
Response to RC2

We thank the anonymous reviewer for their reading and suggestions. We have made some changes in
the manuscript to reflect the concerns, and address them below, with the referee comments in blue.

Comment:
This  paper  presented  the  SPUX-MITgcm  framework,  an  approach  to  the  calibration  of  a
hydrodynamic  model  for  a  highly  spatiotemporally  heterogeneous  observational  dataset.  The
current form of the paper contains a lot of information and model exercises but was not presented
in  the  most  suitable  way (missing  key  information  or  details  )  to  guide  the  readers  to  well
understand the value of the work. As such there are some difficulties in evaluating the work.

Answer:
We have reworked the description of the methodology with additional details about the sampler and the
particle filter, and enhanced Figure 2 to provide a comprehensive visualization of the data assimilation
framework and the particle filter, and an explanation of the error model where the Bi-LSTM network is
used. The paragraph describing the EMCEE sampler now reads:

In our model, we employ a particle Markov Chain Monte Carlo (MCMC) method which is highly
suitable for non-linear  problems (Andrieu et  al.,  2010; Šukys  and Bacci,  2021).  The MCMC
algorithm  is  used  to  infer  selected  hydrodynamic  model  parameters  (see  Sect.  2.4.2),  with
ensemble affine invariant sampler (EMCEE) for the parameter acceptance/rejection criterion. A
visualization of the process is shown in Fig. 2. The EMCEE sampler is particularly effective for
poorly scaled distributions  that become well-conditioned under affine transformations, and can
be significantly faster than standard MCMC approaches on highly skewed distributions. A more
thorough discussion of the advantages and disadvantages is given in Goodman and Weare (2010).
Here, we only provide a brief overview of the mechanism. The EMCEE algorithm initializes with
an ensemble of Markov chains (walkers), {Xi}, drawn from a prior probability distribution Π(x),
and split into two subsets, S1 and S2, and their marginal likelihood is estimated as explained in the
paragraph below. First, we update all the walkers from S1 using the stretch formula Xj,new = Xj +
Z[Xj − Xk], where Xk is a randomly chosen walker from S2, and Z is a scaling variable. Each
proposed update Xj,new is confirmed in accordance with a Metropolis acceptance probability. The
next  step  is  to  update  S2 walkers  using  the  updated  S1 elements.  We  continue  alternatively
evolving walkers from S1 and S2 until a suitable convergence criterion is met.

With regards to the particle filter, we now have:

For each EMCEE parameter, a particle filter (PF) is deployed to address the stochasticity of the
weather predictions. The PF, implemented in Šukys and Bacci (2021), works as follows. For each
parameter α(k)

i, we initialize m model states, Mj, and simulate until an observation is reached at
time  t  =  tp (see  Fig.  2).  At  this  point,  model  simulations  are  paused  and  all  particles  are
resampled (bootstrapped) according to their observational likelihoods. Thus, certain model states
will  be deleted and replaced by another  state  from a different  trajectory.  Such a resampling
algorithm significantly increases algorithmic and implementation complexity due to the required
destruction and replication of existing particles. However, it  also provides an efficient way of
sampling “intermediate” posterior model states. To the authors best knowledge, this is the first
application of such a filtering algorithm to a fully three-dimensional model. A particular benefit
of this approach is that the stochasticity from the atmosphere is sufficient to generate trajectories
that manage to track the observational data with proper model parameters. This is in contrast to



the  non-physical  correction  vector  in  many  other  DA schemes  that  are  necessary  to  nudge
trajectories toward the data. Aside from potentially causing instabilities, these latter approaches
decrease the confidence in  the fidelity  of  the underlying model,  as the correction mechanism
potentially also corrects a model deficiency. At the same time, as no model is perfect, the SPUX
PF offers limited capability to handle biases that the sampler does not eliminate. In addition, the
strict nature of our PF (model states cannot be modified!) significantly limits its performance,
and thus it cannot expect to outperform the above-mentioned established alternatives.

Thus, the difference is largely in the different design goals of the particle filtering methods. The SPUX
PF seeks a realistic trajectory (at least within the confines of the hydrodynamic model), while EnKF
and 4-Var seek to minimize model prediction errors.

Comment:
Details how the PF is configured and why, sensitivity analysis, convergence rate, etc.

We added a reference to the source material (Šukys and Bacci, 2021)  where the PF is described in
detail. In this paper, we provided all the main points of the filtering algorithm, and provide the relevant
configuration details in Section 2.4.2. The number of particles/chains was largely determined by the
size of the computational allocation at the CSCS cluster, and the amount of time the inference would
require. We do not find these considerations particularly relevant, and thus do not include them in the
text.

Comment:
The same for LSTM, LSTM framework should be introduced, how does it work, describe
training and validation process and evaluation.

