10

15

20

GSTools v1.3: A toolbox for geostatistical modelling in Python

Sebastian Miiller!?, Lennart Schiiler®!3, Alraune Zech*!, and Falk HeBe>!

Department of Computational Hydrosystems, UFZ — Helmholtz Centre for Environmental Research, Leipzig, Germany
Institute of Earth and Environmental Sciences, University Potsdam, Potsdam, Germany

3Center for Advanced Systems Understanding (CASUS), Goérlitz, Germany

4Department of Earth Sciences, University Utrecht, Utrecht, Netherlands

Correspondence: Sebastian Miiller (sebastian.mueller @ufz.de)

Abstract. Geostatistics as a subfield of statistics accounts for the spatial correlations encountered in many applications of e.g.
Earth Sciences. Valuable information can be extracted from these correlations, also helping to address the often encountered
burden of data scarcity. Despite the value of additional data, the use of geostatistics still falls short of its potential. This problem
is often connected to the lack of user-friendly software hampering the use and application of geostatistics. We therefore present
GSTools, a Python-based software suite for solving a wide range of geostatistical problems. We chose Python due to its unique
balance between usability, flexibility, and efficiency and due to its adoption in the scientific community. GSTools provides
methods for generating random fields, it can perform kriging and variogram estimation and much more. We demonstrate its

abilities by virtue of a series of example application detailing their use.

1 Introduction

Geostatistics emerged as a distinct branch of statistics in the early 1950s through the pioneering work of Krige (1951). Krige’s
goal of estimating the abundance of mineral resources led him to develop some of the first methods, but it was the French math-
ematician Georges Matheron who developed the mathematical foundations (Matheron, 1962). Today, geostatistics is applied in
fields like geology (Hohn, 1999), hydrogeology (Kitanidis, 2008), hydrology or soil sciences (Goovaerts, 1999), meteorology
(Cecinati et al., 2017), ecology (Rossi et al., 1992; Sales et al., 2007), oceanography (Monestiez et al., 2004), and epidemiology
(Schiiler et al., 2021); and a large number of textbooks make the theory available to practitioners (Pyrcz and Deutsch, 2014;
Rubin, 2003; Diggle and Ribeiro, 2007; Kitanidis, 2008; Banerjee et al., 2014).

Yet, the rate of adoption of geostatistics by practioneers has been slow and uneven (Zhang and Zhang, 2004; Rajaram, 2016).
One reason is the perceived lack of ready-made geostatistical software (Zhang and Zhang, 2004; Neuman, 2004; Winter, 2004;
Rajaram, 2016; Cirpka and Valocchi, 2016; Fiori et al., 2016). Although a decent number of geostatistical software solutions
are available (Bellin and Rubin, 1996; Deutsch and Journel, 1997; Brouste et al., 2008; Rubin et al., 2010; Pebesma, 2004,
Savoy et al., 2017; HeBe et al., 2014; Vrugt, 2016), user-friendliness and licensing can hamper their adoption as pointed out by
Rubin et al. (2018).

The presence of a graphical user interface (GUI) is sometimes seen as an indication of usability (Remy, 2005; Rubin et al.,

2018). However, a GUI does not necessarily make software more user-friendly and almost always limits flexibility by increasing

25

30

35

40

45

50

the programming effort. Furthermore, the data-generating process in subsurface geostatistics is almost always represented by
partial differential equations (PDEs), making it even more difficult to provide easy-to-use software toolboxes for out-of-the-box
geostatistical analyses. Addressing these challenges, we present GSTools — an extensive Python package for geostatistical
analysis (Miiller and Schiiler, 2021). To the best of our knowledge, no open source Python package currently exist, which
provides such a comprehensive collection of random field generation, forward modeling, kriging and data analysis.

We believe that the choice of Python has the potential to address several of the challenges for geostatistical applications.
First, a script language like Python allows striking a balance between ease-of-use (as provided by GUIs) and flexibility (as
provided by command-line based tools). Second, Python is known as a glue-language, being able to combine independent
software solutions to achieve complex workflows. This is particularly important since geostatistics often relies on ready-made
solvers for data-generation or PDE-based model solvers. Third, Python is a simple yet powerful language with an increasing
user base and community support for scientific computing and data analysis. It thus has a wide appeal and excellent prospects
for the foreseeable future. This guarantees that engineers and scientists with only a moderate background in computer science
are able to apply the toolbox and to make the necessary application-specific adjustments. Finally, the licensing should be as
permissive as possible, to guarantee adoption and even further development by interested users.

We introduce GSTools and present its main features with a general overview of its functionality and abilities in section 2.
We focus on the covariance model, field generation, kriging and variogram estimation. In section 3, we discuss the wider
context of GSTools, namely a number of Python packages connected with GSToo1ls which can be used to seamlessly model
geostatistical workflows. Section 4 presents a number of workflows to showcase the abilities of GSToo1s and demonstrate its

usage. We close off with a short summary of the main advantages of GSTools and concluding remarks.
2 GSTools Features

2.1 Covariance Models and Variography

The powerful CovModel class represents covariance and variogram models. Methods provided by this class are the basis for

most of the functionality of GSToo1ls, such as variography, spatial random field generation and kriging.
2.1.1 Covariance Models

GSTools implements a CovModel class to define covariance models of weakly stationary (spatial) processes. Weak station-
arity here means that the associated semi-variogram is bounded, since we assume a constant mean and a finite variance. To
approximate unbounded variograms such as the power-law model (Webster and Oliver, 2007), we provide a set of truncated

power law models following Di Federico and Neuman (1997). The internal representation of a (semi-)variogram < is given by:

W(T)=J2~(l—c0r(s-%))+n, 1)

55

60

65

70

3.5

import gstools as gs 3.0
model = gs.Exponential(

dim=2, # 25
var=3.0, #

len_scale=10.0, # 20

nugget=0.5, # M ’ —— Exponential variogram
anis=0.5, # an 7 Exponential covariance

1.5 —— Exponential correlation

angles=3.1415/4, 1,
ax 1.0
ax
ax

model.plot ("variogram")
model.plot("covariance", ax=ax)
model.plot("correlation", ax=ax) 0.5

0.0

Figure 1. Initialization of an exponential covariance model given by cor(h) = exp(—h) (Rubin, 2003). Note that the rescaling factor is 1
by default. The right panel shows the plot of the variogram, covariance, and correlation function of the model, which can be created with

convenience plotting methods.

where 7 is the (isotropic) lag distance, ¢ is the (main) correlation length, s is a rescaling factor to adjust model representation
(default is 1), o2 is the variance or partial sill, n is the nugget or sub-scale variance and cor(h) is the model-defining, normalized
correlation function depending on the non-dimensional distance h = s - 7.

The associated covariance and correlation functions are given by:

C(r) =02 cor (s%) (2)

p(r) = cor (s . %) 3)

Note that covariance and correlation are neglecting the nugget effect at the origin. Thus, the variance is interpreted as the
variation above the nugget, which is sometimes referred to as the partial sill of the semi-variogram or the correlated variability
(Rubin, 2003). Consequently, the sill or limit of the semi-variogram is calculated as the sum of variance and nugget.

The (semi-)variogram, covariance and correlation functions of a model are accessible through model .variogram,
model.covariance and model.correlation, respectively. Every covariance model is defined by at least six pa-
rameters: dimension dim, variance var, main length scale len_scale, rescale factor rescale, anisotropy ratios anis
and rotation angles angles, with the latter two being dimension dependent. Fig. 1 shows an example code for instantiating
an exponential model and the resulting model functions exemplifying the parameters. Table 1 provides an overview of the
predefined models in GSTools.

In addition to the pre-defined covariance models, users can specify their own model functions by providing a normalized

correlation function. Fig. 2 shows a re-implementation of the exponential model in only three lines of code.

Table 1. Predefined covariance models in GSTools.

Model cor(h) source
Gaussian exp(—h?) Webster and Oliver (2007)
Exponential exp(—h) Webster and Oliver (2007)
Stable exp(—h®) Wackernagel (2003)
Matern 213(:)/ (Vv-h)" K, (y/v-h) Rasmussen and Williams (2005)
Rational (1+%2)" Rasmussen and Williams (2005)
cubic (1—T7h*+322h*—Ih®+3h") (1) Chiles and Delfiner (2012)
Linear (1—h) (h<1) Webster and Oliver (2007)
Circular 2.(cos™'(h)—h-vV1—h?) (c1y Webster and Oliver (2007)
spherical (1—3-h+1-h%) ey Webster and Oliver (2007)
HyperSpherical El —h- 2?(%1’_%1’%3’}12) (h<1) Matérn (1960)
2F1(5.-%5.8.1)
SuperSpherical (1—h- 22(%;’_”’%;’12)) (h<l) Matérn (1960)
P (5 30)
JBessel T'(v+1)-(%)™" Ju(h) Chiles and Delfiner (2012)
TPLSimple (1—h)" (<1 Wendland (1995)
TPLGaussian H-Eiiu (h?) Di Federico and Neuman (1997)
TPLExponential 2H - FEi4on (h) Di Federico and Neuman (1997)
TPLStable 2L.E .5 (h%) Miiller et al. (2021a)

Formulas including the subscript (h < 1) are picewise-defined functions being constantly zero for h > 1. Here, h is the

non-dimensional distance, d is the dimension, I'(x) is the Gamma function, K, () is the modified Bessel function of the second

kind, J,, (x) is the Bessel function of the first Kind, 2 1 (a, b, ¢, x) is the ordinary hyper-geometric function and E,, (x) is the

exponential integral function (Abramowitz et al., 1972). All other variables are shape parameters of the respective model.

The dimension-dependent spectrum of an isotropic covariance model can be called with model . spectrum. It is directly

calculated from the covariance function by:

sw-(5) / Clel)-edp =

75 Here, r = |r| and k = |k| are the norms of the corresponding vectors and H is the Hankel transform, which provides a math-
ematically self-contained and numerically robust formulation of the radially symmetric Fourier transformation. GSTools

makes use of an implementation of H provided by the Python package hankel (Murray and Poulin, 2019; Ogata, 2005). For

(2 k)

p R {0 D).

models with a known analytical solution, GSTools uses them for improved computations.

80

85

90

95

—— User variogram

0.8
import numpy as np

import gstools as gs
0.6
class User(gs.CovModel) :
def cor(self, h):
return np.exp(-h) 0.4
model = User(dim=2, var=1, len_scale=10)
model.plot () 0.2

0.0

Figure 2. Initialization of a user defined exponential covariance model. The only thing that needs to be defined is the normalized correlation

function cor.

A prerequisite for kriging or random field generation is that the applied covariance function is positive (semi-)definite. That

can be checked through the spectral density which is derived by (note that S only depends on the norm of k):

200 =W — komtyt 9y {00}).)

