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Abstract. Geostatistics as a subfield of statistics accounts for the spatial correlations encountered in many applications of e.g.

Earth Sciences. Valuable information can be extracted from these correlations, also helping to address the often encountered

burden of data scarcity. Despite the value of additional data, the use of geostatistics still falls short of its potential. This problem

is often connected to the lack of user-friendly software hampering the use and application of geostatistics. We therefore present

GSTools, a Python-based software suite for solving a wide range of geostatistical problems. We chose Python due to its unique5

balance between usability, flexibility, and efficiency and due to its adoption in the scientific community. GSTools provides

methods for generating random fields, it can perform kriging and variogram estimation and much more. We demonstrate its

abilities by virtue of a series of example application detailing their use.

1 Introduction

Geostatistics emerged as a distinct branch of statistics in the early 1950s through the pioneering work of Krige (1951). Krige’s10

goal of estimating the abundance of mineral resources led him to develop some of the first methods, but it was the French math-

ematician Georges Matheron who developed the mathematical foundations (Matheron, 1962). Today, geostatistics is applied in

fields like geology (Hohn, 1999), hydrogeology (Kitanidis, 2008), hydrology or soil sciences (Goovaerts, 1999), meteorology

(Cecinati et al., 2017), ecology (Rossi et al., 1992; Sales et al., 2007), oceanography (Monestiez et al., 2004), and epidemiology

(Schüler et al., 2021); and a large number of textbooks make the theory available to practitioners (Pyrcz and Deutsch, 2014;15

Rubin, 2003; Diggle and Ribeiro, 2007; Kitanidis, 2008; Banerjee et al., 2014).

Yet, the rate of adoption of geostatistics by practioneers has been slow and uneven (Zhang and Zhang, 2004; Rajaram, 2016).

One reason is the perceived lack of ready-made geostatistical software (Zhang and Zhang, 2004; Neuman, 2004; Winter, 2004;

Rajaram, 2016; Cirpka and Valocchi, 2016; Fiori et al., 2016). Although a decent number of geostatistical software solutions

are available (Bellin and Rubin, 1996; Deutsch and Journel, 1997; Brouste et al., 2008; Rubin et al., 2010; Pebesma, 2004;20

Savoy et al., 2017; Heße et al., 2014; Vrugt, 2016), user-friendliness and licensing can hamper their adoption as pointed out by

Rubin et al. (2018).

The presence of a graphical user interface (GUI) is sometimes seen as an indication of usability (Remy, 2005; Rubin et al.,

2018). However, a GUI does not necessarily make software more user-friendly and almost always limits flexibility by increasing
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the programming effort. Furthermore, the data-generating process in subsurface geostatistics is almost always represented by25

partial differential equations (PDEs), making it even more difficult to provide easy-to-use software toolboxes for out-of-the-box

geostatistical analyses. Addressing these challenges, we present GSTools – an extensive Python package for geostatistical

analysis (Müller and Schüler, 2021). To the best of our knowledge, no open source Python package currently exist, which

provides such a comprehensive collection of random field generation, forward modeling, kriging and data analysis.

We believe that the choice of Python has the potential to address several of the challenges for geostatistical applications.30

First, a script language like Python allows striking a balance between ease-of-use (as provided by GUIs) and flexibility (as

provided by command-line based tools). Second, Python is known as a glue-language, being able to combine independent

software solutions to achieve complex workflows. This is particularly important since geostatistics often relies on ready-made

solvers for data-generation or PDE-based model solvers. Third, Python is a simple yet powerful language with an increasing

user base and community support for scientific computing and data analysis. It thus has a wide appeal and excellent prospects35

for the foreseeable future. This guarantees that engineers and scientists with only a moderate background in computer science

are able to apply the toolbox and to make the necessary application-specific adjustments. Finally, the licensing should be as

permissive as possible, to guarantee adoption and even further development by interested users.

We introduce GSTools and present its main features with a general overview of its functionality and abilities in section 2.

We focus on the covariance model, field generation, kriging and variogram estimation. In section 3, we discuss the wider40

context of GSTools, namely a number of Python packages connected with GSTools which can be used to seamlessly model

geostatistical workflows. Section 4 presents a number of workflows to showcase the abilities of GSTools and demonstrate its

usage. We close off with a short summary of the main advantages of GSTools and concluding remarks.

2 GSTools Features

2.1 Covariance Models and Variography45

The powerful CovModel class represents covariance and variogram models. Methods provided by this class are the basis for

most of the functionality of GSTools, such as variography, spatial random field generation and kriging.

2.1.1 Covariance Models

GSTools implements a CovModel class to define covariance models of weakly stationary (spatial) processes. Weak station-

arity here means that the associated semi-variogram is bounded, since we assume a constant mean and a finite variance. To50

approximate unbounded variograms such as the power-law model (Webster and Oliver, 2007), we provide a set of truncated

power law models following Di Federico and Neuman (1997). The internal representation of a (semi-)variogram γ is given by:

γ (r) = σ2 ·
(

1− cor
(
s · r
`

))
+n , (1)
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import gstools as gs
model = gs.Exponential(

dim=2, # 2D model
var=3.0, # variance
len_scale=10.0, # main length scale
nugget=0.5, # nugget
anis=0.5, # transversal anisotropy
angles=3.1415/4, # 1/8 turn

)
ax = model.plot("variogram")
ax = model.plot("covariance", ax=ax)
ax = model.plot("correlation", ax=ax)
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Figure 1. Initialization of an exponential covariance model given by cor(h) = exp(−h) (Rubin, 2003). Note that the rescaling factor is 1

by default. The right panel shows the plot of the variogram, covariance, and correlation function of the model, which can be created with

convenience plotting methods.

where r is the (isotropic) lag distance, ` is the (main) correlation length, s is a rescaling factor to adjust model representation55

(default is 1), σ2 is the variance or partial sill, n is the nugget or sub-scale variance and cor(h) is the model-defining, normalized

correlation function depending on the non-dimensional distance h= s · r` .

The associated covariance and correlation functions are given by:

C(r) = σ2 · cor
(
s · r
`

)
(2)

ρ(r) = cor
(
s · r
`

)
(3)60

Note that covariance and correlation are neglecting the nugget effect at the origin. Thus, the variance is interpreted as the

variation above the nugget, which is sometimes referred to as the partial sill of the semi-variogram or the correlated variability

(Rubin, 2003). Consequently, the sill or limit of the semi-variogram is calculated as the sum of variance and nugget.

The (semi-)variogram, covariance and correlation functions of a model are accessible through model.variogram,

model.covariance and model.correlation, respectively. Every covariance model is defined by at least six pa-65

rameters: dimension dim, variance var, main length scale len_scale, rescale factor rescale, anisotropy ratios anis

and rotation angles angles, with the latter two being dimension dependent. Fig. 1 shows an example code for instantiating

an exponential model and the resulting model functions exemplifying the parameters. Table 1 provides an overview of the

predefined models in GSTools.

In addition to the pre-defined covariance models, users can specify their own model functions by providing a normalized70

correlation function. Fig. 2 shows a re-implementation of the exponential model in only three lines of code.
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Table 1. Predefined covariance models in GSTools.

