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Abstract. Boreal forests of Siberia play a relevant role in the global carbon cycle. However, global warming threatens the 

existence of summergreen larch-dominated ecosystems likely enabling a transition to evergreen tree taxa with deeper active 

layers. Complex permafrost-vegetation interactions make it uncertain whether these ecosystems could develop into a carbon 

source rather than continuing atmospheric carbon sequestration under global warming. Consequently, shedding light on the 15 

role of current and future active-layer dynamics and the feedbacks with the apparent tree species is crucial to predict boreal 

forest transition dynamics, and thus for aboveground forest biomass and carbon stock developments. Hence, we established a 

coupled model version amalgamating a one-dimensional permafrost-multilayer forest land-surface model (CryoGrid), with 

LAVESI, an individual-based and spatially explicit forest model for larch species (Larix Mill.), extended for this study by 

including other relevant Siberian forest species and explicit terrain.  20 

Following parametrization, we ran simulations with the coupled version to the near future to 2030 with a mild climate-warming 

scenario. We focus on three regions, covering a gradient of summergreen forests in the east at Spasskaya Pad to mixed 

summergreen-evergreen forests close to Nyurba, and the warmest area at Lake Khamra in the south-east of Yakutia, Russia. 

Coupled simulations were run with the newly implemented boreal forest species and compared to runs allowing only one 

species at a time, as well as to simulations using just LAVESI. Results reveal that the coupled version corrects for 25 

overestimation of active-layer thickness (ALT) and soil moisture and large differences in established forests are simulated. We 

conclude that the coupled version can simulate the complex environment of central Siberia reproducing vegetation patterns 

making it an excellent tool to disentangle processes driving boreal forest dynamics. 

1 Introduction 

Boreal forests cover vast areas of the northern hemisphere with strong gradients in climatic conditions and environments. They 30 

established in the northern hemisphere after the last glacial maximum, leaving only a thin stretch in the north bordering the 

Arctic Ocean of pristine tundra areas (Mamet et al., 2019, Bonan, 2008, MacDonald et al., 2010). Anthropogenic climate 
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warming is leading to the relaxation of warmth-deficit limits at the northern margins and hence invasion of the tundra at an as 

yet unclear rate (Berner, 2013, Reese et al., 2020). At the same time, large parts of boreal forests, especially in central Siberia, 

are prone to droughts and increasing disturbances (such as fires) potentially driving a forest transition from deciduous species 

to evergreen taxa (Bonan, 2008, Herzschuh 2020). Accordingly, the albedo and further ecosystem components/feedbacks will 

change and due to the large size of such boreal forests, this is likely to have a positive feedback effect on climate warming 5 

(Bonan, 2008). However, the involved forest dynamics and interactions with the atmosphere and soil need to be considered in 

sufficient detail to forecast projections that are more realistic and to understand better the consequences for the ecosystems of 

Siberia (Kirpotin et al., 2021). 

Forest modelling is typically done globally including the carbon cycle/permafrost etc. but individuals and all life-history stages 

need to be considered for a precise simulation. Modern global models such as LPJ-GUESS (Zhang et al., 2013) include 10 

individual models. They are used to show that forests will change and advance north. However, migration lags are typically 

not represented and only climate envelopes serve for the distribution of plant functional types (PFTs). Dispersal processes and 

complexities have recently been recognized (Snell 2014, Snell & Cowling 2015, Lehsten et al., 2019) but are not yet used as 

standard for simulations. Further, most modelling schemes still start with established trees, which makes them more general 

and computationally effective for a global application but at the cost of losing important detail for ecosystem responses (see 15 

discussion in Kruse et al., 2016). Also, the use of representative grid cells on a large grid without considering landscape will 

cause deviations to an extent that is unclear as to whether the impact on results is large and significant or not. Individual based 

models (IBMs) could help here as they have sufficient detail of represented species/ecosystems but applications are therefore 

only possible on landscapes not continents (Grimm & Railsback, 2005, DeAngelis & Mooij, 2005). Nevertheless, they are the 

best tools to understand a system and develop general responses that can then inform or guide global model development. 20 

Further, neither a radiative transfer scheme through a multilayer canopy nor detailed representation of permafrost are included 

in typical simulation approaches.  

 

Here, we aim at creating a model system that can accurately assess detailed thermal and hydrological fluxes between permafrost 

and forest cover as recently developed by Stuenzi et al. (2021a, 2021b). It will include a dynamic vegetation model, which has 25 

a full life-cycle to allow intraspecies and interspecies interactions at all stages (seed–seedling–mature tree) leading to non-

linear behaviour of population dynamics as well as resolving a 3-dimensional landscape that is available for Siberian treeline 

areas developed by Kruse et al. (2016, 2019a, 2019b). 
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2 Methods 

2.1 The 2D vegetation model LAVESI 

2.1.1 Description and updates  

The Larix vegetation simulator (LAVESI) is an individual-based spatially explicit model that simulates larch stand dynamics 

(Kruse et al, 2016; Kruse et al, 2018). Monthly temperatures of the coldest (January) and warmest (July) months and 5 

precipitation series can force this model. In addition, 6-hourly data on wind speed and direction are needed to simulate seed 

distribution and tree reproduction, growth, and death (Kruse et al., 2019b; Kruse et al., 2018; Kruse et al., 2016). 

