
Response to Reviewer 1: 

First of all, thank you for your constructive comments on this manuscript. We have tried to address all 

the comments you made in the manuscript and also in the replies. The line numbers mentioned in the 

following replies are based on the revised manuscript with track changes. 

 

◼ General 

This manuscript presented method comparison: EnKF and 3D-Var, for assimilating surface PM2.5 

observations with two settings: IC and ICBC. It is a straightforward paper. One major issue is that the 

prediction model CMAQ has only 15 layers up to 20km, which is too coarse. How many layers below 

1km? Could this coarse vertical resolution cause artificial dilution for near-surface pollutant concentration, 

and result in the systematic PM2.5 underestimation? Although this manuscript focuses on data 

assimilation (DA), the corresponding prediction model should be reasonable, too. Otherwise, the DA 

methods only show their effect on correcting the systematic underestimation. 

Reply:  Because surface PM2.5 is major focus of this study, a total of eight layers out of 15 layers are 

located below 1 km. The mid-point height of the first layer is averagely 16 m above the ground 

level, which means that the first layer depth is averagely 32 m. We reasonably assumed in this 

study that all the observation instruments are installed within the first layer. In addition, we believed 

that 32 m depth of the first layer and 8 layers below 1 km may be sufficient to avoid artificial 

dilution. We actually conducted a simple sensitivity test with varying vertical resolutions to 

investigate the impacts of the number of the vertical layers on the ground-level PM2.5 in the 

prediction models such as CMAQ. In Fig. R1, the simple test shows almost no impacts made by 

doubling the number of the vertical layers (i.e. nz=15 vs. nz=30). Based on this sensitivity test, we 

decided not to increase the vertical resolution in our simulations because of severe increases in 

the computational costs, especially for this type of ensemble approach. Instead of adding these 

sensitivity results into the manuscript or supplementary information, we have decided to add 

information on the corresponding altitude for the vertical layers beneath Table 3 (please see, line 

773).  

  As you mentioned in your comments, surface PM2.5 has been underpredicted by many prediction 

models in East Asia, which is mainly due to the underpredictions of the concentrations of SOA 

(Secondary Organic Aerosols) and fugitive dust (Volkamer et al., 2006; Philip et al., 2017; Jeong 

and Park 2019). This is a well-recognized (and also well-defined) problem. We have therefore 

attempted to correct these underpredictions of both SOAs and fugitive dust. However, we believe 

that correcting the underpredictions of PM2.5 is a different story from this work. Thus, we have 

been omitting this issue/topic in this manuscript. 



 

Figure R1. Sensitivity tests of the vertical resolution to ground PM2.5 simulations. 

◼ Comments 

#1. Section 2. PM2.5 is not a single species in CMAQ. How do you map the PM2.5 increment to 

individual CMAQ aerosol species? 

Reply:  Because PM2.5 was only control variable, we applied the increment ratio (i.e. analysis over 

background, 𝐱𝑎/𝐱𝑓) to all the aerosol species, following the original contributions to PM2.5. In this 

case, we don’t need to consider many aerosol species in the observation operator to calculate 

PM2.5. We used a post-processing tool included in the CMAQ software to calculate PM2.5 before 

the DA process. For the sake of the readers’ understanding, we have added some sentences 

explaining how we updated the CMAQ aerosol species (please, refer to lines 143–147). 

#2. Page 9, line 155. What’s the vertical extent of the 50% perturbation being applied, to all layers? 

Considering that it is used to the assimilating surface observation, certain justification is needed. 

Reply:  Yes, we perturbed all layers with 50% of background values. Because the PM2.5 above 1 km was 

on average smaller than 5 μm−3, the perturbed ensemble spreads were really small. The surface 

observations affect the analysis fields, based on the calculated background error covariance. 

Therefore, small ensemble spreads above 1 km do not have an error correlation to the ground 

level. To clarify the perturbing procedure, we have revised the corresponding sentences (please, 

refer to lines 159–161). 

#3. Page 6, line 172. Do you think that the static horizontal width of 100km and vertical width of 2km 

fit for all scenarios, for day and night? Any discussion about it. 

Reply:  These horizontal and vertical ranges for the localization scales were sufficiently small so as to 

remove the spurious error correlation. Although 2 km seems too high during the nighttime, the 

vertical length scale in the 𝐏𝐇 matrix in Equation (5) is lower than 2 km during night. In other 

words, there is less vertical relationship between the localization scale and error covariances. We 

have attempted to explain more details about these localization scales in the revised manuscript 

(please, check out lines 181–183). 

#4. Line 164. Same as above. Is the 30% standard deviation of LBC perturbation applied to the all 

layers? 

Reply:  Similar to creating the initial ensemble, we applied this magnitude to all layers. We have added 



this information to the revised manuscript (please, see lines 171–172). 

#5. Section 2.2. The 3D-Var description in section 2.2 is too short, and needs to include more detail. 

What are the horizontal/vertical length scales, and model error covariance yielded by the NMC 

method? Could you show some plots about them? 

Reply:  This study is a sort of comparison between the two DA methods. As we mentioned in the 

manuscript (lines 316–318), the comparison result in this study was not sophisticated so that it 

might not be a direct comparison. Actually, we are preparing an intensive comparison paper 

between the 3DVAR and two ensemble-based DA techniques (EnKF and EnSRF) with a more strict 

condition. Instead of adding extra plots in the revised manuscript, we have referred to a recently 

published paper (Lee et al., 2022), in which we introduced the development and application of the 

3DVAR method, including the error covariances and length scales. Please, refer to Lee et al. (2022). 