From Bochner’s theorem (Rudin, 1990) follows, that the spectral density is a probability density function if and only if the un-
derlying covariance functions is positive (semi-)definite, which all pre-defined models in GSToo1ls satisfy. As a consequence,

the error variance during kriging is always non-negative.
2.1.2 Anisotropy and Rotation

Variograms are typically defined based on the lag distance r, resulting in an isotropic model. However, many natural processes
involve anisotropy with varying correlation ranges in different (orthogonal) directions. An example is hydraulic conductivity,

where anisotropy typically arises from the geologic stratification. The implementation of anisotropy in GSTools is based on

the non-dimensional distance (Rubin, 2003):

(6)

where ¢ = s-/; is the main length scale incorporating the rescale factor s, e; = ﬁ—l are the anisotropy ratios and r = (ry,r9,...)

are the distances along the main axis of correlation resulting in the isotropic distance 7. Consequently, GSTools uses a main
length scale, a set of anisotropy ratios and a set of rotation angles to fully describe an anisotropic model.

In practice, the main directions of correlation do not necessarily follow the principal axis. The CovModel accounts for

rotation through rotation angles, where their number m depends on the dimension d: m = W' In two dimensions, rotation

is fully described by a single angle for rotation in the zy plane and in three dimensions three angles are applied to the zy plane,

100

105

xz plane and yz plane respectively. The latter are often referred to as Tait-Bryan angles yaw, pitch and roll (Goldstein, 1980),

see Fig. 3 for an example.

Field 3D structured (50, 50, 50)

Plane 3

@ x-y 0.7

Ox-z 2
. Qv-z 0.6
import numpy as np
import gstools as gs 1 05
define main azes by yaw, pitch and roll ~ 0 04
angles = np.deg2rad([45, 0, 0])
anisotropy ratios y / x and z / T 03
anis = [1 / 2, 1 / 4] -
model = gs.Exponential(dim=3, anis=anis, angles=angles) o2
model.plot("cov_spatial") - 01

-3
3 3

-2 -1 0 1 2
:

Figure 3. Spatial covariance structure of an anisotropic exponential model in 3D plotted with the builtin interactive routines of GSTools.

The example shows an eighth turn on the xy plane with anisotropy factors (1/2,1/4). Rotation angles are given in radians.

One unique feature of GSTools is the support of arbitrary dimensionality in all provided routines. For rotation in higher
dimensions, we apply the following scheme: The first angles coincide with those of the next lower dimension and the added
d—1 angles describe rotations in the planes of the added dimension (in 3D: xz and yz). Thus, there are 6 rotation angles in 4D,
10 in 5D, etc. Rotation in higher dimensions is only relevant for spatio-temporal modelling with three spatial dimensions and
application to other fields of research with high dimensional data. The scheme was chosen for metric spatio-temporal models
to account for spatial anisotropy in a similar way as a simple spatial model.

Rotation in the x;z; plane is described by the matrix G(«, [i, j]) € R4*%:

cosf k=1l=1,j

sind k=il=j

G(o,[i,j)m =4 —sinf k=jl=i (7)
1 k=1+#1i,j
0 else

The order of rotating planes is determined by the described scheme, i.e. I; = [1,2] (xy plane), I = [1,3], (xz plane) I3 = [2, 3]

(yz plane) etc. These values define a rotation matrix Reot to translate principle axes in the direction of correlation and the

110

115

120

125

130

135

back-rotation matrix DeRot = Rot " for the inverse:

Rot = [[G((—1)"Las.T)
=1
:G((*l)milamalm)’--"G(al,fl)- (8)

The alternating signs of the rotation angles (—1)*~!a; were chosen to match Tait-Bryan angles in 3D.
For applying or removing anisotropy, we define the isotropify matrix Iso = diag(el_l,eg !....) and anisotropify matrix
Anlso = Iso!. Combining these two types of matrices allows us to isometrize (i.e. isotropify and derotate) and anisometrize

(i.e. rotate and anisotropify) spatial points via:

Isom = Iso - DeRot 9
Anlsom = Rot - Anlso (10)

GSTools provides the routine CovModel . isometrize to convert spatial positions to their derotated and isotropic coun-

terparts as required by Eq. 6 and the routine CovModel . anisometrize to invert this:

z... = Isom-z (11)

“isom

Lanisom — Anlsom -z (12)

2.1.3 Geographical Coordinates

Earth’s surface is a non-Euclidean manifold and all large-scale, geographically-referenced data will necessarily reflect that. We
deal with the non-Euclidean nature of this kind of data by assuming the Earth to be a perfect sphere and then using the fact
that the distance between two points p; = (¢1,1) and pa = (g2, A2) is given by their latitude (¢) and longitude (\) and can

be described by a central angle calculated from the great circle distance:
C(p1,p2) = arccos [sin(¢1) sin(¢z) + cos ¢y cos 2 cos(AN)]. (13)

A huge family of valid models on the sphere can be derived from 3D models by inserting the chordal distance which results in

the associated Yadrenko covariance model Cy (Lantuéjoul et al., 2019):

v (¢) = Cap (z.sm (g)) (14)

The underlying manifold introduces new restrictions for covariance models to be positive definite. The manifold structure of
the sphere only allows isotropic models. For small-scale applications it is valid to assume anisotropy. An appropriate adaption
is the use of a 2D projection like Gauss-Kriiger coordinates. We provide Yadrenko models as a unified representation for non-
Euclidian coordinates since they facilitate all presented models to be used with geographical coordinates as demonstrated in

Fig. 4.

140

145

150

1.0

0.8

import gstools as gs

use earth raadrus a: rescatLing 0.6
rescale = gs.EARTH_RADIUS

model = gs.Spherical(latlon=True, rescale=rescale)
model.len_scale = 777 # in knm 0.4
model.plot("vario_yadrenko")

0.2

0.0 —— Spherical Yadrenko variogram

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Figure 4. Initialization of a Yadrenko covariance model. We use the Earth radius as the rescaling factor to have a meaningful length scale.

The routine vario_yadrenko still depends on the central angle given in radians.

2.1.4 Empirical Variogram, Data Preparation and Model Fitting

The empirical variogram is an important tool for analyzing spatially correlated data. It is estimated with the subpackage
gstools.variogram which provides two estimators for the empirical variogram: Matheron and Cressie (Webster and

Oliver, 2007). The default Matheron’s estimator for a variogram -y of a spatial random field U is given by:
_ 2
V) =3 IME)T Y (Ule) - Ulzy))” (15)
M(r)

where M (r) is the set of all pairwise spatial random field points, separated by the distance r and a certain tolerance ¢ > 0.

Cressie’s estimator, which is more robust to outliers, is given by:

3 (|M(7")|_1 2oy /U () = U@j)|>4

) = 45T T 0,494/ M ()] + 0045/ M () (16)

Both estimators require predefined bins M (r) to group the pairwise point distances of the given field. GSTools provides a
standard binning routine, where the maximal bin width is set to one third of the diameter of the containing box of the field, the
number of bins is determined by Sturges rule (Sturges, 1926) and all bins have equal width. Fig. 5 provides an example of the
variogram estimation of an unstructured spatial random field with automatic binning.

GSTools accounts for anisotropy by providing estimating routines for directional variograms along a specified direction
with a certain angle tolerance and bandwidth. When providing orthogonal axes, it is possible to fit a theoretical model and its
anisotropy ratios as shown in Fig. 6. Determining the main rotation axes from given data, however, is up to the user and beyond
the scope of the presented GSTools version.

Field data often does not follow a normal distribution, which is a crucial assumption for variogram estimation. For example,

transmissivity is usually assumed to be log-normally distributed (Dagan, 1989) while rainfall data is normalized applying the

155

160

—— Exponential variogram

import numpy as np 25
import gstools as gs

1000 data points with x, y between 0 and 100 20
X, ¥, field = np.loadtxt("data.txt")

B (I/YIW’L'T"LC(L[, vartogram ((L'ILZ/() [)/LTLTLY,'NL]}

bin_center, gamma = gs.vario_estimate((x, y), field) 15
fitting theoretical model

fit_model = gs.Exponential(dim=2) 1.0

fit_model.fit_variogram(bin_center, gamma)
plotting

ax = fit_model.plot(x_max=max(bin_center)) 0.5
ax.scatter(bin_center, gamma)

0.0

0 10 20 30 40

Figure 5. Estimating an empirical variogram of synthetic unstructured data and fitting an exponential model. The number of bins was

calculated to be 21 with a maximum bin distance of ca. 45.

import numpy as np

import gstools as gs) o anisotropic Gaussian model fit
load 3D anisotrope field . Talt-Br)I/an ’gg'n aXIZSZ

X, y, 2z, field = np.loadtxt("directional.txt") rom angles [90. 45. 22.]

define main azes by yaw, pitch and roll

angles = np.deg2rad([90, 45, 22])
model = gs.Gaussian(dim=3, angles=angles)
main_axes = model.main_axes ()
estimate wvariogram along all azes
bin_center, dir_vario = gs.vario_estimate(
(x, y, 2z), field,
direction=main_axes,
bandwidth=10,
angles_tol=np.deg2rad(22),

)
fitting directional wvariogram
model.fit_variogram(bin_center, dir_vario)

0 10 20
distance

Figure 6. Estimation of directional variograms for given main axes: The code snippet shows the setup for estimating and fitting the variogram

to an anisotropic field. The figures show the main axes of the rotated model and the fitting results. Plotting commands have been omitted.

Box-Cox transformation (Cecinati et al., 2017). GSToo1s provides a set of Normalizers based on power transforms, that can
be fitted to a given data set using a maximum likelihood approach (Eliason, 1993): LogNormal, BoxCox (Box and Cox,
1964), YeoJohnson (Yeo and Johnson, 2000), Modulus (John and Draper, 1980), Manly (Manly, 1976). An example
application is shown in Fig. 7 and a comparison of all provided normalizers can be seen in Fig. 8.

GSTools also provides routines to de-trend data. For example temperature could decrease with elevation or conductivity
could decrease with depth. Another application is analyzing spatial correlation of residuals after application of a regression
model to the data. All routines dealing with data have the keywords trend, normalizer and mean, where the latter

describes the mean of the normalized data.