2.1.2 Addition of landscape sensing 

Data from the digital elevation model (DEM) TanDEM-X 90 m was downloaded from the web service provided by the German 

Aerospace Center (DLR https://download.geoservice.dlr.de/TDM90/; Krieger et al., 2007). Subsequently, the tiles were 10 

reprojected to the corresponding UTM zone of the focus areas (Khamra N49, Nyurba N50, Spasskaya N52). All tiles were 

merged for each subzone and resampled by linear interpolation from 90 m to 30 m resolution using functions from the “raster” 

package in R (Hijmans, 2020). The results were imported in SAGA GIS version 2.3.2 (Conrad et al., 2015) and subjected to a 

basic terrain analysis tool using the standard parameters. The resulting rasters were water masked using the cloud-based 

geospatial data analysis platform Google Earth Engine (GEE, Gorelick et al., 2017) to assess Sentinel-2 imagery between 1st 15 

May 2018 and 15th October 2018 with a cloud cover of less than 20% and thresholds manually set for spectral band B12 (2190 

nm) until all water was masked out by comparing them to an RGB composite image. The DEM along with slope angle and 

terrain water index (TWI, moisture content) were cropped to 510x510 m (260,100 m²) areas for this study and exported as 

plain text files for import into LAVESI.  

LAVESI reads this data provided in 30 m resolution and interpolates linearly from the closest four grid cells for each 20 cm 20 

grid tile of the environment grid. Based on empirical relationships of forest presence for combinations of slope angle and TWI 

established in a study by Shevtsova et al. (in prep, 2021), an environment growth impact factor (Envirgrowth, 0–1) is calculated 

for each tile and tree diameter growth at this position is reduced accordingly  (Eq. 1, Appendix A). 

𝐸𝑛𝑣𝑖𝑟𝑔𝑟𝑜𝑤𝑡ℎ𝑖 =
−0.045999 ∗ 𝑇𝑊𝐼𝑖 + 0.994066

2
 +  

0.85654∗𝑒−0.5 ∗(𝑆𝑙𝑜𝑝𝑒𝑖−8.78692)
2

6.907432⁄

2
   (1) 

where 𝑇𝑊𝐼𝑖  is the interpolated terrain water index of the 20x20 cm² environmental grid cell i, and 𝑆𝑙𝑜𝑝𝑒𝑖 is the slope angle of 25 

the same grid cell i. 

 

Seed dispersal has been improved. Seeds can now only be dispersed to places which are at the same or lower elevation than 

the release height in the terrain. 
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2.1.3 Addition of species and estimating leaf area index (LAI) 

Further species were added to the existing model presented in Kruse et al. (2016). To add a fast forward implementation of 

species in LAVESI, we modified the code so that the program can be started with either one or all species in a mix 

simultaneously. The species are numbered (integer values), which are used internally to assess species-related variables (Table 

1, further variables in Appendix B, Table B1) when called for in the functions as necessary. Therefore, the code is independent 5 

from the species and allows adding species or functional types simply by adding a new line in the new specieslist.csv in the 

main folder of LAVESI. 

 

For this study, we analysed field data from the Chukotka and central Yakutia 2018 expedition in the same way as we did for 

Chukotka (Biskaborn et al., 2019, Kruse et al., 2019a). In the area of central Yakutia, species belonging to the Pinaceae family 10 

form the forests. From these, two deciduous boreal forest tree species were sampled, Larix cajanderi Mayr. (LACA) and Larix 

gmelinii (Rupr.) Rupr., (LAGM), and three evergreen species, Picea obovata Ledeb. (PIOB), Pinus sibirica Du Tour (PISI), 

and Pinus sylvestris L. (PISY) (Kruse et al., 2019a). While the two larch species are best adjusted to the harsh environment of 

Northeast Siberia, and are able to grow on shallow active layers above permafrost, they differ mainly in their frost hardiness 

and the species LACA can even endure colder temperatures in winter (Table 1). PIOB is a competitor for L. gmelinii growing 15 

at similar environmental conditions, however preferring deeper thawed active layers of minimum of 200 cm. On well-drained 

sites, PISY grows well and outcompetes the other species. In milder environments, LASI and PISI grow on similar sites as 

LAGM and PIOB.  

 

Tree-ring width data were established from tree discs and cores collected from sites close to Lake Khamra and from the region 20 

Nyurba. The discs and tree cores were prepared by standard dendroecological processing steps: (1) sanding with progressively 

finer paper until tree rings are clearly visible, (2) making high-resolution images for a track with a binocular and attached 

camera, (3) detecting rings with CooRecorder (Cybis Elektronik & Data AB) and cross-dating, and (4) exporting individual 

tree-ring chronologies (more details in Kruse et al., 2020). Tree-ring width data per species were then imported to R using the 

dplR package (Bunn et al., 2020) and regression models were set up with the gnls-function from the nlme package (Pinheiro 25 

et al., 2019). For each species, we extracted the median of the loess-smoothed (span=1.5) yearly growth increase of individual 

trees and set up a generalized least squares regression using a nonlinear model. This was successful for LACA, LAGM, and 

PIOB, but not for PISI and PISY due to small sample sizes, where current values of PIOB are used as a first estimate (Table 

1). For each tree in the simulation, the maximum actual growth can be estimated with the following equation.  

