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Abstract. A particle filter based inversion system is presented, which enables to derive time- and altitude-resolved volcanic ash

emission fluxes along with its uncertaintyis

The system assimilates observations of volcanic ash column mass loading as retrieved from geostationary satellites. It aims to
estimate the temporally varying emission profile endowed with error margins;-along-with-evidenee-ofits-dependencies-on-wind

driventransportpatterns-, In addition, we analyze the dependency of our estimate on wind field characteristics, notably vertical

shear, within variable observation intervals. Thus, a—v

AR

ton-the proposed system addresses
analyzing the vertical profile of

volcanic ash clouds given only column mass loading infermation;-mimieking-the-typical-case-of geestationarysatellite-datadata
as retrieved by geostationary satellite imagery. The underlying method rests on a linear-combination of height-time emission

the special challenge of as

finite elements of arbitrary resolution, each of which is assigned to a model run subject to ensemble-based space-time data
assimilationsource inversion. Employing a modular concept, this setup builds the Ensemble for Stochastic Integration of
Atmospheric Simulations (ESIAS-chem)that-, It comprises a particle smoother in combination with a discrete-grid ensemble
extension of the Nelder-Mead minimization method. The ensemble version of the EURopean Air pollution Dispersion -

Inverse Model (EURAD-IM) is integrated into ESIAS-chem but can be replaced by other models. The-performanee-As initial

validation of ESIAS-chemis—tested-by—, the system is applied to simulated artificial observations of both ash-contaminated
and ash-free atmospheric columns using identical twin experiments. The-application-of-the-inversion-system-Thus, in this

idealized initial performance test the underlying meteorological uncertainty is neglected. The inversion system is applied to
two notional sub-Plinian eruptions of the Eyjafjallajokull volcano, Iceland, with strong ash emission changes with time and

injection heightsdemonstrate-. It demonstrates the ability of ESIAS-chem to retrieve the volcanic ash emission fluxes from
the assimilation of column mass loading data only. However, the analysed-analyzed emission profiles strongly differ in their

levels of accuracy depending of the strength of wind shear conditions. Understrong-wind-shearconditions-at-the-voleane-the
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~While the error is only 10 %-20 % for the

estimated emission fluxes —Fer-under strong wind conditions it increases up to 60 % under weak wind shear conditions;hewever;

WMW&WWWM%WWWM
benefit from extending the assimilation window, in which new observations potentially contribute valuable information to the
analysis system. For our test cases using an artificial volcanic eruption, we found an assimilation window length of 18 hours, i.
e. 10 hours after the eruption terminated, to be sufficient for analyzing the extent and location of the artificial ash cloud. In the

performed test cases, the analysis ensemble predicts the location of high volcanic ash column mass loading in the atmosphere
with a very high probability of >95 %. Additionally, the analysis ensemble is able to provide a vertically resolved probability

map of high volcanic ash concentrations to a high accuracy for both, high and weak wind shear conditions.

1 Introduction

depend on multiple parameters, such as crater size or exit velocity of the emitted mass. Further, they depend on atmospheric
stability and wind profile at the volcano. Many of these parameters are unknown or difficult to measure exactly. This renders
the estimation of emission profiles of volcanic eruptions challenging for chemistry transport models in the context of data
W@wWM&Therefore special assessmeﬁ%me%hedyfeﬁiﬁe*peefeﬁkeimweﬁ

asmethods for

assessing the strength and vertical distribution of volcanic emissions are necessary. As volcanic eruptions contain enormous
amounts of harmful trace gases and particulate matter, a detailed knowledge not only about the spatial and temporal variations

of the emissions and its strength is required-needed but also accurate information about the analysis error of the emissions and
the evolving volcanic ash cloud is required.
Typically, explosive volcanic eruptions occur as sequences of emissions with highly varying ejection mass and height. Only

limited observations of volcanic ash emission parameters are available (e.g. eruption plume heights retrieved from radar

measurements, Arason et al., 2011), which are affected by their specific uncertainties and limitations, e. g. eruption—plame
heights—retrieved-formradar-measurements;Arason-etal«(204H )by orographic shielding in the case of radar observations.

Thus, eruption models are applied to simulate volcanic emissionsinstead. These may be inferred from statistical data (e. g.,

Sparks et al., 1997; Mastin et al., 2009) or physical processes (e. g., Woodhouse et al., 2013; Folch et al., 2016). Statistical models
are-based-base on observational data from enly-a-few;-highly-heterogeneous-historic volcanic eruptions, while-physieal-which

are sparse and show a large variance in eruption rate for given plume heights. For example, Mastin et al. (2009) calculated

an uncertainty by a factor of four in estimating the emission rate for a plume height of 25 km using their statistical model.
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Physical plume-scale models require vent-and-magma-details-orographic details of the volcano (e. g. crater size) but also
meteorological fields and parameters (e. g wind entrainment coefficients), which are poorty-known;and-thus making-often
poorly known and render these models highly uncertain. Costa et al. (2016) identified the wind entrainment coefficient as main
source of uncertainty leading to up to two orders of magnitude differences for the estimation of mass eruption rates for weak
volcanic eruptions. In their analysis of the eruptions of the Eyjafjallajokull, Iceland, in 2010 and Grimsvotn, Iceland, in 2011,
Woodhouse et al. (2015) found a comparable range of uncertainty depending on the choice of the wind entrainment coefficients.

Another potential way to constrain volcanic ash emissions is the use of observations of volcanic ash in the atmosphere. Advanced
numerical analysis techniques for quantitative and stochastic estimation of volcanic ash concentrations and emissions use mostly

satellite observations of column mass loading via data assimilation methods (e. g., Wilkins et al., 2016a). +-Column mass loadin

observations as available from, for example, the Spinning Enhanced Visual and InfraRed Imager (SEVIRI) on board Meteosat
Second Generation (Schmetz et al., 2002) are beneficial for source inversions as they provide measurements of the horizontal

extent of the volcanic ash cloud with a frequency as high as 15 minutes, which is used for analyzing the temporal evolution of
the volcanic eruption column. However, in contrast to lidar observations, e. g. from the Cloud Aerosol LIdar with Orthogonal

Polarization (CALIOP) instrument on board CALIPSO satellite (Winker et al., 2009) or the ground (e. g. via the European Aerosol
Research Lidar Network, EARLINET!), column mass loading observations de-netprovide-anyrarely provide information about
the vertical distribution of volcanic ash and are mostly limited to cloud top heights (e. g., L. J. Ventress, 2016; Piontek, 2021).
Therefore, multiple data assimilation / source inversion methods make assumptions about the vertical extent of the volcanic
ash cloud (e. g., Schmehl et al., 2012; Wilkins et al., 2016b; Zidikheri et al., 2016). In addition to column mass loading

observations of volcanic ash clouds, Zidikheri et al. (2017a) suggested to use brightness temperature measurements to distinguish

regions with high mass load from those with low mass load.

loading-observations-remains-to-be-solved, which limits the detection of volcanic ash in the atmosphere.
First estimations of volcanic ash emissions from the 2010 Eyjafjallajokat-Eyjafjallajokull eruption in a high temporal

and vertical resolution were made by Stohl et al. (2011) and later by Kristiansen et al. (2012) and Kristiansen et al. (2015).
Their algorithm bases on the inversion technique of Eckhardt et al. (2008), in which an optimal combination of distinct
emission packages is estimated using a least squares method. Further-developments-of-assimilation-systemstor-voleanie-ash
emisstons-inetude-the The method showed to provide reliable a posteriori estimates of the time-varying emission profiles.
Stohl et al. (2011) include errors from a priori estimates, retrieval errors and model errors and discussed results in terms of
relative error reduction subject to assumptions made. Schmehl et al. (2012) initiate the volcanic ash anal

of simulations with random emission strengths and wind fields. Their best estimate of the volcanic ash concentration is found

Uhttps://www.earlinet.org/index.php?id=earlinet_homepage

sis using an ensemble
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iteratively using a “genetic algorithm variational approach”(Sehmehl-et-al-2012)-and-an-adjointfree-ensemble-version-of -the
4d-var-, Herein, rather strong assumptions on the emission profile are made: the emissions are kept fixed for the simulation
duration; emissions are placed into a single model layer; wind fields are only adjusted in the model layer containing volcanic
ash emissions. However, the method provides a quick and easy to implement first estimate of the volcanic ash concentrations
in_the atmosphere. Yet, the strong assumptions may render the approach unfeasible for longer lasting volcanic eruptions in
which the emissions vary more strongly. Another data assimilation method Ew-et-at;20+6)-for estimating the volcanic ash
emissions was proposed by Lu et al. (2016). They developed an adjoint-free, ensemble-based four-
assimilation (4D-var) method. The method showed reliable estimates of the true emission profile in their experiments using

synthetic, vertically integrated satellite observations. However, they do not address the uncertainty estimate of their analysis.
Zidikheri et al. (2016) and later Zidikheri et al. (2017b) developed an assimilation-inversion system that aims to analyze the

dimensional variational data

horizontal distribution of volcanic ash column mass loading rather than the emission strength. This study was extended by