165

170

175

4
o

501 ° ® ¢ ¢ data

® L[]
401 ®e L4 oS

o
n

c
30 BRI
. o® o %o g
> SA O 0 03
]l e % 3
import numpy as np 20 ° d ° H c
. °q % o 502
import gstools as gs ° ‘... . ® P
100 data points with z, y between 0 and 50 101 % e e o 01
X, y, field = np.loadtxt("boxcox.txt") o %" ¢, .
fit boz-cox mormalizer and estimate wvariogram 0{ ®» © ® o © 00
bin_center, gamma, normalizer = gs,vario_estimate(6 2b 4b 00 25 50 75 100
(x, y), field, X data values

normalizer=gs.normalizer.BoxCox,
fit_normalizer=True)
fit matern model
model = gs.Matern(dim=2)
model.fit_variogram(bin_center, gamma, nugget=0) 0.8
normalize field values
norm_field = normalizer.normalize(field)

0.4

i
w

e
N

variogram
o
o
bin sizefraction

o
e

—— Matern variogram

0.0 ® empirical variogram
T T T 0.0
0 10 20 -2 -1 0 1 2
distance normalized data values

Figure 7. Estimating an empirical variogram (bottom left) of synthetic unstructured data (top left) after Box-Cox normalization of skewed
input values. Panels on the right show the histogram of the data values before (top) and after the normalization (bottom). For demonstration

purpose, a Matern model was fitted to the empirical variogram. Plotting commands have been omitted.

2.2 Kriging, Random Fields and Conditioned Random Fields
2.2.1 Kriging

The subpackage gstools.krige provides routines for Gaussian process regression also known as kriging and being a
method of data interpolation based on predefined covariance models (Wackernagel, 2003). Kriging aims to derive the value
of a field z at some point z,, when there are fixed conditioning values z(x,)...z(z,,) at given points z; ...z,,. The resulting
value 2 at z, is calculated as a weighted mean zo = Y-, w; - z;, where the weights w = (w1, ..., w,) are determined by the
specific kriging routine.

We provide multiple kriging routines derived from the Krige class: (i) Simple: The data is interpolated with a given
mean value for the kriging field. (ii) Ordinary: The mean of the resulting field is unknown and estimated alongside the
interpolation (unbiasedness). (iii) Universal: In addition to ordinary kriging, one can provide drift functions f1,..., fi. (iv)
ExtDrift: Like Universal kriging, but the drift is provided by an external source.

The advantage of using the general Krige class is the combination of all described features, such as for instance using
universal kriging with a functional drift together with additional external drifts. A typical scenario is a temperature interpolation

with an assumed north-south drift (functional drift) and a linear correlation to altitude (external drift).

10

180

185

BoxCox YeoJohnson

A=-10 A=0.0 om— A=10 e — A=20
A=-05 —— A=05 — A=15 e — A=25

Figure 8. Comparison of parametric normalizers in GSTools.

Since all variogram models in GSTools assume weak stationarity, the kriging system is always built on the associated
covariance function:
clwrE

(1) NECRENRONE (17)
EFT 0

¢
ET P Ey

g
£

with C' = (C (gi,gj))ijzlmn being the covariance matrix depending on the conditioning points and the given model. Cy =
(C(z;,20))L, ,, is the covariance vector for the target point z,. F' = (fj(2;))i=1...n,j=1...k is a sub-matrix containing the
functional drift values at the conditioning points and Fy = (fi(z,))7, , at the target point, where k is the number of
functional drifts. F = (eij)i=1__.n,j:1___l is a sub-matrix containing the external drift values at the conditioning points and
Eo = (eio)_, , at the target point, where [is the number of external drifts. The parameters s, 9= (¢1,...,0x)T and
Y= (¥1,... ;)T are Lagrange multipliers for the unbiased condition, the functional drifts and the external drifts respec-
tively. The vector 1 and its Lagrange multiplier i are given in brackets since their appearance depends on whether the system
should be unbiased or not (ordinary vs. simple kriging). Note that the number of functional drifts & and external drifts [can be

zero, depending on whether they are given or not.

11

190

195

200

import numpy as np

from gstools import Gaussian, krige
conditions and ou
cond_pos =
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]
grid = np.linspace(0, 10, 101)

krig

put grid
[0 .3, 1.9, 1.1, 3.3, 4. 7] simple kriging: field and mean

3.0 1 — ordinary kriging: field and mean
—— universal kriging: field and drift

25 @ Condition

model Gaussian(dim=1, var=0.5, len_scale=2)
cfg = (model, cond_pos, cond_val)

sim_krige = krige.Simple(*cfg, mean=np.mean(cond_val)) 15
ord_krige = krige.Ordinary(*cfg)

uni_krige krige.Universal (*cfg, drift_functions="1in") 1.0

2.0

interp ted 5
sim_field = sim_krige(grid, return_var=False) 0.5
ord_field = ord_krige(grid, return_var=False)

= uni_krige(grid, return_var=False) 0.0
2d means

-0.5

sim_krige(grid, only_mean=True)
ord_krige(grid, only_mean=True) 0 2 4 6 8 10
uni_krige(grid, only_mean=True)

ord_mean =

Figure 9. Comparison of simple ordinary and universal kriging. All three routines have a similar setup, where simple kriging needs an

estimated mean and universal kriging needs additional drift functions. Plotting commands have been omitted.

GSTools also provides the possibility to incorporate measurement errors variances o2 for each conditioning point by

adjusting the covariance matrix (Wackernagel, 2003):

C = C +diag(d?,...,02)
Clzy,z,)+07 ... Clzy,z,)

- : : (18)
Clzpzy) ... Clz,,z,)+o0n

By default, the measurement error variances o? are set to the model nugget. In order to get numerically stable results, we solve
the kriging system with the pseudo-inverse matrix, which has the advantage that redundant data or multiple measurements at
the same location are averaged out in the resulting field (Mohammadi et al., 2017).

One last feature is the capability of kriging the mean (Wackernagel, 2003) which allows deriving the mean value estimated
during ordinary kriging or estimating the mean drift determined from given functional and/or external drift terms as shown in

Fig. 9. A minimal example for regression kriging is shown in Fig. 10.
2.2.2 Random Fields

A core element of GSTools is the spatial random field generator class SRF. A covariance model (sec. 2.1) is needed to
instantiate a spatial random field. We provide two ways of field generation: structured or unstructured. In both cases, the
positions at which the field will be evaluated, are given by a pos argument. In the structured case, pos contains one tuple
per dimension, each defining the subdivision of the corresponding axis resulting in a rectilinear grid. For unstructured grids,

the pos tuple contains the z, y, and z coordinates of every evaluation point. SRF allows controlling the underlying pseudo-

12

205

210

215

220

import numpy as np
from scipy import stats

R Field 1D: (1000,)
import gstools as gs 6

— trend
@ conditions
std deviation

cond pos, cond_val = np loadtxt(”regress krige.txt") 5

regress = stats. 11nregress(cond pos, cond_val) 4
trend = lambda X: regress 1ntercept + regress.slope * x
de-trend r1gIng 3
grid = np. llnspace(O 50 1000)
reg_krige = gs.Krige(
gs.Matern(dim=1), cond_pos, cond_val,
trend=trend, unbiased=False, fit_variogram:True)
fld err = reg krlge(grld)

field
N)

flll (grld fld - np. sqrt(err) fld + np.sqrt(err))
ax = reg_krige.plot()

ax.scatter(cond_pos, cond_val, label="conditions")
ax.fill_between(*fill, alpha=.3, label="std deviation") 0 10 20 30 40 50
ax.plot(grid, trend(grid), color="k", label='"trend") x

Figure 10. A simple setup for linear regression kriging. Although the interpolation coincides with a picewise linear function, we gain

information about the error variances between the conditioning points as shown in the right plot.

random number generation by a seed to reproduce field generation. A code example is given in Fig. 11. Field generation is
performed through the randomization method (Kraichnan, 1970; HeBe et al., 2014) which utilizes the spectral density (Eq. 5)

of the variogram model to approximate a Wiener process in Fourier space by

2 N
=\ % 2 (Zuacos (k) + Zag -sin(k;) (19)
=1

where N is the number of Fourier modes of the approximation. The random variables Z; ;, Z5 ; ~ N(0,1) are mutually inde-
pendent and are drawn from a standard normal distribution. The £, are mutually independent random samples, drawn from the
spectral density with the aid of emcee, a python package for Markov chain Monte Carlo sampling (Foreman-Mackey et al.,
2013).

The randomization method is implemented in the RandMeth class and used by default. The RandMeth routines create
isotropic random fields. Thus, the corresponding covariance is radially symmetric and the spectral density can be calculated
by the Hankel transformation. Anisotropy is realized by rescaling and rotating the input points. The workflow allows users to
generate a random field only from a given correlation, covariance, or variogram function.

A key advantage of the randomization method implementation is the possibility to extend a generated SRF seamlessly,
while not only preserving its statistical properties, but also the actual realisation of the SRF. Potential applications are (i)
particle simulations, where random incompressible velocity fields can be generated exactly at the location of the individual
particles (see workflow in sec. 2.3.1). It avoids interpolation errors, arising from grid based velocity fields . (ii) If concentration
plumes are simulated on a large domain, the SRF can be calculated on demand only for the time dependent spatial extent of
the plume. And (iii) for high-performance computing applications, the field generation can be directly coupled to the domain

decomposition and each task only generates the SRF for its part of the domain. There are two main classes of alternative

13

225

230

235

240

Field 2D structured: (101, 101)

100
35
2.8
80
import gstools as gs 21
model = gs.Gaussian(dim=2, var=1, len_scale=10) 14
srf = gs.SRF(model) 60 ’
structured field of 100x100 grid N 0.7
x = y = range(101)
srf.structured([x, yl) 40 00
srf.plot () o7
20 14
-2.1
0
0 20 40 60 80 100
X

Figure 11. Generation of a structured random field following a Gaussian variogram.

methods to the randomization method (HeBe et al., 2014). By decomposing the covariance function, small spatial random
fields can be computed very fast. But the computational cost quickly becomes unfeasible as the field grows in size. A second
and quite popular class is the sequential Gaussian method, which can also create conditioned spatial random fields. However,
numerical problems can arise if the underlying correlation function is smooth at the origin and also the computational costs
become unfeasible for highly resolved random fields (Emery, 2004).