𝑇𝑅𝑊𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑗,𝑦𝑒𝑎𝑟 𝑡  = 𝑒𝑥𝑝(𝑔𝑑𝑏𝑎𝑠𝑎𝑙𝑐𝑜𝑛𝑠𝑡 +  𝑔𝑑𝑏𝑎𝑠𝑎𝑙𝑓𝑎𝑐 ∗  𝑡 +  𝑔𝑑𝑏𝑎𝑠𝑎𝑙𝑓𝑎𝑐𝑞 ∗  𝑡²)      (2) 30 

 

where TRW is the tree-ring width for species i at one year depending on the fitted parameters gdbasalconst, gdbasalfac, and 

gdbasalfacq.  
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Biomass data were prepared following the protocol of Shevtsova et al. (2020) and allometric relationships were established to 

empirically estimate the leaf area (LA) from total leaf biomass for each tree (Eq. 3), followed by a log-log linear regression 

forced to pass through the origin employing the basal diameter as explanatory variable (Eq. 4). To estimate the LA for each 

tree, we used specific leaf area (SLA) parameters to translate from the dry weight of needles to leaf area (Eq. 3). For each 5 

species, the SLA was extracted from literature values: SLALAGM = 120 cm² g-1 (Xian-kui et al., 2015), which was also used for 

the closely related sister species LACA, SLAPIOB = 50 cm² g-1 (Konôpková et al., 2020), SLAPISY = 50 cm² g-1 (extracted from 

the most recent source Błasiak et al., 2021, although other values are reported, 34  cm² g-1 in Reich et al., 1998, 40 cm² g-1 in 

Mencuccini & Bonosi, 2001). For PISI no source for SLA values was found and we assume it is similar to PISY. 

𝐿𝐴𝑇𝑟𝑒𝑒 𝑖,𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑗 = 𝐵𝑀𝑑𝑟𝑦 𝑛𝑒𝑒𝑑𝑙𝑒𝑆𝐿𝐴𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑗/100         (3) 10 

where BM is the biomass of tree i in g, and SLA is the specific leaf area for species j. 

 

log(𝐿𝐴𝑇𝑟𝑒𝑒 𝑖,𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑗 ) = 𝑎 ∗ log(𝐷𝐵𝑇𝑟𝑒𝑒 𝑖) + 0        

 (4) 

where a is the slope of the linear model fit and DB is the basal diameter of the tree i. for species j 15 

 

During simulations runs with LAVESI, the LA for each individual tree is estimated based on the fitted linear regression model 

using the following equation. 

𝐿𝐴𝑖,�̂� = 𝑒𝑥𝑝(𝑎 ∗ 𝑙𝑜𝑔(𝐷𝐵𝑇𝑟𝑒𝑒 𝑖))          (4) 

The leaf area index (LAI) of each CryoGrid 10x10 m grid cell in LAVESI is then the sum of leaf area values of present trees. 20 

When a tree crown area covers more than one cell, the value is distance-weighted on the closest grid cells. For each species, 

the crown radius is estimated from field data with a log-log linear regression and the slope and y-intercept are used in LAVESI, 

parameters crownradiusestslope and crownradiusestinterc, respectively (Table 1). 

2.1.4 Addition of a dynamic litter layer and estimating active-layer thickness (ALT) 

A dynamic, growing litter layer with constant growth of 0.5 cm yr-1 and stochastic disturbance effects was introduced in the 25 

Environmentupdate-function of LAVESI. When the parameter “litterlayer” is switched on, each of the 20 cm grid cells have 

a chance that the litterlayerheight can be reduced. This is stochastically implemented and for each year there is a 10% chance 

the litter layer is reduced by 10%, a 9% chance of a 25% reduction, a 0.9% chance of 50%, a 0.09% chance of 90%, and a 

0.01% chance of a 99% reduction. This leads to a litter layer of ~15 cm in the areas of interest in simulation runs, as is observed 

in the region of interest (Kruse et al., 2019a). With this functionality, locally acting insulation effects are included in the 30 

estimation of the actual ALT in one environment grid cell. The estimation of the maximum active-layer thickness was already 
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introduced in the original setup of LAVESI (Kruse et al., 2016) and still serves as a first estimate thus making it possible to 

run a stand-alone simulation of LAVESI without coupling to the CryoGrid (see below).  

2.1.5 Parameterization and validation 

We compared results from simulations until year 2015 with field inventories from the 2018 expedition, focusing on the 

following key regions: Lake Khamra (westernmost, warmest), Nyurba (intermediate, climate station), and Spasskaya Pad 5 

(easternmost for boreal forests of Yakutia) for which we used literature values for comparison. Values were in the range of 

expected results. 