Model cor(h) source

Gaussian exp
(
−h2

)
Webster and Oliver (2007)

Exponential exp(−h) Webster and Oliver (2007)

Stable exp(−hα) Wackernagel (2003)

Matern 21−ν

Γ(ν)
· (
√
ν ·h)

ν ·Kν (
√
ν ·h) Rasmussen and Williams (2005)

Rational
(

1 + h2

α

)−α
Rasmussen and Williams (2005)

Cubic (1− 7h2 + 35
4
h3− 7

2
h5 + 3

4
h7) (h<1) Chilès and Delfiner (2012)

Linear (1−h) (h<1) Webster and Oliver (2007)

Circular 2
π
·
(
cos−1 (h)−h ·

√
1−h2

)
(h<1) Webster and Oliver (2007)

Spherical (1− 3
2
·h+ 1

2
·h3) (h<1) Webster and Oliver (2007)

HyperSpherical

(
1−h · 2F1( 1

2
,− d−1

2
, 3
2
,h2)

2F1( 1
2
,− d−1

2
, 3
2
,1)

)
(h<1) Matérn (1960)

SuperSpherical

(
1−h · 2F1( 1

2
,−ν, 3

2
,h2)

2F1( 1
2
,−ν, 3

2
,1)

)
(h<1) Matérn (1960)

JBessel Γ(ν+ 1) ·
(
h
2

)−ν · Jν(h) Chilès and Delfiner (2012)

TPLSimple (1−h)ν (h<1) Wendland (1995)

TPLGaussian H ·E1+H

(
h2

)
Di Federico and Neuman (1997)

TPLExponential 2H ·E1+2H (h) Di Federico and Neuman (1997)

TPLStable 2H
α
·E1+ 2H

α
(hα) Müller et al. (2021a)

Formulas including the subscript (h < 1) are picewise-defined functions being constantly zero for h≥ 1. Here, h is the

non-dimensional distance, d is the dimension, Γ(x) is the Gamma function,Kν(x) is the modified Bessel function of the second

kind, Jν(x) is the Bessel function of the first Kind, 2F1(a,b,c,x) is the ordinary hyper-geometric function andEν(x) is the

exponential integral function (Abramowitz et al., 1972). All other variables are shape parameters of the respective model.

The dimension-dependent spectrum of an isotropic covariance model can be called with model.spectrum. It is directly

calculated from the covariance function by:

S (k) =

(
1

2π

)d
·
∫
Rd

C(|r|) · ei·k·rdr =
|k|

(2π|k|) d2
·H d

2−1

{
r
d
2−1C (·)

}
(|k|) . (4)

Here, r = |r| and k = |k| are the norms of the corresponding vectors and H is the Hankel transform, which provides a math-75

ematically self-contained and numerically robust formulation of the radially symmetric Fourier transformation. GSTools

makes use of an implementation ofH provided by the Python package hankel (Murray and Poulin, 2019; Ogata, 2005). For

models with a known analytical solution, GSTools uses them for improved computations.
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import numpy as np
import gstools as gs

class User(gs.CovModel):
def cor(self, h):

return np.exp(-h)

model = User(dim=2, var=1, len_scale=10)
model.plot()
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Figure 2. Initialization of a user defined exponential covariance model. The only thing that needs to be defined is the normalized correlation

function cor.

A prerequisite for kriging or random field generation is that the applied covariance function is positive (semi-)definite. That

can be checked through the spectral density which is derived by (note that S only depends on the norm of k):80

E(k) =
S(k)

σ2
= k(2πk)−

d
2 ·H d

2−1

{
r
d
2−1ρ(·)

}
(k) . (5)

From Bochner’s theorem (Rudin, 1990) follows, that the spectral density is a probability density function if and only if the un-

derlying covariance functions is positive (semi-)definite, which all pre-defined models in GSTools satisfy. As a consequence,

the error variance during kriging is always non-negative.

2.1.2 Anisotropy and Rotation85

Variograms are typically defined based on the lag distance r, resulting in an isotropic model. However, many natural processes

involve anisotropy with varying correlation ranges in different (orthogonal) directions. An example is hydraulic conductivity,

where anisotropy typically arises from the geologic stratification. The implementation of anisotropy in GSTools is based on

the non-dimensional distance (Rubin, 2003):

h=

√√√√ d∑
i=1

(
ri
`i

)2

=
s

`

√√√√ d∑
i=1

(
ri
ei

)2

= s · r̃
`
, (6)90

where `= s ·`1 is the main length scale incorporating the rescale factor s, ei = `i
`1

are the anisotropy ratios and r = (r1, r2, . . .)

are the distances along the main axis of correlation resulting in the isotropic distance r̃. Consequently, GSTools uses a main

length scale, a set of anisotropy ratios and a set of rotation angles to fully describe an anisotropic model.

In practice, the main directions of correlation do not necessarily follow the principal axis. The CovModel accounts for

rotation through rotation angles, where their number m depends on the dimension d: m= d·(d−1)
2 . In two dimensions, rotation95

is fully described by a single angle for rotation in the xy plane and in three dimensions three angles are applied to the xy plane,
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xz plane and yz plane respectively. The latter are often referred to as Tait-Bryan angles yaw, pitch and roll (Goldstein, 1980),

see Fig. 3 for an example.

import numpy as np
import gstools as gs

# define main axes by yaw, pitch and roll
angles = np.deg2rad([45, 0, 0])
# anisotropy ratios y / x and z / x
anis = [1 / 2, 1 / 4]
model = gs.Exponential(dim=3, anis=anis, angles=angles)
model.plot("cov_spatial")
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Figure 3. Spatial covariance structure of an anisotropic exponential model in 3D plotted with the builtin interactive routines of GSTools.

The example shows an eighth turn on the xy plane with anisotropy factors (1/2,1/4). Rotation angles are given in radians.

One unique feature of GSTools is the support of arbitrary dimensionality in all provided routines. For rotation in higher

dimensions, we apply the following scheme: The first angles coincide with those of the next lower dimension and the added100

d−1 angles describe rotations in the planes of the added dimension (in 3D: xz and yz). Thus, there are 6 rotation angles in 4D,

10 in 5D, etc. Rotation in higher dimensions is only relevant for spatio-temporal modelling with three spatial dimensions and

application to other fields of research with high dimensional data. The scheme was chosen for metric spatio-temporal models

to account for spatial anisotropy in a similar way as a simple spatial model.

Rotation in the xixj plane is described by the matrix G(α, [i, j]) ∈ Rd×d:105

G(α, [i, j])kl =



cosθ k = l = i, j

sinθ k = i, l = j

−sinθ k = j, l = i

1 k = l 6= i, j

0 else

(7)

The order of rotating planes is determined by the described scheme, i.e. I1 = [1,2] (xy plane), I2 = [1,3], (xz plane) I3 = [2,3]

(yz plane) etc. These values define a rotation matrix Rot to translate principle axes in the direction of correlation and the
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back-rotation matrix DeRot = Rot−1 for the inverse:

Rot =

x
m∏
i=1

G((−1)i−1αi, Ii)110

= G((−1)m−1αm, Im) · . . . ·G(α1, I1). (8)

The alternating signs of the rotation angles (−1)i−1αi were chosen to match Tait-Bryan angles in 3D.