Zidikheri et al. (2017a) to additionally estimate the height and the particle size distribution of volcanic ash emissions using

a parameter refinement method. Here, an ensemble of source parameter values has been applied. Using a proper metric (in
their case the pattern correlation coefficient) the ensemble is evaluated against observations. The best fitted ensemble member
is taken as analysis. The method is easy to implement for a fast analysis of a volcanic eruption as only the upper and lower
bounds of the considered source parameters need to be defined. However, the number of model runs used to find the analysis
increases exponentially with the number of parameters, Rough estimates of the parameters’ uncertainty are provided by the
spread of the top 2 % ensemble members with respect to the metric (Zidikheri et al., 2017b), which does not take uncertainties

in the observed quantities into account,
Wilkins et al. (2014) used the “data insertion” method, in which observed volcanic ash column mass leading-loadings act as

virtual sources for volcanic ash with a predefined vertical distribution. The algorithm was successfully applied to the eruptions
of Eyjafjallajokull, Iceland, 2010 (Wilkins et al., 2016b) and Grimsvétn, Iceland, 2011 (Wilkins et al., 2016¢). Given the lack

of vertical information in column mass loading retrievals of volcanic ash, the data insertion method needs assumptions about
the vertical distribution of the volcanic ash content in the atmosphere. Thus, this larger source of uncertainty for the volcanic
ash analysis is ignored. The data insertion scheme has also been implemented as a first step towards an ensemble-based data
assimilation scheme in the FALL3D-8.0 atmospheric transport model (Prata et al.. 2021).

Fuetal. (2017) developed a mask-state algorithm for ensemble Kalman Filters to reduce the size of the state vector to be
optimized. More recent applications of the ensemble Kalman Filter and its variants are provided by Pardini et al. (2020) and
Osores et al. (2020). By estimating the source parameters of the volcanic eruption, the approaches using the ensemble Kalman
Filter assume constant emission parameters between two assimilation steps. This is a rather strong assumption on the emissions
especially if observational data is sparse or far away from the volcano. However. keeping this assumption in mind the ensemble
Kalman Filter methodology provides an estimate on the analysis uncertainty.

A general framework for calculating uncertainties of volcanic ash concentrations for constant volcanic ash emissions given
"any model and any observational data" was proposed by Denlinger et al. (2012). Bursik et al. (2012) applied the “polynomial

chaos quadrature weighted estimate” (PCQWE) method to volcanic ash emissions. This approach was further extended by
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Stefanescu et al. (2014) to take uncertainties in the wind fields into account as well. An extension of the polynomial chaos
quadrature method was proposed by Madankan et al. (2014) to generate hazard maps of volcanic ash in the atmosphere. The
PCQWE method aims to map uncertainties in the input parameters of a volcanic eruption onto the volcanic ash concentrations
without accounting for constraining volcanic ash observations. Additionally, Dare et al. (2016) investigated the influence of
meteorological ensemble forecasts on the dispersion of volcanic ash. They found that not only the ensemble statistics should
be evaluated but also may-the single ensemble members, which may contribute significant information to the distribution of
volcanic ash.

Although these studies applied highly advanced data assimilation and source inversion methods for analyzing the emission
strength and its-uneertainty-the uncertainty of volcanic ash dispersion forecasts, a joint assessment of both, emission strength
and its uncertainty, in a high temporal and vertical resolution has not yet been evaluated. Thus, this contribution aims to fill this
gap by providing such estimates of emission strength and its uncertainty in a high temporal and spatial resolution resulting in
height-resolved probability maps of volcanic ash concentrations.

Section 2 describes the full stochastic assimilation-inversion system ESIAS-chem and the methods applied. The potential
and limitations of ESIAS-chem are shown by identical twin experiments in section 3ferpredictions-of-the-ensemble-mean

voleanie-ash-eoncentration-and-the-posterior-probability-of-high-voleanic-ash-content—Conelusions-, A discussion of the results

Methodolo

The Ensemble for Stochastic Integration of Atmospheric Simulations (ESIAS) is designed to control simultaneous and interactive

runs of ultra-large ensembles of complex atmospheric models

ist-. ESIAS comprises a
meteorological (ESIAS-met) and an atmospheric chemical part (ESIAS-chem). One main feature of ESIAS is the potential

to include data assimilation and source inversion modules. The emphasis of this paper is placed on the-Jatter- ESIAS-chem
for probabilistic atmospheric chemistry-transport-diffusion simulations with data assimilation. In the following, the main
components of the ESIAS-chem system are introduced, which include an ensemble of emission packages, a modified version
of the Nelder-Mead minimization algorithm, and a particle filter and resampling algorithm. FinattyFurther, the full stochastic
particle smoother algorithm of ESIAS-chem for probabilistic volcanic ash analyses is described. Finally, the metrics for

analyzing the systems performance is summarized. The reader is referred to Tab. 1 for a summary of the used variables.
2.1 Model description

2.1.1 Ensemble of emission packages

The-main-assignmentof ESIAS-chem is to-simulate-nermalized-emissions-asinitiated by simulating the dispersion of normalized

emissions from a set of Nep,;s pairwise distinct emission packages (emission scenarios in the terminology of, Stohl et al.,



160

Table 1. Nomenclature for variables used in this study.

Nz number of time steps

Kmaz ~ number of vertical model layers
©observation operator
operator for the source-receptor model

©observation error covariance matrix

default emitted mass of ash (constant

Modelled volcanic ash concentration

modelled volcanic ash concentration in model layer k&
column mass loading of the model state

Az thickness of layer k in meters

bulk of positive integers (including 0)

y:s
M
R
Y. observation vector
<
e
X
Zp_
z_

bulk of real numbers

N
N
RN
() robability density function

Npgyns_ size of the analysis ensemble (i. e. number of ensemble members

M superscript indicating ensemble member %

4()  Kronecker delta function

M(Ai)m weight of ensemble member i according to the particle filter formulation
B estimated covariance matrix for the scaling factors a

Tyi observation error for observation y; (diagonal elements of R)

2011) each of which with a unit-default mass of ash. More specific, the eruption plume is discretized into N7 time steps

and K., vertical layers.

The simulation is realized by an ensemble, in which each ensemble member simulates the dispersion of one single emission
package. Thus, each emission package covers a unique time and height spot in the emission profile. We refer to this ensemble
as ensemble of emission packages. This approach accounts for multiple maxima in the vertical distribution of the-volcanic
ash emissionswithin-the-€i etized-emission-profile - “This is-accounted{or in-our-approach. Each ensemble membe imulate
the-voleanic-ash-eoncentration-. These may occur within discretized model time steps if the emission strength varies quickly
in strength and plume height. Each member of the ensemble of emission packages simulates the dispersion of volcanic ash




165

170

175

180

185

190

concentrations released by a single emission package-for-an-individual-time-step-and-heightinterval. A similar approach for
estimating the volcanic ash column mass loading was used by Stohl et al. (2011) and Kristiansen et al. (2015) aiming to
estimate the optimal emission profilebutnetits-uneertainty—. Contrary to their analysis, the focus of ESIAS-chem lays on the
predictability of volcanic ash emissions and the resulting volcanic ash concentrations.