2.2 The 1D permafrost model CryoGrid 

2.2.1 Description and updates 

The model used to simulate the thermo-hydrological interactions between permafrost ground and the forest canopy is based 10 

on CryoGrid (originally described in Westermann et al. 2016). CryoGrid is a one-dimensional, numerical land surface model 

that simulates the thermo-hydrological regime of permafrost ground by numerically solving the heat-conduction equation. The 

CryoGrid model has recently been extended by a multilayer canopy module developed by Bonan et al. (2014) for use in boreal 

permafrost regions (see Stuenzi et al. 2021a and 2021b for model details). The multilayer canopy model provides a 

comprehensive parameterization of fluxes from the ground, through the canopy layer up to a roughness sublayer. In 15 

combination with CryoGrid the canopy model replaces the standard surface energy balance scheme while soil state variables 

are passed back to the forest module. Following Stuenzi et al. (2021b), a realistic canopy structure is simulated by allowing 

fractional compositions of deciduous and evergreen taxa within a simulated forest stand.  

 

This entire model setup has previously been extensively validated for different study sites throughout our study region, 20 

including Nyurba (63.08°N, 117.99°E), Spasskaya (62.14°N, 129.37°E), and Ilirney (67.40°N, 168.37°E) (Stuenzi et al. 2021a 

and 2021b). Validation exercises were carried out based on measured and modelled ground surface temperature (GST), active-

layer thickness (ALT), soil moisture, bowen ratio, and short- and longwave radiation below and above the canopy. Parameters 

defining the canopy, snow, and soil properties were set according to literature values, model documentation, and own 

measurements (see Stuenzi et al. 2021b for constants and multilayer canopy parameter choices). Table 2 summarizes the 25 

parameter choices for the three different sites. Table C1 summarizes the commonly used CryoGrid parameters.  

2.3 Coupling the models 

The coupled model set-up benefits from the detailed process implementation gained while developing the individual models 

and brings the 1D to a landscape simulation. Therefore, we can reproduce the energy transfer and thermal regime in permafrost 

ground as well as the radiation budget, nitrogen and photosynthetic profiles, canopy turbulence, and leaf fluxes, while at the 30 
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same time predicting the expected establishment, die-off, and treeline movements of larch forests (Fig. 2). In our analyses, we 

focus on vegetation and permafrost dynamics and reveal the magnitudes of different feedback processes between permafrost, 

vegetation, and current and future climate in Siberia. 

 

LAVESI serves as host model and can now be set to call individual CryoGrid instances in a given year. For this, the data in 5 

LAVESI are aggregated on a 10x10 m grid superimposed on the 20x20 cm grid. Key state variables are leaf area index (LAI), 

plant area index (PAI), fraction of deciduous species, litter layer height, organic layer height, albedo, and the soil humidity in 

percent (= plant available water, PAW), which are provided to CryoGrid. These values can either be sorted by LAI and exported 

for 5 quartiles (implemented but not used here) or from the three areas that are equal slices from left to right (used here, see 

Appendix A1-A3). When the output file is created, LAVESI can be set to either start CryoGrid directly via a system call or 10 

scheduling the instance with a bash file for the workload manager slurm (Yoo et al., 2003). Based on the key state variables 

provided by LAVESI for each of the areas, CryoGrid starts three (or five) parallel simulations. Once the output has been 

written, LAVESI reads the file and produces for the three levels anomalies for available soil water and active-layer thickness. 

With these anomalies, the 10x10 m CryoGrid-grid in LAVESI is filled and from this, the anomalies used to calculate the new 

values for each 20x20 cm environment grid cell. When the quartile-mode is set, the state values are assigned to this grid 15 

calculated by linear interpolation of the LAI-sorted state values and anomalies are calculated as in the other mode. 

The multilayer canopy model in CryoGrid requires a minimum LAI of 0.7 m2 m-2 and a minimum height of 1 m to successfully 

build the radiative transfer scheme from the atmosphere to the ground, therefore forest covers below these values are ignored. 

2.4 Forcing data and landscape of focus areas 

The meteorological forcing data required by the multilayer canopy-permafrost model (air temperature, air pressure, wind 20 

speed, relative humidity, solid and liquid precipitation, incoming long- and shortwave radiation, and cloud cover) are obtained 

from ERA-5 (ECMWF Reanalysis, Hersbach et al., 2018) extracted for the study sites (Nyurba 63.08°N, 117.99°E covering 

sites EN18067,-68,-70, Spasskaya Pad 62.14°N, 129.37°E, and Lake Khamra 59.97°N, 112.96°E covering EN18079–-83, Fig. 

1). 

To provide a millennia-long time series for model spin-up of LAVESI these series were matched to historical climate data for 25 

the forcing retrieved from the 0.5°x0.5° Climate Research Unit gridded Time Series (CRU TS version 3.23) monthly data 

(1901–2014) (Harris et al., 2020). By repeating the 20th century data in a loop, a 2100-year long monthly climate series was 

established from 1 to 2100 CE for each focus region using the RCP 2.6 prediction scenario. 

2.5 Simulation experiments 

We forced LAVESI simulations with the RCP 2.6 climate scenario calling CryoGrid first in 2015 and yearly in the following 30 

years, letting the simulation run until the year 2030. Simulation runs were started with the updated LAVESI version on an 

empty landscape with true topography starting at 1 CE to allow for spin up and ending in 2100 CE. Into the empty landscape, 
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seeds (5000 ha-1 yr-1) for initiating population establishment were introduced for the first 50 years. Subsequently, only 100 ha-1 

yr-1 seeds were introduced to allow for re-establishment after a complete die-out of trees on the whole simulation area. Each 

simulation was rerun without calling CryoGrid to compare the differences when the improved active-layer thickness and 

available soil water is used. 