For applying or removing anisotropy, we define the isotropify matrix Iso = diag(e−1
1 ,e−1

2 , . . .) and anisotropify matrix

AnIso = Iso−1. Combining these two types of matrices allows us to isometrize (i.e. isotropify and derotate) and anisometrize

(i.e. rotate and anisotropify) spatial points via:115

Isom = Iso ·DeRot (9)

AnIsom = Rot ·AnIso (10)

GSTools provides the routine CovModel.isometrize to convert spatial positions to their derotated and isotropic coun-

terparts as required by Eq. 6 and the routine CovModel.anisometrize to invert this:

xisom = Isom ·x (11)120

xanisom = AnIsom ·x (12)

2.1.3 Geographical Coordinates

Earth’s surface is a non-Euclidean manifold and all large-scale, geographically-referenced data will necessarily reflect that. We

deal with the non-Euclidean nature of this kind of data by assuming the Earth to be a perfect sphere and then using the fact

that the distance between two points p1 = (φ1,λ1) and p2 = (φ2,λ2) is given by their latitude (φ) and longitude (λ) and can125

be described by a central angle calculated from the great circle distance:

ζ(p1,p2) = arccos [sin(φ1)sin(φ2) + cosφ1 cosφ2 cos(∆λ)] . (13)

A huge family of valid models on the sphere can be derived from 3D models by inserting the chordal distance which results in

the associated Yadrenko covariance model CY (Lantuéjoul et al., 2019):

CY (ζ) = C3D

(
2 · sin

(
ζ

2

))
. (14)130

The underlying manifold introduces new restrictions for covariance models to be positive definite. The manifold structure of

the sphere only allows isotropic models. For small-scale applications it is valid to assume anisotropy. An appropriate adaption

is the use of a 2D projection like Gauss-Krüger coordinates. We provide Yadrenko models as a unified representation for non-

Euclidian coordinates since they facilitate all presented models to be used with geographical coordinates as demonstrated in

Fig. 4.135
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import gstools as gs
# use earth radius as rescaling factor
rescale = gs.EARTH_RADIUS
model = gs.Spherical(latlon=True, rescale=rescale)
model.len_scale = 777 # in km
model.plot("vario_yadrenko")
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1.0

Spherical Yadrenko variogram

Figure 4. Initialization of a Yadrenko covariance model. We use the Earth radius as the rescaling factor to have a meaningful length scale.

The routine vario_yadrenko still depends on the central angle given in radians.

2.1.4 Empirical Variogram, Data Preparation and Model Fitting

The empirical variogram is an important tool for analyzing spatially correlated data. It is estimated with the subpackage

gstools.variogram which provides two estimators for the empirical variogram: Matheron and Cressie (Webster and

Oliver, 2007). The default Matheron’s estimator for a variogram γ of a spatial random field U is given by:

γ(r) = 1
2 · |M(r)|−1

∑
M(r)

(
U(xi)−U(xj)

)2
, (15)140

where M(r) is the set of all pairwise spatial random field points, separated by the distance r and a certain tolerance ε > 0.

Cressie’s estimator, which is more robust to outliers, is given by:

γ(r) =

1
2 ·
(
|M(r)|−1

∑
M(r)

√
|U(xi)−U(xj)|

)4

0.457 + 0.494/|M(r)|+ 0.045/|M(r)|2
(16)

Both estimators require predefined bins M(r) to group the pairwise point distances of the given field. GSTools provides a

standard binning routine, where the maximal bin width is set to one third of the diameter of the containing box of the field, the145

number of bins is determined by Sturges rule (Sturges, 1926) and all bins have equal width. Fig. 5 provides an example of the

variogram estimation of an unstructured spatial random field with automatic binning.

GSTools accounts for anisotropy by providing estimating routines for directional variograms along a specified direction

with a certain angle tolerance and bandwidth. When providing orthogonal axes, it is possible to fit a theoretical model and its

anisotropy ratios as shown in Fig. 6. Determining the main rotation axes from given data, however, is up to the user and beyond150

the scope of the presented GSTools version.

Field data often does not follow a normal distribution, which is a crucial assumption for variogram estimation. For example,

transmissivity is usually assumed to be log-normally distributed (Dagan, 1989) while rainfall data is normalized applying the
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import numpy as np
import gstools as gs
# 1000 data points with x, y between 0 and 100
x, y, field = np.loadtxt("data.txt")
# empirical variogram (auto binning)
bin_center, gamma = gs.vario_estimate((x, y), field)
# fitting theoretical model
fit_model = gs.Exponential(dim=2)
fit_model.fit_variogram(bin_center, gamma)
# plotting
ax = fit_model.plot(x_max=max(bin_center))
ax.scatter(bin_center, gamma)
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Exponential variogram

Figure 5. Estimating an empirical variogram of synthetic unstructured data and fitting an exponential model. The number of bins was

calculated to be 21 with a maximum bin distance of ca. 45.

import numpy as np
import gstools as gs
# load 3D anisotrope field
x, y, z, field = np.loadtxt("directional.txt")
# define main axes by yaw, pitch and roll
angles = np.deg2rad([90, 45, 22])
model = gs.Gaussian(dim=3, angles=angles)
main_axes = model.main_axes()
# estimate variogram along all axes
bin_center, dir_vario = gs.vario_estimate(

(x, y, z), field,
direction=main_axes,
bandwidth=10,
angles_tol=np.deg2rad(22),

)
# fitting directional variogram
model.fit_variogram(bin_center, dir_vario)
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Figure 6. Estimation of directional variograms for given main axes: The code snippet shows the setup for estimating and fitting the variogram

to an anisotropic field. The figures show the main axes of the rotated model and the fitting results. Plotting commands have been omitted.

Box-Cox transformation (Cecinati et al., 2017). GSTools provides a set of Normalizers based on power transforms, that can

be fitted to a given data set using a maximum likelihood approach (Eliason, 1993): LogNormal, BoxCox (Box and Cox,155

1964), YeoJohnson (Yeo and Johnson, 2000), Modulus (John and Draper, 1980), Manly (Manly, 1976). An example

application is shown in Fig. 7 and a comparison of all provided normalizers can be seen in Fig. 8.

GSTools also provides routines to de-trend data. For example temperature could decrease with elevation or conductivity

could decrease with depth. Another application is analyzing spatial correlation of residuals after application of a regression

model to the data. All routines dealing with data have the keywords trend, normalizer and mean, where the latter160

describes the mean of the normalized data.
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import numpy as np
import gstools as gs
# 100 data points with x, y between 0 and 50
x, y, field = np.loadtxt("boxcox.txt")
# fit box-cox normalizer and estimate variogram
bin_center, gamma, normalizer = gs.vario_estimate(

(x, y), field,
normalizer=gs.normalizer.BoxCox,
fit_normalizer=True)

# fit matern model
model = gs.Matern(dim=2)
model.fit_variogram(bin_center, gamma, nugget=0)
# normalize field values
norm_field = normalizer.normalize(field)
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Figure 7. Estimating an empirical variogram (bottom left) of synthetic unstructured data (top left) after Box-Cox normalization of skewed

input values. Panels on the right show the histogram of the data values before (top) and after the normalization (bottom). For demonstration

purpose, a Matern model was fitted to the empirical variogram. Plotting commands have been omitted.