The-optimal-combination-of-In order to find the optimal emission profile, the
the-cost function J(a)

A= argmin((a) =aramin (A1x(@) )R (x(a) )

Nemis
= argmin < (HM[ass;) —y) "R (HM|a;s;) — y)>

i=1

Nemis T Nemis
= argmin ( Z H Ma;s;] —y) R™! ( Z H Ma;s;] —y) , (1)
i=1 =1

is to be minimized, with the source-receptor model M mapping the unique emissions s; of ensemble-member ¢ of the ensemble

of emission packages onto the model state. Herein, s; = (0,...,0,c,0,... ,O)T =cxe;isa K,up ¥ N7 = Ngpis dimensional
vector with ¢ = const the default mass of ash in-the-of each emission package and e; the i unit vector. Scalar a; is the scaling
factor for the i** emission package. For the optimization, a; values are packed into vector a resulting in optimal values a.
Further, R is the observation error covariance matrix and H denotes the observation operator for volcanic ash column mass

loading, which is given by

Kmam
&= Hx(a) =10° Y @Az, )
[ -
where y;, is the modeled concentration of volcanic ash s-given-in [ug m ™3] and Az, is the thickness of model layer z in [m].
Iis-neticed-Please note that the vertical and temporal resolution of the emissions can be varied by changing the parameters

Kinaz and N, thus, making them independent from the vertical and temporal resolution of the model. Matrix R accounts

for the impact of retrieval errors of the volcanic ash column mass loading and is considered diagonal, It can be made spatially
and temporally dependent, to account for assumed increased retrieval errors due to water cloud influences, particularly thick
umbrella ash clouds above or in the vicinity of the volcano or interference of other aerosols or mineral dust. In our study, we
have made assumptions about the observation error (including retrieval error). In applications to real volcanic eruptions, the use
of retrieval errors provided by the observations is highly encouraged. Starting from a scalar column load value as exclusive data

source, we considered estimation uncertainties of the derived height profile presented here as an order of magnitude larger than

retrieval errors in this idealized experiments, especially if the number K. The

determines some multiple of O(10) layers.
observation error can also be incorporated in constructing the ensemble, as in general any ensemble data assimilation procedure
can straightforwardly account for the retrieval uncertainty by artificially perturbing retrievals of column mass loading, where
the random perturbation is scaled by the assumed statistics of retrieval errors. Clearly, this must not be the only means to
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enerate the ensemble, as this accounts only for a fraction of the overall uncertainty, resulting in underdispersive ensembles.
Although the algorithm is designed for column mass loading observations, it is as well applicable to observations of any volcanic

ash related quantity, e. g. brightness temperature as proposed by Zidikheri et al. (2017a).

2.1.2 Nelder-Mead algorithm

The minimization problem posed by (1) is s 3 vadratic within the limits of being bounded due to positive
semi-definiteness of all components. Quasi-Newton methods, including a bounded variant proved less efficient, as a background
state reasonably close to the "truth" for a tangent-linear approximation to hold, is typically unknown. This missing a priori

knowledge cannot serve any preconditioning requirements other than highly speculative inferences from assumed eruption

e and strengths scenarios. With an increasing number of model levels with their (positive semi-definite) concentrations to be

attributed, while column values as given data are single scalars only, the ill-conditioning of the minimization problem increases
drastically and a much needed reasonable background information prior to the volcanic eruption is hardly available. Also simple
smoothness assumptions of the vertical profile are often invalid for ash clouds, at least during early stages. As minimization tests
with the Nelder-Mead algorithm-(Nelder-and Mead:+965ymethod performed clearly best, without getting lost in drastically
elongated minima as introduced by underdetermined degrees of freedom through vertical level concentrations, the algorithm
by Nelder and Mead (1965) was applied to the inversion problem. The Nelder-Mead minimization algorithm is preved-te-a

combinatorial optimization method without constraints and without the need to compute the function derivatives. It has proven
to be robust, especially in cases where the function to be minimized has discontinuities or the function values are noisy (see

McKinnon, 1998);-whieh-. This is expected to be likely in highly variable volcanic eruptions especially given highly uncertain,
and thus noisy, observations. Additionally, the Nelder-Mead algorithm can easily account for bounded regions, in our case
positive semi-definite ash loads, and needs relatively few function evaluations (mostly1-2-per-iteration;lagartaset-al-1998)

The idea of the algorithm is to move a simplex on the surface of the cost function to find its-minimumm-an improved model state
in a N 45-dimensional space. The version of the Nelder-Mead method used in this study follows Gao and Han (2012) and

utilizes adaptive parameters controlling the step size for each iteration of the minimization. The version has been implemented

for parallel operation (Klein and Neira, 2014; Lee and Wiswall, 2007). In our application, the Nelder-Mead algorithm is used to

find the optimal combination of the pairwise distinct emission packages. This is accomplished by assigning a factor a;, which
needs to be scaled by the algorithm, to each emission package.

R Due to its
simplicity, the Nelder-Mead algorithm is easy to implement but it is likely to find a local rather than the global minimum of

the cost function (which is also a problem for least-square minimization techniques with poor initial guesses, as for volcanic

eruptions). Thus, enty-we have added some adjustments to the algorithm. First, we perform the minimization only for integers
including 0). Thus, only integer values are accepted for the scaling factors a; of the emission packages. By applying this

constraint it is assumed that the introduced errors are of lower order than the error introduced by the temporal and vertical

resolution of the emission packages. Further, 1
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depends-on-the-initial simplexthe minimization is restarted with larger perturbations of the vertices (edges of the simplex) if
the algorithm is trapped in a local minima, Finally, the minimization tasks-are-performed-for-each-ensemble-member-with
different initiat-simpliees—is started for an ensemble of Nelder-Mead analysis. As perturbed observations are used as input
to the minimization procedure, the solutions (here emission profiles) produced by the analysis ensemble are assumed to map

the uncertainty given by the observations onto the emission rates (cf. Sect. 2.1.4). Thus, the minimization algorithm is called
hereafter discrete-grid ensemble Nelder-Mead method (DENM).

2.1.3 Particle filter

The particle filter methodology, also known as sequential importance resampling, is used as a non-Gaussian data assimilation

method for large ensemble simulations —of the atmospheric state. Please note that the term ensemble in this section defines

a full model simulation and does not refer to the ensemble of emission packages defined in the Sect. 2.1.1. The particle filter
method was proposed by Gordon et al. (1993) and further popularized in oceanography and meteorology by van Leeuwen

(2009). It develops from Bayes’ Theorem

__p(y[x)p(x)
PO = oy () @

where p(-) denotes the probability density function (PDF), y the observations, and x the model state. The a priori PDF is

approximated by an ensemble of N.,,; model runs

N,
1 ens X
— —x.®
P = 5— 2_:1 d(x—x;1), “
where J(-) denotes the Kronecker delta function and Xr)éf/)\ is the model state of particle (ensemble member) ¢.
Applying (4) results in
(x[y) Ni: p(y[xi) p(Y|X(i)) 5( (i)) Ni: (z‘)(g( (z’)) (5)
pxy) = Nens Nens Ny O T XL = Wi JOX=Xi )y
i=1 Zj:ﬁ p(y[x;) Zj:l' p(y[x)) i=1

where an individual weight Wu&s applied to each ensemble member. Thus, each ensemble member is weighted by the

normalized likelihood of its current model state. The ensemble statistics can now be computed using the ensemble member
weights. For example, the ensemble mean is

Nens
i=1

It is noted that in the particle filter method no assumptions of the errer-statisties—of-the-medelstate—and-the-observations

were-made-statistical forecast error characteristics and the observation error were made (the errors do not need to be normall
distributed and the model state does not need to be unbiased as other data assimilation methods require). Further, the particle

filter method is directly applicable to nonlinear models.



255

260

265

270

275

280

285

In particle filters, filter degeneracy often occurs (cf. Bengtsson et al., 2008; Snyder et al., 2008; Bickel et al., 2008), especially

in high dimensional problems. Several methods exist to reduce filter degeneracy (see e.g. van Leeuwen, 2009, for a review)

and the reader is referred to the original papers for more information. In this-medel-setup-for-improving-the-ensemble-skill;
restdual- ESIAS-chem, the particle filtering and resampling steps are applied after the ensemble of optimal emission profiles

has been found by the DENM algorithm. A weight w(?) is assigned to each optimal emission profile. Residual resampling
(Liu and Chen, 1998) is used ;in—which-the-ensemble-members—to replace emission profiles leading to small weights b

emission profiles with high weights are-duplieated-and-perturbed; replacing-ensemble-members-with-vanishing-weights-(this

includes perturbing duplicated emission profiles). After resampling, the weights are normalized again (w® = 1/N

Thus, the statistical meaning-ofthe-informative value of the analysis ensemble is preserved. Qualitatively, the strategy of particle
filtering applied here can be expressed as follows: By replacing the valueless ensemble members of the analysis (i. €. those with

too little weight) each ensemble member has comparable skill to match the observations. Hence, the probability of an event
e. g. volcanic ash concentrations above a certain threshold) can directly be extracted from the relative number of ensemble

members that simulate this event.

ste

2.1.4 ESIAS-chem

ESIAS-chem is designed as a flexible analysis system for quantitative volcanic ash assessments, along with a-an uncertainty
quantification of the uneertainty-of-the-optimal-analyzed emission flux profile. Further;-ESIAS-chem is constructed such that

it is applicable to other scenarios of accidentally released matter and constituents, suitably-given constraining observations

are available. In-order-to-accountfor-meteorological-uncertainties; ESTAS-chem-Further, it is capable to be coupled with en-
sembles of meteorological fields —to account for additional uncertainties resulting from meteorological forecasts. However, this
idealized investigation focuses on the ability of the system to reconstruct the emission profile and its uncertainty under perfect
meteorological conditions. Thus, no meteorological ensemble is used at this stage.