Just like the kriging routines, the spatial random field generator allows incorporating predefined trend, normalizer and mean
for a greater variety of distributions. A special SRF class feature is the capability to perform variance upscaling to respect
generation of random fields on mesh cells with a certain volume. We hereby use the upscaling method Coarse Graining

(Attinger, 2003) to rescale the variance in Eq. (19) at each target point based on a given filter volume size A:

d/2
Z(\) =02 e (20)
’ e+

where £ is the correlation length, A = ¥/V is the filter size derived from the cell volume V depending on the field dimension,
assuming the cell element to be a hyper-cube. This approach was derived from the groundwater flow equation assuming a
Gaussian covariance model and should therefore be used with caution in differing scenarios. An example is provided in the

workflow in sec. 4.3.
2.2.3 Conditioned Random Fields

When point measurements of a target variable are available, they need to be considered when generating random fields.
GSTools provides a class CondSRF combining kriging and random field generation, where we first derive the kriged field
and the error variance and then generate a random field with zero mean where the variance in Eq. (19) is replaced with the es-

timated error variance. This procedure is advantageous to classical sequential Gaussian simulation (Webster and Oliver, 2007)

14

245

250

255

import numpy as np Conditioned ensemble
5 3 == kriged field

}mport matplotlib.pyplot as plt Encemble mean
import gstools as gs

w

@ Conditions

cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7] 2
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]
gridx = np.linspace(0.0, 15.0, 151)

field
-

model gs.Gaussian(dim=1, var=0.5, len_scale=1.5)

krige gs.krige.Ordinary(model, cond_pos, cond_val) \ G ;

cond_srf = gs.CondSRF (krige) {

fields = [I

for i in range(100):
fields.append(cond_srf (gridx, seed=i))

Figure 12. An example for an ensemble of 1D random fields conditioned to five measurements (dots). Plotting commands have been omitted.

as: (i) we make use of the randomization method to generate a single random field and (ii) we only need to solve the kriging
problem once and not sequentially.

Fig. 12 shows an example of an ensemble of conditioned random fields in one dimension. Where measurements of the target
variables are available, all realizations satisfy them. However, random fields behave as unconditional fields (i.e. of an ensemble
with identical parameters, like mean, variance and correlation length) where no point measurements are available (z > 6).
Characteristics, such as the ensemble variance significantly change given the distribution of measurements and conditioning.
The ensemble mean and the kriging field coincide proving that the kriging field is the best linear unbiased predictor for the

given data.
2.3 Additional Features
2.3.1 Incompressible Random Vector Field Generation

Kraichnan (1970) was the first to suggest a randomization method for studying the diffusion of single particles in a random
incompressible velocity field. He came up with a randomization method which includes a projector ensuring the incompress-
ibility of the vector field.

When U is the mean velocity (oriented towards the first basis vector e,), we generate random fluctuations with a given
covariance model around U. And at the same time, we ensure that the velocity field remains incompressible, i.e. V- U = 0 by

using the randomization method (Eq. 19) and adding a projector p(k;) to every mode being summed:

N
Ula) = U, — | T D plh) - (Zucos (b 2) + Za,sin (k; 1) e

i=1

(22)

15

260

265

270

275

Field 2D structured: (2, 100, 100)

> N
- Py =

import gstools as gs

x = y = range(100)

model = gs.Exponential(dim=2, var=1, len_scale=10) N
srf = gs.SRF(model, generator='VectorField')

srf((x, y), mesh_type='structured', seed=19841203)

srf.plot ()

Figure 13. Generation of a structured incompressible random vector field with exponential variogram.

Calculating V - U = 0 verifies that the resulting field is indeed incompressible. An example is shown in Fig. 13. Things like
boundary conditions cannot be modelled with this method, but it can be used e.g. in transport simulations of the saturated

subsurface (Schiiler et al., 2016) or for studying turbulent open water (Kraichnan, 1970).
2.3.2 Field Transformations

GSTools generates Gaussian random fields while real data often does not follow a Gaussian distribution. This is typically
addressed through data transformation. GSTools provides a number of appropriate transformations beyond power trans-
formations provided by the normalizer submodule (sec. 2.1.4): (i) binary, (ii) discrete, (iii) boxcox (Box and Cox,
1964), (iv) zinnharvey (Zinn and Harvey, 2003), (v) normal_force_moments, (vi) normal_to_lognormal, (vii)
normal_to_uniform, (viii) normal_to_arcsin and (ix) normal_to_uquad.

Transformations can be combined sequentially to create more complex scenarios as in Fig. 14. Note that, in contrast to

normalizers, transformations can not be fitted to given data which leaves the choice of the best transformation to the user.
2.3.3 Spatio-Temporal Modelling

Spatio-Temporal modelling provides insights into time dependent stochastic processes like rainfall, air temperature or crop
yield, being of high practical relevance. GSTools provides the metric spatio-temporal model (Cressie and Wikle, 2011) for

all covariance models by enhancing the spatial with a time dimension resulting in the spatio-temporal dimension d;:

Con(r,At) = C i<”>2+(f)2 —c(Viztar), (23)

e
i=1 v

where 7 is the isotropified spatial distance as defined in Eq. (6), At is the temporal distance and Af the isotropified temporal

distance. The parameter x accounts for a spatio-temporal anisotropy ratio and is the last entry of the anis array appended to the

16

Field 2D structured: (101, 101)

0.000315

import gstools as gs

0.000285
structured field with a size of 1002100 8o
x = y = range(101) 0.000255
model = gs.Gaussian(dim=2, var=1, len_scale=10) 0.000225
srf = gs.SRF(model, mean=-9, seed=20170519) 60 :
srf.structured([x, yl) N 0.000195
apply 3 transformations
gs.transform.zinnharvey(srf, conn="low") 40 0.000165
gs.transform.binary(srf) 0.000135
gs.transform. normal_to_lognormal(srf)
srf.plot() 20 0.000105
0.000075
0 0.000045

Figure 14. Example of a log-transformed binary field with the low values being connected by applying the zinnharvey, binary and

lognormal transformations successively.

import numpy as np

. Field 2D structured: (50, 180)
import gstools as gs

spatial azis of 50km with a resolution of 1km 3.6
x = np.arange(0, 50, 1.0) 80

half daily timesteps over three months 70 2.7
t = np.arange(0.0, 90.0, 0.5)

total spatio-temporal dimension 60 18
st_dim = 1 + 1 09
space-time anisotropy ratio given in units d / km 0

st_anis = 0.4 v 0.0
an exponential model with len-scales of 2d and 5km 40

model = gs.Exponential(30 -0.9

dim=st_dim, var=1.0, len_scale=5.0, anis=st_anis)

generate the spatio-temporal field 20 -18
srf = gs.SRF(model, seed=20170521) 27
pos, time = [x], [t] 10 '
srf.structured(pos + time) —36

srf.plot(ax_names=["x / km", "t / d"])

Figure 15. A workflow to generate a spatio-temporal random field with one spatial dimension.

spatial anisotropy ratios. The implementation in GSTools enables the direct incorporation of spatial anisotropy and rotation
in a spatio-temporal model. It further supports the use of arbitrary spatial dimensions in spatio-temporal models. Fig. 15 shows

280 the generation of a spatio-temporal random field with one spatial dimension.
2.3.4 Working on Meshes

For improved handling of spatial random fields as input for PDE-solvers like the Finite Element Method (FEM), GSTools pro-
vides an interface for a number of mesh standards, such as meshio (Schlomer et al., 2021), PyVista (Sullivan and Kaszyn-
ski, 2019) and ogs5py (Miiller et al., 2020). When using meshio or PyVista, the generated fields will be stored immedi-

285 ately in the mesh container. There are two options to generate a field on a given mesh, either on the points (point s="points")

17

290

295

300

Field on cells Field on points

1.00

import gstools as gs 0.75
import meshio

load mesh with meshio
mesh = meshio.read("mesh.vtu") 0.25
model = gs.Gaussian(dim=2, len_scale=0.5) 0.00
srf = gs.SRF(model, seed=314159)

generate same field on mesh points and cell-centroids
srf .mesh(mesh, points="points", name="p-field") -0.50
srf .mesh(mesh, points="centroids", name='"c-field") _0.75

0.50

-0.25

-1.00

Figure 16. Generating spatial random fields on FEM-meshes: either on cell centroids (middle) or mesh points (right). Plotting commands

have been omitted.

or on the cell centroids (points="centroids"), which is important depending on the specification of the variable in the

numerical scheme. Fig. 16 provides an example.

3 GSTools within the Ecosystem of the GeoStat-Framework

GSTools is part of a larger suite of Python packages, collectively hosted on GitHub under github.com/GeoStat-Framework.
The other packages in the GeoSt at -Framework complement some of the abilities of GSTools and form a comprehensive
framework for geostatistical applications. We introduce some packages and demonstrate how they interact with, enhance and

leverage the abilities of GSTools.
3.1 ogs5py

ogsbpy (Miiller et al., 2020) provides a Python-API for the FEM-based OpenGeoSys 5 (Kolditz et al., 2012) scientific
software suite for hydrogeological processes like groundwater flow and transport modeling where data scarcity is a typical
shortcoming. Examples are point measurements of hydraulic head from observation wells and break-through curves from
tracer experiments. Inferring hydraulic conductivity from this data, requires a modelling framework with integrated stochastic
data-generation. The combination of GSTools with ogs5py enables a user to integrate the geostatistical modeling of an

aquifer with hydrogeological simulations. Such an example for pumping test simulations is provided in sec. 4.3.
3.2 welltestpy and AnaFlow

A Pumping test is a cost-effective subsurface observation method typically used by hydrogeologists for aquifer characterization.
The package welltestpy (Miller et al., 2021b) provides tools to handle, process, plot, and analyse data from pumping
test campaigns. It assists practitioners in identifying hydrogeological parameters by fitting measured drawdowns to some

conceptual flow model. The package contains a number of examples that illustrate these abilities.

18

github.com/GeoStat-Framework

305

310

315

320

325

330

AnaFlow (Miiller et al., 2021a) provides a wide range of analytical expression for pumping tests under various conditions.
Classical examples are Thiem’s and Theis’ solution assuming homogeneous aquifer properties. In addition, AnaF 1 ow provides
extended versions of both solutions, which account for aquifer heterogeneity and allow estimating higher-order geostatistical

parameters like variance and correlation length (Zech et al., 2012, 2016).
3.3 PyKrige

GSTools provides an interface to the stand-alone package PyKrige (Murphy et al., 2021) for more specialized kriging
applications. After 10 years of independent development, PyKr ige has recently been migrated to the GeoStat-Framework and
its functionality is currently integrated with the other packages. So far, the covariance model can be exchanged between the

packages. In the future, PyKrige will become the kriging toolbox for the Geostat-Framework providing advanced methods.
3.4 Development, Documentation and Installation

GSTools is compatible with Python versions >=3.6, although previous releases support older versions of Python. Performance
critical parts, like variogram estimation (sec. 2.1.4), kriging summation (sec. 2.2.1) and the summation of the randomization
method (sec. 2.2.2) are implemented in Cython (Behnel et al., 2011). GSTools mainly depends on the SciPy ecosystem with
its mandatory dependencies numpy (Harris et al., 2020) and scipy (Virtanen et al., 2020). The source code is maintained
under a GitHub organization for optimizing team efforts. Users have the opportunity to communicate with developers by asking
questions in a discussions forum, raising issues, or improving code by making pull requests. All packages come with a detailed
documentation on readthedocs.org which contains a range of tutorials explaining the features and a full API documentation
created by Sphinx. Continuous integration is established through GitHub actions where Python wheels are pre-built for the
most common operating systems (Windows, Linux, MacOS) and Python versions to enable simple installation. Each release
on GitHub is directly deployed to the Python package index www.pypi.org as well as conda-forge (conda-forge community,

2015). An extensive set of unit tests is performed automatically and continuously through GitHub actions.
3.5 Interoperability

To integrate GSTools in the Scientific Python Stack we provide a set of interfaces to other packages. These include the
already mentioned packages ogs5py, meshio, PyVista as well as pyevtk (https://github.com/pyscience-projects/pyevtk)
for mesh operations. Other packages for geostatistics are also supported, such as PyKrige (sec. 3.3) and scikit-gstat
(Milicke, 2021), the latter having a focus on variography and can be used for more detailed variogram estimation. For both
packages interfaces are provided to convert covariance models of GSTools to or from their counterparts in the respective
package. Another package worth mentioning is verde (Uieda, 2018), a Python library for processing and gridding spatial
data. Some of the features provided there can be easily combined with capabilities of GSTools such as detrending data to

preprocess inputs.