In addition to the simulation that uses equal proportions of seeds of each species introduced into the simulation area, we started 5 

individual simulations for each single species. 

2.6 Statistical analyses 

All statistical analyses in this study were performed in R 3.6.1 (R Core Team, 2019), mostly using included standard functions, 

with the addition of functions from the package “lattice” (Sarkar, 2008) for plotting the data. 

3 Results 10 

3.1 Comparing simulations with LAVESI and the coupled version 

The values are very similar for the runs with all and individual species. In nearly all years, LAVESI overestimates ALT by up 

to 20 cm (mean over all is 109.6±11.4 cm versus 96.1±10.2 cm, which is ~14.1%) at all focus regions (Fig. 3). The soil 

humidity anomaly fluctuates around 0% at Lake Khamra, is overestimated for Nyurba by ~10%, and Spasskaya Pad by ~20% 

(Fig. 4). Both are corrected in the coupled version of LAVESI-CryoGrid. 15 

 

A gradient of LAI forms, which follows the TWI gradient on all sites (I: left, driest to III: right, wettest, Fig. 5 & 6 & 7). 

Further, a LAI gradient from Khamra (southwest, warmest) via Nyurba (intermediate) to Spasskaya Pad (northeast, coldest) 

falls together with an increase of larch dominance towards nearly pure larch tree stands. Regarding other species, PISY is 

present in mixed stands in small numbers and grows only in open stands in simulations with only this species, suggesting that 20 

this species prefers a certain environment (Appendix A & D). PIOB performs better in single mono-specific runs leading to 

larger LAI than in mixed stands, but also reaches dense populations in warm areas (Khamra) and has smallest sizes at coldest 

sites (Spasskaya Pad, Fig. 5 & 6 & 7). LAGM grows under most conditions but not in the wettest areas (highest TWI values, 

Appendix D). 

 25 

A drop in LAI values can be observed in all simulations when LAVESI is updated by CryoGrid (comparing lower to upper 

panels in Fig. 5 & 6 & 7). In CryoGrid coupled runs, species grow with less dense stands but still cover the same area. In the 

coupled runs, populations die out in some cases at the end of the simulation at year 2030 (Appendix D). 
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4 Discussion 

The simulations using site information for the three focus sites yield dense tree stands in LAVESI simulations but not in the 

coupled version. The coupled model results in smaller key soil parameters, active-layer thickness (ALT), and plant available 

water (PAW). PAW has a strong impact as trees grow poorly in conditions exceeding drought and waterlogging thresholds 

(e.g. Liang et al., 2014, Mamet et al., 2019, Lawrence et al., 2015, Barber et al., 2000). Drought leads to a higher mortality of 5 

trees and in consequence, population simulations are driven close to extinction within the simulation duration of 15 years. 

However, when drought-adapted Pinus sylvestris occupies the niche, there is nearly no change and it could, in the end, colonize 

the simulation areas. This implies that the model is reproducing the natural dynamics well.  

 

Species preference matches observations and expectations (Kuznetsova et al., 2010). Larches have a wide ecological niche 10 

and are widespread (Mamet et al., 2019). They are generalists and best adapted to the harsh Siberian environments that were 

predominantly wet but are now become drier with global warming. Picea obovata grows best in the westernmost, warm areas 

and reaches larger LAI/biomass than when growing in mixed stands competing with other species. This could be attributed to 

(intraspecific) competition, which, as Wieczorek et al. (2017) shows, seems to be a strong factor dampening the response of 

tree stands when climatic conditions improve. 15 

 

As fires become more intense and frequent under global warming, spruce or other species may become dominant rather than 

shade-intolerant larch species. In the currently naturally deciduous, larch covered areas, evergreen taxa may invade and change 

the heat fluxes and energy balance with the threat of entering a positive feedback loop such as a deepening of the ALT (Bonan, 

2008, Stocker et al., 2013, Stuenzi et al., 2021b). 20 

 

In general, technical issues arise when coupling models and implementing I/O indirectly via output files. The two different 

time-steps (years in LAVESI vs. 5 minutes in CryoGrid) and computational speeds lead to long computation times and high 

requirements of computational resources of the coupled version. To avoid any delay, a parallelization of CryoGrid simulations, 

as implemented here, is highly recommended, especially for dry study sites where a simulated year in CryoGrid can take up 25 

to 4 hours. We find that simulations of homogeneous areas perform best and especially that the exchange is set up using three 

to five instances sorted by LAI. The constraint lies here and more instances would improve the representation of variants of 

deciduous/evergreen covered plots but these improved LAVESI simulations come at the cost of computation time when not 

using the parallelized version as developed for this study. 