The aerosol dynamics (nucleation, accumulation, deliguescence) and aerosol chemistry in EURAD-IM (EURopean Air pollution.
Dispersion - Inverse Model). which poses the model core of ESIAS-chem, is based on MADE (Modal Aerosol Dynamics model
for Europe, Ackermann et al., 1998, with substantial update of the thermodynamical part by Friese and Ebel, 2010), which has
been switched off for two reasons: numerical efficiency in an ensemble context and specifics of volcanic ash properties cannot
be expected to be reasonably well featured by a general pollutant aerosol module like MADE:. Ideally, a full volcanic ash
aerosol dynamics and chemistry model as proposed by Schmidt (2013) would be in place, along with its not existing adjoint.

Yet we consider the error to be negligible within the evolution time frame addressed in our idealized study.
The workflow of the system is illustrated in Fig. 1. Once a volcanic eruption is detected (t = ty), the system is started by

generating the ensemble of emission packages (cf. section 2.1.1) of default mass of volcanic ash. As long as no observations
are available, this ensemble of emission packages serves as an estimation predictor of the maximum possible volcanic ash
extenston-extent without providing quantitative volcanic ash estimates. Once new observations become available, the system is

restarted at time ¢ = . The previously calculated ensemble of emission packages is reused, now integrated forward in time

until the observation time (¢ = ¢;,1). Further ensemble-members-emission packages (i. e. members of the ensemble of emission

10
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Figure 1. Schematic of the ESIAS-chem analysis workflow. The analysis is initiated at time ¢t = ¢ and restarted, when new observations become

available (left side, cf. Sect. 2.1.1). Here, ¢; 1 corresponds to the observation time. Previously calculated simulations with emission packages

to — t; may be restored (upper panel). Simulated volcanic ash is compared with perturbed observations for the whole

within the time interval

simulation (i. e. from ¢ to t;41; upper center panel). The resulting volcanic ash concentrations are passed to the DENM minimization

algorithm that produces an ensemble of emission profile analyses (right panel, cf. Sect. 2.1.2) by finding an optimal combination of the

airwise distinct emission packages. This ensemble of emission profile analyses is evaluated by the particle filter and resampling method to
assign a weight to each emission profile according to the fit of the resulting volcanic ash to the observations. Emission profiles are replaced if
their corresponding volcanic ash content does not fit well to the observations (lower panel, cf. Sect. 2.1.3). Credits for volcano image: NASA

(https://www.nasa.gov/multimedia/imagegallery/image_feature_756.html; Cleveland volcano, Aleutian Islands, latest access: 13 January,

2021).

packages) are included to account for the latest emissions in the interval [¢;,¢;41].
The ensemble of emission packages is compared with the observations to calculate (1), which is to be minimized using

the DENM method. As this algorithm is optimized for the estimation of column integrated ash loading in a considerably

11
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underdetermined control system, a regularization term is added to the cost function (1), leading to
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This choice restricts the scaling factors a to vary too strongly.

charaeteristies;no-fixed-assumptions-have-been-made-for-matrix-In first tests without the regularization term, the emission rates
have partly increased to unrealistic high values, Therefore, the B—which-accountsfor-correlations-of-the-individual-emission

of sensitivity tests, in which the influence of the regularization term on the emission profile was evaluated. Best results have
been found by choosing B isehosen-as diagonal matrix B = diag(10)but-ethercheices-may-alse-be-pessible—TFhis-valuefor-.

Please note that the chosen diagonal form of the Bw

ag = {10,020, - - +,@i03 - - ;AN s —105ON 50 )

Fhus-matrix led to reasonable results for the artificial emission profile used in this study. However, for realistic applications
a more elaborated evaluation of a properly chosen B-matrix is required and straightforwardly applicable. In this performance
test, the only purpose of the matrix serves to restrict the scaling factors a not to vary too strongly. In addition, the regularization
term was chosen in order to maintain a suitable spread of the analysis ensemble. To-accountforcommon-eruptioncolumn

The minimization is initialized with a set of arbitrarily varying scaling factors a for the pairwise distinct emission packages.

The algorithm was tested using a time-varying initial emission profile with umbrella-shaped vertical mass distribution. Due to
cf. Sect. 3)

the chosen true emission profile in this idealized stud the minimization using the initial emission profile with an

2

umbrella-shaped vertical mass distribution shows larger errors. In the application of the algorithm to a real volcanic eruption,
the performance of the analysis using umbrella-shaped initial emission profile may exceed the performance using an arbitrar
i i ' initial-emissi sHence, ESIAS-chem is

designed to adjust the initial emission profile to the characteristics of the current volcanic eruption. In addition, the observation
errors are represented by perturbed observations (cf. Houtekamer and Mitchell, 1998), which are assimilated by ESIAS-chem

emission profile.

leading to larger ensemble spreads.
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FinallyOnce an improved emission profile has been found by the DENM minimization, a particle filter step is applied to the
analysis ensemble. The weights, which result from the filtering step, are applied to the eptimized-analyzed emission profiles. If

new observations become available the assimilation window may be elongated to use the new observations for updating the

emissions within the whole assimilation window [tg,%;41].

2.2 Metrics used for analyzing ESIAS-chem’s performance

The results of the stochastic inversion method are validated using different measures on the ensemble mean. The pattern
correlation coefficient (pcc, cf. Zidikheri et al., 2016) provide information about the accuracy of the horizontal extent of the
volcanic ash cloud. The pcc is defined by (Zidikheri et al. (2016))

pec = < vag,vay >

)

|val| |vagj

with va’ = va — va, Herein, the entries of the binary volcanic ash detection vector va for the ensemble mean (subscript 7) and

2

are equal to 1 if the grid column contains volcanic ash above 0.2 ¢ m ™=, which is the detection limit of volcanic

ash column mass loading observations (Prata and Prata, 2012), and 0 otherwise. The averaged volcanic ash detection va is
calculated b

observations

va=<1,va>/ <1,1>, ®)

where 1 denotes the vector with 1 on all entries and < - > indicates the scalar product. The pattern correlation coefficient gives
information about the compliance between the simulated and observed horizontal distribution of volcanic ash in the atmosphere.
If the volcanic ash clouds, indicated by the column mass loading, of the nature run and the ensemble mean perfectly coincide,
the pattern correlation coefficient equals 1. If the volcanic ash clouds of the nature run and the ensemble mean are totally
disjoint, the pattern correlation coefficient equals 0. It is noted that for this model setup with perfect meteorology, pce < 1
indicates that the analysis contains volcanic ash either in model layers or at times, where no volcanic ash is emitted in the
nature run.

The inner-cloud distribution of volcanic ash of the analysis ensemble mean is analyzed using the relative mean absolute error
(RMAE). The RMAE is defined by

Ni‘/

1
RMAFE =100— E
Ny

Ti—Yj

Yj

) 9

j=1

where N, is the number of grid columns in which volcanic ash column mass loading of the nature run y; > 0.2 gm~2 and
T Is the column mass load of the analysis ensemble mean in grid cell j. The RMAE is as well calculated for volcanic ash
concentrations, for which this threshold is > 10 ug m ™. In this case, ; corresponds to the volcanic ash concentration simulated
by the nature run, The relatively low threshold to calculate the RMAE was chosen in order to increase the number of grid cells
to be analyzed and to investigate the full volcanic ash cloud rather than only the area of high concentrations. The RMAE

13
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measures the relative difference of column ash mass loads (or volcanic ash concentrations) between nature run and the analysis
ensemble mean, averaged over all grid cells. Higher values of the RMAE are a result of different height-time_mass emission
patterns between the nature run and the analysis ensemble mean, given the assumed perfect meteorology used in this study._
The probability estimate of the ensemble analysis is investigated using the Brier score

N ZZ p]z_ ]z ) (10)

_]111

where r is the number of verification classes, p; ; is the forecast probability of the ensemble for class j to predict event 7, and

F; ; is the respective observed probability. The probability of the analysis ensemble to model volcanic ash concentrations within
eight verification classes is analyzed. These classes are [10 3,50 ugm~?], [50 uygm 3, 100 —31, 1100 -3

within a certain class and F;; =0 otherwise. A perfect probabilistic forecast result in a Brier score close to 0. The small
threshold values are chosen to see the performance of the ensemble for analyzing the full volcanic ash cloud. Further, the
number of grid cells with large volcanic ash concentrations is limited, which renders the Brier score inapplicable.