19

readthedocs.org
www.pypi.org
https://github.com/pyscience-projects/pyevtk

335 4 Workflows

Having explained the core features of GSTools, we now provide a couple of example applications covering the topic of
kriging, variogram estimation, random field generation and coupling with other tools to achieve more elaborate workflows.
The examples illustrate the abilities of GSTools and serve as a starting point for a user’s project development. All shown

code-snippets are taken from the actual workflow scripts and are not self contained.

—— Spherical Yadrenko variogram LA P
14

ids, lat, lon, temp = np.loadtxt(
os. path 301n(“ oy ”data“, "temp_obs.txt")).T 12

b1ns = gs. standard blns(10
(lat, 1on), max_dist=np.deg2rad(8), latlon=True)
bin_c, vario = gs.vario_estimate(
(1at lon) temp, b1n edges blns, latlon=True)
mod = gs. Spherlcal(latlon True, rescale =gs.EARTH_RADIUS)
mod.fit_va: 1ogram(b' N varlo, nugget False) 4

semi-variogram

ax = mod plot(vario yadrenko , X_max=i max(bln c))
ax.scatter(bin_c, vario)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
great circle distance / radians

Figure 17. Estimating the temperature variogram with geographic coordinates using the spherical Yadrenko model. Estimated length scale

is ca. 0.9 (radians) and sill is around 13.

340 4.1 Regression Kriging vs. Universal Kriging: Finding a North-South Temperature Trend

Kriging is a well established interpolation method applied in many fields of natural science. We compare two options of
incorporating auxiliary variables to calculate the kriging weights: (i) Regression Kriging (RK) where the trend of input data is
estimated by regression and simple kriging is applied to the residuals, and (ii) Universal Kriging (UK) where the trend model
is used as the internal drift in the kriging system. The methods differ in use of the covariance model. The linear RK does not
345 incorporate spatial correlation information while UK does through the drift function for calculating the kriging weights. Both
methods are often considered to provide mathematically equal results, but we show that there are sensitive differences. The
resources for this workflow are provided in Miiller (2021).
As a data basis, we use measured temperature of the German weather service retrieved with the python package wetterdienst
(Gutzmann et al., 2021) which we examine for a linear north-south trend. We use the established spherical covariance model
350 inits Yadrenko variant suitable for geographical coordinates. Variogram estimation and fitting results are shown in Fig. 17.
Fig. 18 shows how to setup the UK estimator, including the drift function and Fig. 19 the setup of the RK estimator. RK
requires the preceding step of fitting the regression model for the trend of the Det rended kriging routine. The interpolation

results are shown in Fig. 20 indicating that both methods provide equally good results.

20

355

360

365

def north_south_drift(la, lo):
"""Return latitude for morth-south drift."""
return la

uk = gs.krige.Universal(
model=mod,
cond_pos=(lat, lon),
cond_val=temp,
drift_functions=north_south_drift)

Figure 18. Setting up universal kriging with a drift function.

from scipy import stats

reg = stats.linregress(lat, temp)
trend = lambda la, lo: reg.intercept + reg.slope * la

dk = gs.krige.Detrended(
model=mod,
cond_pos=(lat, lon),
cond_val=temp,
trend=trend)

Figure 19. Workflow for regression kriging with a linear regression model.

Fig. 21 shows the estimated mean trends for both UK and RK revealing completely contrary results. The RK result indicate
an increase of mean temperature with increasing latitude, which seems reasonable given a raising terrain elevation from the
Baltic Sea in the north towards the Alps in the south. The estimated mean of UK shows the opposite with temperature decreasing
with latitude. A potential explanation here is the general temperature increase towards the equator. While the UK mean fits

better with the cross-section at 10° longitude (Fig. 21), the RK mean fits the scatter diagram better, as expected.
4.2 Heterogeneous Transport Simulation: The Impact of Connectivity

The combination of ogs5py and GSTools makes it possible to quickly setup and run subsurface flow and transport simu-
lations in a heterogeneous aquifer setting. The critical step is the generation of a spatially distributed hydraulic conductivity
distribution, adapted to the numerical simulation grid. We further demonstrate GSTools’ ability to generate different connec-
tivity structures and discuss their impact on transport results. The resources for this workflow are provided in Miiller and Zech
(2021a).

A flow and transport model is initialized through an instance of the OGS class from ogs5py, with simple mesh generation
(Fig. 22) and specification of model parameters and boundary conditions. Random fields are initialized through the SRF class
(Fig. 23). By passing the subclass model . msh, mesh details are transferred for generating distributed values at particular mesh
locations, even for unstructured grids. The subroutine t ransform.zinnharvey enables generating Gaussian structures

where not the mean values of the field are connected, but the low or high conductivity areas, using the transformation of

21

370

Temperature observations at 2m Universal Kriging Regression Kriging

from DWD (2020-06-09 12:00) with North-South drift with North-South trend
56 q

54

w
N
1

Latitude / ©

w
o
f

48 -

5.0 7.5 10.0 12,5 15.0 5.0 7.5 10.0 12,5 15.0 5.0 7.5 10.0 125 15.0
Longitude / ° Longitude / ° Longitude / °

—— —

5 7 9 1 13 15 17 19 21 23
T/°C

Figure 20. Plot of temperature measurements (left), universal kriging interpolation (middle) and regression kriging results (right).

North-South cross-section

22 A

latitude-temperature scatter
—— Universal Kriging: temperature (10° lon)

10 ——- North-South drift: Universal Kriging
—— Regression Kriging: temperature (10° lon)
8 —==- North-South trend: Regression Kriging
48 50 52 54 56
Latitude / °

Figure 21. Scatter plot of latitude-temperature values (grey dots), the linear regression result (dashed orange line), universal kriging mean

drift (dashed blue line) and the cross-sections of the respective kriging interpolation (solid lines).
Zinn and Harvey (2003). Note that the correlation lengths undergo rescaling (Gong et al., 2013). The concept of connectivity

follows the paper of Zinn and Harvey (2003), where connectedness refers to connected paths of extreme or special values in

the conductivity field.

22

model = 0GS(task_root=task_root, task_id="model")
generate a rectangular 2D mesh (z-z cross section):
x in [-1,9] (dz=0.025m) & z in [-5,-1] (dz=0.1m)
model .msh.generate(

"rectangular",

dim=2,

mesh_origin=[-1, -5],

element_no=[400, 40],

element_size=[0.025, 0.1],
)
create a -z mesh by swaping y and z azris
model .msh.swap_axis("y", "z")

Figure 22. Initialization of an OGS model with mesh generation.

set the connectivity for ZinnéHarvey
connectivity = ["mean", "low", "high"]
rescaling correlation length for zinnféharvey
length_scales = [1, 1.67, 1.67]
seed = gs.random.MasterRNG(0)
iterate over connectivity types
for conn, len_scale in zip(connectivity, length_scales):
create the transmissivity field
cov_model = gs.Gaussian(
dim=2, var=2, len_scale=len_scale, anis=0.5)
srf = gs.SRF(
model=cov_model, mean=np.log(le-3), seed=seed())
2d spatial random field in xz-z direction
srf.mesh(model.msh, direction="xz
apply Zinn€Harvey transformation
if conn != "mean":
gs.transform.zinnharvey(srf, conn=conn)
transform to log-normal
gs.transform.normal_to_lognormal (srf)

Figure 23. Generating correlated log-normal SRFs adapted to the mesh settings of the numerical model for three connectivity structures

following the Zinn and Harvey (2003) transformation.

Simulated tracer plumes in Fig. 24 show the particular effects of connectivity: the plume remains relatively compact for
classical Gaussian fields, where mean values are connected. Transformed fields lead to more disrupted, dynamic plumes, which

375 is mostly caused by trapping in areas of connected low conductivity and preferential flow in connected high conducitivity areas.
4.3 Characterizing Mean Drawdowns of a Pumping Test Ensemble

Combining flow simulations in ogs5py with random fields of GSTools allows performing Monte Carlo studies to identify
ensemble mean behaviour. Zech et al. (2016) made use of this workflow to prove the applicability of an effective drawdown

solution for pumping tests in random conductivity. We present a short form of their workflow which is accessible in Miiller
380 and Zech (2021Db).

23

385

Connected region: 'mean' transmissivity

=

Connected region: 'low' transmissivity

z/m
|
w

z/m
I
w

10°° 1074 1073 1072 107t
Transmissivity / m? st

0001 0003 0005 0007 0009 0012 0014 0016
Concentration

Figure 24. Tracer transport simulation results: spatially distributed concentration plumes after 15d with transmissivity distributions in the

background.

The flow model is initialized through the OGS class with model parameters and boundary conditions creating the convergent
flow setting of a pumping test. The mesh generation and time stepping can be specifically adapted to the non-uniform flow con-
ditions. Ensembles of heterogeneous transmissivity fields are generated with the SRF class where reproducibility is controlled
by the seed and normal fields are converted in place with normalizer.LogNormal as shown in Fig. 25.

The implementation of the randomization method (sec. 2.2.2) allows the adaption of random fields to the non-uniform grid.
The associated variance upscaling follows the Coarse Graining procedure for Gaussian variograms according to Eq. (20).

Calculated ensemble means can be compared to analytical solutions (Fig. 26), such as Theis’ for homogeneous media or the

effective drawdown solution of Zech et al. (2016) making use of their implementations in welltestpy and AnaFlow.