We have added some more comments from Lee et al. (2022) into lines 202–204. 

#6. Figure 4, it is better to include the corresponding 3D-Var increment for comparison. 

Reply:  Following the comments #5 and #6, we have added an increment comparison for domain 1 in 

the supplementary information (please, see lines 296–297 and Fig S2). 

#7. Section 3.3. Does the evaluation use the same observation data as those used in DA?  

Reply:  Yes, we used the same observation data as those used in DA in the evaluations. Although the 

evaluations were not conducted with the spatially independent observations, we would say this is 

independent evaluations with respect to time because the statistical evaluations were carried out 

for each 1-day prediction (F00 to F24). We have specified the data used in Table 4 for readers’ 

understanding (lines 395–398). 
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Response to Reviewer 2: 

First of all, thank you for your constructive comments on this manuscript. We have tried to address all 

the comments you made in the manuscript and also in the replies. The line numbers mentioned in the 

following replies are based on the revised manuscript with track changes. 

◼ General Comments 

This manuscript describes the initialization of ground-level PM2.5 for a chemical transport model using 

the ensemble Kalman Filter (EnKF) method. Authors implemented EnKF in the CMAQ model and claim 

this method improves PM2.5 predictability compared to the 3DVar and No DA. The PM2.5 predictability 

of South Korea is further improved if the EnKF is applied not only to the nest domain but also mother 

domain with ground PM2.5 observation. The manuscript looks like to have a reasonable structure for 

the paper. It will be available for publication if it is improved with a minor revision. 

 

◼ Specific Comments 

#1. In the manuscripts, ICs is an abbreviation for both initial conditions and initial concentrations. The 

same goes for BCs. Authors should only use the abbreviation “C” for either condition or 

concentration 

Reply:  Thank you for this point. We first define the abbreviations of ICs and BCs (see lines 17, 19, and 

38), and then use both abbreviations in the revised manuscript. 

#2. What are the background variables that are input to EnKF? I believe the EnKF uses background 

error covariance between PM2.5 and some meteorological variables. Is it correct that the 

experiments only update PM2.5, so other meteorological variables are the same as before DA? 

Adding a list of background and analysis variables is recommended. 

Reply:  Yes, we updated only PM2.5 via DA. Therefore, there were no error correlations between 

meteorological variables and PM2.5. We used the identical meteorological conditions for all the DA 

experiments. Because PM2.5 is a single control variable, we did not add a list of variables in the 

original manuscript. Regarding this point, we added same sentences into Section 2.1 (please, check 

out lines 143–147). 

#3. I am wondering about the observation operator for the PM2.5. Is PM2.5 one of the background 

variables? If not, the authors need to introduce the observation operator for it to calculate 

observation operator. Some descriptions for the observation operator would be better to be added 

in the manuscript. 

Reply:  We agree with reviewer’s comment that further descriptions of the observation operator are 

necessary. For a simple observation operator, we calculated PM2.5 before the DA, using aerosol-

related species via a post-processing tool in the CMAQ software package. This could also be 

possible because we used PM2.5 as a single control variable. We have added same sentences about 

this process into the revised manuscript (please, refer to lines 143–147). 

#4. Line 174: What is the inflation parameter (alpha) for RTPS? 

Reply:  Reply to this comment #4 is coming up with the following comment #5. 



#5. Since you have described the parameter for the localization, it would be better to also describe the 

parameter for RTPS. 

Reply:  We will try to response to comments #4 and #5 together. We set 𝛼 of the inflation parameter to 

be 1.0. We here assumed that the meteorological model was perfect. Therefore, no perturbations were made 

for the ensemble spread. Another reason was that perturbing meteorological variables could also break 

dynamical balances in the model simulations. Throughout the experiments, we used 1.0 for the value of 𝛼, 

and then inflated both the predicted ensemble (before DA) and assimilated ensemble (after DA) rather than 

using 1.2, the value used in Pagowski and Grell (2012) and Schwartz et al. (2014) (regarding this point, 

please refer to lines 184–191). 

#6. Line 175: Why do you apply the RTPS to ensemble before and after DA? The RTPS compares 

ensemble spread before and after DA because the amount of inflation in RTPS is proportional to 

the ensemble spread reduced by the DA. So theoretically, RTPS can be applied only once after DA. 

Reply:  Comments #4, #5, and #6 are a series of questions about similar issue. More specific details have 

been added into the revised manuscript (please, refer to lines 184–191). 

#7. When you describe DA_icbc, can you show the pm2.5 field for domain1 which contains domain 2? 

For example, horizontal field of PM2.5 as in figure 4, but with domain 1. The distribution of PM2.5 

over domain 1 can be clearer evidence showing the effect of boundary conditions. 

Reply:  We agree with the reviewer’s opinion. Instead of adding the PM2.5 field for domain 1 to Fig. 4, 

we added Fig. S5 into the supplementary information to describe the impacts of the updated (or 

increased) transboundary PM2.5 by assimilating the concentrations from the ground stations in 

China. This additional figure could help readers to better understand the improved performances 

on 25 and 26 May, 2016 (high PM2.5 episode during the KORUS-AQ campaign) in Fig. 8 (also, refer 

to lines 374–376). 

 

◼ Technical Comments 

#8. Line 245: sate --> state 

Reply:  We have changed it (please, see line 266). 