2.2 Kriging, Random Fields and Conditioned Random Fields

2.2.1 Kriging

The subpackage gstools.krige provides routines for Gaussian process regression also known as kriging and being a

method of data interpolation based on predefined covariance models (Wackernagel, 2003). Kriging aims to derive the value165

of a field z at some point x0, when there are fixed conditioning values z(x1) . . .z(xn) at given points x1 . . .xn. The resulting

value z0 at x0 is calculated as a weighted mean z0 =
∑n
i=1wi · zi, where the weights w = (w1, . . . ,wn) are determined by the

specific kriging routine.

We provide multiple kriging routines derived from the Krige class: (i) Simple: The data is interpolated with a given

mean value for the kriging field. (ii) Ordinary: The mean of the resulting field is unknown and estimated alongside the170

interpolation (unbiasedness). (iii) Universal: In addition to ordinary kriging, one can provide drift functions f1, . . . ,fk. (iv)

ExtDrift: Like Universal kriging, but the drift is provided by an external source.

The advantage of using the general Krige class is the combination of all described features, such as for instance using

universal kriging with a functional drift together with additional external drifts. A typical scenario is a temperature interpolation

with an assumed north-south drift (functional drift) and a linear correlation to altitude (external drift).175
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Figure 8. Comparison of parametric normalizers in GSTools.

Since all variogram models in GSTools assume weak stationarity, the kriging system is always built on the associated

covariance function:
C (1) F E

(1T )

FT 0

ET

×


w

(µ)

φ

ψ

=


C0

(1)

F0

E0

 . (17)

with C = (C(xi,xj))ij=1...n being the covariance matrix depending on the conditioning points and the given model. C0 =

(C(xi,x0))Ti=1...n is the covariance vector for the target point x0. F = (fj(xi))i=1...n,j=1...k is a sub-matrix containing the180

functional drift values at the conditioning points and F0 = (fi(x0))Ti=1...k at the target point, where k is the number of

functional drifts. E = (eij)i=1...n,j=1...l is a sub-matrix containing the external drift values at the conditioning points and

E0 = (ei0)Ti=1...k at the target point, where l is the number of external drifts. The parameters µ, φ= (φ1, . . . ,φk)T and

ψ = (ψ1, . . . ,ψl)
T are Lagrange multipliers for the unbiased condition, the functional drifts and the external drifts respec-

tively. The vector 1 and its Lagrange multiplier µ are given in brackets since their appearance depends on whether the system185

should be unbiased or not (ordinary vs. simple kriging). Note that the number of functional drifts k and external drifts l can be

zero, depending on whether they are given or not.
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import numpy as np
from gstools import Gaussian, krige
# conditions and output grid
cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]
grid = np.linspace(0, 10, 101)
# kriging setups
model = Gaussian(dim=1, var=0.5, len_scale=2)
cfg = (model, cond_pos, cond_val)
sim_krige = krige.Simple(*cfg, mean=np.mean(cond_val))
ord_krige = krige.Ordinary(*cfg)
uni_krige = krige.Universal(*cfg, drift_functions="lin")
# interpolated fields
sim_field = sim_krige(grid, return_var=False)
ord_field = ord_krige(grid, return_var=False)
uni_field = uni_krige(grid, return_var=False)
# estimated means
sim_mean = sim_krige(grid, only_mean=True)
ord_mean = ord_krige(grid, only_mean=True)
uni_mean = uni_krige(grid, only_mean=True)
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Figure 9. Comparison of simple ordinary and universal kriging. All three routines have a similar setup, where simple kriging needs an

estimated mean and universal kriging needs additional drift functions. Plotting commands have been omitted.

GSTools also provides the possibility to incorporate measurement errors variances σ2
i for each conditioning point by

adjusting the covariance matrix (Wackernagel, 2003):

C̃ = C + diag(σ2
1 , . . . ,σ

2
n)190

=


C(x1,x1) +σ2

1 . . . C(x1,xn)
...

. . .
...

C(xn,x1) . . . C(xn,xn) +σ2
n

 (18)

By default, the measurement error variances σ2
i are set to the model nugget. In order to get numerically stable results, we solve

the kriging system with the pseudo-inverse matrix, which has the advantage that redundant data or multiple measurements at

the same location are averaged out in the resulting field (Mohammadi et al., 2017).

One last feature is the capability of kriging the mean (Wackernagel, 2003) which allows deriving the mean value estimated195

during ordinary kriging or estimating the mean drift determined from given functional and/or external drift terms as shown in

Fig. 9. A minimal example for regression kriging is shown in Fig. 10.

2.2.2 Random Fields

A core element of GSTools is the spatial random field generator class SRF. A covariance model (sec. 2.1) is needed to

instantiate a spatial random field. We provide two ways of field generation: structured or unstructured. In both cases, the200

positions at which the field will be evaluated, are given by a pos argument. In the structured case, pos contains one tuple

per dimension, each defining the subdivision of the corresponding axis resulting in a rectilinear grid. For unstructured grids,

the pos tuple contains the x, y, and z coordinates of every evaluation point. SRF allows controlling the underlying pseudo-
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import numpy as np
from scipy import stats
import gstools as gs

cond_pos, cond_val = np.loadtxt("regress_krige.txt")
# fit linear regression model
regress = stats.linregress(cond_pos, cond_val)
trend = lambda x: regress.intercept + regress.slope * x
# de-trended simple (unbiased) kriging
grid = np.linspace(0, 50, 1000)
reg_krige = gs.Krige(

gs.Matern(dim=1), cond_pos, cond_val,
trend=trend, unbiased=False, fit_variogram=True)

fld, err = reg_krige(grid)
# plotting kriging standard deviation
fill = (grid, fld - np.sqrt(err), fld + np.sqrt(err))
ax = reg_krige.plot()
ax.scatter(cond_pos, cond_val, label="conditions")
ax.fill_between(*fill, alpha=.3, label="std deviation")
ax.plot(grid, trend(grid), color="k", label="trend")
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Figure 10. A simple setup for linear regression kriging. Although the interpolation coincides with a picewise linear function, we gain

information about the error variances between the conditioning points as shown in the right plot.

random number generation by a seed to reproduce field generation. A code example is given in Fig. 11. Field generation is

performed through the randomization method (Kraichnan, 1970; Heße et al., 2014) which utilizes the spectral density (Eq. 5)205

of the variogram model to approximate a Wiener process in Fourier space by

U (x) =

√
σ2

N
·
N∑
i=1

(Z1,i · cos(ki ·x) +Z2,i · sin(ki ·x)) , (19)

where N is the number of Fourier modes of the approximation. The random variables Z1,i,Z2,i ∼N (0,1) are mutually inde-

pendent and are drawn from a standard normal distribution. The ki are mutually independent random samples, drawn from the

spectral density with the aid of emcee, a python package for Markov chain Monte Carlo sampling (Foreman-Mackey et al.,210

2013).