24

var = [1.0, 2.25]
len_scale = [10, 20]
parameter sets with S, T, var, len_scale 1000
para_set = np.array([[le-4, le-4, v, 1s]
for v in var for 1ls in len_scale])
seed = gs.random.MasterRNG(0)
for para in para_set: 500 A
init cov model
cov = gs.Gaussian(
dim=2, var=para[2], len_scale=para[3])
init spatial random field class 0
srf = gs.SRF(
model=cov,
mean=np.log(parali]),
normalizer=gs.normalizer.LogNormal, ~500
upscaling="coarse_graining")
Tun the ensemble
for i in range(ens_size):
generate new transmissivity field ~1000 A
srf.mesh(—~1000
model .msh,
seed=seed(),
point_volumes=model.msh.volumes_flat)

1072

103 7

y/m
Transmissivity T/ m? s

1076

X/ m

Figure 25. Workflow to generate an ensemble of transmissivty fields on a given mesh (left). A single realisation in shown in the right plot.

Parameter set PO: S=1.0e — 04, Tg=1.0e — 04, 02=1.0, £=10.0

Ensemble mean drawdown / m Absolute difference / m Effective drawdown / m
1.0
0.5
0.0
-0.5
-1.0
2030
6000 6000 6000
40005000 o0 0 40002000 o' 0 40005000 ;o0 0
/s t/s /s
Parameter set P3: S=1.0e — 04, Tg = 1.0e — 04, 02 =2.25, 1 =20.0
Ensemble mean drawdown / m Absolute difference / m Effective drawdown / m
1.0
0.5
0.0
-0.5
-1.0
2030
6000
40005000 ;o0 0
t/s

Figure 26. Comparison the ensemble mean drawdown (h(r,t)) (left) with the effective head solution hcc (r,t) (right) for two parameter

sets. The vanishing absolute difference between both (middle) shows, that they perfectly agree.

25

4.4 Geostatistical Exercises with the Herten Aquifer

390 We demonstrate how to estimate variograms and how to condition spatial random fields on observations using data from the
Herten aquifer analog (Bayer et al., 2011). The aquifer analog was created from surveying multiple outcrop faces at a gravel pit,
situated in the Rhine valley in Southern Germany. The 2D information was interpolated to a 3D dataset, including hydraulic,

thermal, and chemical information. The workflow files are provided in Schiiler and Miiller (2021).

0.8
8 .
. .
. .
2 .
0 .
0 2 4 6 8 10 12 14

Long. Direction x / m

o o o
w o ~

o
ES

Trans. Directiony / m
Transmissivity T/ m? s~1

o
w

o
[N]

Figure 27. Transmissivity of the Herten aquifer analogue and locations of virtual observations marked as black dots.

We determine spatial correlations through variogram estimation using gstools.variogram. First, we identify the full
395 transmissivity structure. The aquifer analogue data is given in a facies structure with one hydraulic conductivity value K per
facies. We calculate transmissivity by integrating the hydraulic conductivity over the vertical axis T'(z,y) = [K(z,y,2) dz.

The structured transmissivity is shown in Fig. 27, which we consider as "true’ distribution for the following exercises.

0.016 1 —— Exponential variogram ° °

0.014 4
assume the data to be log-normal distributed

norm = gs.normalizer.LogNormal () 0.012

estimate variogram
0.0101

bins = np.linspace(0, 7, 10) £

bin_center, gamma = gs.vario_estimate(50_003.
(obs_x, obs_y), obs_val, bins, normalizer=norm H

) = 0.006 1

fit an exponential model
fit_model = gs.Exponential(dim=2)
fit_model.fit_variogram(bin_center, gamma, nugget=False) 0.002 4
ax = fit_model.plot(x_max=max(bin_center))

0.004

0.000 A

0 1 2 3 4 5 6
Distance r/ m

Figure 28. Variogram estimation and resulting experimental (dots) and fitted variogram ~y (line) of the Herten aquifer analogue.

26

400

405

410

415

We select 13 x 13 virtual observations on a rectangular grid (Fig. 27), covering a sub-area of about 42m?. These observations
are used to determine the empirical variogram shown in Fig. 28. We fit an exponential covariance model to the data which suits
well with a coefficient of determination of R? = 0.913.

We use the fitted exponential variogram model and ordinary kriging to create conditioned spatial random fields with
CondSRF. Fig. 29 shows one realization and the absolute difference to the ’true’ transmissivity (Fig. 27). Differences grow
with increasing distance to observations. This trend can be even better seen in a transmissivity transect shown in Fig. 30.
The standard deviation calculated from 20 realizations of conditioned SRFs shows that deviations from the reference field are

significantly lower close to observation points.

0.8 = . > 0.30
0.7 ¥ » 0&, s o
8 84 R % 0257
0.6 i - .
6 T 6% I
i 'y Ly
£ ost E 3 ,
> N >
4 = 44 3 % E
0.4 ;)
v
5] -
2 0.3 : : 4 0.05
oo -
0 0.2 0 T — T T T T T 0.00
0 2 4 6 8 10 12 14

x/m x/m

=]
N
(S]

o
A
o

=}
h
o

Absolute Difference T/ m?

Figure 29. One realization of the conditioned SRF (left) and absolute difference (right) between the ’true’ (Fig. 27) and conditioned trans-

missivity showing increasing differences with distance to the conditioning area (rectangle).

5 Conclusions

The GSTools package provides a Python-based platform for gesotatistical applications. It is similar to software packages
like gstat for R or stand-alone packages like TPROGS (Carle, 1999), GSLIB (Deutsch and Journel, 1997) and S-GeMS
(Remy, 2005). However, we believe that a comprehensive and ready-made geostatistical software package for Python has
advantages, simply through the choice of the programming language, as it has a gentle learning curve, is often used as a glue-
language, and is widely adopted by the scientific community. Salient features of GSTools are its random field generation and
its versatile covariance model. It is furthermore integrated with other Python packages, like PyKrige (Murphy et al., 2021),
ogs5py (Miiller et al., 2020) or scikit—-gstat (Milicke, 2021), and provides interfaces to meshio (Schlomer et al., 2021)
and PyVista (Sullivan and Kaszynski, 2019). The GeoStat-Examples (https://github.com/GeoStat-Examples) provide
a number of applications, including the four presented workflows. They showcase the abilities of GSTools and can serve as a

starting point for practitioners to develop their own solutions for the geostatistical problems they face.

27

https://github.com/GeoStat-Examples

420

425

430

0.65

0.60 -

ok = gs.krige.Ordinary(

fit_model, (obs_x, obs_y), obs_val, normalizer=norm)
csrf = gs.CondSRF(ok)
generate a list of fields
herten_ens = []
master_seed = gs.random.MasterRNG(20060906)
for i in range(20):

seed = master_seed()

herten_ens.append(

csrf.structured((x_s, y_s), seed=seed))

°
o
a

-1
I o
ES o
el =3

Transmissivity T/ m? s

o
>
o

0.30

6 2‘ 4‘1 é é 1‘0 1‘2 1‘4 1‘6
Distance x / m
Figure 30. Generation of an ensemble of 20 conditional realizations and transmissivity transects 7'(z) at y = 4 m. The blue thick line is

the "true" transmissivity (Fig. 27), the shaded area shows the range of one standard deviation calculated from 20 realisations of conditioned

fields. Black points indicate the observations.

Code availability. As part of the Geostat Framework, the code of GSToo1s is developed at https://github.com/GeoStat- Framework/GSTools
and available via Zenodo at https://doi.org/10.5281/zenodo.1313628. It is distributed under the GNU LGPL v3.0 license. The documentation,
which includes a quickstart guide, some more in-depth tutorials, and a complete overview over the API, can be accessed via https://gstools.

readthedocs.io/. The workflows can be found in separate repositories (Miiller, 2021; Miiller and Zech, 2021a, b; Schiiler and Miiller, 2021).

Author contributions. Sebastian Miiller and Lennart Schiiler are the main authors of the GSTools package, with contributions by Falk
Hefle to an older version of the package. Sebastian Miiller, Lennart Schiiler, and Alraune Zech contributed to the implementation of the
workflows. Alraune Zech acted as supervisor for Sebastian Miiller w.r.t. the scientific applications of GSTools (workflows).The manuscript

was collectively written by Sebastian Miiller, Falk He3e Alraune Zech, and Lennart Schiiler with major contributions by Sebastian Miiller.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. Sebastian Miiller and Falk He3e were financially supported by the Deutsche Forschungsgemeinschaft via Grant Num-
ber: HE-7028-1/2. Sebastian Miiller was also funded by the German Federal Environmental Foundation. This work was partially funded by
the Center of Advanced Systems Understanding (CASUS), which is financed by Germany’s Federal Ministry of Education and Research
(BMBF) and by the Saxon Ministry for Science, Culture and Tourism (SMWK) with tax funds on the basis of the budget approved by the

Saxon State Parliament.

28

https://github.com/GeoStat-Framework/GSTools
https://doi.org/10.5281/zenodo.1313628
https://gstools.readthedocs.io/
https://gstools.readthedocs.io/
https://gstools.readthedocs.io/

435

440

445

450

455

460

465

References

Abramowitz, M., Stegun, I. A., and others: Handbook of mathematical functions, Dover Publications, New York, 1972.

Attinger, S.: Generalized coarse graining procedures for flow in porous media, Computational Geosciences, 7, 253-273,
https://doi.org/10.1023/B:COMG.0000005243.73381.e3, 2003.

Banerjee, S., Carlin, B. P, and Gelfand, A. E.: Hierarchical Modeling and Analysis for Spatial Data, Chapman and Hall/CRC, Boca Raton,
2 edn., 2014.

Bayer, P., Huggenberger, P., Renard, P., and Comunian, A.: Three-dimensional high resolution fluvio-glacial aquifer analog: Part 1: Field
study, J. Hydrol., 405, 1-9, https://doi.org/10.1016/j.jhydrol.2011.03.038, 2011.

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., and Smith, K.: Cython: The Best of Both Worlds, Computing in Science
Engineering, 13, 31-39, https://doi.org/10.1109/MCSE.2010.118, conference Name: Computing in Science Engineering, 2011.

Bellin, A. and Rubin, Y.: HYDRO_GEN: A spatially distributed random field generator for correlated properties, Stochastic Hydrology
and Hydraulics, 10, 253-278, https://doi.org/10.1007/BF01581869, company: Springer Distributor: Springer Institution: Springer Label:
Springer Number: 4 Publisher: Springer-Verlag, 1996.

Box, G. E. P. and Cox, D. R.: An Analysis of Transformations, Journal of the Royal Statistical Society: Series B (Methodological), 26,
211-243, https://doi.org/10.1111/j.2517-6161.1964.tb00553.x, 1964.