5 Conclusions 30 

The as-is application of LAVESI overestimates ALT values by around 14% therefore we advise using the implemented 

correction from CryoGrid for forecasting forest dynamics in the proposed coupled version. The 3D simulations provide a way 
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to understand permafrost distribution and interactions with vegetation. Further implementations, tracked online in the github 

repository of LAVESI, include spatially explicit fire and trait variation and adaptation. This public sharing of the source code 

plus advances in both models allows the easy exchange, development, and adaptation to further regions. This and the simple 

set-up make the coupled model version easy to implement and thus offers a wide applicability. However, fieldwork or literature 

values from remote areas are necessary to adjust parameters and adapt the model and species to local site conditions, which is 5 

an issue for the vast remote areas in Siberia. With increasing data from these remote areas, such as better satellite imagery 

coverage and resolution, the collection of more detailed field data (loggers recording soil temperatures and moisture in the 

active layer), and monitoring of permafrost dynamics and tree growth, the drivers of forest dynamics may be disentangled and 

thus improve the model. 
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Figure 1: Scheme of focus areas covered on the Chukotka and Central Yakutia 2018 expedition. Region II: Boreal forest bi-stability 

summergreen-evergreen transition needed for the expansion of species in addition to Larix cajanderi and L. sibirica. 

 

Figure 2: Scheme of coupling CryoGrid and LAVESI and involved processes.  5 
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Figure 3. Thawing depth anomaly in the coupled simulation model for all focus areas (rows) and areas within the simulation areas 

(columns: I, II and III) for year steps 2015-2030. LAGM Larix gmelinii; PIOB Picea obovata; PISI Pinus sibirica; PISY Pinus 

sylvestris. 
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Figure 4. Soil humidity anomalies in the coupled simulation model for all focus areas (rows) and areas within the simulation areas 

(columns: I, II and III) for year steps 2015-2030. LAGM Larix gmelinii; PIOB Picea obovata; PISI Pinus sibirica; PISY Pinus 

sylvestris. 

 5 
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Figure 5. Leaf area index (LAI) values at Lake Khamra for the three areas within the simulation areas (I, II, III) on the same plot 

at which CryoGrid was called (upper row) and only LAVESI runs (lower row). LAGM Larix gmelinii; PIOB Picea obovata; PISI 

Pinus sibirica; PISY Pinus sylvestris. 

 5 
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Figure 6. Leaf area index (LAI) values at Nyurba for the three areas within the simulation areas (I, II, III) on the same plot at which 

CryoGrid was called (upper row) and only LAVESI runs (lower row). LAGM Larix gmelinii; PIOB Picea obovata; PISI Pinus 

sibirica; PISY Pinus sylvestris. 

 5 
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Figure 7. Leaf area index (LAI) values at Spasskaya Pad for the three areas within the simulation areas (I, II, III) on the same plot 

at which CryoGrid was called (upper row) and only LAVESI runs (lower row). LAGM Larix gmelinii; PIOB Picea obovata; PISI 

Pinus sibirica; PISY Pinus sylvestris. 

  5 
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Table 1. Species traits and variable values in LAVESI newly introduced for this study. References from * Abaimov et al., 1998, or 

** Sato et al., 2010, or educated guess. 

Parameter     Species           

Description Abbreviation Larix gmelinii Larix sibirica Larix cajanderi Picea obovata Pinus sylvestris Pinus sibirica 

Internal species 

variable [#] 

Species 1 2 3 4 5 6 

Species abbreviation - LAGM LASI LACA PIOB PISY PISI 

Asymmetry of height 

estimation model 

Heightloga 9.415 9.415 9.415 10.827 28.719 11.590869 

Centre of height 

estimation model 

Heightlogb 2.83 2.83 2.83 3.543 10.939 4.102115 

Scaling factor of 

height estimation 

model 

Heightlogc 2.214 2.214 2.214 2.381 4.916 3.057776 

Mortality rate of 

windthrow 

Mwindthrow 0.01 0.01 0.01 0.01 0.01 0.01 

Minimum depth of 

active layer table 

[cm] 

minactivelayer 20* 200 20 200 100 200 

Minimum available 

soil water content 

[%] 

minsoilwater 21.1** 10 10 10 10 25 

Rooting depth [cm] rootingdepth 50* 100 20 200 100 100 

Relative bark 

thickness value 

relbarkthickness 2 2 2 1.5 3 3 

Chance of resprouting 

following wildfire 

resprouting 0.01 0 0.01 0 0 0 

Slope of leaf biomass 

estimation model 

biomassleaffaca 1.955683 1.955683 2.162319 2.482039 2.260794 2.125194 

Slope of woody 

biomass estimation 

model 

biomasswoodfaca 3.553949 3.553949 3.901602 3.844512 3.257366 3.541813 

Deciduousness 

(binary: 1/0, yes/no) 

deciduous 1 1 1 0 0 0 

Slope of crown radius 

estimation model 

crownradiusestslope 0.728231 0.728231 0.9193333 0.6007845 0.7899374 0.5785676 

Intercept of crown 

radius estimation 

model 

crownradiusestinterc 2.794274 2.794274 2.4618496 2.9118007 2.4135727 2.9459064 

Slope of leaf area 

estimation model 

leafareaslope 2.017164 2.017164 2.236605 2.242359 2.015382 1.927198 
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Table 2. Study site parameters for CryoGrid. 

 

Study site Soil layer depth 

(Litter/Organic 

/Mineral) 

Respective soil type 

 

ERA-interim coordinate 

Nyurba 0/0.07/0.16 Peat/Clay/Sand N 63.08°, E 117.99° 

Spasskaya 0/0.08/0.16 Peat/Clay/Sand N 62.14°, E 129.37° 

Khamra 0/0.05/0.9 Peat/Clay/Sand N 59.98°, E 112.96° 
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Appendix 

Appendix A. Landscape defining the focus region’s plot area. 