The randomization method is implemented in the RandMeth class and used by default. The RandMeth routines create

isotropic random fields. Thus, the corresponding covariance is radially symmetric and the spectral density can be calculated

by the Hankel transformation. Anisotropy is realized by rescaling and rotating the input points. The workflow allows users to

generate a random field only from a given correlation, covariance, or variogram function.215

A key advantage of the randomization method implementation is the possibility to extend a generated SRF seamlessly,

while not only preserving its statistical properties, but also the actual realisation of the SRF. Potential applications are (i)

particle simulations, where random incompressible velocity fields can be generated exactly at the location of the individual

particles (see workflow in sec. 2.3.1). It avoids interpolation errors, arising from grid based velocity fields . (ii) If concentration

plumes are simulated on a large domain, the SRF can be calculated on demand only for the time dependent spatial extent of220

the plume. And (iii) for high-performance computing applications, the field generation can be directly coupled to the domain

decomposition and each task only generates the SRF for its part of the domain. There are two main classes of alternative
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import gstools as gs
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model)
# structured field of 100x100 grid
x = y = range(101)
srf.structured([x, y])
srf.plot()
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Figure 11. Generation of a structured random field following a Gaussian variogram.

methods to the randomization method (Heße et al., 2014). By decomposing the covariance function, small spatial random

fields can be computed very fast. But the computational cost quickly becomes unfeasible as the field grows in size. A second

and quite popular class is the sequential Gaussian method, which can also create conditioned spatial random fields. However,225

numerical problems can arise if the underlying correlation function is smooth at the origin and also the computational costs

become unfeasible for highly resolved random fields (Emery, 2004).

Just like the kriging routines, the spatial random field generator allows incorporating predefined trend, normalizer and mean

for a greater variety of distributions. A special SRF class feature is the capability to perform variance upscaling to respect

generation of random fields on mesh cells with a certain volume. We hereby use the upscaling method Coarse Graining230

(Attinger, 2003) to rescale the variance in Eq. (19) at each target point based on a given filter volume size λ:

σ2 (λ) = σ2 ·

(
`2

`2 +
(
λ
2

)2
)d/2

(20)

where ` is the correlation length, λ= d
√
V is the filter size derived from the cell volume V depending on the field dimension,

assuming the cell element to be a hyper-cube. This approach was derived from the groundwater flow equation assuming a

Gaussian covariance model and should therefore be used with caution in differing scenarios. An example is provided in the235

workflow in sec. 4.3.

2.2.3 Conditioned Random Fields

When point measurements of a target variable are available, they need to be considered when generating random fields.

GSTools provides a class CondSRF combining kriging and random field generation, where we first derive the kriged field

and the error variance and then generate a random field with zero mean where the variance in Eq. (19) is replaced with the es-240

timated error variance. This procedure is advantageous to classical sequential Gaussian simulation (Webster and Oliver, 2007)
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import numpy as np
import matplotlib.pyplot as plt
import gstools as gs
# condtions
cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]
gridx = np.linspace(0.0, 15.0, 151)
# conditioned random field setup
model = gs.Gaussian(dim=1, var=0.5, len_scale=1.5)
krige = gs.krige.Ordinary(model, cond_pos, cond_val)
cond_srf = gs.CondSRF(krige)
fields = []
for i in range(100):

fields.append(cond_srf(gridx, seed=i))
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Figure 12. An example for an ensemble of 1D random fields conditioned to five measurements (dots). Plotting commands have been omitted.

as: (i) we make use of the randomization method to generate a single random field and (ii) we only need to solve the kriging

problem once and not sequentially.

Fig. 12 shows an example of an ensemble of conditioned random fields in one dimension. Where measurements of the target

variables are available, all realizations satisfy them. However, random fields behave as unconditional fields (i.e. of an ensemble245

with identical parameters, like mean, variance and correlation length) where no point measurements are available (x > 6).

Characteristics, such as the ensemble variance significantly change given the distribution of measurements and conditioning.

The ensemble mean and the kriging field coincide proving that the kriging field is the best linear unbiased predictor for the

given data.

2.3 Additional Features250

2.3.1 Incompressible Random Vector Field Generation

Kraichnan (1970) was the first to suggest a randomization method for studying the diffusion of single particles in a random

incompressible velocity field. He came up with a randomization method which includes a projector ensuring the incompress-

ibility of the vector field.

When Ū is the mean velocity (oriented towards the first basis vector e1), we generate random fluctuations with a given255

covariance model around Ū . And at the same time, we ensure that the velocity field remains incompressible, i.e. ∇ ·U = 0 by

using the randomization method (Eq. 19) and adding a projector p(ki) to every mode being summed:

U(x) = Ūe1−
√
σ2

N

N∑
i=1

p(ki) · (Z1,i cos(ki ·x) +Z2,i sin(ki ·x)) (21)

p(ki) = e1−
ki1
|ki|2

· ki . (22)
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import gstools as gs

x = y = range(100)
model = gs.Exponential(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, generator='VectorField')
srf((x, y), mesh_type='structured', seed=19841203)
srf.plot()
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Figure 13. Generation of a structured incompressible random vector field with exponential variogram.

Calculating ∇ ·U = 0 verifies that the resulting field is indeed incompressible. An example is shown in Fig. 13. Things like260

boundary conditions cannot be modelled with this method, but it can be used e.g. in transport simulations of the saturated

subsurface (Schüler et al., 2016) or for studying turbulent open water (Kraichnan, 1970).

2.3.2 Field Transformations

GSTools generates Gaussian random fields while real data often does not follow a Gaussian distribution. This is typically

addressed through data transformation. GSTools provides a number of appropriate transformations beyond power trans-265

formations provided by the normalizer submodule (sec. 2.1.4): (i) binary, (ii) discrete, (iii) boxcox (Box and Cox,

1964), (iv) zinnharvey (Zinn and Harvey, 2003), (v) normal_force_moments, (vi) normal_to_lognormal, (vii)

normal_to_uniform, (viii) normal_to_arcsin and (ix) normal_to_uquad.