Finally, the forecast probability of the analysis ensemble is analyzed. The forecast probability computed as the relative number
of ensemble members predicting the event (i. e. the number of ensemble members forecasting volcanic ash concentrations

3 Identieal twin-experimentsValidation of ESIAS-chem

The utility-ability of the-system-ESIAS-chem to provide quantitative estimates of the volcanic ash emission uncertainty is
explored by identical twin experiments. Identical twin experiments are necessary, yet not sufficient standard test procedures
for validating spatio-temporal data assimilation and inverse modelling set-ups. They are idealized experiments as they rest on
the “perfect model assumption” and its analog for the data side: exactly known accuracy and representativity. This provides a

total knowledge of the “synthetic truths” as given by simulations with the same model and extraction of artificial “measure-

ments/soundings” thereof. The term identical twin refers to the fact, that observations and a priori knowledge are constructed

from the same model and input data, in which only the parameters to be optimized (emission profile in our case) differ. Given
the identical twin assumption the experiment is then to be made realistic in all other respects;-as-the-tweo-different-weather

conditions-on-our-case. Daley (1991) concludes however, that identical twin experiments “err on the optimistic side” (loc. cit.).

Yet, the applicability of ESIAS-chem to real volcanic eruptions will be shown in a companion paper.

3.1 Experimental setu

In this study, ESIAS-chem is online coupled to the reg10nal air quality model EURAD-IM fEURepezmﬁAmLpe}}uﬁeﬂ—Bispemeﬂ
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Centre; 2045 (EURopean Air pollution Dispersion - Inverse Model, Elbern et al., 2007). As we consider the differences

of feedbacks of the ash clouds on the meteorological evolution as not critical on the forecast time scale in our idealized
tests, the EURAD-IM ith adioi ieal-and-a

analysis)—is offline coupled with the Weather Research and Forecasting (WRF) model version 3.7 (Skamarock et al., 2008).
Meteorological boundary conditions are taken from the ECMWEF (European Centre for Medium-Range Weather Forecasts
analysis. The simulations have been run on the JUQUEEN supercomputer (Jiilich Supercomputing Centre, 2015).

assessmentseolumn-system is tested for notional volcanic eruptions of the Eyjafjallajokull volcano, Iceland, on 15 April and
29 April 2010. These dates were chosen as different meteorological conditions with strong and weak winds at the volcano

occurred. Column mass loading of volcanic ash in [g m™2] is extracted as fictional observation data y; every 6 hours from a

“nature’ run, simulated by the forward model of EURAD- IMfef—léApﬂ}ﬂﬂd%ﬁ%pfﬂ%@w—whiehwefeeheseﬂﬂ&dfffefmg

v. These data mimic cloud

free retrievals from the Spin-Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the geostationary Meteosat
Second Generation satellite, with significantly larger time steps (six hours in this analysis), however. Thisrenders-the-observation
operator-to-be-theidentity-matrix—The synthetic observations from the nature run are extracted from the full domain including
grid cells containing volcanic ash and those without volcanic ash. The information of ash free areas is necessary in order to
avoid estimates of spurious emissions at false times and heights in the analysis.

The uncertainty of volcanic ash column mass loading observations is about 40 % (Kristiansen-et-al;2015;and-referenees
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Figure 2. Hovmoeller- {ﬂeewlot of the nature run emission proﬁle for-the-performance-anatysis-of ESTAS-chem-used in dependence-on

~this study. Shown is the emission rate (colored) for a given time (x-axis)

and height above the volcano (y-axis).
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v—(Western et al., 2015; Clarisse and Prata, 2016) or

1994 Kylling et al., 2014). For the identical twin experiments in this stud
s-needs a special treatment because a relative error overemphasizes
the system to these-observations-of-low-voleanic-ash-contentlow observed values. Further, no relative error for observations of

no-volcanic ash observations can be obtained. Therefore, it-was-deeided-to-tise-the following expression for the observation
2

, the observation error

error o, with a minimum error of 0.1 gm™= is used

—,0.11. 11
max; (y; *0.4)’ (1D

in = max

With this choice of observation error, the impact of low volcanic ash values observed at the edge of the volcanic ash cloud on the

analysis is diminished. For applications to real volcanic eruptions, the observation error provided by the satellite retrieval per
ixel should be considered.

tons—The Hovmoeller-like plot of the nature run emission

profile is shown in Fig. 2. It shows the variable emission rate by a height-time graphic above the volcano. The selected sub-
Plinian eruption type (Bardintzeff and McBirney, 2000) is characterized by two short explosive phases between 02-04 UTC and
06-08 UTC reaching a height of approx. 8 km above the volcano.

The length of the assimilation window influences the performance of the dataassimilation-inversion algorithm due to the
influenee-of-differences in vertical and horizontal mixing and vertical wind shear. Hence, the performance of ESIAS-chem is
tested for different assimilation window lengths. All assimilation windows start at 00 UTC for the specific day and last for
06-36 hours. Fig. 3 illustrates the different assimilation window lengths—The-assimilation-windows-, which differ in length

by multiples of 66 hours. €ertainly,by-With increased residence time in the atmosphere, the volcanic ash at different heights
becomes more horizontally split by wind shear. This effect can be exploited by increasing the assimilation window lengththe

observations-inelude-mere-information-as-the-residenee-time-of voleanie-ash-in-the-atmesphere-isinereased. Contrary, vertical
and horizontal mixing of volcanic ash emitted-may limit the benefit that is gained by increasing the assimilation window length.
to one or the other emission package. Once the volcanic ash emissions are optimized, a forecast is appended until 36 hours after
the simulation start (hatched areas in Fig. 3). Thus, beneficial impacts of the assimilation-inversion results for the analyses with
differing assimilation window lengths can be assessed.

The first real weather test day to which ESIAS-chem is applied is 15 April 2010, which was characterized by strong west—north—
westerly winds atin Iceland. This is illustrated by the wind profile at the volcano (Fig. 4a) for the whole simulation length of
36 hours and the wind field over Europe at approx—5-height-500 hPa on 15 April 2010, 12 UTC (Fig. 4b). During this day, the
polar front and the polar jet stream are located above Iceland, driving the volcanic ash to travel fast southeast towards continental

Europe, with wind speeds of up to 60 m s~ at heights of 5-8 km above the volcano. Fig. 4c shows a vertical cross section of

16



pressure and temperature along the red line in Fig. 4b at 12 UTC on 15 April 2010. As indicated by the intersection of the
isobars and isotherms, 15 April 2010 is characterized by substantial vertical wind shear above Iceland, which is expected to ease
the distinction of volcanic ash emitted at different heights as seen from above.

435 In addition to the synoptic scenario on 15 April 2010, a second analysis of ESIAS-chem’s performance is made for a

36hr
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0 1I0 2I0 3I0
Assimilation window length [h]

Figure 3. Ilustration of the varying assimilation window lengths for the identical twin experiment (filled bars). After each assimilation
window, a free forecast until 36 hours after the start of the simulation is appended (hatched bars). Color codes and experiment IDs correspond

to the annotations in the- subsequent figures. The gray background area indicates the duration of the volcanic eruption from hours 2 to 8.
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Figure 4. Meteorological conditions on 15 April 2010. (a) Wind speed above the volcano for the whole simulation period. (b) Wind speed i#
approx—>at 500 heighthPa on 15 April 2010, 12 UTC, which corresponds to approx. 5 km above the volcano. (c) Vertical cross-section of
isobars in [hPa] (red) and isotherms in [K] (grey) along the red line in b) on 15 April 2010, 12 UTC.
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hypothetical sub-Plinian eruption of the Eyjafjallajokull volcano on 29 April 2010 (Fig. 5). The-same-A similar emission
profile is taken as depicted in Fig. 2, yet with slightly different emission rates. This day is characterized by weak winds of

approximately 10 ms™!

in the vicinity of the volcano, which is illustrated by Fig. 5. Thus, the emitted volcanic ash is only slowly
transported. Additionally, the vertical wind shear on 29 April 2010, 12 UTC, is low, as indicated by a higher barotropicity above
Iceland (Fig. 5c¢). The two dates were chosen because of their different wind patterns and the real eruption of the Eyjafjallajokull
that occurred during these days. Hence, the identical twin experiment provides an optimal case scenario for the application of
ESIAS-chem to real volcanic eruptions.