 

Figure A1. Elevation (DEM), slope angle, and terrain water index (TWI) define the environment growth impact (0 no growth 

possible; 1 good, no constraints) using an empirically fitted function for present forest growth at area of interest Khamra. 5 
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Figure A2. Elevation (DEM), slope angle, and terrain water index (TWI) define the environment growth impact (0 no growth 

possible; 1 good, no constraints) using an empirically fitted function for present forest growth at area of interest Nyurba. 

 

 5 
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Figure A3. Elevation (DEM), slope angle, and terrain water index (TWI) define the environment growth impact (0 no growth 

possible; 1 good, no constraints) using an empirically fitted function for present forest growth at area of interest Spasskaya Pad.  
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Appendix B. LAVESI model parameters and constants used 

Table B1. Variable in LAVESI. See Kruse et al., 2016, 2018, and 2019b for a detailed description. 

Parameter     Species           

Description Abbreviation Larix gmelinii Larix sibirica Larix cajanderi Picea obovata Pinus sylvestris Pinus sibirica 

Internal species variable [#]  1 2 3 4 5 6 

Species abbreviation  LAGM LASI LACA PIOB PISY PISI 

 coneage 15 15 15 15 15 15 

 seedflightrate 0.63931 0.63931 0.63931 0.63931 0.63931 0.95 

 seedtravelbreeze 60.1 45 60.1 15 30 30 

 seeddescent 0.86 0.93 0.86 1.2 2.4 2.4 

 distanceratio 0.16 0.16 0.16 0.16 0.16 0.16 

 seedprodfactor 8 8 8 8 8 16 

 germinationrate 0.01 0.01 0.01 0.01 0.01 0.01 

 germinationweatherinfluence 0.447975 0.447975 0.447975 0.447975 0.447975 0.447975 

 gdbasalfacq -0.000133194 -0.0009 -0.003 -0.000252939 -0.000252939 -0.000252939 

 gdbasalfac 0.001470654 0.0056 0.03 0.006578208 0.006578208 0.006578208 

 gdbasalconst -0.805581404 -1.01 -1.98 -1.319846682 -1.319846682 -1.319846682 

 gdbreastfacq -0.000133194 -0.0009 -0.003 -0.000252939 -0.000252939 -0.000252939 

 gdbreastfac 0.001470654 0.0056 0.03 0.006578208 0.006578208 0.006578208 

 gdbreastconst -0.805581404 -1.01 -1.98 -1.319846682 -1.319846682 -1.319846682 

 dbasalheightalloslope 42.88 42.88 42.88 42.88 42.88 42.88 

 dbasalheightalloexp 1 1 1 1 1 1 

 dbreastheightalloslope 42.88 42.88 42.88 42.88 42.88 42.88 

 dbreastheightalloexp 1 1 1 1 1 1 

 dbasalheightslopenonlin 44.43163 44.43163 44.43163 44.43163 44.43163 44.43163 

 dbreastheightslopenonlin 7.02 7.02 7.02 7.02 7.02 7.02 

 mortbg 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

 maximumage 609 500 500* 250 250 250 

 mortage 8.18785 8.18785 8.18785 8.18785 8.18785 8.18785 

 mortyouth 0.762855 0.762855 0.762855 0.762855 0.762855 0.4 

 mortyouthinfluenceexp 0.79295 0.79295 0.79295 0.79295 0.79295 0.79295 

 mgrowth 0.5 0.5 0.5 0.5 0.5 0.01 

 mdensity 0.5 0.5 0.5 0.5 0.5 0.2 

 densityvaluemaximumatheight 0 0 0 0 0 0 

 mweather 0.1 0.1 0.1 0.1 0.1 0.1 

 heightweathermorteinflussexp 0.2 0.2 0.2 0.2 0.2 0.2 

 mdrought 0.237805 0.237805 0.237805 0.1 0.1 0.5 

 seedconemort 0.44724 0.44724 0.44724 0.44724 0.44724 0.44724 

 seedfloormort 0.55803 0.55803 0.55803 0.55803 0.55803 0.999 

 seedmaxage 4* 1* 1* 1 1 1 

 janthresholdtemp -45 -33 -60 -33 -33 -33 

 janthresholdtempcalcvalue 9 6.6 9 6.6 6.6 6.6 

 weathervariablea 0.078 0.163 0.078 0.163 0.163 0.163 

 weathervariableb 14.825 12.319 14.825 12.319 12.319 12.319 

 weathervariablec 0.108 0.168 0.108 0.168 0.168 0.168 

 weathervariabled 0.1771 0.305 0.1771 0.305 0.305 0.305 
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Appendix C. CryoGrid model parameters and constants used 

Table C1. Overview of the CryoGrid parameters used. 