Transformations can be combined sequentially to create more complex scenarios as in Fig. 14. Note that, in contrast to

normalizers, transformations can not be fitted to given data which leaves the choice of the best transformation to the user.270

2.3.3 Spatio-Temporal Modelling

Spatio-Temporal modelling provides insights into time dependent stochastic processes like rainfall, air temperature or crop

yield, being of high practical relevance. GSTools provides the metric spatio-temporal model (Cressie and Wikle, 2011) for

all covariance models by enhancing the spatial with a time dimension resulting in the spatio-temporal dimension dst:

Cm(r,∆t) = C


√√√√ d∑

i=1

(
ri
ei

)2

+

(
∆t

κ

)2
= C

(√
r̃2 + ∆t̃2

)
, (23)275

where r̃ is the isotropified spatial distance as defined in Eq. (6), ∆t is the temporal distance and ∆t̃ the isotropified temporal

distance. The parameter κ accounts for a spatio-temporal anisotropy ratio and is the last entry of the anis array appended to the
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import gstools as gs
# structured field with a size of 100x100
x = y = range(101)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, mean=-9, seed=20170519)
srf.structured([x, y])
# apply 3 transformations
gs.transform.zinnharvey(srf, conn="low")
gs.transform.binary(srf)
gs.transform.normal_to_lognormal(srf)
srf.plot()
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Figure 14. Example of a log-transformed binary field with the low values being connected by applying the zinnharvey, binary and

lognormal transformations successively.

import numpy as np
import gstools as gs
# spatial axis of 50km with a resolution of 1km
x = np.arange(0, 50, 1.0)
# half daily timesteps over three months
t = np.arange(0.0, 90.0, 0.5)
# total spatio-temporal dimension
st_dim = 1 + 1
# space-time anisotropy ratio given in units d / km
st_anis = 0.4
# an exponential model with len-scales of 2d and 5km
model = gs.Exponential(

dim=st_dim, var=1.0, len_scale=5.0, anis=st_anis)
# generate the spatio-temporal field
srf = gs.SRF(model, seed=20170521)
pos, time = [x], [t]
srf.structured(pos + time)
srf.plot(ax_names=["x / km", "t / d"]) 0 10 20 30 40
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Figure 15. A workflow to generate a spatio-temporal random field with one spatial dimension.

spatial anisotropy ratios. The implementation in GSTools enables the direct incorporation of spatial anisotropy and rotation

in a spatio-temporal model. It further supports the use of arbitrary spatial dimensions in spatio-temporal models. Fig. 15 shows

the generation of a spatio-temporal random field with one spatial dimension.280

2.3.4 Working on Meshes

For improved handling of spatial random fields as input for PDE-solvers like the Finite Element Method (FEM), GSTools pro-

vides an interface for a number of mesh standards, such as meshio (Schlömer et al., 2021), PyVista (Sullivan and Kaszyn-

ski, 2019) and ogs5py (Müller et al., 2020). When using meshio or PyVista, the generated fields will be stored immedi-

ately in the mesh container. There are two options to generate a field on a given mesh, either on the points (points="points")285
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import gstools as gs
import meshio
# load mesh with meshio
mesh = meshio.read("mesh.vtu")
model = gs.Gaussian(dim=2, len_scale=0.5)
srf = gs.SRF(model, seed=314159)
# generate same field on mesh points and cell-centroids
srf.mesh(mesh, points="points", name="p-field")
srf.mesh(mesh, points="centroids", name="c-field")
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Figure 16. Generating spatial random fields on FEM-meshes: either on cell centroids (middle) or mesh points (right). Plotting commands

have been omitted.

or on the cell centroids (points="centroids"), which is important depending on the specification of the variable in the

numerical scheme. Fig. 16 provides an example.

3 GSTools within the Ecosystem of the GeoStat-Framework

GSTools is part of a larger suite of Python packages, collectively hosted on GitHub under github.com/GeoStat-Framework.

The other packages in the GeoStat-Framework complement some of the abilities of GSTools and form a comprehensive290

framework for geostatistical applications. We introduce some packages and demonstrate how they interact with, enhance and

leverage the abilities of GSTools.

3.1 ogs5py

ogs5py (Müller et al., 2020) provides a Python-API for the FEM-based OpenGeoSys 5 (Kolditz et al., 2012) scientific

software suite for hydrogeological processes like groundwater flow and transport modeling where data scarcity is a typical295

shortcoming. Examples are point measurements of hydraulic head from observation wells and break-through curves from

tracer experiments. Inferring hydraulic conductivity from this data, requires a modelling framework with integrated stochastic

data-generation. The combination of GSTools with ogs5py enables a user to integrate the geostatistical modeling of an

aquifer with hydrogeological simulations. Such an example for pumping test simulations is provided in sec. 4.3.

3.2 welltestpy and AnaFlow300

A Pumping test is a cost-effective subsurface observation method typically used by hydrogeologists for aquifer characterization.

The package welltestpy (Müller et al., 2021b) provides tools to handle, process, plot, and analyse data from pumping

test campaigns. It assists practitioners in identifying hydrogeological parameters by fitting measured drawdowns to some

conceptual flow model. The package contains a number of examples that illustrate these abilities.
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AnaFlow (Müller et al., 2021a) provides a wide range of analytical expression for pumping tests under various conditions.305

Classical examples are Thiem’s and Theis’ solution assuming homogeneous aquifer properties. In addition, AnaFlow provides

extended versions of both solutions, which account for aquifer heterogeneity and allow estimating higher-order geostatistical

parameters like variance and correlation length (Zech et al., 2012, 2016).

3.3 PyKrige

GSTools provides an interface to the stand-alone package PyKrige (Murphy et al., 2021) for more specialized kriging310

applications. After 10 years of independent development, PyKrige has recently been migrated to the GeoStat-Framework and

its functionality is currently integrated with the other packages. So far, the covariance model can be exchanged between the

packages. In the future, PyKrige will become the kriging toolbox for the Geostat-Framework providing advanced methods.

3.4 Development, Documentation and Installation

GSTools is compatible with Python versions >=3.6, although previous releases support older versions of Python. Performance315

critical parts, like variogram estimation (sec. 2.1.4), kriging summation (sec. 2.2.1) and the summation of the randomization

method (sec. 2.2.2) are implemented in Cython (Behnel et al., 2011). GSTools mainly depends on the SciPy ecosystem with

its mandatory dependencies numpy (Harris et al., 2020) and scipy (Virtanen et al., 2020). The source code is maintained

under a GitHub organization for optimizing team efforts. Users have the opportunity to communicate with developers by asking

questions in a discussions forum, raising issues, or improving code by making pull requests. All packages come with a detailed320

documentation on readthedocs.org which contains a range of tutorials explaining the features and a full API documentation

created by Sphinx. Continuous integration is established through GitHub actions where Python wheels are pre-built for the

most common operating systems (Windows, Linux, MacOS) and Python versions to enable simple installation. Each release

on GitHub is directly deployed to the Python package index www.pypi.org as well as conda-forge (conda-forge community,

2015). An extensive set of unit tests is performed automatically and continuously through GitHub actions.325

3.5 Interoperability

To integrate GSTools in the Scientific Python Stack we provide a set of interfaces to other packages. These include the

already mentioned packages ogs5py, meshio, PyVista as well as pyevtk (https://github.com/pyscience-projects/pyevtk)

for mesh operations. Other packages for geostatistics are also supported, such as PyKrige (sec. 3.3) and scikit-gstat

(Mälicke, 2021), the latter having a focus on variography and can be used for more detailed variogram estimation. For both330

packages interfaces are provided to convert covariance models of GSTools to or from their counterparts in the respective

package. Another package worth mentioning is verde (Uieda, 2018), a Python library for processing and gridding spatial

data. Some of the features provided there can be easily combined with capabilities of GSTools such as detrending data to

preprocess inputs.
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4 Workflows335

Having explained the core features of GSTools, we now provide a couple of example applications covering the topic of

kriging, variogram estimation, random field generation and coupling with other tools to achieve more elaborate workflows.