ash-cloud-of-the-ensemble-mean-is-compared-to-

3.2 Evaluation of ESIAS-chem

3.2.1 Volcanic ash dispersion

The ability of the analysis ensemble mean to predict the volcanic ash dispersion is investigated using the natare+run—TFweo
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Figure 5. Meteorological conditions on 29 April 2010. (a) Wind speed above the volcano for the whole simulation period. (b) Wind speed i
approx—>sat 500 heighthPa on 29 April 2010, 12 UTC, which corresponds to approx. 5 km above the volcano. (c) Vertical cross-section of
isobars in [hPa] (red) and isotherms in [K] (grey) along the red line in b) on 29 April 2010, 12 UTC.
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Figure 6. Pattern correlation coefficient defined by (7) for the eruption on (a) 15 April 2010 and on (b) 29 April 2010. The different lines

indicate different assimilation window lengths from 6 hours (gray) to 36 hours (magenta) as defined by Fig. 3.
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- introduced in Section 2.2. The pattern correlation
coefficient is shown in Fig. 6 for the two analysis days. The lines in Fig. 6 indicate results for different assimilation window
lengths as illustrated by Fig. 3. Fig. 6 shows a constantly large pattern correlation coefficient > 0.95 after the artificial eruption
terminated at 08 UTC for both analysis days, except for assimilation window lengths of 86 and 12 hours. By applying an
assimilation window of 86 hours from the simulation start, the artificial volcanic eruption has not terminated, thus, the latest
emissions from the nature run volcanic eruption are not considered in the analysis. This leads to a reduced pcc for the 66
hour assimilation window test case. The assimilation window of 12 hours ends four hours after the termination of the artificial
volcanic eruption. The reduced pcc exhibits that this short assimilation window is not sufficient in order to analyze the correct
emission profile. Thus, with increasing time after the end of the assimilation window, the pcc decreases to approx. 0.88 on
15 April 2010 and approx. 0.92 on 29 April 2010. The high pcc values indicate that the assimilation of column mass loading to
estimate volcanic ash emissions succeeds to retrieve the horizontal extent of the volcanic ash cloud. AgainHowever, the pattern
correlation coefficient does-not-aceount-for-deviations-is a measure for volcanic ash column mass loading above and below the
chosen threshold. It does not measure differences in the strength of volcanic ash column mass loading atlecations-in-which-the
ensemble-mean-and-the nature run-differ in-voleanie-ash-eadabove the threshold.

Increasing the assimilation window length (i.e. taking later observations into account) increases the pattern correlation coefficient
on both days. The analysis suggests that for the respective test cases an assimilation window of 18 hours, that is 10 hours
after the artificial eruption terminated, is sufficient for ESTAS-chem to analyze the exact location of the volcanic ash cloud as
observed from space leading to a pcc value that remains high (> 0.95) throughout the full analysis time period of 36 hours. Fig. 6
demonstrates that the assimilation-inversion system is able to accurately analyze the horizontal extend-extent of the volcanic ash
cloud.

Fig. 7 shows the RMAE for volcanic ash column mass loading on both days. The RMAE is relatively constant for the duration
of the simulations, except for the 12 hours assimilation window case in Fig. 7a. At the end of the simulation time at 36 hours, the
test cases with longer assimilation windows (> 18 hours) show a RMAE of the order of 10 % for both days. These low values
show the good performance of the analysis for these assimilation window lengths with respect to the nature run. In principle,
Fig. 7 corroborates the same findings that are analyzed for the pattern correlation coefficient, i. e. increasing the assimilation
window length decreases the error of the analysis ensemble mean. For both days and meteorological circulation patterns, an
assimilation window of 18 hours is sufficient to reduce the RMAE to a value of approx. 10 % for column mass loading values
above 0.2 gm™2. On 15 April 2010, assimilation windows larger than 24 hours result in a slightly higher RMAE than the
analysis using an assimilation window of 18 hours. This is a result of the convergence of volcanic ash in the upper troposphere

south of Norway around 24 hours after the simulation has started (not shown). Thus, additional observations at later times do not
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Figure 7. Relative mean absolute error of column mass loading defined by (9) for the eruption on (a) 15 April 2010 and on (b) 29 April 2010.

The different lines indicate different assimilation window lengths from 06 hours (gray) to 36 hours (magenta) as defined by Fig. 3.

contribute significant information to the assimilation-inversion system. In summary, Fig. 7 proves that the assimilation-inversion
system is able to analyze the distribution of volcanic ash column mass loading properly for weak and strong wind conditions.

The above analysis focuses on the comparison of the nature run and the ensemble mean with respect to column mass loading of
volcanic ash. Thus, it does not provide any information about the vertical distribution of volcanic ash. The ability of ESIAS-chem

to infer vertical profiles of volcanic ash is given in Fig. 8, which displays the relative mean absolute error of the volcanic
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Figure 8. Relative mean absolute error of the volcanic ash concentrations defined by (9) for the eruption on (a) 15 April 2010 and on (b)
29 April 2010. The different lines indicate different assimilation window lengths from 12 hours (red) to 36 hours (magenta) as defined by

Fig. 3.

21



510

515

520

525

530

535

ash concentrations above 10 ug m~2. The RMAE of the volcanic ash concentrations decreases by increasing the assimilation
window length, which is especially visible for 29 April 2010. On both days, an assimilation window of only 6 hours results in

a RMAE larger than 100 %. Therefore, this test case is not shown in Fig. 8. The RMAE for the 12 hour assimilation window

test case show a spike at 12 UTC. This results from the insufficient estimation of the upper part of the eruption column in the
second explosive phase of the eruption (cf. Fig. A2 in the appendix). This error smoothed out in the subsequent hours of the

simulation. On average, the RMAE reduces to about 20 % on both days for assimilation windows larger than 18 hours, which
shows the good performance of the ESIAS-chem analysis not only in terms of column mass loading but also in terms of the

vertical distribution of the volcanic ash in the atmosphere. The-

3.2.2  Emission profile

As an example, the analysis results using an assimilation window of 24 hours are investigated exemptary-in more detail. This
test case is chosen as the previous analysis showed the good performance of the 24 hour assimilation window experiments.
Further, an assimilation window of 24 hours is a reasonable choice for either analysis of longer lasting volcanic eruptions
or an operational use. The analyzed ensemble mean emission profiles for other assimilation window lengths are shown in the
Appendix A along with the relative error. Fig. 9 and Fig. 10 display the profile of (a) the nature run emissions, (b) the ensemble

mean emissions, (c) the relative error of the ensemble mean

T—y T—yY

RE = 12
max(T) maz(y)’ (12)

and (d) the relative ensemble standard deviation

et = —2 (13)

maz(T) maz(y)’

for the 24 hour assimilation window experiments on 15 April and 29 April 2010. Herein, T and y are the ensemble mean and
nature run emissions, respectively, and o, is the ensemble standard deviation.

The total nature run emissions on both days (4.25 - 10® tons and 4.30 - 10® tons on 15 April and 29 April, respectively) are
well captured by the analyzed total emissions with mean emissions of 4-58-+6%4.60 - 10°® tons and 4.10 - 10® tons, respectively,
and standard deviations of 3.67 - 107 tons and 3.47 - 107 tons. The relative error of the total emitted volcanic ash is 7.7 % and
4.7 %, respectively. On 15 April 2010, the analyzed emission profile of the ensemble mean shows the two explosive eruptions of
the nature run emission profile with the correct height of the maximum emissions at the right time (Fig. 9b). Even though the
ensemble mean shows a vertically and temporally smoothed emission profile, the false emissions are low with respect to the
maximum emissions. The relative error of the ensemble mean emissions is of the order of 10 %-20 % for most emission times
and heights (cf. Fig. 9c) and therefore, the results are similar to the analysis presented before. The relative ensemble standard
deviation is of the same order as the relative error of the ensemble mean emissions, indicating a reasonable ensemble spread.
The analyzed emission profile of the ensemble mean on 29 April 2010 (Fig. 10b) however shows strong deviations from the

nature run emission profile (Fig. 10a). Although the highest level emissions of the nature run emission profile in-at 8 km height
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Figure 9. Comparison of the emission profiles of the nature run and ensemble mean for 15 April 2010. The figure shows (a) the nature run
emission profile and (b) the ensemble mean emission profile. For comparison, (c) the relative error of the ensemble mean and (d) the relative

ensemble standard deviation are illustrated.