Process / Parameter   Value Unit Source 

Density falling snow ρsnow 100 (SPA), 200 

(NYU/KHA) 

kg m-3 Stuenzi et al. (2021a) 

Albedo ground α 0.3 - Stuenzi et al. (2021a) 

Roughness length z0 0.001 M Westermann et al. (2016) 

Roughness length snow z0snow 0.0001 M Boike et al. (2019) 

Geothermal heat flux Flb 0.05 W m-2 Westermann et al. (2016) 

Thermal cond. mineral soil kmineral 3.0 W m-1 

K -1 

Westermann et al. (2016) 

Emissivity   0.99 - Langer et al. (2011) 

Root depth   0.2 M Stuenzi et al. (2021a) 

Evaporation depth  0.1 M Nitzbon et al. (2019) 

Hydraulic conductivity   10-5 m s-1 Boike et al. (2019) 

 

 

 5 
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Appendix D. Spatial distribution of the leaf area index (LAI) for mixed species and pure species simulations at the focus 

regions in 5-year steps. 

 

Figure D1. Leaf area index (LAI) values of the CryoGrid-grid aggregated at year 2015 at Lake Khamra. Upper row LAVESI-

CryoGrid coupled; lower row LAVESI simulations. LAGM Larix gmelinii; PIOB Picea obovata; PISI Pinus sibirica; PISY Pinus 5 
sylvestris. 

 

Figure D2. Leaf area index (LAI) values of the CryoGrid-grid aggregated at year 2020 at Lake Khamra. Upper row LAVESI-

CryoGrid coupled; lower row LAVESI simulations. LAGM Larix gmelinii; PIOB Picea obovata; PISI Pinus sibirica; PISY Pinus 

sylvestris. 10 

m² m-2 
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Figure D3. Leaf area index (LAI) values of the CryoGrid-grid aggregated at year 2025 at Lake Khamra. Upper row LAVESI-

CryoGrid coupled; lower row LAVESI simulations. LAGM Larix gmelinii; PIOB Picea obovata; PISI Pinus sibirica; PISY Pinus 

sylvestris. 5 

 

Figure D4. Leaf area index (LAI) values of the CryoGrid-grid aggregated at year 2030 at Lake Khamra. Upper row LAVESI-

CryoGrid coupled; lower row LAVESI simulations. LAGM Larix gmelinii; PIOB Picea obovata; PISI Pinus sibirica; PISY Pinus 

sylvestris. 
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Figure D5. Leaf area index (LAI) values of the CryoGrid-grid aggregated at year 2015 at Nyurba. Upper row LAVESI-CryoGrid 

coupled; lower row LAVESI simulations. LAGM Larix gmelinii; PIOB Picea obovata; PISI Pinus sibirica; PISY Pinus sylvestris. 5 
Simulations with PISI were not possible. 

 

Figure D6. Leaf area index (LAI) values of the CryoGrid-grid aggregated at year 2020 at Nyurba. Upper row LAVESI-CryoGrid 

coupled; lower row LAVESI simulations. LAGM Larix gmelinii; PIOB Picea obovata; PISI Pinus sibirica; PISY Pinus sylvestris. 

Simulations with PISI were not possible. 10 
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Figure D7. Leaf area index (LAI) values of the CryoGrid-grid aggregated at year 2025 at Nyurba. Upper row LAVESI-CryoGrid 

coupled; lower row LAVESI simulations. LAGM Larix gmelinii; PIOB Picea obovata; PISI Pinus sibirica; PISY Pinus sylvestris. 

Simulations with PISI were not possible. 

 5 

 

Figure D8. Leaf area index (LAI) values of the CryoGrid-grid aggregated at year 2030 at Nyurba. Upper row LAVESI-CryoGrid 

coupled; lower row LAVESI simulations. LAGM Larix gmelinii; PIOB Picea obovata; PISI Pinus sibirica; PISY Pinus sylvestris. 

Simulations with PISI and PISY coupled were not possible.  
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Figure D9. Leaf area index (LAI) values of the CryoGrid-grid aggregated at year 2015 at Spasskaya Pad. Upper row LAVESI-

CryoGrid coupled; lower row LAVESI simulations. LAGM Larix gmelinii; PIOB Picea obovata; PISI Pinus sibirica; PISY Pinus 

sylvestris. 

 5 

 

Figure D10. Leaf area index (LAI) values of the CryoGrid-grid aggregated at year 2020 at Spasskaya Pad. Upper row LAVESI-

CryoGrid coupled; lower row LAVESI simulations. LAGM Larix gmelinii; PIOB Picea obovata; PISI Pinus sibirica; PISY Pinus 

sylvestris. 
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Figure D11. Leaf area index (LAI) values of the CryoGrid-grid aggregated at year 2025 at Spasskaya Pad. Upper row LAVESI-

CryoGrid coupled; lower row LAVESI simulations. LAGM Larix gmelinii; PIOB Picea obovata; PISI Pinus sibirica; PISY Pinus 

sylvestris. Simulations with PISI coupled was not possible. 

 5 

 

Figure D12. Leaf area index (LAI) values of the CryoGrid-grid aggregated at year 2030 at Spasskaya Pad. Upper row LAVESI-

CryoGrid coupled; lower row LAVESI simulations. LAGM Larix gmelinii; PIOB Picea obovata; PISI Pinus sibirica; PISY Pinus 

sylvestris. Simulations with PISI coupled was not possible. 
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Appendix E. Evolution of Leaf Area Index (LAI) across the focus region simulation areas 

 

Figure E1. Mean leaf area index aggregated east-west for each simulated focus area and time slice (2010–2030). Upper row LAVESI-

CryoGrid coupled version; lower row only LAVESI. 
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