The examples illustrate the abilities of GSTools and serve as a starting point for a user’s project development. All shown

code-snippets are taken from the actual workflow scripts and are not self contained.

# load data
ids, lat, lon, temp = np.loadtxt(

os.path.join("..", "data", "temp_obs.txt")).T
# estimate lat-lon variogram
bins = gs.standard_bins(

(lat, lon), max_dist=np.deg2rad(8), latlon=True)
bin_c, vario = gs.vario_estimate(

(lat, lon), temp, bin_edges=bins, latlon=True)
# fit geographical model (no nugget)
mod = gs.Spherical(latlon=True, rescale=gs.EARTH_RADIUS)
mod.fit_variogram(bin_c, vario, nugget=False)
# plot yadrenko variogram and estimated variogram
ax = mod.plot("vario_yadrenko", x_max=max(bin_c))
ax.scatter(bin_c, vario)
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Figure 17. Estimating the temperature variogram with geographic coordinates using the spherical Yadrenko model. Estimated length scale

is ca. 0.9 (radians) and sill is around 13.

4.1 Regression Kriging vs. Universal Kriging: Finding a North-South Temperature Trend340

Kriging is a well established interpolation method applied in many fields of natural science. We compare two options of

incorporating auxiliary variables to calculate the kriging weights: (i) Regression Kriging (RK) where the trend of input data is

estimated by regression and simple kriging is applied to the residuals, and (ii) Universal Kriging (UK) where the trend model

is used as the internal drift in the kriging system. The methods differ in use of the covariance model. The linear RK does not

incorporate spatial correlation information while UK does through the drift function for calculating the kriging weights. Both345

methods are often considered to provide mathematically equal results, but we show that there are sensitive differences. The

resources for this workflow are provided in Müller (2021).

As a data basis, we use measured temperature of the German weather service retrieved with the python package wetterdienst

(Gutzmann et al., 2021) which we examine for a linear north-south trend. We use the established spherical covariance model

in its Yadrenko variant suitable for geographical coordinates. Variogram estimation and fitting results are shown in Fig. 17.350

Fig. 18 shows how to setup the UK estimator, including the drift function and Fig. 19 the setup of the RK estimator. RK

requires the preceding step of fitting the regression model for the trend of the Detrended kriging routine. The interpolation

results are shown in Fig. 20 indicating that both methods provide equally good results.
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# user defined linear drift function
def north_south_drift(la, lo):

"""Return latitude for north-south drift."""
return la

uk = gs.krige.Universal(
model=mod,
cond_pos=(lat, lon),
cond_val=temp,
drift_functions=north_south_drift)

Figure 18. Setting up universal kriging with a drift function.

from scipy import stats
# fit linear regression model for latitude-temperature
reg = stats.linregress(lat, temp)
trend = lambda la, lo: reg.intercept + reg.slope * la

dk = gs.krige.Detrended(
model=mod,
cond_pos=(lat, lon),
cond_val=temp,
trend=trend)

Figure 19. Workflow for regression kriging with a linear regression model.

Fig. 21 shows the estimated mean trends for both UK and RK revealing completely contrary results. The RK result indicate

an increase of mean temperature with increasing latitude, which seems reasonable given a raising terrain elevation from the355

Baltic Sea in the north towards the Alps in the south. The estimated mean of UK shows the opposite with temperature decreasing

with latitude. A potential explanation here is the general temperature increase towards the equator. While the UK mean fits

better with the cross-section at 10° longitude (Fig. 21), the RK mean fits the scatter diagram better, as expected.

4.2 Heterogeneous Transport Simulation: The Impact of Connectivity

The combination of ogs5py and GSTools makes it possible to quickly setup and run subsurface flow and transport simu-360

lations in a heterogeneous aquifer setting. The critical step is the generation of a spatially distributed hydraulic conductivity

distribution, adapted to the numerical simulation grid. We further demonstrate GSTools’ ability to generate different connec-

tivity structures and discuss their impact on transport results. The resources for this workflow are provided in Müller and Zech

(2021a).

A flow and transport model is initialized through an instance of the OGS class from ogs5py, with simple mesh generation365

(Fig. 22) and specification of model parameters and boundary conditions. Random fields are initialized through the SRF class

(Fig. 23). By passing the subclass model.msh, mesh details are transferred for generating distributed values at particular mesh

locations, even for unstructured grids. The subroutine transform.zinnharvey enables generating Gaussian structures

where not the mean values of the field are connected, but the low or high conductivity areas, using the transformation of
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Figure 20. Plot of temperature measurements (left), universal kriging interpolation (middle) and regression kriging results (right).
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drift (dashed blue line) and the cross-sections of the respective kriging interpolation (solid lines).

Zinn and Harvey (2003). Note that the correlation lengths undergo rescaling (Gong et al., 2013). The concept of connectivity370

follows the paper of Zinn and Harvey (2003), where connectedness refers to connected paths of extreme or special values in

the conductivity field.
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model = OGS(task_root=task_root, task_id="model")
# generate a rectangular 2D mesh (x-z cross section):
# x in [-1,9] (dx=0.025m) & z in [-5,-1] (dz=0.1m)
model.msh.generate(

"rectangular",
dim=2,
mesh_origin=[-1, -5],
element_no=[400, 40],
element_size=[0.025, 0.1],

)
# create a x-z mesh by swaping y and z axis
model.msh.swap_axis("y", "z")

Figure 22. Initialization of an OGS model with mesh generation.

# set the connectivity for Zinn&Harvey
connectivity = ["mean", "low", "high"]
# rescaling correlation length for zinn&harvey
length_scales = [1, 1.67, 1.67]
seed = gs.random.MasterRNG(0)
# iterate over connectivity types
for conn, len_scale in zip(connectivity, length_scales):

# create the transmissivity field
cov_model = gs.Gaussian(

dim=2, var=2, len_scale=len_scale, anis=0.5)
srf = gs.SRF(

model=cov_model, mean=np.log(1e-3), seed=seed())
# 2d spatial random field in x-z direction
srf.mesh(model.msh, direction="xz")
# apply Zinn&Harvey transformation
if conn != "mean":

gs.transform.zinnharvey(srf, conn=conn)
# transform to log-normal
gs.transform.normal_to_lognormal(srf)

Figure 23. Generating correlated log-normal SRFs adapted to the mesh settings of the numerical model for three connectivity structures

following the Zinn and Harvey (2003) transformation.

Simulated tracer plumes in Fig. 24 show the particular effects of connectivity: the plume remains relatively compact for

classical Gaussian fields, where mean values are connected. Transformed fields lead to more disrupted, dynamic plumes, which

is mostly caused by trapping in areas of connected low conductivity and preferential flow in connected high conducitivity areas.375

4.3 Characterizing Mean Drawdowns of a Pumping Test Ensemble

Combining flow simulations in ogs5py with random fields of GSTools allows performing Monte Carlo studies to identify

ensemble mean behaviour. Zech et al. (2016) made use of this workflow to prove the applicability of an effective drawdown

solution for pumping tests in random conductivity. We present a short form of their workflow which is accessible in Müller

and Zech (2021b).380
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Figure 24. Tracer transport simulation results: spatially distributed concentration plumes after 15d with transmissivity distributions in the

background.