We modified the text to provide a more thorough description of the BiLSTM network we use in the
model, together with a description of the data that we used to train it in Section 2.4.3. We also added
Fig. 3, which provides a visualization of the operational BiLSTM module that we use. We also added a
reference to a paper that provides an extension of the framework to accoutn for spatial features (Stalder
et al., 2021). The relevant portion of Section 2.4.3 now reads:

[…] We implement a neural network using Bi-directional Long Short-Term Memory (BiLSTM)
blocks that use the 27-hour history of 18 feature inputs to make a skin temperature prediction. 16
of the features come from the means and their respective spreads of the MeteoSwiss weather
predictions (air temperature, cloud cover fraction, wind velocity, relative humidity, precipitation,
short-wave  and  long-wave  radiation).  The  last  two  features  are  the  hydrodynamic  model
temperature predictions and hour of the day. The model was trained using data from 2018 and
2020,  with  the  bulk  water  temperature  predictions  extracted  from  the  Meteolakes  model
(Baracchini et al., 2020b). Data from 2019 was separated from the training for benchmarking
purposes. A schematic of a BiLSTM block and the neural network is shown in Fig. 3. Input to the
neural network is provided as a (27 time-step, 18 channel) tensor. An initial fully connected layer
maps these 18 channels to 32 channels. The output is then sequentially passed through three
separate BiLSTM cell blocks. Finally, the output of the last BiLSTM block is linearly mapped to a
two-channel output, which corresponds to temporal predictions of the skin temperature and their
predictive  log-variances.  In  our  experiments,  using  LSTMs  were  crucial  in  order  to  exploit
historical patterns in the input features when predicting the skin temperature. In a recent work, an
extension of the LSTMs to a spatially-dependent model is presented by Stalder et al. (2021).



For  the  particle  filter,  uncertainty  quantification  of  the  predicted  skin  temperature  is  also
necessary. Accordingly, the BiLSTM blocks in our neural network randomly disables 30% of the
LSTM units to induce stochasticity. This allows our model to also implement additional methods
to quantify epistemic and aleatoric uncertainty (Kendall and Gal, 2017). Monte Carlo dropout
approximates predictions from an ensemble that can be used to quantify epistemic uncertainty. On
the other hand, using the negative log-likelihood of a normal distribution as the objective function
in  training  allows  BiLSTM to  also  estimate  predicted  variance  that  can be  used to  quantify
aleatoric uncertainty. Specifically, for a given input of 18 feature observations over a 27-hour
history, the neural network predicts the corresponding 27-hour skin temperature estimations as
well  as  their  estimated  logarithmic  variances.  During  the  optimization  phase  of  the  neural
network, negative log-likelihood of a normal distribution as in Kendall and Gal (2017) (eqn 8), is
used with skin temperature estimations (ŷi) and corresponding logarithmic variance estimation
(si).  At  test  time,  we  generate  model  predictions  for  19  times  for  each  input  while  keeping
dropouts within BiLSTMs active, yielding 19 different prediction vectors, similar to an ensemble
model. While the mean of estimated skin surface temperature are used for mean estimates, we use
the variance of the 19 predictions for epistemic uncertainty. Aleatoric uncertainty is computed
from  the  predicted  variance  estimates  by  taking  their  average  after  mapping  the  predicted
logarithmic variance into variance. The total scalar variance is computed as the sum of the two
variances.  Accordingly,  we construct  a  normal  distribution  with  the  computed  total  variance
centered at the mean skin temperature prediction to be evaluated against the LSWT measurement.

Comment:
how does EMCEE Sampler work, how did you evaluate its performance?

Section 2.4.1 has been rewritten to provide greater detail on the EMCEE sampler, and Figure 2 has
been greatly expanded to visualize the process of sampler initialization, parameter proposal via the
“stretch” move, and an example of how the parameters might evolve.
The performance of the EMCEE sampler  is  evaluated in  Section 3.1,  where we conclude that  the
sampler  has  converged based on the  evolution of  the  Markov chain parameters,  and therefore the
sampler has performed satisfactorily. On the other hand, in the supplementary material Section 3 we
demonstrate a case of the sampler diverging in an attempt to calibrate dynamic model parameters (eddy
diffusivity/viscosity). Thus, the sampler is not guaranteed to work. In the conclusion, we state:

In addition, as discussed in the supplementary material, the sampler has significant difficulty with
calibrating certain model parameters (although this issue could potentially be mitigated with a
better error model).  Therefore,  we feel that a computationally cheaper method for parameter
estimation  (for  example,  an optimization algorithm instead of  a  sampler)  might  be the more
productive approach. At the same time, an improved version of the particle filtering approach
could provide a powerful option for operational forecasting models.

In  the  end,  we conclude is  that  the  approach  will  require  more  work  to  be  viable  for  3D  data
assimilation problems.



Comment:
I am also not quite sure about the BiLSTM's role in the proposed framework.

We improved the presentation of the methodology to be clearer as to how the BiLSTM network fits into
the  framework.  As  shown  in  the  revised  Figure  2,  the  purpose  of  the  network  is  to  provide  an
observation operator, which maps the predicted bulk temperature from the hydrodynamic model onto
skin temperature to be compared to LSWT data.

Comment:
A better highlighting of the novelty and achievement of the work in the context with comparison
to a similar or alternative approach. My impression is that it is a novel framework applied to the
3-D model, but not fully sure how effective and efficient it improve the simulation results. I think
this can be significantly improved if the authors can re-structure the manuscript to highlight key
information about the models used in the study.

In terms of parameter calibration, we agree that a comparison to a different MCMC type of sampler or
a completely different calibration methodology (such as DUD) could be quite beneficial.  However,
such a comparison would require the implementation of such a sampler in SPUX which would also be
compatible with the hydrodynamic model, MITgcm. This would require a significant time investment,
and thus was not completed. At the end of the paper, we conclude that further developments, such as a
more effective PF, are necessary before the framework becomes usable.