are well captured by the ensemble mean, at lower levels no distinction between the two explosive eruptions is obtained. In
comparison to the analyzed emissions on 15 April 2010, on 29 April 2010 the analyzed emissions of the ensemble mean are
more uniform in time and height. Thus, large errors in both directions can be identified: negative errors during the explosive
eruptions at around 03 UTC and 07 UTC indicate an underestimation of the emissions, while positive errors outside the two
explosive eruptions indicate an overestimation of the emissions. This diffusion effect reflects the typical challenge of solving
ill-posed problems in reconstructing sharp spatial and temporal gradients. Nonetheless, the height and final time of the eruption
are well analyzed by the ensemble mean on both days, which is basically a result of including no-volcanic ash observations.
The analyzed emission profile on 29 April 2010 shows the limits of the ESIAS-chem approach. While the volcanic ash column
mass loading have only low errors, the emission profile shows large deviations up to 60 s#it%% and more (Fig. 10c). The
ensemble standard deviation of the emission profile (Fig. 10d) is lower than the relative error of the ensemble mean and ranges
around 20 %. The results indicate that on 29 April 2010 the mixing of volcanic ash in the atmosphere is too effective, which
prohibits a proper estimate of volcanic ash emission profiles. However, the previous results show that even though the volcanic
ash emission profile could not be properly estimated by the system on 29 April 2010, the vertical and horizontal distribution of

volcanic ash in the atmosphere is fairly represented by the ensemble mean.
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3.2.3 Probability analysis

The proper analysis of high volcanic ash concentrations in the atmosphere as well as their forecast accuracy are of great
importance for air safety advisory services. Yet, only the ability of ESIAS-chem to provide reasonable estimates of vertically

resolved volcanic ash forecasts and analysis is shown. Thus, the-in this section the probability estimate of the analysis ensemble

for the volcanic ash emissions and the resulting concentrations remains to be discussed. Fig. 11 shows the histogram of the

relative emission factor for different assimilation window lengths for the test case on 15 April 2010 as given by the analysis
ensemble. The relative emission factor is calculated for each time-height combination (¢, k) of the emission profile by dividin

the emission rate of each member of the analysis ensemble ER(i) by the respective nature run emission rate £ RN
 ERY
(1) _ tk
relEFt,k = ER{Y,CR' (14)

Thus, emissions in the analysis ensemble that are temporally or vertically outside the nature run emission profile are not

considered. The calculation of the histogram in Fig. 11 includes all emissions and four different subsets of emission strengths
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Figure 10. Comparison of the emission profiles of the nature run and ensemble mean for 29 April 2010. The figure shows (a) the nature run
emission profile and (b) the ensemble mean emission profile. For comparison, (c) the relative error of the ensemble mean and (d) the relative

ensemble standard deviation are illustrated.

24



565

570

575

a) All emissions b)  Top half emissions

—
| 3000 - I
9 —
o 4000 - —
S 2000 ||
—_
3 2000
9 i 1000
o = [ 12hr
o — 0 [ 18hr
c) Top 25% emissions d) Top 10% emissions 1 24hr
30hr
600 -
g 1500 1 [ 36hr
|9}
c 400 -
0 1000 4
35
o
& 500 2001
0- 0+ T . T .
00 05 1.0 15 2.0 00 05 1.0 15 20
Relative emission Relative emission
factor factor

Figure 11. Histogram of the relative emission factors for different assimilation window lengths for the test case on 15 April 2010, with colour

.3. The relative emission factor is calculated according to (14). The histograms are shown for (a) all emission rates, (b) the to

codes as in Fi

half, (c) the top 25 %, and (d) the top 10 % emission rate.

the strongest 50 %, 25 %, and 10 % emissions). The relative emission factors for the 12 hour assimilation window test case

tend to underestimate the emissions of the nature run (Fig. 11a and Fig. 11d). By increasing the assimilation window length, the

histograms peak around factor 1. while the occurrences of underpredicting the nature run emission rates diminish, A relative
emission factor of 1 indicates a good match of the analyzed and nature run emission rates. This improvement by increasing the
assimilation window length is especially true for the top 10 % emission rates in Fig. 11d. Fig. 12 shows the histograms of the
relative emission factors for the analysis on 29 April 2010. In general, the analysis tends to underestimate the emission rates
as was previously discussed in Sect. 3.2.2. This results in a bias toward too small relative emission factors in the histograms.
However, by increasing the assimilation window length, the underestimation of the emission rates by the analysis ensemble
reduces. For the strongest 25 % of the emission rates, assimilation windows longer than 18 hours show a second maximum at
arelative emission factor of 1 (Fig. 12¢). These test cases also show a lower rate of underprediction for the top 10 % emission
rates (Fig. 12d). Thus, the results suggest that the reliability of the ensemble to analyze the strong emission rates in the upper
emission plumes increases with increasing assimilation window length for both meteorological conditions, yet with different
The accuracy of the probabilistic prediction of volcanic ash concentrations by the ensemble is measured by the Brier score
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Figure 12. Histogram of the relative emission factors for different assimilation window lengths for the test case on 29 April 2010, with colour

codes as in Fig.3. The relative emission factor is calculated according to (14). The histograms are shown for (a) all emission rates, (b) the to

half, (c) the top 25 %, and (d) the top 10 % emission rate.

cf. Sect. 2.2). The Brier score is shown in Fig. 13 for each hour and for all assimilation window lengths. The Brier score

for assimilation windows greater equal 18 hours shows a low value around 0.15 on both analysis days. which is constant
over time. Shorter assimilation windows have larger Brier score values that increase with simulation lead time. This increase
of the Brier score for short assimilation windows is caused by insufficient estimates of the volcanic ash emissions, which
lead to errors in the resulting volcanic ash concentrations as compared to the nature run. Thus, with increasing forecast time,
the volcanic ash concentrations are attributed more and more to different classes used for the calculation of the Brier score.
This reduces the underlying probability and increases the Brier score. With increasing time after the volcanic eruption, the
volcanic ash concentrations reduces due to dispersion and deposition. Lower volcanic ash concentrations have larger errors
(not shown) meaning that ESIAS-chem is less able to predict these low concentrations with high confidence. Especially for
shorter assimilation window lengths, ESIAS-chem is not able to estimate the emission profile properly. Thus, the corresponding.
volcanic ash is emitted into false layers or at false times leading to larger errors in the probabilistic forecast.

As an example, the following analysis is dedicated-to-the-aceuracy-aiming to assess the confidence of the ensemble prediction
of volcanic ash using the 24 hour assimilation window experiment. Fig. 14a )-compares the probability of volcanic ash column

mass loading exceeding 2 gm~2 on 16 April 2010, 00 UTC. Additionally, the nature run’s volcanic ash column mass loading
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Figure 13. Brier score as calculated by (10) for each hour and all assimilation window lengths for (a) 15 April and (b) 29 April 2010.
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Figure 14. Probability maps on 16 April 2010, 00 UTC, from the 24 h assimilation window test case. a) Probability of the analysis ensemble
for volcanic ash column mass loading exceeding 2 g m ™2 (shaded areas). Contour lines of nature run volcanic ash column mass loading for
0.5, 1, and 2 mg m ™2 are also given by blue lines. b) Probabitity Vertical contours of the probability of the analysis ensemble of volcanic ash
concentration exceeding 500 ug m ™2 along the red dashed line in a). Contour lines of nature run volcanic ash concentrations for 250, 350, and

500 ug m~? are shown by blue lines.

contours for 0.5, 1, and 2 gm_2 are overlaid by blue lines. On 15 April 2010, wind conditions are favorable for volcanic
ash to disperse rapidly. Thus, the area containing high volcanic ash column mass loading covers only a small region above
South-Sweden. The ensemble predicts a probability of more than 90 % for high volcanic ash column mass loading in this area.
A small probability of about 20-30 % of volcanic ash column mass loading exceeding the threshold of 2 g m~2 is also predicted

above the North Sea, where nature run’s volcanic ash column mass loading exceeds 1 gm™2. Fig. 14b shows the vertical
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Figure 15. Probability map on 30 April 2010, 12 UTC, from the 24 h assimilation window test case. a) Probability of the analysis ensemble
for volcanic ash column mass loading exceeding 2 g m ™2 (shaded areas). Contour lines of nature run volcanic ash column mass loading for

0.5, 1, and 2 g m~2 are alse given by blue lines. b) Prebability Vertical contours of the probability of the analysis ensemble of volcanic ash

concentrations exceeding 2 mg m > along the red dashed line in a). Contour lines of nature run volcanic ash concentrations for 0.5, 1, and

2 mgm™? are shown by blue lines.

cross-section along the red line in Fig. 14a, where the shading shows the probability of volcanic ash exceeding 500 ug m 3.