The flow model is initialized through the OGS class with model parameters and boundary conditions creating the convergent

flow setting of a pumping test. The mesh generation and time stepping can be specifically adapted to the non-uniform flow con-

ditions. Ensembles of heterogeneous transmissivity fields are generated with the SRF class where reproducibility is controlled

by the seed and normal fields are converted in place with normalizer.LogNormal as shown in Fig. 25.

The implementation of the randomization method (sec. 2.2.2) allows the adaption of random fields to the non-uniform grid.385

The associated variance upscaling follows the Coarse Graining procedure for Gaussian variograms according to Eq. (20).

Calculated ensemble means can be compared to analytical solutions (Fig. 26), such as Theis’ for homogeneous media or the

effective drawdown solution of Zech et al. (2016) making use of their implementations in welltestpy and AnaFlow.
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var = [1.0, 2.25]
len_scale = [10, 20]
# parameter sets with S, T, var, len_scale
para_set = np.array([[1e-4, 1e-4, v, ls]

for v in var for ls in len_scale])
seed = gs.random.MasterRNG(0)
for para in para_set:

# init cov model
cov = gs.Gaussian(

dim=2, var=para[2], len_scale=para[3])
# init spatial random field class
srf = gs.SRF(

model=cov,
mean=np.log(para[1]),
normalizer=gs.normalizer.LogNormal,
upscaling="coarse_graining")

# run the ensemble
for i in range(ens_size):

# generate new transmissivity field
srf.mesh(

model.msh,
seed=seed(),
point_volumes=model.msh.volumes_flat)
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Figure 25. Workflow to generate an ensemble of transmissivty fields on a given mesh (left). A single realisation in shown in the right plot.
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Figure 26. Comparison the ensemble mean drawdown 〈h(r, t)〉 (left) with the effective head solution hCG(r, t) (right) for two parameter

sets. The vanishing absolute difference between both (middle) shows, that they perfectly agree.
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4.4 Geostatistical Exercises with the Herten Aquifer

We demonstrate how to estimate variograms and how to condition spatial random fields on observations using data from the390

Herten aquifer analog (Bayer et al., 2011). The aquifer analog was created from surveying multiple outcrop faces at a gravel pit,

situated in the Rhine valley in Southern Germany. The 2D information was interpolated to a 3D dataset, including hydraulic,

thermal, and chemical information. The workflow files are provided in Schüler and Müller (2021).
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Figure 27. Transmissivity of the Herten aquifer analogue and locations of virtual observations marked as black dots.

We determine spatial correlations through variogram estimation using gstools.variogram. First, we identify the full

transmissivity structure. The aquifer analogue data is given in a facies structure with one hydraulic conductivity value K per395

facies. We calculate transmissivity by integrating the hydraulic conductivity over the vertical axis T (x,y) =
∫
K(x,y,z) dz.

The structured transmissivity is shown in Fig. 27, which we consider as ’true’ distribution for the following exercises.

# assume the data to be log-normal distributed
norm = gs.normalizer.LogNormal()
# estimate variogram
bins = np.linspace(0, 7, 10)
bin_center, gamma = gs.vario_estimate(

(obs_x, obs_y), obs_val, bins, normalizer=norm
)
# fit an exponential model
fit_model = gs.Exponential(dim=2)
fit_model.fit_variogram(bin_center, gamma, nugget=False)
ax = fit_model.plot(x_max=max(bin_center))
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Figure 28. Variogram estimation and resulting experimental (dots) and fitted variogram γ (line) of the Herten aquifer analogue.
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We select 13×13 virtual observations on a rectangular grid (Fig. 27), covering a sub-area of about 42m2. These observations

are used to determine the empirical variogram shown in Fig. 28. We fit an exponential covariance model to the data which suits

well with a coefficient of determination of R2 = 0.913.400

We use the fitted exponential variogram model and ordinary kriging to create conditioned spatial random fields with

CondSRF. Fig. 29 shows one realization and the absolute difference to the ’true’ transmissivity (Fig. 27). Differences grow

with increasing distance to observations. This trend can be even better seen in a transmissivity transect shown in Fig. 30.

The standard deviation calculated from 20 realizations of conditioned SRFs shows that deviations from the reference field are

significantly lower close to observation points.405
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Figure 29. One realization of the conditioned SRF (left) and absolute difference (right) between the ’true’ (Fig. 27) and conditioned trans-

missivity showing increasing differences with distance to the conditioning area (rectangle).

5 Conclusions

The GSTools package provides a Python-based platform for gesotatistical applications. It is similar to software packages

like gstat for R or stand-alone packages like TPROGS (Carle, 1999), GSLIB (Deutsch and Journel, 1997) and S-GeMS

(Remy, 2005). However, we believe that a comprehensive and ready-made geostatistical software package for Python has

advantages, simply through the choice of the programming language, as it has a gentle learning curve, is often used as a glue-410

language, and is widely adopted by the scientific community. Salient features of GSTools are its random field generation and

its versatile covariance model. It is furthermore integrated with other Python packages, like PyKrige (Murphy et al., 2021),

ogs5py (Müller et al., 2020) or scikit-gstat (Mälicke, 2021), and provides interfaces to meshio (Schlömer et al., 2021)

and PyVista (Sullivan and Kaszynski, 2019). The GeoStat-Examples (https://github.com/GeoStat-Examples) provide

a number of applications, including the four presented workflows. They showcase the abilities of GSTools and can serve as a415

starting point for practitioners to develop their own solutions for the geostatistical problems they face.
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ok = gs.krige.Ordinary(
fit_model, (obs_x, obs_y), obs_val, normalizer=norm)

csrf = gs.CondSRF(ok)
# generate a list of fields
herten_ens = []
master_seed = gs.random.MasterRNG(20060906)
for i in range(20):

seed = master_seed()
herten_ens.append(

csrf.structured((x_s, y_s), seed=seed))
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Figure 30. Generation of an ensemble of 20 conditional realizations and transmissivity transects T (x) at y = 4 m. The blue thick line is

the "true" transmissivity (Fig. 27), the shaded area shows the range of one standard deviation calculated from 20 realisations of conditioned

fields. Black points indicate the observations.

Code availability. As part of the Geostat Framework, the code of GSTools is developed at https://github.com/GeoStat-Framework/GSTools

and available via Zenodo at https://doi.org/10.5281/zenodo.1313628. It is distributed under the GNU LGPL v3.0 license. The documentation,

which includes a quickstart guide, some more in-depth tutorials, and a complete overview over the API, can be accessed via https://gstools.

readthedocs.io/. The workflows can be found in separate repositories (Müller, 2021; Müller and Zech, 2021a, b; Schüler and Müller, 2021).420
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