BiLSTM to  also  estimate  predicted  variance  that  can be  used to  quantify
aleatoric uncertainty. Specifically, for a given input of 18 feature observations over a 27-hour
history, the neural network predicts the corresponding 27-hour skin temperature estimations as
well  as  their  estimated  logarithmic  variances.  During  the  optimization  phase  of  the  neural
network, negative log-likelihood of a normal distribution as in Kendall and Gal (2017) (eqn 8), is
used with skin temperature estimations (ŷi) and corresponding logarithmic variance estimation
(si).  At  test  time,  we  generate  model  predictions  for  19  times  for  each  input  while  keeping
dropouts within BiLSTMs active, yielding 19 different prediction vectors, similar to an ensemble
model. While the mean of estimated skin surface temperature are used for mean estimates, we use
the variance of the 19 predictions for epistemic uncertainty. Aleatoric uncertainty is computed
from  the  predicted  variance  estimates  by  taking  their  average  after  mapping  the  predicted
logarithmic variance into variance. The total scalar variance is computed as the sum of the two
variances.  Accordingly,  we construct  a  normal  distribution  with  the  computed  total  variance
centered at the mean skin temperature prediction to be evaluated against the LSWT measurement.

Comment:
how does EMCEE Sampler work, how did you evaluate its performance?

Section 2.4.1 has been rewritten to provide greater detail on the EMCEE sampler, and Figure 2 has
been greatly expanded to visualize the process of sampler initialization, parameter proposal via the
“stretch” move, and an example of how the parameters might evolve.
The performance of the EMCEE sampler  is  evaluated in  Section 3.1,  where we conclude that  the
sampler  has  converged based on the  evolution of  the  Markov chain parameters,  and therefore the
sampler has performed satisfactorily. On the other hand, in the supplementary material Section 3 we
demonstrate a case of the sampler diverging in an attempt to calibrate dynamic model parameters (eddy
diffusivity/viscosity). Thus, the sampler is not guaranteed to work. In the conclusion, we state:

In addition, as discussed in the supplementary material, the sampler has significant difficulty with
calibrating certain model parameters (although this issue could potentially be mitigated with a
better error model).  Therefore,  we feel that a computationally cheaper method for parameter
estimation  (for  example,  an optimization algorithm instead of  a  sampler)  might  be the more
productive approach. At the same time, an improved version of the particle filtering approach
could provide a powerful option for operational forecasting models.

In  the  end,  we conclude is  that  the  approach  will  require  more  work  to  be  viable  for  3D  data
assimilation problems.



Comment:
I am also not quite sure about the BiLSTM's role in the proposed framework.

We improved the presentation of the methodology to be clearer as to how the BiLSTM network fits into
the  framework.  As  shown  in  the  revised  Figure  2,  the  purpose  of  the  network  is  to  provide  an
observation operator, which maps the predicted bulk temperature from the hydrodynamic model onto
skin temperature to be compared to LSWT data.

Comment:
A better highlighting of the novelty and achievement of the work in the context with comparison
to a similar or alternative approach. My impression is that it is a novel framework applied to the
3-D model, but not fully sure how effective and efficient it improve the simulation results. I think
this can be significantly improved if the authors can re-structure the manuscript to highlight key
information about the models used in the study.

In terms of parameter calibration, we agree that a comparison to a different MCMC type of sampler or
a completely different calibration methodology (such as DUD) could be quite beneficial.  However,
such a comparison would require the implementation of such a sampler in SPUX which would also be
compatible with the hydrodynamic model, MITgcm. This would require a significant time investment,
and thus was not completed. At the end of the paper, we conclude that further developments, such as a
more effective PF, are necessary before the framework becomes usable.