Nature run’s volcanic ash concentrations are displayed by isolines of 250, 350, and 500 pug m 3. As the dispersion of volcanic ash
leads to low volcanic ash concentrations on 16 April 2010, 00 UTC, the threshold of 500 ug m~2 for calculating the exceedance
probability was chosen instead of using the official threshold of 2 mg m~3 (Prata and Prata, 2012, and references therein). The
nature run’s volcanic ash concentrations of more than 500 ia-ug m~2 at about 7 km height are well represented by the ensemble
with high probability (> 90 %). Two other locations in this vertical cross-section show nature run’s volcanic ash concentrations
above 500 inpg m ™ at approx. 4 km height in the center of the vertical cross-section and in-at approx. 5 km height northeast
of the center (i. e. to the right in Fig. 14b). Even though the volcanic ash in-at 4 km height in the center of the cross-section
is covered from above by the elevated volcanic ash in-at 7 km height, the ensemble predicts a 50 % chance of volcanic ash
exceeding the threshold at 4 km height. This is remarkably remarkable, since only vertically integrated observations of volcanic
ash are assimilated. The volcanic ash northeast of the center of the vertical cross-section (i. e. to the right in Fig. 14b) is predicted
by only 20-30 % of the ensemble. The ensemble predicts this volcanic ash in this vertical column to be at a height of 6-7 km
by a chance of more than 70 %. This may be beeause-of due to the lack of vertical wind shear that prevents the distinction of
volcanic ash emitted at different heights height levels.

Fig. 15a shows the probability of volcanic ash column mass loading exceeding 2 g m~2 as predicted by the ensemble on 30 April
2010, 12 UTC, i. e. 36 hours after the simulation start and 12 hours after the end of the assimilation window. Isolines of

2

nature run’s volcanic ash column mass loading for 0.5 gm~2, 1 gm~2, and 2 g m~2 are also given by blue lines. A vertical
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cross-section of the probability of volcanic ash concentration exceeding 2 mg m ™2 along the red line in Fig. 15a is shown in
Fig. 15b. Even though the emission profile on 29 April 2010 was not well analyzed, the ensemble predicts the high volcanic
ash concentration with a probability of more than 90 %. Fhus; ESFAS-chem-demeonstrates-to-estimate-the-vertical-distribution

y-Fig. 15b shows a vertically tilted volcanic ash
cloud. This suggests that only little vertical mixing occurred on 29. April 2010 in the displayed vertical cross-section. Thus, the
falsely emitted volcanic ash in the horizontally smoothed analysis emission profile leads to similar volcanic ash concentrations,
which suggests that horizontal mixing of volcanic ash happened. Hence, an exact estimation of the emission profile is generally
impossible from column mass loading observations as different emission packages lead to similar volcanic ash concentrations
and/or column mass loadings. However, the good performance in analyzing the vertical structure of the volcanic ash cloud
is partly due to the perfect model / perfect meteorology assumption made in this study. The reliable estimate of the emission
profile for the test case with strong wind shear suggest that the vertical structure of the volcanic ash is also sufficiently estimated
under real conditions, where meteorological forecast uncertainties impose a limiting factor to further improvements. This needs
to be proved in the application to real volcanic eruptions.

4 Discussion and conclusions

In this study, a new method for estimating volcanic ash emissions and its uncertainty from column mass loading observations
is developed. This new method is realized by the atmospheric chemical part of the Ensemble for Stochastic Integration of
Atmospheric Simulations (ESIAS-chem). On-the-one-hand;-the The method comprises an ensemble-based particle smoother,
which extends the assimilation window to include the latest observations available;-takenfor-the-estimation-of-the-emisston
profile-for-the-whele-assimilation-window. On-the-other-hand;-the The discrete-grid ensemble Nelder-Mead method (DENM) is
developed in order to efficiently achieve a posterior ensemble representation of the optimum-of-the-costfunetion-time-dependent

emission profile. The particle smoother approach enables to use the latest observations for the emission-estimation of the

emission profile within the whole assimilation window , while consistancy with all observations within the time interval is
enforced.

The system was applied in an idealized setup to a notional eruption of the Eyjafjalljckull volcano, Iceland, on 15 April and
29 April 2010 using a sub-Plinian type eruption with two short eruption plumes. Both days were characterized by different
meteorological conditions. On 15 April 2010, strong winds were present at the volcano, while on 29 April 2010, winds were
weak. In the identical twin experiments, different assimilation window lengths have been tested to investigate the influence of
increasing observation sequences on the analysis quality. The main findings in this study are that

— the error of the analyzed column mass loading and volcanic ash concentrations by the ensemble mean is only 10 % on
15 April and 20 % on 29 April 2010

— the total emitted mass of volcanic ash is reasonably well estimated by the analysis ensemble on both days,

29



645

650

655

660

665

670

675

- increasing the assimilation window length, the ensemble performs increasingly better in analyzing the emission rates,
especially for high emission rates in the upper part of the eruption column

— on 15 April 2010, a second lower volcanic ash layer covered from above by the main volcanic ash cloud was predicted
by about 50 % of the ensemble members.

Fhe Due to the identical twin approach, the presented investigation acts as a best case scenario for probabilistic volcanic ash
assessments. The analysis is idealized in different ways: Firstly-the-The uncertainties in meteorological fields; (especially in
winds;) is-negleeted-in-the study-Seeondly-in model parameters (e. g. deposition velocity), and parametrizations (e. g. clouds)
have been neglected. Further, the amount of observational data is exceptionally large, with observations of the full domain every
6 hours. The-inctuston-of-Thus, observations of ash-free areas stpperts-thesystems-abilityto-constraint-the-emissions-to-the

ee&ee&&mes—&ﬂé%ergh%s—Hewever—mﬂ—eempaﬂtefrpape%allow for removing volcanic ash emissions from the analysis. The
ability of ESIAS-chem is

remove-voleanic-ash-emissions-at-false-height-and-timesto give reliable results for real volcanic eruptions using non-idealized

meteorology and incomplete observations will be addressed in a follow-up study. Even though direct observations of volcanic
ash columns were used in this study, ESIAS-chem is extremely flexible in terms of observational data. By-estimating-the

kinds of data can be used the constrain the inversion method, such as samples of tephra fall out, if available.

TFhe-flexibility-of the-system-enables-also-ESIAS-chem is designed to account for eenstraints-additional information on the
emission profile-These-mayresult, which may, for example, be obtained from radar or web cam observations (e. g., Arason et al.,
201 1) M&%W’Mmggemporal resolution of the emf%ﬁeﬁ&maybeﬂﬂema%ed

profile are applicable if suggested by observations without noteworthy modifications.

In this study, ESIAS-chem was challenged with highly variable volcanic ash emissions. By-leaving-the-emission-profile-as
uneonstrained-as-possible-the system-proves The analysis has shown that ESIAS-chem is able to provide good estimates of
the volcanic ash concentration in the atmosphere as well as its forecast probability. Further, the emission profile was estimated
reasonably well at least for i i i 1551 : i i ttuat
wind test case for assimilation window length greater than 18 hours.

nthe strong

eorreet-height-with-a-high-probability—However, the ideal length of the assimilation window may depend on the current
meteorological situation, most notable the vertical wind shear, and the availability of observational data. Thus, in applications
to real volcanic eruptions the assimilation window should be as large as practicably possible to include a large number of
observations linking eruption time of particles with observation time,

The system shows high probability in estimating the vertical distribution of high volcanic ash concentration for both test
dates. Although the system lacks to estimate the true emission profile sufficiently well for weak wind conditions, the analysis of
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the probability of volcanic ash showed that its vertical distribution in the atmosphere is aceurately-reliably predicted.

Besides volcanic ash eruptions, ESTAS-chem is applicable to a variety of emission scenarios, especially unexpected emission
events like forest fires and mineral dust events. Therefore, it provides a fast and efficient model for source term estima-
tion including uncertainty representation. In principle, the method can be adapted to multi-source emission scenarios. The
enhanced need for compute resources of ESIAS-chem can partly be abserbed-by—a—redueed-compensated by reducing the
resolution of the emission profileand-wil-be-in-the-focus-of future-work—Further; P e b uptions,

emissions, it is intended to use a meteorological ensemble to account for additional uncertainties in wind fields, which is well
applicable within the concept of ESIAS-chem. It is noted that ESIAS-chem is flexible in integrating other modules and is

applicable to other atmospheric models as well.

Code availability. The analysis module used to calculate the volcanic ash emission estimate can be downloaded at http://doi.org/10.5281/

zen0do.4736071 under a Creative Commons Attribution 4.0 International License.
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Appendix A:

Figure A1l. Emission profile of the ensemble mean (left panels) and its relative error to the nature run emission profile (right panels) for

Comparison of emission profiles for all assimilation windows
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Figure A2. Emission profile of the ensemble mean (left panels) and its relative error to the nature run emission profile (right panels) for

different assimilation window lengths on 29 April 2010.
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