Brouste, A., Istas, J., and Lambert-Lacroix, S.: On Fractional Gaussian Random Fields Simulations, Journal of Statistical Software, 23, 1-23,
https://doi.org/10.18637/jss.v023.i01, 2008.

Carle, S. F.: T-PROGS: Transition probability geostatistical software, version 2.1, Tech. rep., University of California, Davis, 1999.

Cecinati, F.,, Wani, O., and Rico-Ramirez, M. A.: Comparing Approaches to Deal With Non-Gaussianity of Rainfall Data in Kriging-Based
Radar-Gauge Rainfall Merging, Water Resources Research, 53, 8999-9018, https://doi.org/10.1002/2016WR020330, 2017.

Chiles, J.-P. and Delfiner, P.: Geostatistics: Modeling Spatial Uncertainty, Second Edition, Wiley Series in Probability and Statistics, John
Wiley & Sons, https://doi.org/10.1002/9781118136188, 2012.

Cirpka, O. A. and Valocchi, A. J.: Debates — Stochastic subsurface hydrology from theory to practice: Does stochastic sub-
surface hydrology help solving practical problems of contaminant hydrogeology?, Water Resources Research, 52, 9218-9227,
https://doi.org/10.1002/2016WR019087, 2016.

conda-forge community: The conda-forge Project: Community-based Software Distribution Built on the conda Package Format and Ecosys-
tem, Zenodo, https://doi.org/10.5281/zenodo.4774217, 2015.

Cressie, N. and Wikle, C. K.: Statistics for spatio-temporal data, Wiley Series in Probability and Statistics, John Wiley & Sons, Hoboken,
New Jersey, 2011.

Dagan, G.: Flow and Transport in Porous Formations, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-75015-1, 1989.

Deutsch, C. V. and Journel, A. G.: GSLIB: Geostatistical software library and user’s guide, Applied geostatistics series, Oxford University
Press, 2. edn., 1997.

Di Federico, V. and Neuman, S. P.: Scaling of random fields by means of truncated power variograms and associated spectra, Water Resources
Research, 33, 1075-1085, https://doi.org/10.1029/97WR00299, 1997.

Diggle, P. and Ribeiro, P. J.: Model-based Geostatistics, Springer Series in Statistics, Springer-Verlag, New York, https://doi.org/10.1007/978-
0-387-48536-2, 2007.

Eliason, S. R.: Maximum likelihood estimation: Logic and practice., Sage Publications, Thousand Oaks, CA, US, 1993.

29

https://doi.org/10.1023/B:COMG.0000005243.73381.e3
https://doi.org/10.1016/j.jhydrol.2011.03.038
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1007/BF01581869
https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
https://doi.org/10.18637/jss.v023.i01
https://doi.org/10.1002/2016WR020330
https://doi.org/10.1002/9781118136188
https://doi.org/10.1002/2016WR019087
https://doi.org/10.5281/zenodo.4774217
https://doi.org/10.1007/978-3-642-75015-1
https://doi.org/10.1029/97WR00299
https://doi.org/10.1007/978-0-387-48536-2
https://doi.org/10.1007/978-0-387-48536-2
https://doi.org/10.1007/978-0-387-48536-2

470

475

480

485

490

495

500

505

Emery, X.: Testing the correctness of the sequential algorithm for simulating Gaussian random fields, Stochastic Environmental Research and
Risk Assessment, 18, 401-413, https://doi.org/10.1007/s00477-004-0211-7, company: Springer Distributor: Springer Institution: Springer
Label: Springer Number: 6 Publisher: Springer-Verlag, 2004.

Fiori, A., Cvetkovic, V., Dagan, G., Attinger, S., Bellin, A., Dietrich, P, Zech, A., and Teutsch, G.: Debates — Stochastic subsur-
face hydrology from theory to practice: The relevance of stochastic subsurface hydrology to practical problems of contaminant
transport and remediation. What is characterization and stochastic theory good for?, Water Resources Research, 52, 9228-9234,
https://doi.org/10.1002/2015WRO017525, 2016.

Foreman-Mackey, D., Hogg, D. W., Lang, D., and Goodman, J.: emcee: The MCMC Hammer, Publications of the Astronomical Society of
the Pacific, 125, 306-312, https://doi.org/10.1086/670067, 2013.

Goldstein, H.: Classical mechanics (2nd ed.), Addison-Wesley, 1980.

Gong, R., Haslauer, C. P., Chen, Y., and Luo, J.: Analytical relationship between Gaussian and transformed-Gaussian spatially distributed
fields, Water Resources Research, 49, 1735-1740, https://doi.org/10.1002/wrcr.20143, 2013.

Goovaerts, P.: Geostatistics in soil science: state-of-the-art and perspectives, Geoderma, 89, 1-45, https://doi.org/10.1016/S0016-
7061(98)00078-0, 1999.

Gutzmann, B., Motl, A., Lassahn, D., Kamenshchikov, I., Bachmann, M., and Schrammel, M.: earthobservations/wetterdienst: v0.18.0,
https://doi.org/10.5281/zenodo.4737739, 2021.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J,,
Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Ferndndez del Rio, J., Wiebe, M., Peterson, P., Gérard-
Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.: Array programming with NumPy,
Nature, 585, 357-362, https://doi.org/10.1038/s41586-020-2649-2, 2020.

HeBe, F., Prykhodko, V., Schliiter, S., and Attinger, S.: Generating random fields with a truncated power-law variogram: A comparison of
several numerical methods, Environmental Modelling & Software, 55, 32-48, https://doi.org/10.1016/j.envsoft.2014.01.013, 2014.

Hohn, M.: Geostatistics and Petroleum Geology, Computer Methods in the Geosciences, Springer Netherlands, 2 edn.,
https://doi.org/10.1007/978-94-011-4425-4, 1999.

John, J. A. and Draper, N. R.: An Alternative Family of Transformations, Journal of the Royal Statistical Society: Series C (Applied Statistics),
29, 190-197, https://doi.org/10.2307/2986305, 1980.

Kitanidis, P.: Introduction to Geostatistics: Applications in Hydrogeology, Cambridge University Press, Cambridge ; New York, 2008.

Kolditz, O., Bauer, S., Bilke, L., Bottcher, N., Delfs, J.-O., Fischer, T., Gorke, U. J., Kalbacher, T., Kosakowski, G., McDermott, C. 1., Park,
C. H., Radu, F,, Rink, K., Shao, H., Shao, H. B., Sun, F,, Sun, Y. Y., Singh, A. K., Taron, J., Walther, M., Wang, W., Watanabe, N., Wu, Y.,
Xie, M., Xu, W., and Zehner, B.: OpenGeoSys: An open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical
(THM/C) processes in porous media, Environmental Earth Sciences, 67, 589-599, https://doi.org/10.1007/s12665-012-1546-x, 2012.

Kraichnan, R.: Diffusion by a Random Velocity Field, Phys. Fluids, 13, 22-31, https://doi.org/10.1063/1.1692799, 1970.

Krige, D. G.: A statistical approach to some basic mine valuation problems on the Witwatersrand, Journal of the Southern African Institute
of Mining and Metallurgy, 52, 119-139, 1951.

Lantuéjoul, C., Freulon, X., and Renard, D.: Spectral Simulation of Isotropic Gaussian Random Fields on a Sphere, Mathematical Geo-
sciences, 51, 999-1020, https://doi.org/10.1007/s11004-019-09799-4, 2019.

Manly, B. F. J.: Exponential Data Transformations, Journal of the Royal Statistical Society: Series D (The Statistician), 25, 37-42,
https://doi.org/10.2307/2988129, 1976.

30

https://doi.org/10.1007/s00477-004-0211-7
https://doi.org/10.1002/2015WR017525
https://doi.org/10.1086/670067
https://doi.org/10.1002/wrcr.20143
https://doi.org/10.1016/S0016-7061(98)00078-0
https://doi.org/10.1016/S0016-7061(98)00078-0
https://doi.org/10.1016/S0016-7061(98)00078-0
https://doi.org/10.5281/zenodo.4737739
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1016/j.envsoft.2014.01.013
https://doi.org/10.1007/978-94-011-4425-4
https://doi.org/10.2307/2986305
https://doi.org/10.1007/s12665-012-1546-x
https://doi.org/10.1063/1.1692799
https://doi.org/10.1007/s11004-019-09799-4
https://doi.org/10.2307/2988129

510

515

520

525

530

535

540

Matheron, G.: Traité de géostatistique appliquée, no. 14 in Mémoires du BRGM, Editions Technip, Paris, 1962.

Matérn, B.: Spatial variation, Report 49:5, Statens skogsforskningsinstitut, Stockholm, https://pub.epsilon.slu.se/10033/, iSSN: 0369-2167
Issue: 49:5 Num Pages: 144, 1960.

Mohammadi, H., Riche, R. L., Durrande, N., Touboul, E., and Bay, X.: An analytic comparison of regularization methods for Gaussian
Processes, arXiv:1602.00853 [math, stat], http://arxiv.org/abs/1602.00853, arXiv: 1602.00853, 2017.

Monestiez, P., Petrenko, A., Leredde, Y., and Ongari, B.: Geostatistical analysis of three dimensional current patterns in coastal oceanography:
Application to the gulf of lions (NW mediterranean sea), in: geoENV IV — Geostatistics for environmental applications, edited by
Sanchez-Vila, X., Carrera, J., and Gémez-Herndndez, J. J., pp. 367-378, Springer Netherlands, Dordrecht, 2004.

Murphy, B., Miiller, S., and Yurchak, R.: GeoStat-Framework/PyKrige: v1.6.0, https://doi.org/10.5281/zenodo.4661732, language: eng,
2021.

Murray, S. G. and Poulin, F. J.: hankel: A Python library for performing simple and accurate Hankel transformations, The Journal of Open
Source Software, 4, 1397, https://doi.org/10.21105/joss.01397, 2019.

Milicke, M.: SciKit-GStat 1.0: A SciPy flavoured geostatistical variogram estimation toolbox written in Python, Geoscientific Model Devel-
opment Discussions, pp. 1-43, https://doi.org/10.5194/gmd-2021-174, publisher: Copernicus GmbH, 2021.

Miiller, S.: GeoStat-Examples/gstools-temperature-trend: v1.0, https://doi.org/10.5281/zenodo.5159728, language: eng, 2021.

Miiller, S. and Schiiler, L.: GeoStat-Framework/GSTools: v1.3.2 "Pure Pink’, https://doi.org/10.5281/zenodo.5068979, language: eng, 2021.

Miiller, S. and Zech, A.: GeoStat-Examples/gstools-connectivity-and-transport: v1.0, https://doi.org/10.5281/zenodo.5159578, language:
eng, 2021a.

Miiller, S. and Zech, A.: GeoStat-Examples/gstools-pumping-test-ensemble: v1.0, https://doi.org/10.5281/zenodo.4891875, language: eng,
2021b.

Miiller, S., Zech, A., and HeBe, F.: ogs5py: A Python-API for the OpenGeoSys 5 Scientific Modeling Package, Groundwater, 59, 117-122,
https://doi.org/10.1111/gwat.13017, 2020.

Miiller, S., HeBe, F., Attinger, S., and Zech, A.: The Extended Generalized Radial Flow Model and Effective Conductivity for Truncated
Power Law Variograms, Manuscript submitted for publication, 2021a.

Miiller, S., Leven, C., Dietrich, P., Attinger, S., and Zech, A.: How to Find Aquifer Statistics Utilizing Pumping Tests? Two Field Studies
Using welltestpy, Groundwater, https://doi.org/10.1111/gwat.13121, 2021b.

Neuman, S. P.: Stochastic groundwater models in practice, Stochastic Environmental Research and Risk Assessment, 18, 268-270,
https://doi.org/10.1007/s00477-004-0192-6, company: Springer Distributor: Springer Institution: Springer Label: Springer Number: 4
Publisher: Springer-Verlag, 2004.

Ogata, H.: A Numerical Integration Formula Based on the Bessel Functions, Publications of the Research Institute for Mathematical Sciences,
41, 949-970, https://doi.org/10.2977/prims/1145474602, 2005.

Pebesma, E. J.: Multivariable geostatistics in S: the gstat package, Computers & Geosciences, 30, 683-691,
https://doi.org/10.1016/j.cageo.2004.03.012, 2004.

Pyrcz, M. J. and Deutsch, C. V.: Geostatistical Reservoir Modeling, Oxford University Press, Oxford, 2 edn., 2014.

Rajaram, H.: Debates — Stochastic subsurface hydrology from theory to practice: Introduction, Water Resources Research, 52, 9215-9217,
https://doi.org/10.1002/2016 WR020066, 2016.

Rasmussen, C. E. and Williams, C. K. 1: Gaussian Processes for Machine Learning, The MIT Press,

https://doi.org/10.7551/mitpress/3206.001.0001, 2005.

31

https://pub.epsilon.slu.se/10033/
http://arxiv.org/abs/1602.00853
https://doi.org/10.5281/zenodo.4661732
https://doi.org/10.21105/joss.01397
https://doi.org/10.5194/gmd-2021-174
https://doi.org/10.5281/zenodo.5159728
https://doi.org/10.5281/zenodo.5068979
https://doi.org/10.5281/zenodo.5159578
https://doi.org/10.5281/zenodo.4891875
https://doi.org/10.1111/gwat.13017
https://doi.org/10.1111/gwat.13121
https://doi.org/10.1007/s00477-004-0192-6
https://doi.org/10.2977/prims/1145474602
https://doi.org/10.1016/j.cageo.2004.03.012
https://doi.org/10.1002/2016WR020066
https://doi.org/10.7551/mitpress/3206.001.0001

545

550

555

560

565

570

575

580

Remy, N.: S-GeMS: The Stanford Geostatistical Modeling Software: A Tool for New Algorithms Development, Geostatistics Banff 2004,
pp. 865-871, https://doi.org/10.1007/978-1-4020-3610-1_89, publisher: Springer, Dordrecht, 2005.

Rossi, R. E., Mulla, D. J., Journel, A. G., and Franz, E. H.: Geostatistical tools for modeling and interpreting ecological spatial dependence,
Ecological Monographs, 62, 277-314, https://doi.org/https://doi.org/10.2307/2937096, 1992.

Rubin, Y.: Applied Stochastic Hydrogeology, Oxford University Press, New York, 2003.

Rubin, Y., Chen, X., Murakami, H., and Hahn, M.: A Bayesian approach for inverse modeling, data assimilation, and conditional simulation
of spatial random fields, Water Resources Research, 46, W10 523, https://doi.org/10.1029/2009WR008799, 2010.

Rubin, Y., Chang, C.-F., Chen, J., Cucchi, K., Harken, B., He83e, F., and Savoy, H.: Stochastic hydrogeology’s biggest hurdles analyzed and its
big blind spot, Hydrology and Earth System Sciences, 22, 5675-5695, https://doi.org/10.5194/hess-22-5675-2018, publisher: Copernicus
GmbH, 2018.

Rudin, W.: Fourier Analysis on Groups, Wiley-Interscience, John Wiley & Sons, https://doi.org/10.1002/9781118165621, 1990.

Sales, M. H., Souza, C. M., Kyriakidis, P. C., Roberts, D. A., and Vidal, E.: Improving spatial distribution estima-
tion of forest biomass with geostatistics: A case study for Rondonia, Brazil, Ecological Modelling, 205, 221-230,
https://doi.org/https://doi.org/10.1016/j.ecolmodel.2007.02.033, 2007.

Savoy, H., HeBe, F., and Rubin, Y.: anchoredDistr: a Package for the Bayesian Inversion of Geostatistical Parameters with Multi-type and
Multi-scale Data, The R Journal, 9, 6-17, https://journal.r-project.org/archive/2017/RJ-2017-034/index.html, 2017.

Schlémer, N., McBain, G. D., Luu, K., christos, Li, T., Hochsteger, M., Keilegavlen, E., Ferrdndiz, V. M., Barnes, C., Luke§, V., Dal-
cin, L., Jansen, M., Wagner, N., Gupta, A., Miiller, S., Woodsend, B., Andersen, K., Schwarz, L., Blechta, J., Christovasilis, I. P.,
Coutinho, C., Beurle, D., ffilotto, Dokken, J. S., blacheref, s01291, Cervone, A., Shrimali, B., Bill, and Jones, D.: nschloe/meshio: None,
https://doi.org/10.5281/zenodo.4900671, 2021.

Schiiler, L. and Miiller, S.: GeoStat-Examples/gstools-herten-example: v1.0, https://doi.org/10.5281/zenodo.5159658, language: eng, 2021.

Schiiler, L., Suciu, N., Knabner, P., and Attinger, S.: A time dependent mixing model to close PDF equations for transport in heterogeneous
aquifers, Advances in Water Resources, 96, 55-67, https://doi.org/10.1016/j.advwatres.2016.06.012, 2016.

Schiiler, L., Calabrese, J. M., and Attinger, S.: Data driven high resolution modeling and spatial analyses of the COVID-19 pandemic in
Germany, PLOS ONE, 16, 1-14, https://doi.org/10.1371/journal.pone.0254660, publisher: Public Library of Science, 2021.

Sturges, H. A.: The Choice of a Class Interval, Journal of the American Statistical Association, 21, 65-66,
https://doi.org/10.1080/01621459.1926.10502161, publisher: Taylor & Francis, 1926.

Sullivan, C. B. and Kaszynski, A. A.: PyVista: 3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit
(VTK), Journal of Open Source Software, 4, 1450, https://doi.org/10.21105/joss.01450, 2019.

Uieda, L.: Verde: Processing and gridding spatial data using Green’s functions, Journal of Open Source Software, 3, 957,
https://doi.org/10.21105/joss.00957, 2018.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,
van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat,
i., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald,
A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors: SciPy 1.0: Fundamental algorithms for scientific
computing in python, Nature Methods, 17, 261-272, https://doi.org/10.1038/s41592-019-0686-2, tex.adsurl: https://rdcu.be/bO8Wh, 2020.

Vrugt, J. A.: Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation,
Environmental Modelling & Software, 75, 273-316, https://doi.org/10.1016/j.envsoft.2015.08.013, 2016.

32

https://doi.org/10.1007/978-1-4020-3610-1_89
https://doi.org/https://doi.org/10.2307/2937096
https://doi.org/10.1029/2009WR008799
https://doi.org/10.5194/hess-22-5675-2018
https://doi.org/10.1002/9781118165621
https://doi.org/https://doi.org/10.1016/j.ecolmodel.2007.02.033
https://journal.r-project.org/archive/2017/RJ-2017-034/index.html
https://doi.org/10.5281/zenodo.4900671
https://doi.org/10.5281/zenodo.5159658
https://doi.org/10.1016/j.advwatres.2016.06.012
https://doi.org/10.1371/journal.pone.0254660
https://doi.org/10.1080/01621459.1926.10502161
https://doi.org/10.21105/joss.01450
https://doi.org/10.21105/joss.00957
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/j.envsoft.2015.08.013

585

590

595

Wackernagel, H.: Multivariate Geostatistics: An Introduction with Applications, Springer-Verlag, Berlin Heidelberg, 3 edn.,
https://doi.org/10.1007/978-3-662-05294-5, 2003.

Webster, R. and Oliver, M. A.: Geostatistics for Environmental Scientists, Second Edition, John Wiley & Sons, 2 edn., 2007.

Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Advances in Computa-
tional Mathematics, 4, 389-396, https://doi.org/10.1007/BF02123482, 1995.

Winter, C. L.: Stochastic hydrology: practical alternatives exist, Stochastic Environmental Research and Risk Assessment, 18, 271-273,
https://doi.org/10.1007/s00477-004-0198-0, company: Springer Distributor: Springer Institution: Springer Label: Springer Number: 4
Publisher: Springer-Verlag, 2004.

Yeo, I. and Johnson, R. A.: A new family of power transformations to improve normality or symmetry, Biometrika, 87, 954-959,
https://doi.org/10.1093/biomet/87.4.954, 2000.

Zech, A., Schneider, C. L., and Attinger, S.: The extended Thiem’s solution - Including the impact of heterogeneity, Water Resources
Research, 48, W10 535, https://doi.org/10.1029/2012WR011852, 2012.

Zech, A., Miiller, S., Mai, J., HeBBe, F., and Attinger, S.: Extending Theis’ solution: Using transient pumping tests to estimate parameters of
aquifer heterogeneity, Water Resources Research, 52, 6156-6170, https://doi.org/10.1002/2015WR018509, 2016.

Zhang, Y.-K. and Zhang, D.: Forum: The state of stochastic hydrology, Stochastic Environmental Research and Risk Assessment, 18, 265,
https://doi.org/10.1007/s00477-004-0190-8, 2004.

Zinn, B. and Harvey, C. F.: When good statistical models of aquifer heterogeneity go bad: A comparison of flow, dispersion, and mass transfer

in connected and multivariate Gaussian hydraulic conductivity fields, Water Resour. Res., 39, 2003.

33

https://doi.org/10.1007/978-3-662-05294-5
https://doi.org/10.1007/BF02123482
https://doi.org/10.1007/s00477-004-0198-0
https://doi.org/10.1093/biomet/87.4.954
https://doi.org/10.1029/2012WR011852
https://doi.org/10.1002/2015WR018509
https://doi.org/10.1007/s00477-004-0190-8

